JP2007173516A - Silicon fine particles, manufacturing method thereof, solar battery using the same and manufacturing method thereof - Google Patents

Silicon fine particles, manufacturing method thereof, solar battery using the same and manufacturing method thereof Download PDF

Info

Publication number
JP2007173516A
JP2007173516A JP2005369132A JP2005369132A JP2007173516A JP 2007173516 A JP2007173516 A JP 2007173516A JP 2005369132 A JP2005369132 A JP 2005369132A JP 2005369132 A JP2005369132 A JP 2005369132A JP 2007173516 A JP2007173516 A JP 2007173516A
Authority
JP
Japan
Prior art keywords
silicon fine
covalently bonded
fine particles
functional group
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005369132A
Other languages
Japanese (ja)
Other versions
JP5087764B2 (en
Inventor
Kazufumi Ogawa
小川  一文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Research Institute Inc
Kagawa University NUC
Original Assignee
Shikoku Research Institute Inc
Kagawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Research Institute Inc, Kagawa University NUC filed Critical Shikoku Research Institute Inc
Priority to JP2005369132A priority Critical patent/JP5087764B2/en
Publication of JP2007173516A publication Critical patent/JP2007173516A/en
Application granted granted Critical
Publication of JP5087764B2 publication Critical patent/JP5087764B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar battery capable of realizing marked cost reduction compared to a conventional amorphous solar battery or a silicon crystal type solar battery while using silicon, and to provide a manufacturing method thereof, silicon particles to be used therefor and a manufacturing method thereof. <P>SOLUTION: In the solar battery, an n-type silicon fine particle layer coated with an organic thin film, covalently bonded on its surface and a p-type silicon fine particle layer coated with an organic thin film, covalently bonded on its surface are laminated and formed by a step of mixing n-type silicon fine particles 11, covalently bonded on its surface and coated with an organic film containing a first reactant functional group, to p-type silicon fine particles, covalently bonded on its surface and coated with an organic film containing a second reactant functional group, in an organic solvent and forming the mixed particles into paste, and by applying it on the surface of a base material, including a step of mixing p-type silicon fine particles, each having a surface coated with an organic film, to p-type silicon fine particles covalently bonded on its surface in an organic solvent and forming the mixed particles into paste; a step of applying the pasted particles on the surface of the base material; and a step of curing the applied particles. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、太陽電池とその製造方法に関するものである。さらに詳しくは、半導体性シリコン微粒子の表面に熱反応性または光反応性、あるいはラジカル反応性またはイオン反応性を付与した微粒子を用いた太陽電池とその製造方法に関するものである。 The present invention relates to a solar cell and a manufacturing method thereof. More specifically, the present invention relates to a solar cell using fine particles obtained by imparting thermal reactivity or photoreactivity, radical reactivity or ion reactivity to the surface of semiconducting silicon fine particles, and a method for producing the same.

本発明において、「シリコン微粒子」には、半導体性p型シリコン微粒子と半導体性n型シリコン微粒子が含まれる。   In the present invention, “silicon fine particles” include semiconductive p-type silicon fine particles and semiconductive n-type silicon fine particles.

従来、シリコン太陽電池では、ガラス基板表面にプラズマCVD を用いて製膜したシリコンアモルファス型太陽電池や、シリコン結晶やポリシリコン結晶を切断して板状に加工した後不純物拡散したシリコン結晶型太陽電池が知られている。例えば、以下の特許が知られている。
特開平10-247629号公報
Conventionally, in silicon solar cells, silicon amorphous solar cells formed on the surface of a glass substrate using plasma CVD, or silicon crystal solar cells in which impurities are diffused after cutting silicon crystals or polysilicon crystals into a plate shape It has been known. For example, the following patents are known.
JP-A-10-247629

しかしながら、従来のシリコンアモルファス型太陽電池では、高価な真空装置を用いるため、製造コストが高くなるという欠点があった。また、シリコン結晶型太陽電池では、高純度なシリコン結晶やポリシリコン結晶を多量に用いるため、製造コストが高くなるという欠点があった。   However, since the conventional silicon amorphous solar cell uses an expensive vacuum device, there is a drawback that the manufacturing cost increases. In addition, the silicon crystal solar cell has a drawback in that the manufacturing cost increases because a large amount of high-purity silicon crystal or polysilicon crystal is used.

本発明は、シリコンを用いながら、従来のアモルファス型太陽電池やシリコン結晶型太陽電池に比べ、大幅にコストダウンできる太陽電池とその製造方法及びそれに用いるシリコン微粒子とその製造方法を提供することを目的とする。   An object of the present invention is to provide a solar cell that can be significantly reduced in cost compared with conventional amorphous solar cells and silicon crystal solar cells while using silicon, a method for manufacturing the solar cell, and silicon fine particles used therefor and a method for manufacturing the solar cell. And

前記課題を解決するための手段として提供される第一の発明は、表面に共有結合した有機薄膜で被われていることを特徴とするシリコン微粒子である。 A first invention provided as means for solving the above problems is a silicon fine particle characterized by being covered with an organic thin film covalently bonded to the surface.

第二の発明は、第一の発明において、表面に共有結合した有機薄膜が一端に機能性官能基を含み他端でSiを介してシリコン微粒子表面に共有結合する分子で構成されていることを特徴とするシリコン微粒子である。   According to a second invention, in the first invention, the organic thin film covalently bonded to the surface is composed of molecules having a functional functional group at one end and covalently bonded to the silicon fine particle surface through Si at the other end. It is a characteristic silicon fine particle.

第三の発明は、第二の発明において、機能性官能基が反応性の官能基であることを特徴とするシリコン微粒子である。 A third invention is the silicon fine particle according to the second invention, wherein the functional functional group is a reactive functional group.

第四の発明は、第三の発明において、反応性の官能基が熱反応性または光反応性、あるいはラジカル反応性またはイオン反応性の官能基であることを特徴とするシリコン微粒子である。 A fourth invention is the silicon fine particle according to the third invention, wherein the reactive functional group is a thermal reactive or photo reactive functional group or a radical reactive or ion reactive functional group.

第五の発明は、第三の発明において、反応性の官能基がエポキシ基やイミノ基、あるいはカルコン基であることを特徴とするシリコン微粒子である。 A fifth invention is the silicon fine particle according to the third invention, wherein the reactive functional group is an epoxy group, an imino group, or a chalcone group.

第六の発明は、第一及び第二の発明において、表面に共有結合した有機薄膜が単分子膜で構成されていることを特徴とするシリコン微粒子である。 A sixth invention is the silicon fine particle according to the first and second inventions, wherein the organic thin film covalently bonded to the surface is composed of a monomolecular film.

第七の発明は、シリコン微粒子を少なくともアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物とシリコン微粒子表面を反応させる工程を含むことを特徴とするシリコン微粒子の製造方法である。 The seventh invention includes a step of reacting the alkoxysilane compound and the surface of the silicon fine particles by dispersing the silicon fine particles in a chemical adsorption solution prepared by mixing at least an alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent. This is a method for producing silicon fine particles.

第八の発明は、第七の発明において、シリコン微粒子を化学吸着液に分散させてアルコキシシラン化合物とシリコン微粒子表面を反応させる工程の後、シリコン微粒子表面を有機溶剤で洗浄してシリコン微粒子表面に共有結合した単分子膜を形成することを特徴とするシリコン微粒子の製造方法である。 According to an eighth invention, in the seventh invention, after the step of dispersing the silicon fine particles in the chemical adsorption liquid and reacting the alkoxysilane compound and the surface of the silicon fine particles, the surface of the silicon fine particles is washed with an organic solvent to the surface of the silicon fine particles. A method for producing silicon fine particles, wherein a covalently bonded monomolecular film is formed.

第九の発明は、第七の発明において、シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いることを特徴とするシリコン微粒子の製造方法である。 According to a ninth invention, in the seventh invention, a silicon fine particle characterized by using a ketimine compound or an organic acid, aldimine compound, enamine compound, oxazolidine compound, aminoalkylalkoxysilane compound instead of a silanol condensation catalyst. It is a manufacturing method.

第十の発明は、第七の発明において、シラノール縮合触媒に助触媒としてケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物から選ばれる少なくとも1つを混合して用いることを特徴とするシリコン微粒子の製造方法である。 According to a tenth aspect, in the seventh aspect, the silanol condensation catalyst is mixed with at least one selected from a ketimine compound or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound as a co-catalyst. It is a manufacturing method of the silicon fine particle characterized by using.

第十一の発明は、表面に共有結合した有機薄膜で被われているn型シリコン微粒子層と表面に共有結合した有機薄膜で被われているp型シリコン微粒子層が積層形成されていることを特徴とする太陽電池である。 In an eleventh aspect, an n-type silicon fine particle layer covered with an organic thin film covalently bonded to the surface and a p-type silicon fine particle layer covered with an organic thin film covalently bonded to the surface are laminated. This is a characteristic solar cell.

第十二の発明は、表面に共有結合した第1の有機薄膜で被われたn型シリコン微粒子と表面に共有結合した第2の有機薄膜で被われたn型シリコン微粒子が混合されて互いに前記有機薄膜を介して共有結合して硬化製膜されているn型シリコン微粒子層と、表面に共有結合した第1の有機薄膜で被われたp型シリコン微粒子と表面に共有結合した第2の有機薄膜で被われたp型シリコン微粒子が混合されて互いに前記有機薄膜を介して共有結合して硬化製膜されているp型シリコン微粒子層がガラス基板上に積層されていることを特徴とする太陽電池である。 In a twelfth aspect of the invention, the n-type silicon fine particles covered with the first organic thin film covalently bonded to the surface and the n-type silicon fine particles covered with the second organic thin film covalently bonded to the surface are mixed and mixed with each other. An n-type silicon fine particle layer that is covalently bonded through an organic thin film and cured and formed, a p-type silicon fine particle covered with a first organic thin film that is covalently bonded to the surface, and a second organic that is covalently bonded to the surface A p-type silicon fine particle layer in which p-type silicon fine particles covered with a thin film are mixed and covalently bonded to each other through the organic thin film to form a cured film is laminated on a glass substrate. It is a battery.

第十三の発明は、第十一及び第十二の発明において、表面に共有結合した有機薄膜が一端に反応性の官能基を含み他端でSiを介して半導体性シリコン微粒子表面に共有結合する分子で構成されていることを特徴とする太陽電池である。 According to a thirteenth invention, in the eleventh and twelfth inventions, the organic thin film covalently bonded to the surface contains a reactive functional group at one end and is covalently bonded to the surface of the semiconductor silicon fine particle via Si at the other end. It is a solar cell characterized by being made up of molecules that

第十四の発明は、第十三の発明において、反応性の官能基が熱反応性あるいはイオン反応性の官能基であることを特徴とする太陽電池である。 A fourteenth invention is a solar cell according to the thirteenth invention, wherein the reactive functional group is a thermally reactive or ion reactive functional group.

第十五の発明は、第十三の発明において、反応性の官能基がエポキシ基やイミノ基であることを特徴とする太陽電池である。 A fifteenth invention is a solar cell according to the thirteenth invention, wherein the reactive functional group is an epoxy group or an imino group.

第十六の発明は、第十一または第十二の発明において、表面に共有結合した有機薄膜が単分子膜で構成されていることを特徴とする太陽電池である。 A sixteenth invention is a solar cell according to the eleventh or twelfth invention, wherein the organic thin film covalently bonded to the surface is formed of a monomolecular film.

第十七の発明は、第十一乃至第十六の発明において、表面に共有結合した有機薄膜で被われた基材表面と有機薄膜で被われたn型シリコン微粒子層と有機薄膜で被われたp型シリコン微粒子層が前記それぞれの有機薄膜を介して共有結合し、硬化成膜されていることを特徴とする太陽電池である。   The seventeenth invention is the eleventh to sixteenth invention, wherein the substrate surface covered with an organic thin film covalently bonded to the surface, the n-type silicon fine particle layer covered with the organic thin film, and the organic thin film are covered. The solar cell is characterized in that the p-type silicon fine particle layer is covalently bonded through the respective organic thin films and is formed into a cured film.

第十八の発明は、表面に共有結合した第1の反応性官能基を含む有機膜で被われたn型シリコン微粒子と表面に共有結合した第2の反応性官能基を含む有機膜で被われたn型シリコン微粒子を有機溶媒中で混合してペースト化する工程と、基材表面に塗布する工程と、表面に共有結合した第1の反応性官能基を含む有機膜で被われたシリコンp型微粒子と表面に共有結合した第2の反応性官能基を含む有機膜で被われたp型シリコン微粒子を有機溶媒中で混合してペースト化する工程と、基材表面に塗布する工程と、硬化させる工程とを含むことを特徴とする太陽電池の製造方法である。 According to an eighteenth aspect of the invention, there is provided an n-type silicon fine particle covered with an organic film containing a first reactive functional group covalently bonded to the surface and an organic film containing a second reactive functional group covalently bonded to the surface. A step of mixing the n-type silicon fine particles in an organic solvent to form a paste, a step of applying to the surface of the base material, and a silicon covered with an organic film containing the first reactive functional group covalently bonded to the surface a step of mixing p-type silicon fine particles covered with an organic film containing a p-type fine particle and a second reactive functional group covalently bonded to the surface in an organic solvent to form a paste, and a step of applying to the substrate surface And a step of curing the solar cell.

第十九の発明は、第十八の発明において、あらかじめ、塗布前の基材表面に、第1の反応性官能基を含む有機膜で被われたシリコン微粒子、あるいは第2の反応性官能基を含む有機膜で被われたシリコン微粒子の表面の第1または第2の反応性官能基と反応する官能基を含む有機薄膜を結合形成しておくことを特徴とする太陽電池の製造方法である。
以下、更に本願発明について要旨の説明を加える。
In a nineteenth aspect based on the eighteenth aspect, the fine silicon particles or the second reactive functional group previously covered with the organic film containing the first reactive functional group on the surface of the substrate before coating. A method of manufacturing a solar cell, comprising bonding an organic thin film containing a functional group that reacts with the first or second reactive functional group on the surface of a silicon fine particle covered with an organic film containing .
Hereinafter, the summary of the present invention will be further described.

本発明は、シリコン微粒子を少なくともアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物とシリコン微粒子表面を反応させる工程により、表面に共有結合した有機薄膜で被われたシリコン微粒子を提供することを要旨とする。 In the present invention, silicon fine particles are dispersed in a chemical adsorption solution prepared by mixing at least an alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, and the surface of the silicon fine particles is reacted with the surface by reacting the alkoxysilane compound with the silicon fine particle surface. The gist is to provide silicon fine particles covered with a covalently bonded organic thin film.

このとき、シリコン微粒子を化学吸着液に分散させてアルコキシシラン化合物とシリコン微粒子表面を反応させる工程の後、シリコン微粒子表面を有機溶剤で洗浄してシリコン微粒子表面に共有結合した単分子膜を形成すると、相対的にシリコン含量の多いシリコン微粒子を提供できて好都合である。
また、シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いると反応時間を短縮できて都合がよい。
さらに、シラノール縮合触媒に助触媒としてケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物から選ばれる少なくとも1つを混合して用いると反応時間をさらに短縮できて都合がよい。
At this time, after the step of dispersing the silicon fine particles in the chemical adsorption liquid and reacting the alkoxysilane compound and the surface of the silicon fine particles, the surface of the silicon fine particles is washed with an organic solvent to form a monomolecular film covalently bonded to the surface of the silicon fine particles. It is advantageous to provide silicon fine particles having a relatively high silicon content.
In addition, it is convenient to use a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound in place of the silanol condensation catalyst.
Furthermore, it is possible to further reduce the reaction time by using a mixture of at least one selected from a ketimine compound or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound as a co-catalyst for the silanol condensation catalyst. Is good.

また、ここで、表面に共有結合した有機薄膜が一端に機能性官能基を含み他端でSiを介してシリコン微粒子表面に共有結合する分子で構成されているとシリコン微粒子に新たな機能を付与できて都合がよい。
また、機能性官能基が反応性の官能基であると、シリコン微粒子を製膜する上で都合がよい。
In addition, when the organic thin film covalently bonded to the surface is composed of molecules having a functional functional group at one end and covalently bonding to the surface of the silicon fine particle via Si at the other end, a new function is imparted to the silicon fine particle. Convenient and convenient.
Moreover, when the functional functional group is a reactive functional group, it is convenient for forming silicon fine particles.

さらに、反応性の官能基が熱反応性または光反応性、あるいはラジカル反応性またはイオン反応性の官能基であると反応性を付与する上で都合がよい。
さらにまた、反応性の官能基がエポキシ基やイミノ基、あるいはカルコン基であると、強固な結合が生じて信頼性を高める上で都合がよい。
また、表面に共有結合した有機薄膜が単分子膜で構成されているとシリコン密度を向上する上で都合がよい。
Furthermore, it is convenient for imparting reactivity when the reactive functional group is a thermal reactive or photoreactive, or a radical reactive or ionic reactive functional group.
Furthermore, when the reactive functional group is an epoxy group, an imino group, or a chalcone group, it is convenient to produce a strong bond and increase reliability.
Moreover, it is convenient to improve the silicon density if the organic thin film covalently bonded to the surface is formed of a monomolecular film.

さらに、本発明は、表面に共有結合した第1の反応性官能基を含む有機膜で被われたn型シリコン微粒子と表面に共有結合した第2の反応性官能基を含む有機膜で被われたn型シリコン微粒子を有機溶媒中で混合してペースト化する工程と、基材表面に塗布する工程と、表面に共有結合した第1の反応性官能基を含む有機膜で被われたp型シリコン微粒子と表面に共有結合した第2の反応性官能基を含む有機膜で被われたp型シリコン微粒子を有機溶媒中で混合してペースト化する工程と、基材表面に塗布する工程と、硬化させる工程とにより、少なくとも表面に共有結合した有機薄膜で被われているn型シリコン微粒子層と表面に共有結合した有機薄膜で被われているp型シリコン微粒子層が積層形成されている太陽電池を提供することを要旨とする。 Furthermore, the present invention covers an n-type silicon fine particle covered with an organic film containing a first reactive functional group covalently bonded to the surface and an organic film containing a second reactive functional group covalently bonded to the surface. N-type silicon fine particles mixed in an organic solvent to form a paste, a step of applying to the substrate surface, a p-type covered with an organic film containing a first reactive functional group covalently bonded to the surface A step of mixing p-type silicon fine particles covered with an organic film containing a silicon fine particle and a second reactive functional group covalently bonded to the surface in an organic solvent to form a paste; A solar cell in which an n-type silicon fine particle layer covered with at least an organic thin film covalently bonded to the surface and a p-type silicon fine particle layer covered with an organic thin film covalently bonded to the surface are laminated by a curing step. To provide And effect.

また、表面に共有結合した第1の有機薄膜で被われたn型シリコン微粒子と表面に共有結合した第2の有機薄膜で被われたn型シリコン微粒子が混合されて互いに前記有機薄膜を介して共有結合して硬化製膜されているn型シリコン微粒子層と、表面に共有結合した第1の有機薄膜で被われたp型シリコン微粒子と表面に共有結合した第2の有機薄膜で被われたp型シリコン微粒子が混合されて互いに前記有機薄膜を介して共有結合して硬化製膜されているp型シリコン微粒子層がガラス基板上に積層されている太陽電池を提供することを要旨とする。   The n-type silicon fine particles covered with the first organic thin film covalently bonded to the surface and the n-type silicon fine particles covered with the second organic thin film covalently bonded to the surface are mixed and passed through the organic thin film. Covered with an n-type silicon fine particle layer that is covalently bonded and cured, a p-type silicon fine particle covered with a first organic thin film covalently bonded to the surface, and a second organic thin film covalently bonded to the surface The gist of the invention is to provide a solar cell in which p-type silicon fine particle layers mixed with p-type silicon fine particles and covalently bonded to each other through the organic thin film to form a cured film are laminated on a glass substrate.

このとき、あらかじめ、塗布前の基材表面に、第1の反応性官能基を含む有機膜で被われたシリコン微粒子、あるいは第2の反応性官能基を含む有機膜で被われたシリコン微粒子の表面の第1または第2の反応性官能基と反応する官能基を含む有機薄膜を結合形成しておくと、シリコン微粒子を安定化し製膜する上で都合がよい。   At this time, the silicon fine particles covered with the organic film containing the first reactive functional group or the silicon fine particles covered with the organic film containing the second reactive functional group on the substrate surface before coating in advance. When an organic thin film containing a functional group that reacts with the first or second reactive functional group on the surface is bonded and formed, it is convenient for stabilizing and forming silicon fine particles.

また、表面に共有結合した有機薄膜が一端に反応性の官能基を含み他端でSiを介して半導体性シリコン微粒子表面に共有結合する分子で構成しておくと、シリコン微粒子を安定化し製膜する上でさらに都合がよい。
さらに、反応性の官能基が熱反応性あるいはイオン反応性の官能基であると信頼性の高い被膜を形成できて都合がよい。
また、反応性の官能基がエポキシ基やイミノ基であるとより信頼性の高い被膜を形成できて都合がよい。また、表面に共有結合した有機薄膜が単分子膜で構成されていると、シリコン含量の高い被膜を形成できて都合がよい。
In addition, when the organic thin film covalently bonded to the surface is composed of molecules having a reactive functional group at one end and covalently bonding to the surface of the semiconductor silicon fine particle via Si at the other end, the silicon fine particle is stabilized and formed. It is more convenient to do.
Furthermore, it is advantageous that the reactive functional group is a heat-reactive or ion-reactive functional group because a highly reliable coating can be formed.
Moreover, it is convenient that a more reliable film can be formed when the reactive functional group is an epoxy group or an imino group. In addition, it is convenient that a thin film having a high silicon content can be formed when the organic thin film covalently bonded to the surface is formed of a monomolecular film.

さらにまた、表面に共有結合した有機薄膜で被われた基材表面と有機薄膜で被われたn型シリコン微粒子層と有機薄膜で被われたp型シリコン微粒子層が前記それぞれの有機薄膜を介して共有結合し、硬化成膜されていると変換効率が高く且つ信頼性の高い太陽電池を製造できて都合がよい。 Furthermore, the substrate surface covered with the organic thin film covalently bonded to the surface, the n-type silicon fine particle layer covered with the organic thin film, and the p-type silicon fine particle layer covered with the organic thin film pass through the respective organic thin films. A covalent bond and a cured film can be advantageously used to produce a solar cell with high conversion efficiency and high reliability.

以上説明したとおり、本発明によれば、シリコン微粒子本来の機能をほぼ保ったままで安定化させる機能や各種溶媒への分散性を向上させる機能、各種反応機能を付与したシリコン微粒子を提供できる効果がある。さらにまた、化学吸着した単分子膜で被うことにより、シリコン微粒子本来の形状と機能をほぼ完全に保ったままで安定化させる機能や分散性を向上する機能、各種化学反応機能を付与したシリコン微粒子を提供できる特別の効果がある。また、高効率のシリコン太陽電池を極めて低コストで製造提供できる効果がある。   As described above, according to the present invention, there is an effect that it is possible to provide silicon fine particles provided with a function of stabilizing while maintaining the original function of silicon fine particles, a function of improving dispersibility in various solvents, and various reaction functions. is there. Furthermore, by covering with a monomolecular film that has been chemically adsorbed, the silicon fine particles are provided with a function to stabilize and maintain dispersibility while maintaining the original shape and function of the silicon fine particles, a function to improve dispersibility, and various chemical reaction functions. There is a special effect that can provide. In addition, there is an effect that a highly efficient silicon solar cell can be manufactured and provided at an extremely low cost.

本発明は、表面に共有結合した第1の反応性官能基を含む有機膜で被われたシリコン微粒子と表面に共有結合した第2の反応性官能基を含む有機膜で被われたn型シリコン微粒子を有機溶媒中で混合してペースト化する工程と、基材表面に塗布する工程と、表面に共有結合した第1の反応性官能基を含む有機膜で被われたシリコン微粒子と表面に共有結合した第2の反応性官能基を含む有機膜で被われたp型シリコン微粒子を有機溶媒中で混合してペースト化する工程と、基材表面に塗布する工程と、硬化させる工程とにより、少なくとも表面に共有結合した有機薄膜で被われているn型シリコン微粒子層と表面に共有結合した有機薄膜で被われているp型シリコン微粒子層が積層形成されている太陽電池を提供するものである。 The present invention relates to a silicon fine particle covered with an organic film containing a first reactive functional group covalently bonded to the surface and an n-type silicon covered with an organic film containing a second reactive functional group covalently bonded to the surface. A step of mixing fine particles in an organic solvent to form a paste, a step of applying to the surface of the substrate, and a surface of a silicon fine particle covered with an organic film containing a first reactive functional group covalently bonded to the surface. A step of mixing p-type silicon fine particles covered with an organic film containing a second reactive functional group bonded in an organic solvent to form a paste, a step of applying to the substrate surface, and a step of curing, Provided is a solar cell in which at least an n-type silicon fine particle layer covered with an organic thin film covalently bonded to the surface and a p-type silicon fine particle layer covered with an organic thin film covalently bonded to the surface are laminated. .

また、表面に共有結合した第1の有機薄膜で被われたn型シリコン微粒子と表面に共有結合した第2の有機薄膜で被われたn型シリコン微粒子が混合されて互いに前記有機薄膜を介して共有結合して硬化製膜されているn型シリコン微粒子層と、表面に共有結合した第1の有機薄膜で被われたp型シリコン微粒子と表面に共有結合した第2の有機薄膜で被われたp型シリコン微粒子が混合されて互いに前記有機薄膜を介して共有結合して硬化製膜されているp型シリコン微粒子層がガラス基板上に積層されている太陽電池を提供するものである。   The n-type silicon fine particles covered with the first organic thin film covalently bonded to the surface and the n-type silicon fine particles covered with the second organic thin film covalently bonded to the surface are mixed and passed through the organic thin film. Covered with an n-type silicon fine particle layer that is covalently bonded and cured, a p-type silicon fine particle covered with a first organic thin film covalently bonded to the surface, and a second organic thin film covalently bonded to the surface The present invention provides a solar cell in which p-type silicon fine particle layers mixed with p-type silicon fine particles and covalently bonded to each other through the organic thin film to form a cured film are laminated on a glass substrate.

したがって、本発明には、シリコン微粒子本来の形状と機能をほぼ完全に保ったままで粒子そのものの表面を安定化する機能や分散性を向上する機能、各種化学反応機能を付与したシリコン微粒子を提供できる作用がある。また、高効率のシリコン太陽電池を極めて低コストで製造提供できる作用がある。   Therefore, the present invention can provide silicon fine particles having a function of stabilizing the surface of the particles themselves, a function of improving dispersibility, and various chemical reaction functions while maintaining the original shape and function of the silicon fine particles almost completely. There is an effect. Moreover, there exists an effect | action which can manufacture and provide a highly efficient silicon solar cell at very low cost.

以下、本願発明の詳細を実施例を用いて説明するが、本願発明は、これら実施例によって何ら限定されるものではない。   Hereinafter, although the detail of this invention is demonstrated using an Example, this invention is not limited at all by these Examples.

なお、本発明に関するシリコン微粒子には、半導体性のp型とn型シリコン微粒子があるが、まず代表例として、p型シリコン微粒子を取り上げて説明する。   The silicon fine particles related to the present invention include semiconductive p-type and n-type silicon fine particles. First, p-type silicon fine particles will be described as a representative example.

まず、粒径が100〜10nm程度のp型シリコン微粒子1を用意し、よく乾燥した。次に、化学吸着剤として機能部位に反応性の官能基、例えば、エポキシ基あるいはイミノ基と他端にアルコキシシリル基を含む薬剤、例えば、下記式(化1)あるいは(化2)に示す薬剤を99重量%、シラノール縮合触媒として、例えば、ジブチル錫ジアセチルアセトナート、あるいは有機酸である酢酸を1重量%となるようそれぞれ秤量し、シリコーンとジメチルホルムアミドを同量混合した溶媒、例えば、ヘキサメチルジシロキサン50%とジメチルホルムアミド50%の溶液に1重量%程度の濃度(好ましい化学吸着剤の濃度は、0.5〜3%程度)になるように溶かして化学吸着液を調製した。 First, p-type silicon fine particles 1 having a particle size of about 100 to 10 nm were prepared and dried well. Next, as a chemical adsorbent, a functional group having a reactive functional group such as an epoxy group or imino group and an alkoxysilyl group at the other end, such as a chemical represented by the following formula (Chemical Formula 1) or (Chemical Formula 2) 99% by weight of a silanol condensation catalyst, for example, dibutyltin diacetylacetonate or acetic acid as an organic acid is weighed to 1% by weight, and a solvent in which the same amount of silicone and dimethylformamide are mixed, for example, hexamethyl A chemical adsorption solution was prepared by dissolving in a solution of 50% disiloxane and 50% dimethylformamide to a concentration of about 1% by weight (preferably the concentration of the chemical adsorbent is about 0.5 to 3%).

Figure 2007173516
Figure 2007173516

Figure 2007173516
Figure 2007173516

この吸着液にp型シリコン微粒子1を混入撹拌して普通の空気中で(相対湿度45%)で2時間程度反応させた。このとき、p型シリコン微粒子1表面のダングリングボンドには水酸基2が多数結合しているの(図1a)で、前記化学吸着剤の−Si(OCH)基と前記水酸基がシラノール縮合触媒あるいは有機酸存在下で脱アルコール(この場合は、脱CHOH)反応し、下記式(化3)あるいは(化4)に示したような結合を形成し、シリコン微粒子表面全面に亘り表面と化学結合したエポキシ基を含む化学吸着単分子膜3あるいはアミノ基を含む化学吸着膜4が約1ナノメートル程度の膜厚で形成された(図1b、1c)。 The adsorbed liquid was mixed with the p-type silicon fine particles 1 and reacted for about 2 hours in normal air (relative humidity 45%). At this time, since many hydroxyl groups 2 are bonded to the dangling bonds on the surface of the p-type silicon fine particles 1 (FIG. 1a), the -Si (OCH 3 ) group of the chemical adsorbent and the hydroxyl group are converted into a silanol condensation catalyst or In the presence of an organic acid, dealcoholization (in this case, de-CH 3 OH) is carried out to form a bond as shown in the following formula (Chemical Formula 3) or (Chemical Formula 4), and the surface of the silicon fine particle surface is chemically bonded to the surface. A chemisorption monomolecular film 3 containing bonded epoxy groups or a chemisorption film 4 containing amino groups was formed with a thickness of about 1 nanometer (FIGS. 1b and 1c).

なお、ここで、アミノ基を含む吸着剤を使用する場合には、スズ系の触媒では沈殿が生成するので、酢酸等の有機酸を用いた方がよかった。また、アミノ基はイミノ基を含んでいるが、アミノ基以外にイミノ基を含む物質には、ピロール誘導体や、イミダゾール誘導体等がある。さらに、ケチミン誘導体を用いれば、被膜形成後、加水分解により容易にアミノ基を導入できた。
その後、トリクレン等の塩素系溶媒を添加して撹拌洗浄すると、表面に反応性の官能基、例えばエポキシ基あるいはアミノ基を有する化学吸着単分子膜で被われたp型シリコン微粒子を作製できた。
Here, when an adsorbent containing an amino group is used, since a precipitate is generated with a tin-based catalyst, it is better to use an organic acid such as acetic acid. The amino group contains an imino group, but substances containing an imino group in addition to the amino group include pyrrole derivatives and imidazole derivatives. Furthermore, when a ketimine derivative was used, an amino group could be easily introduced by hydrolysis after film formation.
Thereafter, by adding a chlorinated solvent such as trichlene and washing with stirring, p-type silicon fine particles 5 and 6 covered with a chemisorption monomolecular film having a reactive functional group such as an epoxy group or an amino group on the surface are produced. did it.

Figure 2007173516
Figure 2007173516

Figure 2007173516
Figure 2007173516

ここで、処理部は、被膜がナノメートルレベルの膜厚で極めて薄いため、粒子径を損なうことはなかった。また、この被膜は電圧が0.1V以下のため電気絶縁機能はほとんどなく、シリコンの酸化の進行を防止できる機能はあった。 Here, since the coating film was extremely thin with a film thickness of nanometer level, the particle diameter was not impaired. Further, since this film has a voltage of 0.1 V or less, it has almost no electrical insulating function and has a function of preventing the progress of silicon oxidation.

なお、洗浄せずに空気中に取り出すと、反応性はほぼ変わらないが、溶媒が蒸発し粒子表面に残った化学吸着剤が粒子表面で空気中の水分と反応して、粒子表面に前記化学吸着剤よりなる極薄のポリマー膜が形成されたシリコン微粒子が得られた。 Note that the reactivity does not substantially change when it is taken out into the air without washing, but the chemical adsorbent remaining on the particle surface reacts with the moisture in the air on the particle surface, and the chemical is adsorbed on the particle surface. Silicon fine particles on which an extremely thin polymer film made of an adsorbent was formed were obtained.

また、この方法の特徴は、乾燥雰囲気を必要としないことであり、量産性に優れている。   Moreover, the feature of this method is that a dry atmosphere is not required, and it is excellent in mass productivity.

次に、前記エポキシ基あるいはアミノ基を有する化学吸着単分子膜で被われたp型シリコン微粒子5,6をそれぞれ同量取りイソプロピルアルコール中で十分混合してペースト化し、ガラス基板等に塗布し50〜100度程度に加熱すると、下記式(化5)に示したような反応でエポキシ基とアミノ基が付加してシリコン微粒子は結合固化し、バインダーを含まなくてもp型シリコン微粒子の塗膜を形成できた。 Next, the same amount of the p-type silicon fine particles 5 and 6 covered with the chemical adsorption monomolecular film having an epoxy group or amino group is taken and mixed well in isopropyl alcohol to form a paste, which is applied to a glass substrate or the like. When heated to about 100 ° C, epoxy fine particles and amino groups are added by the reaction shown in the following formula (Chemical Formula 5), and the silicon fine particles are bonded and solidified. Could be formed.

Figure 2007173516
Figure 2007173516

なお、上記実施例1では、反応性基を含む化学吸着剤として式(化1)あるいは(化2)に示した物質を用いたが、上記のもの以外にも、下記(1)〜(16)に示した物質が利用できた。
(1) (CHOCH)CH2O(CH2)Si(OCH)3
(2) (CHOCH)CH2O(CH2)11Si(OCH)3
(3) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(4) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(5) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(6) (CHOCH)CH2O(CH2)Si(OC)3
(7) (CHOCH)CH2O(CH2)11Si(OC)3
(8) (CHCHOCH(CH)CH(CH2)Si(OC)3
(9) (CHCHOCH(CH)CH(CH2)Si(OC)3
(10) (CHCHOCH(CH)CH(CH2)Si(OC)3
(11) H2N (CH2)Si(OCH)3
(12) H2N (CH2)Si(OCH)3
(13) H2N (CH2)Si(OCH)3
(14) H2N (CH2)Si(OC)3
(15) H2N (CH2)Si(OC)3
(16) H2N (CH2)Si(OC)3
In Example 1, the substance represented by the formula (Chemical Formula 1) or (Chemical Formula 2) was used as the chemical adsorbent containing a reactive group, but in addition to the above, the following (1) to (16) The materials shown in the above were available.
(1) (CH 2 OCH) CH 2 O (CH 2 ) 7 Si (OCH 3 ) 3
(2) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OCH 3 ) 3
(3) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 2 Si (OCH 3 ) 3
(4) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OCH 3) 3
(5) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 6 Si (OCH 3) 3
(6) (CH 2 OCH) CH 2 O (CH 2) 7 Si (OC 2 H 5) 3
(7) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OC 2 H 5 ) 3
(8) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 2 Si (OC 2 H 5) 3
(9) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OC 2 H 5) 3
(10) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 6 Si (OC 2 H 5 ) 3
(11) H 2 N (CH 2 ) 5 Si (OCH 3 ) 3
(12) H 2 N (CH 2 ) 7 Si (OCH 3 ) 3
(13) H 2 N (CH 2 ) 9 Si (OCH 3 ) 3
(14) H 2 N (CH 2 ) 5 Si (OC 2 H 5 ) 3
(15) H 2 N (CH 2 ) 7 Si (OC 2 H 5 ) 3
(16) H 2 N (CH 2 ) 9 Si (OC 2 H 5 ) 3

ここで、(CHOCH)−基は、下記式(化6)で表される官能基を表し、(CHCHOCH(CH)CH−基は、下記式(化7)で表される官能基を表す。 Here, the (CH 2 OCH) — group represents a functional group represented by the following formula (Formula 6), and the (CH 2 CHOCH (CH 2 ) 2 ) CH— group is represented by the following formula (Formula 7). Represents a functional group.

Figure 2007173516
Figure 2007173516

Figure 2007173516
Figure 2007173516

さらに、光または電子線等のエネルギービーム反応性官能基を含む化学吸着剤として、下記(17)〜(22)に示した物質が利用できた。この場合は、硬化には、当然光や電子線等のエネルギービームを照射すればよい。
(17) CH≡C−C≡C−(CH2)15SiCl3
(18) CH≡C−C≡C−(CH2)2Si(CH3)2(CH2)15SiCl3
(19) CH≡C−C≡C−(CH2)2Si(CH3)2(CH2)9SiCl3
(20) (C) (CH)2CO(C)O(CH2)OSi(OCH)3
(21) (C) (CH)2CO(C)O(CH2)OSi(OC)3
(22) (C) CO(CH)2 (C)O(CH2)OSi(OCH)3
ここで、(C) CO(CH)2 (C)−はカルコニル基を表す。
Furthermore, the substances shown in the following (17) to (22) can be used as chemical adsorbents containing energy beam reactive functional groups such as light or electron beams. In this case, it is only necessary to irradiate an energy beam such as light or an electron beam for curing.
(17) CH≡C—C≡C— (CH 2 ) 15 SiCl 3
(18) CH≡C—C≡C— (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 SiCl 3
(19) CH≡C—C≡C— (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(20) (C 6 H 5 ) (CH) 2 CO (C 6 H 4) O (CH 2) 6 OSi (OCH 3) 3
(21) (C 6 H 5 ) (CH) 2 CO (C 6 H 4) O (CH 2) 6 OSi (OC 2 H 5) 3
(22) (C 6 H 5 ) CO (CH) 2 (C 6 H 4) O (CH 2) 6 OSi (OCH 3) 3
Here, (C 6 H 5) CO (CH) 2 (C 6 H 4) - represents a chalconyl group.

なお、実施例1に置いて、シラノール縮合触媒には、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル及びチタン酸エステルキレート類が利用可能である。さらに具体的には、酢酸第1錫、ジブチル錫ジラウレート、ジブチル錫ジオクテート、ジブチル錫ジアセテート、ジオクチル錫ジラウレート、ジオクチル錫ジオクテート、ジオクチル錫ジアセテート、ジオクタン酸第1錫、ナフテン酸鉛、ナフテン酸コバルト、2−エチルヘキセン酸鉄、ジオクチル錫ビスオクチリチオグリコール酸エステル塩、ジオクチル錫マレイン酸エステル塩、ジブチル錫マレイン酸塩ポリマー、ジメチル錫メルカプトプロピオン酸塩ポリマー、ジブチル錫ビスアセチルアセテート、ジオクチル錫ビスアセチルラウレート、テトラブチルチタネート、テトラノニルチタネート及びビス(アセチルアセトニル)ジープロピルチタネートを用いることが可能であった。 In Example 1, as the silanol condensation catalyst, carboxylic acid metal salt, carboxylic acid ester metal salt, carboxylic acid metal salt polymer, carboxylic acid metal salt chelate, titanate ester and titanate ester chelate can be used. It is. More specifically, stannous acetate, dibutyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, dioctyltin dilaurate, dioctyltin dioctate, dioctyltin diacetate, stannous dioctanoate, lead naphthenate, cobalt naphthenate , Iron 2-ethylhexenoate, dioctyltin bisoctylthioglycolate, dioctyltin maleate, dibutyltin maleate polymer, dimethyltin mercaptopropionate polymer, dibutyltin bisacetylacetate, dioctyltin bisacetyl Laurate, tetrabutyl titanate, tetranonyl titanate and bis (acetylacetonyl) dipropyl titanate could be used.

また、膜形成溶液の溶媒としては、化学吸着剤がアルコキシシラン系、クロロシラン系、何れの場合も水を含まない有機塩素系溶媒、炭化水素系溶媒、あるいはフッ化炭素系溶媒やシリコーン系溶媒、あるいはそれら混合物を用いることが可能であった。なお、洗浄を行わず、溶媒を蒸発させて粒子濃度を上げようとする場合には、溶媒の沸点は50〜250℃程度がよい。 In addition, as a solvent for the film forming solution, the chemical adsorbent is an alkoxysilane-based solvent, a chlorosilane-based solvent, an organic chlorine-based solvent that does not contain water, a hydrocarbon-based solvent, a fluorocarbon-based solvent, a silicone-based solvent, Alternatively, it was possible to use a mixture thereof. In addition, when it is going to raise particle concentration by evaporating a solvent, without wash | cleaning, the boiling point of a solvent is good at about 50-250 degreeC.

具体的に使用可能なものは、有機塩素系溶媒、非水系の石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、ノナン、デカン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン、ジメチルホルムアミド等を挙げることができる。さらに、吸着剤がアルコキシシラン系の場合で且つ溶媒を蒸発させて有機被膜を形成する場合には、前記溶媒に加え、メタノール、エタノール、プロパノール等のアルコール系溶媒、あるいはそれら混合物が使用できた。 Specifically usable are organic chlorinated solvents, non-aqueous petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, nonane, decane, kerosene, dimethyl silicone, phenyl silicone , Alkyl-modified silicone, polyether silicone, dimethylformamide and the like. Further, when the adsorbent is an alkoxysilane type and the organic film is formed by evaporating the solvent, an alcohol type solvent such as methanol, ethanol, propanol, or a mixture thereof can be used in addition to the solvent.

また、フッ化炭素系溶媒には、フロン系溶媒や、フロリナート(3M社製品)、アフルード(旭ガラス社製品)等がある。なお、これらは1種単独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、クロロホルム等有機塩素系の溶媒を添加しても良い。 Fluorocarbon solvents include fluorocarbon solvents, Fluorinert (product of 3M), Afludo (product of Asahi Glass). In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well. Further, an organic chlorine solvent such as chloroform may be added.

一方、上述のシラノール縮合触媒の代わりに、ケチミン化合物又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いた場合、同じ濃度でも処理時間を1/2〜2/3程度まで短縮できた。 On the other hand, when a ketimine compound or organic acid, aldimine compound, enamine compound, oxazolidine compound, aminoalkylalkoxysilane compound is used instead of the above-mentioned silanol condensation catalyst, the treatment time is about 1/2 to 2/3 even at the same concentration. We were able to shorten to.

さらに、シラノール縮合触媒とケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を混合(1:9〜9:1範囲で使用可能だが、通常1:1前後が好ましい。)して用いると、処理時間をさらに数倍早く(30分程度まで)でき、製膜時間を数分の一まで短縮できる。 Furthermore, a silanol condensation catalyst and a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound can be used in a range of 1: 9 to 9: 1. )), The processing time can be increased several times faster (up to about 30 minutes), and the film forming time can be reduced to a fraction of a minute.

例えば、シラノール触媒であるジブチル錫オキサイドをケチミン化合物であるジャパンエポキシレジン社のH3に置き換え、その他の条件は同一にしてみたが、反応時間を1時間程度にまで短縮できた他は、ほぼ同様の結果が得られた。 For example, dibutyltin oxide, which is a silanol catalyst, was replaced with H3 from Japan Epoxy Resin, which is a ketimine compound, and the other conditions were the same, but the reaction time was reduced to about 1 hour. Results were obtained.

さらに、シラノール触媒を、ケチミン化合物であるジャパンエポキシレジン社のH3と、シラノール触媒であるジブチル錫ビスアセチルアセトネートの混合物(混合比は1:1)に置き換え、その他の条件は同一にしてみたが、反応時間を30分程度に短縮できた他は、ほぼ同様の結果が得られた。 Furthermore, the silanol catalyst was replaced with a mixture of ketimine compound Japan Epoxy Resin H3 and silanol catalyst dibutyltin bisacetylacetonate (mixing ratio is 1: 1), and other conditions were the same. The same results were obtained except that the reaction time could be shortened to about 30 minutes.

したがって、以上の結果から、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物がシラノール縮合触媒より活性が高いことが明らかとなった。 Therefore, the above results revealed that ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds are more active than silanol condensation catalysts.

さらにまた、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物の内の1つとシラノール縮合触媒を混合して用いると、さらに活性が高くなることが確認された。 Furthermore, it was confirmed that the activity is further increased when one of a ketimine compound, an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound is mixed with a silanol condensation catalyst.

なお、ここで、利用できるケチミン化合物は特に限定されるものではないが、例えば、2,5,8−トリアザ−1,8−ノナジエン、3,11−ジメチル−4,7,10−トリアザ−3,10−トリデカジエン、2,10−ジメチル−3,6,9−トリアザ−2,9−ウンデカジエン、2,4,12,14−テトラメチル−5,8,11−トリアザ−4,11−ペンタデカジエン、2,4,15,17−テトラメチル−5,8,11,14−テトラアザ−4,14−オクタデカジエン、2,4,20,22−テトラメチル−5,12,19−トリアザ−4,19−トリエイコサジエン等がある。 Here, the ketimine compound that can be used is not particularly limited. For example, 2,5,8-triaza-1,8-nonadiene, 3,11-dimethyl-4,7,10-triaza-3 , 10-tridecadiene, 2,10-dimethyl-3,6,9-triaza-2,9-undecadiene, 2,4,12,14-tetramethyl-5,8,11-triaza-4,11-pentadeca Diene, 2,4,15,17-tetramethyl-5,8,11,14-tetraaza-4,14-octadecadiene, 2,4,20,22-tetramethyl-5,12,19-triaza- 4,19-trieicosadiene and the like.

また、利用できる有機酸としても特に限定されるものではないが、例えば、ギ酸、あるいは酢酸、プロピオン酸、ラク酸、マロン酸等があり、ほぼ同様の効果があった。 Further, the organic acid that can be used is not particularly limited, but there are, for example, formic acid, acetic acid, propionic acid, lactic acid, malonic acid, and the like, which have almost the same effects.

実施例1と同様の方法で、n型シリコン微粒子11にそれぞれエポキシ基あるいはアミノ基を有する化学吸着単分子膜を形成し、エポキシ基で被われたn型シリコン微粒子12とアミノ基で被われたn型シリコン微粒子13をそれぞれ同量取りイソプロピルアルコール中で十分混合してペースト化した。 In the same manner as in Example 1, each of the n-type silicon fine particles 11 was formed with a chemisorption monomolecular film having an epoxy group or an amino group, and the n-type silicon fine particles 12 covered with the epoxy group and the amino group were covered with the amino group. The same amount of n-type silicon fine particles 13 was taken and mixed well in isopropyl alcohol to form a paste.

次に、あらかじめガラス基板14表面に形成されたITO透明電極15の上に塗布し、50〜100度程度に加熱して硬化させて膜厚が1ミクロン程度のn型シリコン微粒子の塗膜16を形成した。
その後、さらに実施例1で得たエポキシ基あるいはアミノ基を有する化学吸着単分子膜で被われたp型シリコン微粒子5,6をそれぞれ同量取りイソプロピルアルコール中で十分混合して作成したペーストを、前記n型シリコン微粒子の塗膜16表面に塗布し、50〜100度程度に加熱して膜厚が1ミクロン程度のp型シリコン微粒子の塗膜17を形成した。最後に、裏面電極として、Al膜18を蒸着形成すると、ガラス基板側から入射する光19を受光する太陽電池を作成できた。
Next, it is applied on the ITO transparent electrode 15 formed on the surface of the glass substrate 14 in advance, and is heated and cured at about 50 to 100 degrees to form a coating film 16 of n-type silicon fine particles having a film thickness of about 1 micron. Formed.
Thereafter, a paste prepared by further taking the same amount of p-type silicon fine particles 5 and 6 covered with the chemisorption monomolecular film having an epoxy group or amino group obtained in Example 1 and thoroughly mixing them in isopropyl alcohol, The n-type silicon fine particle coating film 16 was applied to the surface and heated to about 50 to 100 degrees to form a p-type silicon fine particle coating film 17 having a thickness of about 1 micron. Finally, when an Al film 18 was deposited as a back electrode, a solar cell that received light 19 incident from the glass substrate side could be created.

なお、このとき、あらかじめ同様の方法でITO透明電極15表面にもエポキシ基あるいはアミノ基を持つ単分子膜20を形成しておくと、シリコン微粒子の表面の単分子膜は、ITO透明電極15表面の単分子膜とも反応して、耐剥離強度の高いシリコン太陽電池を製造できた。(図2) At this time, if a monomolecular film 20 having an epoxy group or an amino group is also formed on the surface of the ITO transparent electrode 15 in advance by the same method, the monomolecular film on the surface of the silicon fine particles becomes the surface of the ITO transparent electrode 15. The silicon solar cell with high peel strength could be manufactured by reacting with the monomolecular film. (Figure 2)

ここで、p型およびn型シリコン微粒子の表面の反応性の単分子膜は、シリコン微粒子を硬化製膜する働き、およびp型およびn型シリコン微粒子の空気中での酸化を防ぐ働きをする。なお、この反応性の単分子膜は、厚みが1nm程度であるため、シリコンの導電を妨げることはほとんどなかった。
また、ここでシリコン微粒子の粒径を100 nmから1nmの間で制御することで、吸収波長域を赤外光から可視光域まで制御できた。
Here, the reactive monomolecular film on the surface of the p-type and n-type silicon fine particles functions to cure and form the silicon fine particles and to prevent oxidation of the p-type and n-type silicon fine particles in the air. Since this reactive monomolecular film has a thickness of about 1 nm, it hardly interferes with silicon conduction.
Further, by controlling the particle size of the silicon fine particles between 100 nm and 1 nm, the absorption wavelength range could be controlled from infrared light to visible light.

また、上記2つの実施例では、シリコン微粒子を例として説明したが、本発明は、表面に水酸基の水素のような活性水素を含んだ半導体微粒子で有れば、どのような半導体微粒子にでも適用可能である。 In the above two embodiments, silicon fine particles have been described as an example. However, the present invention is applicable to any semiconductor fine particles as long as the surface is a semiconductor fine particle containing active hydrogen such as hydrogen of a hydroxyl group. Is possible.

本発明の第1の実施例におけるシリコン微粒子の反応を分子レベルまで拡大した概念図であり、(a)は反応前のシリコン微粒子表面の図、(b)は、エポキシ基を含む単分子膜が形成された後の図、(c)は、アミノ基を含む単分子膜が形成された後の図を示す。It is the conceptual diagram which expanded the reaction of the silicon fine particle in the 1st Example of this invention to the molecular level, (a) is the figure of the silicon fine particle surface before reaction, (b) is the monomolecular film containing an epoxy group. The figure after formation, (c) shows the figure after the monomolecular film containing an amino group is formed. 本発明の第2の実施例におけるシリコン微粒子を用いた太陽電池の断面概念図を示す。The cross-sectional conceptual diagram of the solar cell using the silicon fine particle in the 2nd Example of this invention is shown.

符号の説明Explanation of symbols

1 p型シリコン微粒子
2 水酸基
3 エポキシ基を含む化学吸着単分子膜
4 アミノ基を含む化学吸着膜
エポキシ基を有する化学吸着単分子膜で被われたp型シリコン微粒子
アミノ基を有する化学吸着単分子膜で被われたp型シリコン微粒子
11 n型シリコン微粒子
12 エポキシ基で被われたn型シリコン微粒子
13 アミノ基で被われたn型シリコン微粒子
14 ガラス基板
15 ITO透明電極
16 n型シリコン微粒子の塗膜
17 p型シリコン微粒子の塗膜
18 Al膜
19 入射する光
20 エポキシ基あるいはアミノ基を持つ単分子膜
1 p-type silicon fine particle 2 hydroxyl group 3 chemisorption monomolecular film containing epoxy group 4 chemisorption film containing amino group
P-type silicon fine particles covered with a chemisorbed monomolecular film having 5 epoxy groups
P-type silicon fine particles covered with a chemisorption monomolecular film having 6 amino groups 11 n-type silicon fine particles
N-type silicon fine particles covered with 12 epoxy groups
13 n-type silicon particles covered with 13 amino groups 14 Glass substrate 15 ITO transparent electrode
16 Coating film of n-type silicon fine particles
17 Coating film of p-type silicon fine particles 18 Al film 19 Incident light
Monolayer with 20 epoxy groups or amino groups

Claims (19)

表面に共有結合した有機薄膜で被われていることを特徴とするシリコン微粒子。 Silicon fine particles characterized by being covered with an organic thin film covalently bonded to the surface. 表面に共有結合した有機薄膜が一端に機能性官能基を含み他端でSiを介してシリコン微粒子表面に共有結合する分子で構成されていることを特徴とする請求項1記載のシリコン微粒子。 2. The silicon fine particle according to claim 1, wherein the organic thin film covalently bonded to the surface is composed of molecules having a functional functional group at one end and covalently bonded to the surface of the silicon fine particle via Si at the other end. 機能性官能基が反応性の官能基であることを特徴とする請求項2記載のシリコン微粒子。 3. The silicon fine particle according to claim 2, wherein the functional functional group is a reactive functional group. 反応性の官能基が熱反応性または光反応性、あるいはラジカル反応性またはイオン反応性の官能基であることを特徴とする請求項3記載のシリコン微粒子。 4. The silicon fine particle according to claim 3, wherein the reactive functional group is a thermal reactive or photo reactive functional group or a radical reactive or ion reactive functional group. 反応性の官能基がエポキシ基やイミノ基、あるいはカルコン基であることを特徴とする請求項3記載のシリコン微粒子。 4. The silicon fine particle according to claim 3, wherein the reactive functional group is an epoxy group, an imino group, or a chalcone group. 表面に共有結合した有機薄膜が単分子膜で構成されていることを特徴とする請求項1および2記載のシリコン微粒子。 3. The silicon fine particles according to claim 1, wherein the organic thin film covalently bonded to the surface is composed of a monomolecular film. シリコン微粒子を少なくともアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物とシリコン微粒子表面を反応させる工程を含むことを特徴とするシリコン微粒子の製造方法。 The method comprising the steps of: dispersing silicon fine particles in a chemical adsorption solution prepared by mixing at least an alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, and reacting the alkoxysilane compound with the silicon fine particle surface. A method for producing fine particles. シリコン微粒子を化学吸着液に分散させてアルコキシシラン化合物とシリコン微粒子表面を反応させる工程の後、シリコン微粒子表面を有機溶剤で洗浄してシリコン微粒子表面に共有結合した単分子膜を形成することを特徴とする請求項7記載のシリコン微粒子の製造方法。 After the step of dispersing the silicon fine particles in the chemical adsorption liquid and reacting the alkoxysilane compound with the silicon fine particle surface, the silicon fine particle surface is washed with an organic solvent to form a monomolecular film covalently bonded to the silicon fine particle surface. The method for producing silicon fine particles according to claim 7. シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いることを特徴とする請求項7に記載のシリコン微粒子の製造方法。 The method for producing silicon fine particles according to claim 7, wherein a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound is used in place of the silanol condensation catalyst. シラノール縮合触媒に助触媒としてケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物から選ばれる少なくとも1つを混合して用いることを特徴とする請求項7に記載のシリコン微粒子の製造方法。 8. The silanol condensation catalyst as a co-catalyst, a ketimine compound, or at least one selected from an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound is used as a mixture. A method for producing silicon fine particles. 表面に共有結合した有機薄膜で被われているn型シリコン微粒子層と表面に共有結合した有機薄膜で被われているp型シリコン微粒子層が積層形成されていることを特徴とする太陽電池。 A solar cell comprising an n-type silicon fine particle layer covered with an organic thin film covalently bonded to the surface and a p-type silicon fine particle layer covered with an organic thin film covalently bonded to the surface. 表面に共有結合した第1の有機薄膜で被われたn型シリコン微粒子と表面に共有結合した第2の有機薄膜で被われたn型シリコン微粒子が混合されて互いに前記有機薄膜を介して共有結合して硬化製膜されているn型シリコン微粒子層と、表面に共有結合した第1の有機薄膜で被われたp型シリコン微粒子と表面に共有結合した第2の有機薄膜で被われたp型シリコン微粒子が混合されて互いに前記有機薄膜を介して共有結合して硬化製膜されているp型シリコン微粒子層がガラス基板上に積層されていることを特徴とする太陽電池。 The n-type silicon fine particles covered with the first organic thin film covalently bonded to the surface and the n-type silicon fine particles covered with the second organic thin film covalently bonded to the surface are mixed and covalently bonded to each other through the organic thin film. N-type silicon fine particle layer which is cured and formed, p-type silicon fine particles covered with a first organic thin film covalently bonded to the surface, and p-type covered with a second organic thin film covalently bonded to the surface A p-type silicon fine particle layer in which silicon fine particles are mixed and covalently bonded to each other through the organic thin film to form a cured film is laminated on a glass substrate. 表面に共有結合した有機薄膜が一端に反応性の官能基を含み他端でSiを介して半導体性シリコン微粒子表面に共有結合する分子で構成されていることを特徴とする請求項11および12記載の太陽電池。 13. The organic thin film covalently bonded to the surface comprises a molecule having a reactive functional group at one end and covalently bonding to the surface of the semiconductor silicon fine particle via Si at the other end. Solar cells. 反応性の官能基が熱反応性あるいはイオン反応性の官能基であることを特徴とする請求項13記載の太陽電池。 14. The solar cell according to claim 13, wherein the reactive functional group is a thermally reactive or ion reactive functional group. 反応性の官能基がエポキシ基やイミノ基であることを特徴とする請求項13記載の太陽電池。 14. The solar cell according to claim 13, wherein the reactive functional group is an epoxy group or an imino group. 表面に共有結合した有機薄膜が単分子膜で構成されていることを特徴とする請求項11および12記載の太陽電池。 13. The solar cell according to claim 11 or 12, wherein the organic thin film covalently bonded to the surface is composed of a monomolecular film. 表面に共有結合した有機薄膜で被われた基材表面と有機薄膜で被われたn型シリコン微粒子層と有機薄膜で被われたp型シリコン微粒子層が前記それぞれの有機薄膜を介して共有結合し、硬化成膜されていることを特徴とする請求項11乃至16記載の太陽電池。 The substrate surface covered with the organic thin film covalently bonded to the surface, the n-type silicon fine particle layer covered with the organic thin film, and the p-type silicon fine particle layer covered with the organic thin film are covalently bonded through the respective organic thin films. The solar cell according to claim 11, wherein a cured film is formed. 表面に共有結合した第1の反応性官能基を含む有機膜で被われたn型シリコン微粒子と表面に共有結合した第2の反応性官能基を含む有機膜で被われたn型シリコン微粒子を有機溶媒中で混合してペースト化する工程と、基材表面に塗布する工程と、表面に共有結合した第1の反応性官能基を含む有機膜で被われたp型シリコン微粒子と表面に共有結合した第2の反応性官能基を含む有機膜で被われたp型シリコン微粒子を有機溶媒中で混合してペースト化する工程と、基材表面に塗布する工程と、硬化させる工程とを含むことを特徴とする太陽電池の製造方法。 N-type silicon fine particles covered with an organic film containing a first reactive functional group covalently bonded to the surface and n-type silicon fine particles covered with an organic film containing a second reactive functional group covalently bonded to the surface. A process of mixing in an organic solvent to form a paste, a process of applying to a substrate surface, a p-type silicon fine particle covered with an organic film containing a first reactive functional group covalently bonded to the surface, and sharing on the surface It includes a step of mixing p-type silicon fine particles covered with an organic film containing a bonded second reactive functional group in an organic solvent to form a paste, a step of applying to the substrate surface, and a step of curing. A method for manufacturing a solar cell. あらかじめ、塗布前の基材表面に、第1の反応性官能基を含む有機膜で被われたシリコン微粒子、あるいは第2の反応性官能基を含む有機膜で被われたシリコン微粒子の表面の第1または第2の反応性官能基と反応する官能基を含む有機薄膜を結合形成しておくことを特徴とする請求項18記載の太陽電池の製造方法。
The surface of the silicon fine particle covered with the organic film containing the first reactive functional group or the silicon fine film covered with the organic film containing the second reactive functional group on the substrate surface before coating in advance. 19. The method of manufacturing a solar cell according to claim 18, wherein an organic thin film containing a functional group that reacts with the first or second reactive functional group is bonded.
JP2005369132A 2005-12-22 2005-12-22 Silicon fine particles, production method thereof, solar cell using the same, and production method thereof Active JP5087764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005369132A JP5087764B2 (en) 2005-12-22 2005-12-22 Silicon fine particles, production method thereof, solar cell using the same, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005369132A JP5087764B2 (en) 2005-12-22 2005-12-22 Silicon fine particles, production method thereof, solar cell using the same, and production method thereof

Publications (2)

Publication Number Publication Date
JP2007173516A true JP2007173516A (en) 2007-07-05
JP5087764B2 JP5087764B2 (en) 2012-12-05

Family

ID=38299661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005369132A Active JP5087764B2 (en) 2005-12-22 2005-12-22 Silicon fine particles, production method thereof, solar cell using the same, and production method thereof

Country Status (1)

Country Link
JP (1) JP5087764B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123193A1 (en) * 2007-03-31 2008-10-16 Kazufumi Ogawa Solar cell and method for manufacturing the same
WO2008123194A1 (en) * 2007-03-31 2008-10-16 Kazufumi Ogawa Optical sensor and method for manufacturing the same
WO2009001471A1 (en) * 2007-06-22 2008-12-31 Kazufumi Ogawa Fine silicon particle and method of manufacture and solar cell using the fine silicon particle and method of manufacture
JP2010254511A (en) * 2009-04-23 2010-11-11 Admatechs Co Ltd Basic metallic silicon powder, method for producing the same and highly heat-conductive resin composition
WO2011009017A2 (en) * 2009-07-17 2011-01-20 Boston Silicon Materials Llc Process for the formation of silicon metal sheets
JP2011096795A (en) * 2009-10-29 2011-05-12 Kazufumi Ogawa TFT USING Si PARTICULATES AND METHOD OF MANUFACTURING THE SAME, AND TFT ARRAY AND DISPLAY DEVICE USING THE SAME
KR101132273B1 (en) * 2009-12-28 2012-04-02 재단법인대구경북과학기술원 Hybrid solar cell and method for fabricating the same
JP2012164898A (en) * 2011-02-08 2012-08-30 Kagawa Univ Semiconductor fine particle film, diode, photoelectric conversion element and manufacturing method therefor
JP2012164897A (en) * 2011-02-08 2012-08-30 Kagawa Univ Semiconductor fine particle film, diode, photoelectric conversion element and manufacturing method therefor
JP2015129284A (en) * 2007-01-03 2015-07-16 ナノグラム・コーポレイションNanoGram Corporation Nanoparticle inks based on silicon/germanium, doped particles, printing method and processes for semiconductor applications
WO2015159755A1 (en) * 2014-04-14 2015-10-22 東レ株式会社 Photovoltaic element
CN115768818A (en) * 2020-08-21 2023-03-07 斯攀气凝胶公司 Silicon nanoparticles and method for producing silicon nanoparticles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922888A (en) * 1972-06-20 1974-02-28
JPH03278461A (en) * 1990-03-27 1991-12-10 Res Dev Corp Of Japan Method of implanting organic molecules onto solid silicon surface
JPH1045409A (en) * 1996-07-29 1998-02-17 Sharp Corp Production of silicon-base fine particles and formation of thin film using produced silicon-base fine particles
JPH11124467A (en) * 1997-10-23 1999-05-11 Nippon Shokubai Co Ltd Complex fine particle, its production and use
JPH11274602A (en) * 1998-03-19 1999-10-08 Kawamura Inst Of Chem Res Optical semiconductor element
JP2005322892A (en) * 2004-03-25 2005-11-17 Japan Science & Technology Agency Organic material containing device, substrate suitable therefor and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922888A (en) * 1972-06-20 1974-02-28
JPH03278461A (en) * 1990-03-27 1991-12-10 Res Dev Corp Of Japan Method of implanting organic molecules onto solid silicon surface
JPH1045409A (en) * 1996-07-29 1998-02-17 Sharp Corp Production of silicon-base fine particles and formation of thin film using produced silicon-base fine particles
JPH11124467A (en) * 1997-10-23 1999-05-11 Nippon Shokubai Co Ltd Complex fine particle, its production and use
JPH11274602A (en) * 1998-03-19 1999-10-08 Kawamura Inst Of Chem Res Optical semiconductor element
JP2005322892A (en) * 2004-03-25 2005-11-17 Japan Science & Technology Agency Organic material containing device, substrate suitable therefor and manufacturing method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015129285A (en) * 2007-01-03 2015-07-16 ナノグラム・コーポレイションNanoGram Corporation Nanoparticle inks based on silicon/germanium, doped particles, printing method and processes for semiconductor applications
JP2015129284A (en) * 2007-01-03 2015-07-16 ナノグラム・コーポレイションNanoGram Corporation Nanoparticle inks based on silicon/germanium, doped particles, printing method and processes for semiconductor applications
US8409910B2 (en) 2007-03-31 2013-04-02 Empire Technology Development Llc Optical sensor and method for making the same
WO2008123194A1 (en) * 2007-03-31 2008-10-16 Kazufumi Ogawa Optical sensor and method for manufacturing the same
WO2008123193A1 (en) * 2007-03-31 2008-10-16 Kazufumi Ogawa Solar cell and method for manufacturing the same
US9373805B2 (en) 2007-03-31 2016-06-21 Empire Technology Development Llc Optical sensor and method for making the same
WO2009001471A1 (en) * 2007-06-22 2008-12-31 Kazufumi Ogawa Fine silicon particle and method of manufacture and solar cell using the fine silicon particle and method of manufacture
JP2010254511A (en) * 2009-04-23 2010-11-11 Admatechs Co Ltd Basic metallic silicon powder, method for producing the same and highly heat-conductive resin composition
WO2011009017A2 (en) * 2009-07-17 2011-01-20 Boston Silicon Materials Llc Process for the formation of silicon metal sheets
WO2011009017A3 (en) * 2009-07-17 2011-05-19 Boston Silicon Materials Llc Process for the formation of silicon metal sheets
JP2011096795A (en) * 2009-10-29 2011-05-12 Kazufumi Ogawa TFT USING Si PARTICULATES AND METHOD OF MANUFACTURING THE SAME, AND TFT ARRAY AND DISPLAY DEVICE USING THE SAME
KR101132273B1 (en) * 2009-12-28 2012-04-02 재단법인대구경북과학기술원 Hybrid solar cell and method for fabricating the same
JP2012164897A (en) * 2011-02-08 2012-08-30 Kagawa Univ Semiconductor fine particle film, diode, photoelectric conversion element and manufacturing method therefor
JP2012164898A (en) * 2011-02-08 2012-08-30 Kagawa Univ Semiconductor fine particle film, diode, photoelectric conversion element and manufacturing method therefor
WO2015159755A1 (en) * 2014-04-14 2015-10-22 東レ株式会社 Photovoltaic element
US10584202B2 (en) 2014-04-14 2020-03-10 Toray Industries, Inc Photovoltaic element
CN115768818A (en) * 2020-08-21 2023-03-07 斯攀气凝胶公司 Silicon nanoparticles and method for producing silicon nanoparticles

Also Published As

Publication number Publication date
JP5087764B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5087764B2 (en) Silicon fine particles, production method thereof, solar cell using the same, and production method thereof
JP2007118276A (en) Single-layer fine particle film, cumulated fine particle film and manufacturing method of them
JP2007119545A (en) Fine particle film and method for producing the same
JP2010278370A (en) Polysilicon thin film, method of manufacturing the same, and solar cell and tft using the film, tft array and display device, and method of manufacturing them
WO2008068873A1 (en) Monolayer nanoparticle film, multilayer nanoparticle film, and manufacturing method thereof
JP4868496B2 (en) Solar cell and manufacturing method thereof
JP5487460B2 (en) Silicon fine particles, production method thereof, solar cell using the same, and production method thereof
JP5050190B2 (en) Fine particles and production method thereof
JP2007117827A (en) Pattern-like fine particle film and its production method
JP5331977B2 (en) Manufacturing method of solar energy utilization device
JP2007173518A (en) Optical sensor and manufacturing method thereof
JP2007220463A (en) Conductive paste and its manufacturing method, wiring cable using the same and its manufacturing method, and electronic component and electronic device using the same
JP2010129619A (en) Solar cell using silicon particulate, optical sensor, and method of manufacturing them
JP2007161748A (en) Phosphor microparticle, method for producing the same and phosphor film using the same
JP5167528B2 (en) Chemisorption solution
JP5235059B2 (en) Optical sensor and manufacturing method thereof
JP5750706B2 (en) TFT using Si fine particles, manufacturing method thereof, TFT array using the same, and display device
JP5374674B2 (en) Solar cell and method for manufacturing the same
JP2008221521A (en) Protective film and its manufacturing method
US8592676B2 (en) Solar cell and method for manufacturing the same
WO2009001471A1 (en) Fine silicon particle and method of manufacture and solar cell using the fine silicon particle and method of manufacture
JP2007142005A (en) Protective film and forming method thereof
JP6028238B2 (en) Semiconductor fine particle film, diode, photoelectric conversion element, and manufacturing method thereof
JP2008221369A (en) Particulate membrane and method of manufacturing the same
JP2007127847A (en) Antireflection film, its manufacturing method and optical apparatus using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081113

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120718

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350