JP5331977B2 - Manufacturing method of solar energy utilization device - Google Patents

Manufacturing method of solar energy utilization device Download PDF

Info

Publication number
JP5331977B2
JP5331977B2 JP2006165034A JP2006165034A JP5331977B2 JP 5331977 B2 JP5331977 B2 JP 5331977B2 JP 2006165034 A JP2006165034 A JP 2006165034A JP 2006165034 A JP2006165034 A JP 2006165034A JP 5331977 B2 JP5331977 B2 JP 5331977B2
Authority
JP
Japan
Prior art keywords
group
transparent
fine particles
water
solar energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006165034A
Other languages
Japanese (ja)
Other versions
JP2007333291A (en
Inventor
小川  一文
Original Assignee
国立大学法人 香川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 香川大学 filed Critical 国立大学法人 香川大学
Priority to JP2006165034A priority Critical patent/JP5331977B2/en
Publication of JP2007333291A publication Critical patent/JP2007333291A/en
Application granted granted Critical
Publication of JP5331977B2 publication Critical patent/JP5331977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar energy using device capable of improving the solar energy using efficiency and preventing time degradation due to aging caused by soil, and a method of manufacturing the same. <P>SOLUTION: The solar energy using device is characterized by the surface of a transparent base material 1 on the incident light side covered with water-repellent and oil-repellent transparent fine particles 5 bonded/fixed to the surface. The method of manufacturing the solar energy using device comprises a process A of manufacturing reactive transparent fine particles 9, with a first functional group at one end; a process B of manufacturing a reactive transparent base material 4, with a second functional group at one end which reacts to the first functional group to form covalent binding; a process C of manufacturing a transparent base material 10, with the reactive transparent fine particles 9 bonded and fixed to the surface by making the reactive transparent fine particles 9 contact and react to the reactive transparent base material 4; and a process D of forming a water-repellent and oil-repellent coating film 16 on the surface of the transparent fine particles 5 bonded/fixed to the surface of the transparent base material 10. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、耐久性があり、高性能な離水性(滑水性ともいう)があり、かつ入射光の表面反射低減効果があり、撥水撥油性の透明微粒子が光入射側透明基材の表面に形成された太陽電池、太陽熱温水器、温室等の太陽エネルギー利用装置とその製造方法に関するものである。 The present invention is durable, has high performance water separation (also referred to as water slidability), has an effect of reducing the surface reflection of incident light, and the water- and oil-repellent transparent fine particles are formed on the surface of the light incident side transparent substrate. The present invention relates to a solar battery, a solar water heater, a solar energy utilization device such as a greenhouse, and a manufacturing method thereof.

一般に、屋外に設置された太陽電池の発電効率や太陽熱温水器、温室等の集熱効率が、大気中の粉塵や雨による汚れにより経年劣化することはよく知られている。
一方、フッ化炭素基含有クロロシラン系の吸着剤と非水系の有機溶媒よりなる化学吸着液を用い、液相で化学吸着して単分子膜状の撥水撥油防汚性の化学吸着膜単分子膜を形成できることは、すでによく知られている(例えば、特許文献1参照)。
In general, it is well known that the power generation efficiency of solar cells installed outdoors and the heat collection efficiency of solar water heaters, greenhouses, and the like deteriorate over time due to dust and rain in the atmosphere.
On the other hand, a chemical adsorption liquid consisting of a fluorocarbon group-containing chlorosilane-based adsorbent and a non-aqueous organic solvent is used for chemical adsorption in the liquid phase to form a monomolecular film-like water- and oil-repellent antifouling chemical adsorption film. It is already well known that a molecular film can be formed (for example, see Patent Document 1).

このような溶液中での単分子膜の製造原理は、基材表面のヒドロキシル基等の活性水素とクロロシラン系の吸着剤のクロロシリル基との脱塩酸反応を用いて単分子膜を形成することにある。 The manufacturing principle of such a monomolecular film in a solution is to form a monomolecular film by using a dehydrochlorination reaction between active hydrogen such as hydroxyl group on the substrate surface and chlorosilyl group of chlorosilane-based adsorbent. is there.

特開平4−132637号公報JP-A-4-132737

従来の単分子膜は吸着剤と基材表面との化学結合を用いているため、ある程度の耐摩耗性や撥水撥油防汚機能を持っているが、太陽電池や太陽熱温水器用の防汚膜としては、耐候性能や離水性能、防汚性能が不足しているという課題があった。また、被膜が極薄のため入射光の表面反射低減効果も大きくは期待できないという課題があった。 Since conventional monomolecular films use chemical bonds between the adsorbent and the substrate surface, they have a certain level of wear resistance and water / oil repellent / antifouling function, but they have antifouling properties for solar cells and solar water heaters. As a membrane, there was a problem that weatherability, water separation performance, and antifouling performance were insufficient. In addition, since the coating is extremely thin, there is a problem that the effect of reducing the surface reflection of incident light cannot be expected greatly.

本発明は、高耐久、高離水性でかつ撥水撥油防汚性能が要求される太陽電池や太陽熱温水器等の太陽エネルギー利用装置において、耐摩耗性能と高離水性能、防汚性能の向上と共に入射光の表面反射低減効果により、太陽電池の発電効率や太陽熱温水器、温室等の集熱効率の向上と、汚れによる経時劣化を防止する太陽エネルギー利用装置とその製造方法を提供することを目的とする。 The present invention is an improvement in wear resistance, high water separation performance, and antifouling performance in solar energy utilization devices such as solar cells and solar water heaters that are required to have high durability, high water separation and water / oil repellent / antifouling performance. purpose by surface reflection reducing effect of the incident light, a solar power generation efficiency and solar water heater battery, the improvement of the heat collection efficiency of the greenhouse or the like, dirt solar energy utilization device for preventing deterioration over time due and to provide a manufacturing method thereof with And

前記課題を解決するための手段として提供される第1の発明に係る太陽エネルギー利用装置は、光入射側透明基材の表面が該透明基材の表面に結合固定され、大きさが100nm以下の撥水撥油性の単層の透明微粒子で覆われている太陽エネルギー利用装置であって、前記透明微粒子の表面の一部には、一端に第1の官能基を有し、他端で前記透明微粒子の表面に結合した第1の膜化合物が結合しており、前記透明基材の表面の一部には、一端に前記第1の官能基と反応し共有結合を形成する第2の官能基を有し、他端で前記透明基材の表面に結合した第2の膜化合物が結合しており、前記透明微粒子は、前記第1の官能基と前記第2の官能基との反応により形成された共有結合によって前記透明基材の表面に結合固定されており、前記第2の膜化合物が結合固定された前記透明微粒子の表面には、前記第2の官能基と反応し共有結合を形成する第3の結合基を一端に、撥水撥油性基を他端に有する撥水撥油性化合物が表面に結合固定されていることを特徴とする。 The solar energy utilization apparatus according to the first aspect of the present invention provided as means for solving the above-mentioned problem is that the surface of the light incident side transparent base material is bonded and fixed to the surface of the transparent base material, and the size is 100 nm or less. A solar energy utilization device covered with a single layer of water and oil repellent transparent fine particle layer , wherein a part of the surface of the transparent fine particle has a first functional group at one end and the other end at the other end A first film compound bonded to the surface of the transparent fine particles is bonded, and a part of the surface of the transparent substrate has a second function that reacts with the first functional group at one end to form a covalent bond. A second film compound having a group and bonded to the surface of the transparent substrate at the other end, and the transparent fine particles are formed by a reaction between the first functional group and the second functional group. is coupled fixed to the surface of the transparent substrate by being formed covalent bonds, wherein the The surface of the transparent fine particles to which the film compound is bonded and fixed has a third bonding group that reacts with the second functional group to form a covalent bond at one end and a water- and oil-repellent group at the other end. A water / oil repellent compound is bonded and fixed to the surface .

第2の発明に係る太陽エネルギー利用装置は、第1の発明に係る太陽エネルギー利用装置において、前記透明微粒子が撥水撥油性被膜で覆われていることを特徴とする。 A solar energy utilization apparatus according to a second invention is characterized in that, in the solar energy utilization apparatus according to the first invention, the transparent fine particles are covered with a water / oil repellent coating.

第3の発明に係る太陽エネルギー利用装置は、第2の発明に係る太陽エネルギー利用装置において、前記撥水撥油性被膜が前記透明微粒子の表面に共有結合していることを特徴とする。 A solar energy utilization apparatus according to a third aspect is the solar energy utilization apparatus according to the second aspect, wherein the water / oil repellent coating is covalently bonded to the surface of the transparent fine particles.

第4の発明に係る太陽エネルギー利用装置は、第2又は第3の発明に係る太陽エネルギー利用装置において、前記撥水撥油性被膜が−CF基を含むことを特徴とする。 A solar energy utilization device according to a fourth invention is the solar energy utilization device according to the second or third invention, characterized in that the water / oil repellent coating contains -CF 3 groups.

(削除)(Delete)

の発明に係る太陽エネルギー利用装置は、第の発明に係る太陽エネルギー利用装置において、前記第1及び第2の膜化合物は、Siを介して、それぞれ前記透明微粒子及び前記透明基材の表面に共有結合していることを特徴とする。 A solar energy utilization device according to a fifth invention is the solar energy utilization device according to the fourth invention, wherein the first and second film compounds are formed of the transparent fine particles and the transparent substrate, respectively, via Si. It is characterized by being covalently bonded to the surface.

の発明に係る太陽エネルギー利用装置は、第4又は第5の発明に係る太陽エネルギー利用装置において、前記撥水撥油性被膜、前記第1の膜化合物、及び前記第2の膜化合物のいずれか1つ又は2つ以上が単分子膜であることを特徴とする。 A solar energy utilization device according to a sixth invention is the solar energy utilization device according to the fourth or fifth invention, wherein any one of the water- and oil-repellent coating, the first film compound, and the second film compound. One or two or more of them are monomolecular films.

の発明に係る太陽エネルギー利用装置は、第〜第の発明に係る太陽エネルギー利用装置において、前記第1及び第2の官能基の一方がエポキシ基、他方がアミノ基又はイミノ基であることを特徴とする。 A solar energy utilization device according to a seventh invention is the solar energy utilization device according to the fourth to sixth inventions, wherein one of the first and second functional groups is an epoxy group and the other is an amino group or an imino group. It is characterized by being.

第8の発明に係る太陽エネルギー利用装置は、光入射側透明基材の表面が該透明基材の表面に結合固定され、大きさが100nm以下の撥水撥油性の単層の透明微粒子層で覆われている太陽エネルギー利用装置であって、前記透明微粒子は、焼結により前記透明基材の表面に結合固定されており、前記透明微粒子の表面には、前記透明微粒子の表面官能基と反応し共有結合を形成する第の結合基を一端に、撥水撥油性基を他端に有する撥水撥油性化合物が表面に結合固定されていることを特徴とする。 A solar energy utilization device according to an eighth aspect of the invention is a water- and oil-repellent single-layer transparent fine particle layer having a surface of a light incident side transparent base material bonded and fixed to the surface of the transparent base material and having a size of 100 nm or less. The solar energy utilization apparatus is covered, wherein the transparent fine particles are bonded and fixed to the surface of the transparent base material by sintering, and the surface of the transparent fine particles reacts with the surface functional groups of the transparent fine particles. A water / oil repellent compound having a fourth bond group forming a covalent bond at one end and a water / oil repellent group at the other end is bonded and fixed to the surface.

の発明に係る太陽エネルギー利用装置は、第1〜第の発明に係る太陽エネルギー利用装置において、前記透明微粒子が透光性のシリカ、アルミナ、又はジルコニアからなる群より選択されるものであることを特徴とする。 A solar energy utilization device according to a ninth invention is the solar energy utilization device according to the first to eighth inventions, wherein the transparent fine particles are selected from the group consisting of translucent silica, alumina, or zirconia. It is characterized by being.

(削除)(Delete)

第10の発明に係る太陽エネルギー利用装置の製造方法は、透明微粒子と、一端に第1の官能基を有し、他端に前記透明微粒子の表面基と反応して結合を形成する第1の結合基を有する第1の膜化合物とを反応させ、前記第1の膜化合物が前記第1の結合基を介して表面に結合した反応性透明微粒子を製造する工程Aと、太陽エネルギー利用装置の透明基材と、一端に前記第1の官能基と反応して共有結合を形成する第2の官能基を有し、他端に前記透明基材の表面基と反応して結合を形成する第2の結合基を有する第2の膜化合物とを反応させ、前記第2の膜化合物が前記第2の結合基を介して表面に結合した反応性透明基材を製造する工程Bと、前記反応性透明微粒子と前記反応性透明基材とを接触させ、前記第1の官能基と前記第2の官能基との反応により共有結合を形成させて前記反応性透明微粒子を前記透明基材の表面に結合固定させる工程Cと、前記透明基材の表面に結合固定された透明微粒子と、前記第2の官能基と反応し共有結合を形成する第3の結合基を一端に、撥水撥油性基を他端に有する撥水撥油性化合物とを反応させ、前記透明微粒子の表面に撥水撥油性被膜を形成する工程Dとを含むことを特徴とする。 According to a tenth aspect of the present invention, there is provided a method for manufacturing a solar energy utilization device according to the first aspect, wherein the transparent fine particles have a first functional group at one end and react with the surface group of the transparent fine particle at the other end to form a bond. A step A for producing a reactive transparent fine particle in which a first film compound having a bonding group is reacted and the first film compound is bonded to the surface via the first bonding group; A transparent substrate having a second functional group that reacts with the first functional group at one end to form a covalent bond and a bond that reacts with the surface group of the transparent substrate at the other end Reacting with a second membrane compound having two bonding groups to produce a reactive transparent substrate having the second membrane compound bonded to the surface via the second bonding group, and the reaction The transparent fine particles are brought into contact with the reactive transparent substrate, and the first functional group and the second functional group are brought into contact with each other. A step C of bonding fix the reactive transparent fine particles on the surface of the transparent substrate by forming a covalent bond by reaction with functional groups, and the transparent fine particles which are bound and fixed to the surface of the transparent substrate, the second The surface of the transparent fine particles is subjected to a reaction with a water- and oil-repellent compound having a third bonding group that reacts with the functional group to form a covalent bond at one end and a water- and oil-repellent group at the other end. And a step D of forming a film.

11の発明に係る太陽エネルギー利用装置の製造方法は、第10の発明に係る太陽エネルギー利用装置の製造方法において、前記工程A〜Dのいずれか1つ又は2つ以上の後において、余分な化学吸着液を洗浄除去することを特徴とする。 The manufacturing method of the solar energy utilization apparatus according to the eleventh aspect of the invention is the method of manufacturing a solar energy utilization apparatus according to the tenth aspect of the invention, after any one or two or more of the steps A to D. The chemical adsorption solution is washed away.

12の発明に係る太陽エネルギー利用装置の製造方法は、第10又は第11の発明に係る太陽エネルギー利用装置の製造方法において、前記第3の結合基がトリクロロシランであり、前記工程Dにおいて、前記撥水撥油性化合物と前記透明微粒子との反応はシラノール縮合触媒の存在下で行われることを特徴とする。 A solar energy utilization device manufacturing method according to a twelfth aspect of the invention is the solar energy utilization device manufacturing method according to the tenth or eleventh aspect of the invention, wherein the third bonding group is trichlorosilane, and in the step D, The reaction between the water / oil repellent compound and the transparent fine particles is performed in the presence of a silanol condensation catalyst.

13の発明に係る太陽エネルギー利用装置の製造方法は、第12の発明に係る太陽エネルギー利用装置の製造方法において、ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、及びアミノアルキルアルコキシシラン化合物からなる群より選択される1又は複数の助触媒を前記シラノール縮合触媒と共に用いることを特徴とする。 According to a thirteenth aspect of the present invention, there is provided a method for manufacturing a solar energy utilization device according to the twelfth aspect of the present invention, wherein the ketimine compound, organic acid, aldimine compound, enamine compound, oxazolidine compound, and aminoalkylalkoxysilane are used. One or more promoters selected from the group consisting of compounds are used together with the silanol condensation catalyst.

第14の発明に係る太陽エネルギー利用装置の製造方法は、第10〜第13の発明に係る太陽エネルギー利用装置の製造方法において、前記透明基材がガラスであり、前記工程Cの後、酸素を含む雰囲気下で前記透明微粒子が結合固定された透明基材を焼結して有機物を全て除去し、前記透明微粒子を前記透明基材上に直接固定させる工程Eを更に含み、前記工程Dにおいて、前記第3の結合基を一端に、撥水撥油性基を他端に有する撥水撥油性化合物の代わりに、前記透明微粒子の表面官能基と反応し共有結合を形成する第4の結合基を一端に、撥水撥油性基を他端に有する撥水撥油性化合物を用いることを特徴とする。 According to a fourteenth aspect of the present invention, there is provided a method for manufacturing a solar energy utilization device. In the method for manufacturing a solar energy utilization device according to the tenth to thirteenth aspects, the transparent substrate is glass. a transparent substrate, wherein the transparent fine particles are bound and fixed in an atmosphere containing by sintering remove all organic matter, further look including the step E of fixing directly on the transparent substrate the transparent fine particles, and in the step D In addition to the water / oil repellent compound having the third bonding group at one end and the water / oil repellent group at the other end, the fourth bonding group reacts with the surface functional group of the transparent fine particles to form a covalent bond. And a water / oil repellent compound having a water / oil repellent group at the other end .

15の発明に係る太陽エネルギー利用装置の製造方法は、第14の発明に係る太陽エネルギー利用装置の製造方法において、前記焼結を400℃以上かつ前記透明基材及び前記透明微粒子の溶融温度未満の温度で行うことを特徴とする。 A solar energy utilization device manufacturing method according to a fifteenth aspect of the invention is the solar energy utilization device manufacturing method according to the fourteenth aspect of the invention, wherein the sintering is 400 ° C. or higher and less than the melting temperature of the transparent base material and the transparent fine particles. It is characterized by carrying out at the temperature of.

ここで、光入射側透明基材の表面がその表面に結合固定された撥水撥油性の透明微粒子で覆われていることにより、透明基材の耐候性及び防汚性を向上することが可能になる。 Here, it is possible to improve the weather resistance and antifouling property of the transparent substrate by covering the surface of the light incident side transparent substrate with water- and oil-repellent transparent fine particles bonded and fixed to the surface. become.

また、撥水撥油性被膜で覆われた透明微粒子を前記撥水撥油性の透明微粒子として用いることにより、シリカ、アルミナ等の安価で耐磨耗性等に優れた原料を用いて撥水撥油性の透明微粒子を簡便に製造することが可能になる点で都合がよい。 In addition, by using transparent fine particles covered with a water / oil repellent coating as the water / oil repellent transparent fine particles, it is possible to use water / oil repellent properties using inexpensive raw materials such as silica and alumina that are excellent in wear resistance. It is convenient in that transparent particles can be easily produced.

前記撥水撥油性被膜が透明微粒子表面に共有結合していると、撥水撥油性被膜が直接透明基材に接触することがないので、透明基材がガラスの場合でも、耐雨性(耐候性)を向上させる上で都合がよい。 When the water- and oil-repellent coating is covalently bonded to the surface of the transparent fine particles, the water- and oil-repellent coating does not directly contact the transparent substrate. Therefore, even when the transparent substrate is glass, it is resistant to rain (weather resistance). ) Is convenient for improving.

前記撥水撥油性被膜が−CF基を含むと、撥水撥油防汚機能を付与する上でも都合がよい。 When the water / oil repellent coating contains a —CF 3 group, it is convenient for providing a water / oil repellent / antifouling function.

前記透明微粒子は、前記第1の官能基と第2の官能基との反応により形成された共有結合によって前記光入射側透明基材表面に共有結合で固定することにより、耐久性と防汚性、離水性を同時に向上させる上で都合がよい。 The transparent fine particles have durability and antifouling property by being covalently fixed to the light incident side transparent substrate surface by a covalent bond formed by a reaction between the first functional group and the second functional group. It is convenient for improving water separation at the same time.

前記第1及び第2の膜化合物が、Siを介してそれぞれ前記透明微粒子及び前記透明基材の表面に共有結合していると、前記透明基材表面の耐候性を更に向上させることができて都合がよい。 When the first and second film compounds are covalently bonded to the surfaces of the transparent fine particles and the transparent substrate through Si, respectively, the weather resistance of the transparent substrate surface can be further improved. convenient.

前記撥水撥油性被膜、前記第1の膜化合物、及び前記第2の膜化合物のいずれか1つ又は2つ以上が単分子膜であると、光透過率を損なうことがないので都合がよい。 If one or more of the water / oil repellent coating, the first film compound, and the second film compound is a monomolecular film, it is convenient because the light transmittance is not impaired. .

前記第1及び第2の官能基の一方がエポキシ基であり、他方がアミノ基又はイミノ基である場合には、これらの反応により形成される共有結合は、安定で機械的強度や耐候性の点でも優れており、反応時に揮発成分を生じないため反応に伴う収縮等の問題を生じない。そのため、透明基材表面の耐候性及び光学的性質がさらに改善される点で都合がよい。 When one of the first and second functional groups is an epoxy group and the other is an amino group or an imino group, the covalent bond formed by these reactions is stable and has mechanical strength and weather resistance. It is also excellent in terms of point, and does not cause problems such as shrinkage due to the reaction because no volatile component is generated during the reaction. Therefore, it is advantageous in that the weather resistance and optical properties of the transparent substrate surface are further improved.

また、前記撥水撥油性透明微粒子が、焼結により直接前記透明基材表面に焼結固定されていると、更に耐久性を向上させる上で都合がよい。 Moreover, when the water / oil repellent transparent fine particles are sintered and fixed directly to the surface of the transparent base material by sintering, it is convenient to further improve the durability.

前記焼結により直接透明基材表面に固定された透明微粒子が、前記透明基材の表面を1層のみで覆っている場合には、入射光の散乱等を抑制することができるので、入射光の利用効率が向上する点で都合がよい。 Since the transparent fine particles fixed directly on the surface of the transparent substrate by the sintering cover the surface of the transparent substrate with only one layer, it is possible to suppress the scattering of incident light, etc. This is convenient in terms of improving the use efficiency.

前記透明微粒子が透光性のシリカ、アルミナ、あるいはジルコニアであると、耐水性や耐摩耗性能を向上できて都合がよい。 When the transparent fine particles are translucent silica, alumina, or zirconia, it is convenient because water resistance and wear resistance can be improved.

前記透明微粒子の大きさが100nm以下であると、有効な光の透過率を損なうことがないので都合がよい。 When the size of the transparent fine particles is 100 nm or less, it is convenient because the effective light transmittance is not impaired.

透明微粒子と、一端に第1の官能基を有し、他端に前記透明微粒子の表面基と反応して結合を形成する第1の結合基を有する第1の膜化合物とを反応させ、前記第1の膜化合物が前記第1の結合基を介して表面に結合した反応性透明微粒子を製造する工程Aと、太陽エネルギー利用装置の透明基材と、一端に前記第1の官能基と反応して共有結合を形成する第2の官能基を有し、他端に前記透明基材の表面基と反応して結合を形成する第2の結合基を有する第2の膜化合物とを反応させ、前記第2の膜化合物が前記第2の結合基を介して表面に結合した反応性透明基材を製造する工程Bと、前記反応性透明微粒子と前記反応性透明基材とを接触させ、前記第1の官能基と前記第2の官能基との反応により共有結合を形成させて前記反応性透明微粒子を前記透明基材の表面に結合固定させる工程Cと、前記透明基材の表面に結合固定された透明微粒子と、一端に前記透明微粒子の表面と反応し共有結合する第3の結合基を有する撥水撥油性化合物とを反応させ、前記透明微粒子の表面に撥水撥油性被膜を形成する工程Dとを含む太陽エネルギー利用装置の製造方法に関する発明により、耐摩耗性、離水性能、防汚性能、及び入射光の利用効率が向上した太陽エネルギー利用装置を安価かつ簡便に製造することが可能になる。 Reacting the transparent fine particles with a first film compound having a first functional group at one end and a first bonding group that forms a bond by reacting with the surface group of the transparent fine particle at the other end; Process A for producing reactive transparent fine particles in which a first film compound is bonded to the surface through the first bonding group, a transparent base material of a solar energy utilization device, and the first functional group at one end. A second functional group that forms a covalent bond and reacts with the second film compound that has a second binding group that reacts with the surface group of the transparent substrate at the other end to form a bond. Step B for producing a reactive transparent substrate in which the second film compound is bonded to the surface through the second bonding group, and the reactive transparent fine particles and the reactive transparent substrate are brought into contact with each other. The reactive transparent is formed by forming a covalent bond by the reaction between the first functional group and the second functional group. Step C for bonding and fixing particles to the surface of the transparent substrate, transparent fine particles bonded and fixed to the surface of the transparent substrate, and a third bonding group that reacts and covalently bonds to the surface of the transparent fine particles at one end. And a process D for forming a water / oil repellent film on the surface of the transparent fine particles, by reacting with the water / oil repellent compound having the invention. A solar energy utilization device with improved performance and efficiency of use of incident light can be manufactured inexpensively and easily.

また、前記工程A〜Dのいずれか1つ又は2つ以上の後において、余分な化学吸着液を洗浄除去することにより、前記透明基材と前記透明微粒子との間に介在する有機物の量を最少限にとどめることができるため、耐候性を向上する上で都合がよい。また、焼成により有機物を除去する上でも都合がよい。 In addition, after any one or two or more of the steps A to D, the amount of organic substances interposed between the transparent base material and the transparent fine particles can be reduced by washing and removing excess chemical adsorption solution. Since it can be kept to the minimum, it is convenient for improving the weather resistance. Moreover, it is convenient also when removing organic substance by baking.

前記第3の結合基をトリクロロシランとし、前記工程Dにおいて、前記撥水撥油性化合物と前記透明微粒子との反応をシラノール縮合触媒の存在下で行わせることにより、前記撥水撥油性被膜の機械的強度が向上すると共に、反応を短時間で行うことが可能になるため都合がよい。 The third bonding group is trichlorosilane, and in the step D, the reaction between the water / oil repellent compound and the transparent fine particles is carried out in the presence of a silanol condensation catalyst, whereby the water / oil repellent coating film is machined. This is convenient because the reaction strength can be improved in a short time as well as the mechanical strength is improved.

ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、及びアミノアルキルアルコキシシラン化合物からなる群より選択される1又は複数の助触媒を前記シラノール縮合触媒と共に用いることにより、前記撥水撥油性被膜の製造時間を短縮できて都合がよい。 By using one or more cocatalysts selected from the group consisting of ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds together with the silanol condensation catalyst, the water / oil repellent coating It is convenient to reduce the manufacturing time.

膜化合物の間に形成された共有結合を介して前記反応性透明微粒子を前記透明基材の表面に結合固定させる工程の後、酸素を含む雰囲気下で焼結して有機物を全て除去し透明基材と透明微粒子を直接固定させる工程を行えば、一層、耐候性や耐摩耗性能を向上できて都合がよい。 After the step of bonding and fixing the reactive transparent fine particles to the surface of the transparent substrate through a covalent bond formed between the membrane compounds, the organic material is removed by sintering in an atmosphere containing oxygen to remove the transparent group. If the step of directly fixing the material and the transparent fine particles is performed, it is advantageous that the weather resistance and wear resistance can be further improved.

また、焼結を400℃以上透明基材及び透明微粒子の融点未満の温度で行うことにより、緻密な膜が得られるため、耐候性や耐摩耗性能をより一層向上させることができて都合がよい。 In addition, a dense film can be obtained by sintering at a temperature of 400 ° C. or higher and a temperature lower than the melting point of the transparent base material and transparent fine particles, which is advantageous in that the weather resistance and wear resistance can be further improved. .

以上説明したとおり、本発明によれば、高耐久、高離水性でかつ撥水撥油防汚性能が要求される太陽電池や太陽熱温水器等の太陽エネルギー利用装置において、入射光の表面反射の低減と耐摩耗性や高離水性、防汚性を向上させることにより、太陽電池の発電効率の向上や太陽熱温水器の集熱効率の向上と汚れによる経時劣化防止を同時に達成でき、発電効率を長期にわたり維持できる太陽電池や集熱効率を長期にわたり維持できる太陽熱温水器を提供できる効果がある。 As described above, according to the present invention, in solar energy utilization devices such as solar cells and solar water heaters that are required to have high durability, high water separation, and water / oil repellent / antifouling performance, surface reflection of incident light can be reduced. By reducing and improving wear resistance, high water separation, and antifouling properties, it is possible to simultaneously improve the power generation efficiency of solar cells, improve the heat collection efficiency of solar water heaters, and prevent deterioration over time due to dirt. It is possible to provide a solar battery that can be maintained over a long period of time and a solar water heater that can maintain heat collection efficiency over a long period of time.

より具体的には、本発明は、一端に例えば、エポキシ基、アミノ基、イミノ基、イソシアネート基、又はヒドロキシル基等の第1の官能基及び他端にトリアルコキシシリル基等の第1の結合基を有する第1の膜化合物、シラノール縮合触媒、及び非水系の有機溶媒を含む第1の化学吸着液に、透光性のシリカ、アルミナ、又はジルコニア等よりなる透明微粒子を接触させ、透明微粒子の表面基と第1の結合基が反応して結合し、第1の官能基を有する反応性透明微粒子を製造する工程(工程A)と、一端に前記第1の官能基と反応して共有結合を形成する第2の官能基(例えば、第1の官能基がエポキシ基である場合にはアミノ基又はイミノ基等であり、第1の官能基がイソシアネート基である場合には、アミノ基又はヒドロキシル基等である)及び他端にトリアルコキシシリル基等の第2の結合基を有する第2の膜化合物、シラノール縮合触媒、及び非水系の有機溶媒を含む第2の化学吸着液に、太陽電池又は太陽熱温水器等の太陽エネルギー利用装置に用いられる光入射側透明基材の表面を接触させ、透明基材の表面基と第2の結合基が反応して結合し、第2の官能基を有する反応性透明基材を製造する工程(工程B)と、反応性透明微粒子と反応性透明基材とを接触させ、加熱等により第1の官能基と第2の官能基とを反応させることにより共有結合を形成させて前記反応性透明基材の表面に前記反応性透明微粒子を結合固定させる工程(工程C)と、一端にトリクロロシリル基又はトリアルコキシシリル基等の第2の官能基と反応し共有結合を形成する第3の結合基を有し、他端にフッ化炭素基等の撥水撥油性基を有する撥水撥油性化合物、シラノール縮合触媒及び非水系の有機溶媒を含む第3の化学吸着液と、前記表面に透明微粒子を結合固定させた透明基材の表面を接触させて、透明微粒子の表面に第3の結合基を共有結合させて前記透明微粒子の表面に撥水撥油性被膜を形成する工程(工程D)とを含む方法により製造される、光入射側透明基材の表面がこの表面に結合固定された撥水撥油性の単層の透明微粒子層で覆われていることを特徴とする太陽エネルギー利用装置を提供することを要旨とする。 More specifically, the present invention provides a first bond such as an epoxy group, an amino group, an imino group, an isocyanate group, or a hydroxyl group at one end and a first bond such as a trialkoxysilyl group at the other end. Transparent fine particles made of translucent silica, alumina, zirconia, or the like are brought into contact with a first chemical adsorption liquid containing a first film compound having a group, a silanol condensation catalyst, and a non-aqueous organic solvent. And reacting the surface group and the first binding group to produce reactive transparent fine particles having the first functional group (Step A), and reacting with the first functional group at one end and sharing A second functional group that forms a bond (for example, an amino group or an imino group when the first functional group is an epoxy group, and an amino group when the first functional group is an isocyanate group). Or a hydroxyl group, etc. ) And a second chemical adsorbent containing a second film compound having a second bonding group such as a trialkoxysilyl group at the other end, a silanol condensation catalyst, and a non-aqueous organic solvent, a solar cell or a solar water heater The surface of the light incident side transparent base material used for the solar energy utilization apparatus such as the above is brought into contact, and the surface group of the transparent base material and the second bonding group react to bond to each other, and the reactive transparent having the second functional group A covalent bond is formed by bringing the reactive transparent fine particles and the reactive transparent substrate into contact with each other and reacting the first functional group and the second functional group by heating, etc. Forming and bonding and fixing the reactive transparent fine particles to the surface of the reactive transparent substrate (step C), and reacting with a second functional group such as a trichlorosilyl group or trialkoxysilyl group at one end and covalently bonding a third coupling group forming a A third chemical adsorption liquid containing a water / oil repellent compound having a water / oil repellent group such as a fluorocarbon group at the other end, a silanol condensation catalyst and a non-aqueous organic solvent, and transparent fine particles are bonded and fixed to the surface. A step (step D) of bringing the surface of the transparent substrate into contact with each other and forming a water- and oil-repellent coating on the surface of the transparent fine particles by covalently bonding a third bonding group to the surface of the transparent fine particles. To provide a solar energy utilization device, characterized in that the surface of the light incident side transparent base material to be manufactured is covered with a single layer of fine water- and oil-repellent transparent fine particles bonded and fixed to this surface. The gist.

したがって、本発明には、高耐久、高離水性でかつ撥水撥油防汚性能が要求される太陽電池や太陽熱温水器において、耐摩耗性能と高離水性能、防汚性能の向上と共に入射光の表面反射低減効果により、発電効率や集熱効率の向上と、汚れによる劣化を防止できる太陽電池や太陽熱温水器を提供できる作用がある。 Therefore, in the present invention, in solar cells and solar water heaters that are required to have high durability, high water separation and water and oil repellency and antifouling performance, the wear resistance, high water separation performance, and antifouling performance are improved and incident light is improved. Due to the surface reflection reduction effect, the solar cell and the solar water heater can be provided which can improve the power generation efficiency and the heat collection efficiency and prevent deterioration due to dirt.

以下、本発明の詳細について実施例を用いて説明するが、本発明は、これら実施例によって何ら制限されるものではない。 Hereinafter, although the detail of this invention is demonstrated using an Example, this invention is not restrict | limited at all by these Examples.

なお、本発明に関する太陽電池や太陽熱温水器等の太陽エネルギー利用装置において、耐摩耗性能と高離水性能、防汚性能の向上と共に入射光の表面反射低減効果により、発電効率や集熱効率の向上と、汚れによる劣化を防止するという機能の付与方法は、原理的には同じであるので、代表例として以下太陽電池の光入射側透明基材がガラスの場合を取り上げて説明する。 In addition, in solar energy utilization devices such as solar cells and solar water heaters related to the present invention, the improvement in power generation efficiency and heat collection efficiency is achieved by improving the anti-wear performance, high water separation performance, antifouling performance, and the effect of reducing the surface reflection of incident light. Since the method of imparting the function of preventing deterioration due to dirt is the same in principle, a case where the light incident side transparent substrate of the solar cell is glass will be described below as a representative example.

(実施例1)
まず、太陽電池の光入射側透明基材としてガラス製の透明基材1を用意し、よく洗浄して乾燥した。次に、機能部位に反応性の第2の官能基、例えば、エポキシ基を一端に含み他端に第2の結合基の一例であるアルコキシシリル基を含む第2の膜化合物、例えば、下記の式(1)に示す膜化合物が99重量%、シラノール縮合触媒として、例えば、ジブチルスズジアセチルアセトナートが1重量%となるようそれぞれ秤量し、シリコーン溶媒、例えば、ヘキサメチルジシロキサン溶媒に合計1重量%程度の濃度(好ましい膜化合物の濃度は、0.5〜3%程度)になるように溶かして化学吸着液を調製した。
Example 1
First, a transparent substrate 1 made of glass was prepared as a light incident side transparent substrate of a solar cell, washed well and dried. Next, a second functional group having a reactive functional group at its functional site, for example, an epoxy group at one end and an alkoxysilyl group as an example of the second bonding group at the other end, for example, the following The membrane compound represented by the formula (1) is 99% by weight, and the silanol condensation catalyst is weighed so that, for example, dibutyltin diacetylacetonate is 1% by weight. The total amount is 1% by weight in a silicone solvent, for example, hexamethyldisiloxane solvent. A chemisorbing solution was prepared by dissolving to a concentration of about (preferably the concentration of the membrane compound is about 0.5 to 3%).

Figure 0005331977
Figure 0005331977

この吸着液を前記透明基材1表面に塗布し、普通の空気中で(相対湿度45%)で2時間程度反応させた。このとき、前記ガラス製の透明基材1の表面にはヒドロキシル基(表面基)2が多数含まれているので(図1(a))、前記膜化合物の−Si(OCH)基と前記ヒドロキシル基2がシラノール縮合触媒の存在下で脱アルコール(この場合は、脱CHOH)反応し、下記の式(2)に示したような結合を形成し、透明基材表面全面に亘り表面と化学結合したエポキシ基を含む単分子膜3が約1ナノメートル程度の膜厚で形成される。(なお、透明基材がアクリルやポリカーボネート樹脂の場合、あらかじめ表面をコロナ処理やプラズマ処理、あるいは酸化剤等で処理して親水性にしておけば、同様の方法で被膜を形成できた。) This adsorbed liquid was applied to the surface of the transparent substrate 1 and reacted in normal air (relative humidity 45%) for about 2 hours. Wherein this time, since the glass of the transparent substrate 1 surface has a large number 2 hydroxyl groups (surface groups) (FIG. 1 (a)), and -Si (OCH 3) groups of the film compound Hydroxyl group 2 undergoes dealcoholization (in this case, de-CH 3 OH) in the presence of a silanol condensation catalyst to form a bond as shown in the following formula (2), and the entire surface of the transparent substrate surface A monomolecular film 3 containing an epoxy group chemically bonded to is formed with a thickness of about 1 nanometer. (In the case where the transparent base material is acrylic or polycarbonate resin, the coating could be formed by the same method if the surface was previously treated with corona treatment, plasma treatment, or oxidizing agent to make it hydrophilic.)

Figure 0005331977
Figure 0005331977

その後、クロロホルム等の塩素系溶媒で洗浄すると、表面に反応性のエポキシ基を表面に有する単分子膜3で被われた透明基材(反応性透明基材)4を製造できた(図1(b))。 Thereafter, when washed with a chlorinated solvent such as chloroform, a transparent substrate (reactive transparent substrate) 4 covered with a monomolecular film 3 having a reactive epoxy group on the surface could be produced (FIG. 1 ( b)).

なお、洗浄せずに空気中に取り出し放置すると、溶媒が蒸発し透明基材表面に残った膜化合物が透明基材表面で空気中の水分と反応して、粒子表面に前記膜化合物よりなる極薄のポリマー膜が形成された。なお、この被膜でも、反応性はほとんど変わらなかった。特に、酸素を含む雰囲気中で焼結して有機物を除去する場合には、全く問題なかった。 If the solvent is evaporated and left in the air without washing and the solvent is evaporated, the film compound remaining on the surface of the transparent substrate reacts with moisture in the air on the surface of the transparent substrate, and the electrode surface made of the film compound is formed on the particle surface. A thin polymer film was formed. Even with this coating, the reactivity was hardly changed. In particular, there was no problem at all when organic substances were removed by sintering in an atmosphere containing oxygen.

一方、平均粒径が100nm程度(100nm以下が好ましい)のアルミナ微粒子(透明微粒子の一例)5を用意し、よく乾燥した。次に、機能部位にエポキシ基と反応する第1の官能基の一例であるアミノ基(−NH)又はイミノ基(=NH)を含み、他端に第1の結合基の一例であるアルコキシシリル基を含む第1の膜化合物、例えば、末端にアミノ基を含む下記の式(3)に示す膜化合物が99重量%、シラノール縮合触媒の代わりに有機酸である酢酸を1重量%となるようそれぞれ秤量し、シリコーンとジメチルホルムアミドを同量混合した溶媒、例えば、ヘキサメチルジシロキサン50%とジメチルホルムアミド50%の溶液に合計1重量%程度の濃度(好ましい膜化合物の濃度は、0.5〜3%程度)になるように溶かして化学吸着液を調製した。 On the other hand, alumina fine particles (an example of transparent fine particles) 5 having an average particle diameter of about 100 nm (preferably 100 nm or less) were prepared and dried well. Next, the functional site contains an amino group (—NH 2 ) or an imino group (═NH) which is an example of a first functional group that reacts with an epoxy group, and an alkoxy which is an example of a first bonding group at the other end. The first film compound containing a silyl group, for example, the film compound represented by the following formula (3) containing an amino group at the terminal is 99% by weight, and acetic acid, which is an organic acid, is 1% by weight instead of the silanol condensation catalyst. In each case, a total amount of about 1% by weight in a solvent in which the same amount of silicone and dimethylformamide is mixed, for example, a solution of 50% hexamethyldisiloxane and 50% dimethylformamide (preferably the concentration of the membrane compound is 0.5 A chemisorbed solution was prepared by dissolving so as to be about ˜3%.

Figure 0005331977
Figure 0005331977

この吸着液に前記無水のアルミナ微粒子5を混入撹拌して普通の空気中で(相対湿度45%)で2時間程度反応させた。このとき、アルミナ微粒子5の表面にはヒドロキシル基(表面基)6が多数含まれているので(図2(a))、第1の膜化合物の−Si(OCH)基と前記ヒドロキシル基が酢酸の存在下で脱アルコール(この場合は、脱CHOH)反応し、下記式(4)に示したような結合を形成し、微粒子表面全面に亘り表面と化学結合したアミノ基7を含む単分子膜8が約1ナノメートル程度の膜厚で形成される。 The anhydrous alumina fine particles 5 were mixed and stirred in the adsorbed liquid and reacted in ordinary air (relative humidity 45%) for about 2 hours. At this time, since the surface of the alumina fine particles 5 contains many hydroxyl groups (surface groups) 6 (FIG. 2A), the —Si (OCH 3 ) group of the first film compound and the hydroxyl group are In the presence of acetic acid, dealcoholization (in this case, de-CH 3 OH) is carried out to form a bond as shown in the following formula (4), which includes amino groups 7 chemically bonded to the surface over the entire surface of the fine particles. The monomolecular film 8 is formed with a film thickness of about 1 nanometer.

Figure 0005331977
Figure 0005331977

その後、クロロホルム等の塩素系溶媒を添加して撹拌洗浄すると、反応性透明微粒子の一例である、表面にアミノ基7を有する単分子膜8で被われたアルミナ微粒子9を形成できた(図2(b))。
なお、ここで、アミノ基を含む膜化合物を使用する場合には、アミノ基がスズ系の触媒と反応し沈殿が生成するので、酢酸等の有機酸を用いる方が好ましい。また、アミノ基以外に、ピロール誘導体や、イミダゾール誘導体等のイミノ基を含む物質が利用できた。更に、ケチミン誘導体を用いて単分子膜を形成後、ケチミン残基の加水分解によっても、容易にアミノ基を導入することができた。
Thereafter, when a chlorine-based solvent such as chloroform was added and washed with stirring, alumina fine particles 9 covered with a monomolecular film 8 having amino groups 7 on the surface, which was an example of reactive transparent fine particles, could be formed (FIG. 2). (B)).
Here, when a membrane compound containing an amino group is used, it is preferable to use an organic acid such as acetic acid because the amino group reacts with a tin-based catalyst to form a precipitate. In addition to amino groups, substances containing imino groups such as pyrrole derivatives and imidazole derivatives could be used. Furthermore, after forming a monomolecular film using a ketimine derivative, an amino group could be easily introduced by hydrolysis of a ketimine residue.

なお、この処理により形成された単分子膜8は、反応性透明基材4の場合と同様に、ナノメートルレベルの膜厚で極めて薄いため、アルミナ微粒子の粒子径を損なうことはなかった。
また、洗浄せずに空気中に取り出すと、反応性はほぼ変わらないが、溶媒が蒸発し粒子表面に残った膜化合物が粒子表面で空気中の水分と反応して、粒子表面に前記化学吸着剤よりなる極薄のポリマー膜が形成されたアルミナ微粒子が得られた。
In addition, since the monomolecular film 8 formed by this treatment is extremely thin with a film thickness on the nanometer level as in the case of the reactive transparent substrate 4, the particle diameter of the alumina fine particles was not impaired.
In addition, when it is taken out into the air without washing, the reactivity does not change substantially, but the film compound remaining on the particle surface reacts with the moisture in the air when the solvent evaporates and reacts with the chemical adsorption on the particle surface. Alumina fine particles on which an ultrathin polymer film made of an agent was formed were obtained.

次に、前記エポキシ基を有する単分子膜3で被われた透明基材4の表面に、前記アミノ基7を有する単分子膜8で被われたアルミナ微粒子9をエタノールに分散させて塗布し、エタノールを蒸発させた後、100℃程度で30分程度加熱すると、下記の式(5)に示したような反応でエポキシ基とアミノ基が付加反応して透明基材4とアルミナ微粒子5が2つの単分子膜を介して結合固定した。 Next, the alumina fine particles 9 covered with the monomolecular film 8 having the amino groups 7 are dispersed and applied to the surface of the transparent substrate 4 covered with the monomolecular film 3 having the epoxy groups, When the ethanol is evaporated and heated at about 100 ° C. for about 30 minutes, the epoxy group and the amino group are subjected to an addition reaction by the reaction shown in the following formula (5), so that the transparent substrate 4 and the alumina fine particles 5 are 2 Binding and immobilization were performed via two monolayers.

Figure 0005331977
Figure 0005331977

その後、更にクロロホルム等の有機溶媒で洗浄すると、余分な未反応のアミノ基を有する単分子膜で被われたアルミナ微粒子が除去され、透明基材1表面とアルミナ微粒子5が前記2つの単分子膜3、8を介して1層のみ共有結合した太陽電池用の透明基材10が得られた(図3(a))。 Thereafter, further washing with an organic solvent such as chloroform removes the alumina fine particles covered with an extra monomolecular film having an unreacted amino group, and the surface of the transparent substrate 1 and the alumina fine particles 5 are separated from the two monomolecular films. A transparent base material 10 for a solar cell in which only one layer was covalently bonded through 3 and 8 was obtained (FIG. 3A).

ここで、後工程の太陽電池製造において、膜化合物が熱分解するおそれのある350℃以上の高温処理を必要とする場合には、空気中で例えば600℃(基材の軟化温度に応じて400℃以上かつ透明基材及び透明微粒子の溶融温度未満の範囲で適宜調節される)で30分間焼結を行い、有機化合物である膜化合物が全て分解除去された、アルミナ微粒子5が透明基材1表面に1層直接結合固定された透明基材10aを製造しておくことが、膜化合物の熱分解による透明基材の着色等の問題を回避する上で好ましい(図3(b))。
なお、後工程の太陽電池製造工程に、250℃以下で行える印刷法等を用いる場合には、この焼結工程は必ずしも必要ではなく、透明基材1の表面とアルミナ微粒子5が前記2つの単分子膜3、8を介して1層のみ共有結合した透明基材10を用いればよい(図3(a))。
Here, in the subsequent solar cell manufacturing, when a high-temperature treatment at 350 ° C. or higher, which may cause thermal decomposition of the film compound, is required, for example, 600 ° C. in the air (400 depending on the softening temperature of the base material). The alumina fine particles 5 in which all the film compounds as organic compounds have been decomposed and removed are subjected to 30 minutes of sintering at a temperature not lower than the melting point of the transparent substrate and the temperature of the melting point of the transparent fine particles and the transparent fine particles. In order to avoid problems such as coloring of the transparent substrate due to thermal decomposition of the film compound, it is preferable to manufacture the transparent substrate 10a that is directly bonded and fixed to the surface by one layer (FIG. 3B).
In the case where a printing method or the like that can be performed at 250 ° C. or lower is used in the subsequent solar cell manufacturing process, this sintering process is not necessarily required, and the surface of the transparent substrate 1 and the alumina fine particles 5 are the two single units. A transparent base material 10 in which only one layer is covalently bonded through the molecular films 3 and 8 may be used (FIG. 3A).

次に、図4に示すように、この透明基材10aの光入射11側と反対側方向の面にスパッタ蒸着法で透明電極12になるITOを蒸着製膜し、プラズマCVD法を用いて公知の方法でn型アモルファスシリコン層13とp型アモルファスシリコン層14を順に形成し、更にその上に反射膜を兼ねたアルミニウムのバック電極15を蒸着形成して太陽電池層を作成した。ここで、アモルファスシリコンの製膜温度やアルミニウム電極の蒸着温度は、通常450℃以下なので、太陽電池製作工程で微粒子を結合固定した前記透明基材10aが破壊されることはなかった。 Next, as shown in FIG. 4, ITO, which becomes the transparent electrode 12, is deposited on the surface of the transparent substrate 10a opposite to the light incident 11 side by sputtering deposition, and is publicly known using plasma CVD. The n-type amorphous silicon layer 13 and the p-type amorphous silicon layer 14 were sequentially formed by the method described above, and an aluminum back electrode 15 serving also as a reflective film was formed thereon by vapor deposition to form a solar cell layer. Here, the deposition temperature of amorphous silicon and the deposition temperature of the aluminum electrode are usually 450 ° C. or lower, so that the transparent substrate 10a to which fine particles are bonded and fixed in the solar cell manufacturing process was not broken.

最後に、撥水撥油性を有するフッ化炭素基及び第の結合基の一例であるクロロシリル基を含む撥水撥油性化合物、例えばCF(CF27(CH22SiCl3を1重量%程度の濃度で非水系溶媒(例えば、脱水したノナン)に溶かして調製した化学吸着液(以下吸着液という)を、乾燥雰囲気中(相対湿度30%以下が好ましかった)で透明基材10aの光入射面側表面に塗布し反応させると、透明基材1表面のアルミナ微粒子5は多数のヒドロキシル基(−OH)で被われているので、前記撥水撥油性化合物のクロロシリル基(SiCl)基と前記アルミナ微粒子5表面のヒドロキシル基との間で脱塩酸反応が生じ、アルミナ微粒子5の表面全面に亘り、下記の式(6)に示す結合が生成する。その後、フロン系の溶媒で洗浄すると、撥水撥油性被膜の一例である撥水撥油防汚性単分子膜16で被われた、入射面側の表面がナノレベルで凸凹な太陽電池17を製造できた。(図4) Finally, a water- and oil-repellent compound containing a fluorocarbon group having water- and oil-repellency and a chlorosilyl group which is an example of the fourth bonding group, for example, CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 is 1 A chemical adsorption solution (hereinafter referred to as an adsorption solution) prepared by dissolving in a non-aqueous solvent (for example, dehydrated nonane) at a concentration of about% by weight in a dry atmosphere (relative humidity of 30% or less was preferred). When applied to the light incident surface side surface of the material 10a and reacted, the alumina fine particles 5 on the surface of the transparent substrate 1 are covered with a large number of hydroxyl groups (—OH), so that the chlorosilyl group ( A dehydrochlorination reaction occurs between the SiCl) group and the hydroxyl group on the surface of the alumina fine particle 5, and a bond represented by the following formula (6) is generated over the entire surface of the alumina fine particle 5. Thereafter, when washed with a chlorofluorocarbon-based solvent, the solar cell 17 having a surface on the incident surface side that is covered with a water / oil / oil / repellency monomolecular film 16 which is an example of a water / oil / oil repellent coating is nano-level and uneven. I was able to manufacture it. (Fig. 4)

Figure 0005331977
Figure 0005331977

この単分子膜の膜厚は、たかだか1nm程度であるため、アルミナ微粒子により形成された透明基材表面の50nm程度の凸凹はほとんど損なわれることがなかった。また、この凸凹の効果により、この太陽電池17の光入射面の透明基材の見かけ上の水滴接触角は、160度程度となり、超撥水超離水が実現できた。 Since the thickness of the monomolecular film is about 1 nm at most, the unevenness of about 50 nm on the surface of the transparent substrate formed by the alumina fine particles was hardly damaged. Further, due to the unevenness effect, the apparent water droplet contact angle of the transparent substrate on the light incident surface of the solar cell 17 is about 160 degrees, and super water-repellent and super water separation can be realized.

ちなみに、この撥水撥油性化合物を用いて平坦な基材表面に単分子膜を形成すると、臨界表面エネルギーは6〜7mN/mになり、最大水滴接触角は115度程度であった。
すなわち、本発明の方法で作製した透明基材表面は、格段に表面エネルギーが小さくなり(平均3mN/m以下)、離水性能や防汚性能が極めて高い表面を実現できた。
Incidentally, when a monomolecular film was formed on the flat substrate surface using this water / oil repellent compound, the critical surface energy was 6 to 7 mN / m, and the maximum water droplet contact angle was about 115 degrees.
That is, the surface of the transparent substrate produced by the method of the present invention has a significantly reduced surface energy (average 3 mN / m or less), and a surface with extremely high water separation performance and antifouling performance can be realized.

更に、アルミナ微粒子は、ガラスよりも硬度が高く、アルカリ成分の含有量もほとんどなく、しかも透明基材表面に、直接又は膜化合物間に形成された共有結合を介して結合固定されているため、直接透明ガラス基材表面にCF(CF27(CH22SiCl3を用いて作成された単分子膜に比べて耐摩耗性能や耐水性能が高く、耐候性を大幅に向上できた。 Furthermore, the alumina fine particles are harder than glass, have almost no alkali component content, and are bonded and fixed to the surface of the transparent substrate directly or through covalent bonds formed between the membrane compounds. Abrasion resistance and water resistance are higher than those of monomolecular films made using CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 directly on the surface of a transparent glass substrate, and weather resistance can be greatly improved. .

また、得られた被膜の厚さは微粒子を含めてもトータルで100nm程度であるため、透明性が損なわれることもなかった。
更に、この撥水撥油性透明微粒子膜はナノ粒子の付着密度を制御することで表面屈折率を1.3〜1.5の範囲で自由に制御できたので、光入射面の表面反射を極小にすることができた。
Moreover, since the thickness of the obtained film was about 100 nm in total including fine particles, transparency was not impaired.
Furthermore, this water / oil repellent transparent fine particle film can control the surface refractive index freely in the range of 1.3 to 1.5 by controlling the adhesion density of the nanoparticles, so the surface reflection of the light incident surface is minimized. I was able to.

(実施例2)
一方、実施例1において、焼結せずに同様の方法でCF(CF27(CH22SiCl3を含む吸着溶液を透明基材表面に塗布し反応させると、2つの単分子膜を介して1層のみ共有結合した透明基材4表面のアルミナ微粒子5は多数のアミノ基(第2の官能基)7で被われているので(図3(a))、前記化学吸着剤のクロロシリル基(SiCl)基(第3の結合基の一例)と前記アルミナ微粒子表面のアミノ基(−NH)との間で脱塩酸反応が生じ、表面全面に亘り、下記の式(7)に示す結合が生成される。その後、フロン系の溶媒で洗浄し、光入射面が前記撥水撥油性化合物よりなる撥水撥油防汚性単分子膜(撥水撥油性被膜の一例)16aで被われた、表面がナノレベルで凸凹な透明基材を製造した後、裏面に印刷法を用いて銀ペースト櫛形電極12a、n型半導体層13aとp型半導体層14aを順に形成し、更にその上に反射膜を兼ねたアルミニウムのバック電極15を蒸着形成して太陽電池層を形成すると、撥水撥油防汚性単分子膜16aで被われ、かつ入射面側の表面がナノレベルで凸凹な太陽電池17aを製造できた(図5)。
(Example 2)
On the other hand, in Example 1, when an adsorption solution containing CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 was applied to the surface of the transparent substrate and reacted in the same manner without sintering, two single molecules Since the alumina fine particles 5 on the surface of the transparent substrate 4 covalently bonded to only one layer through the film are covered with a large number of amino groups ( second functional groups ) 7 (FIG. 3A), the chemical adsorbent Dehydrochlorination reaction occurs between the chlorosilyl group (SiCl) group (an example of the third bonding group) and the amino group (—NH 2 ) on the surface of the alumina fine particles, and the following formula (7) The bond shown in FIG. Thereafter, the surface is coated with a water- and oil-repellent antifouling monomolecular film (an example of a water- and oil-repellent coating) 16a made of the water- and oil-repellent compound, and the surface of the light incident surface is covered with nano particles. After producing an uneven transparent substrate at a level, a silver paste comb-shaped electrode 12a, an n-type semiconductor layer 13a, and a p-type semiconductor layer 14a were sequentially formed on the back surface using a printing method, and the reflective film was further formed thereon When the solar cell layer is formed by depositing the aluminum back electrode 15, the solar cell 17 a covered with the water / oil repellent / antifouling monomolecular film 16 a and having a nano-level uneven surface on the incident surface side can be manufactured. (FIG. 5).

Figure 0005331977
Figure 0005331977

なお、実施例1及び2において、撥水撥油防汚性単分子膜16、16a形成の際、洗浄せずに空気中に取り出すと、溶媒が蒸発し透明基材表面に残った撥水撥油性化合物が表面で空気中の水分と反応して、膜厚が数十nmの撥水撥油防汚性のポリマー膜が形成された。
この被膜でも、ある程度表面凸凹は維持されていたため、耐摩耗性能と高離水性能、防汚性能と共に表面反射低減性能はほとんど変わらなかった。
In Examples 1 and 2, when forming the water- and oil-repellent and antifouling monolayers 16 and 16a, the solvent evaporates and the water- and water-repellent repellent remaining on the surface of the transparent base material is removed when taken out into the air without washing. The oily compound reacted with moisture in the air on the surface to form a water- and oil-repellent and antifouling polymer film having a film thickness of several tens of nm.
Even with this coating, the surface unevenness was maintained to some extent, so the surface reflection reducing performance was hardly changed along with the wear resistance performance, high water separation performance, and antifouling performance.

(実施例3)
実施例1及び2と同様に、太陽電池の透明基材表面にアルミナ微粒子が1層のみ焼結により直接結合固定された透明基材10a、あるいはアルミナ微粒子が膜化合物間に形成された共有結合を介して1層のみ結合固定された透明基材10を製造し、その裏面に太陽電池層12〜15、あるいは12a〜15aを製造した後、一端にフッ化炭素基(−CF)を含み他端にアルコキシシリル基を含む撥水撥油性化合物、例えば、CF(CF27(CH22Si(OCH)3で示す撥水撥油性化合物を99重量%、シラノール縮合触媒として、例えば、ジブチルスズジアセチルアセトナートを1重量%となるようそれぞれ秤量し、シリコーン溶媒、例えば、ヘキサメチルジシロキサン溶媒に1重量%程度の濃度(好ましい撥水撥油性化合物の濃度は、0.5〜3%程度)に溶かして化学吸着液を調製し、透明基材の光入射面にアルミナ微粒子が1層のみ共有結合した太陽電池を漬浸し2時間程度反応させた後、余分な吸着剤を洗浄除去すると、アルコキシシリル基は、アミノ基と脱アルコール反応して、実施例1及び2と同様に表面反射が少なく撥水性、離水性、耐光性に優れた太陽電池を製造できた。
(Example 3)
As in Examples 1 and 2, the transparent base material 10a in which only one layer of alumina fine particles is directly bonded and fixed to the surface of the transparent base material of the solar cell, or the covalent bond in which the alumina fine particles are formed between the film compounds. The transparent base material 10 bonded and fixed to only one layer is manufactured, and after the solar cell layers 12 to 15 or 12a to 15a are manufactured on the back surface thereof, a fluorocarbon group (—CF 3 ) is included at one end. 99% by weight of a water / oil repellent compound containing an alkoxysilyl group at its end, for example, a water / oil repellent compound represented by CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 3 , as a silanol condensation catalyst, For example, each of dibutyltin diacetylacetonate is weighed to 1% by weight, and a concentration of about 1% by weight (preferably water / oil repellent compound) in a silicone solvent such as hexamethyldisiloxane solvent. The concentration of the product is dissolved in about 0.5 to 3%) to prepare a chemical adsorption solution, and a solar cell in which only one layer of alumina fine particles is covalently bonded to the light incident surface of the transparent substrate is immersed and reacted for about 2 hours. Thereafter, when the excess adsorbent is washed away, the alkoxysilyl group undergoes a dealcoholization reaction with the amino group, and as in Examples 1 and 2, there is little surface reflection and the sun is excellent in water repellency, water separation and light resistance. A battery could be manufactured.

(実施例4)
一方、実施例1及び2とは反対に、透明基材表面にアミノ基を有する単分子膜を形成し、アルミナ微粒子表面にエポキシ基を有する単分子膜を形成し、式(5)に示した反応により透明基材表面にアルミナ微粒子を1層結合固定させ、焼結した後、あるいはそのままで最後にCF(CF27(CH22SiCl3を反応させても実施例1及び2と同レベルの表面反射が少なく撥水性、離水性、耐光性に優れた太陽電池を製造できた。
Example 4
On the other hand, in contrast to Examples 1 and 2, a monomolecular film having an amino group was formed on the surface of the transparent substrate, and a monomolecular film having an epoxy group was formed on the surface of the alumina fine particles. Examples 1 and 2 may be carried out by reacting CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 with one layer of alumina fine particles bonded and fixed on the surface of the transparent substrate by reaction, and after sintering or as it is. As a result, a solar cell with the same level of surface reflection and excellent water repellency, water separation, and light resistance could be produced.

(実施例5)
更に、実施例4と同様に、透明基材表面にアミノ基を有する単分子膜を形成し、アルミナ微粒子表面にエポキシ基を有する単分子膜を形成し、同じ反応で透明基材表面にアルミナ微粒子を1層固着させ、焼結した後、あるいはそのままで最後に実施例3と同様の方法でCF(CF27(CH22Si(OCH)3を反応させても実施例1及び2と同レベルの表面反射が少なく撥水性、離水性、耐光性に優れた太陽電池を製造できた。
(Example 5)
Further, similarly to Example 4, a monomolecular film having an amino group is formed on the surface of the transparent substrate, a monomolecular film having an epoxy group is formed on the surface of the alumina fine particles, and the alumina fine particles are formed on the surface of the transparent substrate by the same reaction. Even if CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 3 is reacted in the same manner as in Example 3 after fixing one layer and sintering, or as it is, Example 1 A solar cell having less surface reflection at the same level as those of No. 2 and No. 2 and excellent in water repellency, water separation and light resistance could be produced.

なお、上記実施例1〜5では、反応性基を含む膜化合物として式(1)及び式(3)に示した物質を用いたが、上記のもの以外にも、下記(1)〜(16)に示した化合物が利用できた。
(1) (CHOCH)CH2O(CH2)Si(OCH)3
(2) (CHOCH)CH2O(CH2)11Si(OCH)3
(3) (CHCHOCH(CHCH)(CH2)Si(OCH)3
(4) (CHCHOCH(CHCH)(CH2)Si(OCH)3
(5) (CHCHOCH(CHCH)(CH2)Si(OCH)3
(6) (CHOCH)CH2O(CH2)Si(OC)3
(7) (CHOCH)CH2O(CH2)11Si(OC)3
(8) (CHCHOCH(CHCH)(CH2)Si(OC)3
(9) (CHCHOCH(CHCH)(CH2)Si(OC)3
(10) (CHCHOCH(CHCH)(CH2)Si(OC)3
(11) H2N(CH2)Si(OCH)3
(12) H2N(CH2)Si(OCH)3
(13) H2N(CH2)Si(OCH)3
(14) H2N(CH2)Si(OC)3
(15) H2N(CH2)Si(OC)3
(16) H2N(CH2)Si(OC)3
ここで、(CHOCH)−基は、下記式(8)で表される官能基を表し、(CHCHOCH(CHCH)−基は、下記式(9)で表される官能基を表す。
In Examples 1 to 5, the substances shown in Formula (1) and Formula (3) were used as the film compounds containing reactive groups, but in addition to the above, the following (1) to (16 The compounds shown in) were available.
(1) (CH 2 OCH) CH 2 O (CH 2 ) 7 Si (OCH 3 ) 3
(2) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OCH 3 ) 3
(3) (CH 2 CHOCH ( CH 2) 2 CH) (CH 2) 2 Si (OCH 3) 3
(4) (CH 2 CHOCH ( CH 2) 2 CH) (CH 2) 4 Si (OCH 3) 3
(5) (CH 2 CHOCH ( CH 2) 2 CH) (CH 2) 6 Si (OCH 3) 3
(6) (CH 2 OCH) CH 2 O (CH 2) 7 Si (OC 2 H 5) 3
(7) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OC 2 H 5 ) 3
(8) (CH 2 CHOCH ( CH 2) 2 CH) (CH 2) 2 Si (OC 2 H 5) 3
(9) (CH 2 CHOCH (CH 2 ) 2 CH) (CH 2 ) 4 Si (OC 2 H 5 ) 3
(10) (CH 2 CHOCH ( CH 2) 2 CH) (CH 2) 6 Si (OC 2 H 5) 3
(11) H 2 N (CH 2 ) 5 Si (OCH 3 ) 3
(12) H 2 N (CH 2 ) 7 Si (OCH 3 ) 3
(13) H 2 N (CH 2 ) 9 Si (OCH 3 ) 3
(14) H 2 N (CH 2 ) 5 Si (OC 2 H 5 ) 3
(15) H 2 N (CH 2 ) 7 Si (OC 2 H 5 ) 3
(16) H 2 N (CH 2 ) 9 Si (OC 2 H 5 ) 3
Here, the (CH 2 OCH) — group represents a functional group represented by the following formula (8), and the (CH 2 CHOCH (CH 2 ) 2 CH) — group is represented by the following formula (9). Represents a functional group.

Figure 0005331977
Figure 0005331977

Figure 0005331977
Figure 0005331977

また、上記実施例1、2、及び4では、光入射面における撥水撥油層の形成にフッ化炭素系の撥水撥油性化合物としてCF3(CF27(CH22SiCl3を用いたが、上記のもの以外にも、炭化水素系を含めて下記(21)〜(26)に示したトリクロロシランが利用できた。
(21) CF3CH2O(CH2)15SiCl3
(22) CF3(CH2)Si(CH3)2(CH2)15SiCl3
(23) CF3(CF2)(CH2)2Si(CH3)2(CH2)9SiCl3
(24) CF3(CF2)(CH2)2Si(CH3)2(CH2)9SiCl3
(25) CF3COO(CH2)15SiCl3
(26) CF3(CF2)5(CH2)2SiCl3
In Examples 1, 2, and 4, CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 is used as a fluorocarbon-based water / oil repellent compound for forming the water / oil repellent layer on the light incident surface. Although used, the trichlorosilane shown in the following (21) to (26) including hydrocarbons was usable in addition to the above.
(21) CF 3 CH 2 O (CH 2 ) 15 SiCl 3
(22) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 SiCl 3
(23) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(24) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(25) CF 3 COO (CH 2 ) 15 SiCl 3
(26) CF 3 (CF 2 ) 5 (CH 2 ) 2 SiCl 3

更にまた、上記実施例3及び5では、フッ化炭素系撥水撥油性化合物としてCF3(CF27(CH22Si(OCH)3を用いたが、上記のもの以外にも、下記(31)〜(42)に示した化合物や平均分子量が2000〜5000程度の有機含フッ素ポリエーテルトリアルコキシシランが利用できた。
(31) CF3CH2O(CH2)15Si(OCH)3
(32) CF3(CH2)Si(CH3)2(CH2)15Si(OCH)3
(33) CF3(CF2)(CH2)2Si(CH3)2(CH2)9Si(OCH)3
(34) CF3(CF2)(CH2)2Si(CH3)2(CH2)9Si(OCH)3
(35) CF3COO(CH2)15Si(OCH)3
(36) CF3(CF2)5(CH2)2Si(OCH)3
(37) CF3CH2O(CH2)15Si(OC)3
(38) CF3(CH2)Si(CH3)2(CH2)15Si(OC)3
(39) CF3(CF2)(CH2)2Si(CH3)2(CH2)9Si(OC)3
(40) CF3(CF2)(CH2)2Si(CH3)2(CH2)9Si(OC)3
(41) CF3COO(CH2)15Si(OC)3
(42) CF3(CF2)5(CH2)2Si(OC)3
Furthermore, in Examples 3 and 5, CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 3 was used as the fluorocarbon-based water / oil repellent compound. The compounds shown in the following (31) to (42) and organic fluorine-containing polyether trialkoxysilane having an average molecular weight of about 2000 to 5000 were usable.
(31) CF 3 CH 2 O (CH 2 ) 15 Si (OCH 3 ) 3
(32) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (OCH 3 ) 3
(33) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(34) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(35) CF 3 COO (CH 2 ) 15 Si (OCH 3 ) 3
(36) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OCH 3 ) 3
(37) CF 3 CH 2 O (CH 2 ) 15 Si (OC 2 H 5 ) 3
(38) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (OC 2 H 5 ) 3
(39) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(40) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(41) CF 3 COO (CH 2 ) 15 Si (OC 2 H 5 ) 3
(42) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OC 2 H 5 ) 3

なお、実施例1〜5において、シラノール縮合触媒には、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル及びチタン酸エステルキレート類が利用可能である。更に具体的には、酢酸第一スズ、ジブチルスズジラウレート、ジブチルスズジオクテート、ジブチルスズジアセテート、ジオクチルスズジラウレート、ジオクチルスズジオクテート、ジオクチルスズジアセテート、ジオクタン酸第一スズ、ナフテン酸鉛、ナフテン酸コバルト、2−エチルヘキセン酸鉄、ジオクチルスズビスオクチリチオグリコール酸エステル塩、ジオクチルスズマレイン酸エステル塩、ジブチルスズマレイン酸塩ポリマー、ジメチルスズメルカプトプロピオン酸塩ポリマー、ジブチルスズビスアセチルアセテート、ジオクチルスズビスアセチルラウレート、テトラブチルチタネート、テトラノニルチタネート、ビス(アセチルアセトニル)ジ−プロピルチタネート、及びTiO等の金属酸化物を用いることが可能であった。
また、膜形成溶液の溶媒としては、膜化合物又は撥水撥油性化合物における結合基がアルコキシシラン系、クロロシラン系何れの場合も、水を含まない有機塩素系溶媒、炭化水素系溶媒、あるいはフッ化炭素系溶媒やシリコーン系溶媒、あるいはそれらの混合物を用いることが可能であった。なお、洗浄を行わず、溶媒を蒸発させて粒子濃度を上げようとする場合には、溶媒の沸点は50〜250℃程度がよい。
In Examples 1 to 5, carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters, and titanate ester chelates can be used as silanol condensation catalysts. It is. More specifically, stannous acetate, dibutyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, dioctyltin dilaurate, dioctyltin dioctate, dioctyltin diacetate, stannous dioctanoate, lead naphthenate, naphthenic acid Cobalt, iron 2-ethylhexenoate, dioctyltin bisoctylthioglycolate, dioctyltin maleate, dibutyltin maleate polymer, dimethyltin mercaptopropionate polymer, dibutyltin bisacetylacetate, dioctyltin bisacetyllaur It was possible to use metal oxides such as rate, tetrabutyl titanate, tetranonyl titanate, bis (acetylacetonyl) di-propyl titanate, and TiO 2 .
In addition, as a solvent for the film-forming solution, an organic chlorine-based solvent, a hydrocarbon-based solvent, or a fluorinated solvent that does not contain water, regardless of whether the bonding group in the film compound or the water- and oil-repellent compound is alkoxysilane or chlorosilane. It was possible to use a carbon-based solvent, a silicone-based solvent, or a mixture thereof. In addition, when it is going to raise particle concentration by evaporating a solvent, without wash | cleaning, the boiling point of a solvent is good at about 50-250 degreeC.

具体的に使用可能な溶媒は、結合基がクロロシラン系の場合は、非水系の石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、ノナン、デカン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン、ジメチルホルムアミド等を挙げることができる。
更に、結合基がアルコキシシラン系の場合でかつ溶媒を蒸発させて被膜を形成する場合には、前記溶媒に加え、メタノール、エタノール、プロパノール等のアルコール系溶媒、あるいはそれら混合物が使用できた。
Specific usable solvents are non-aqueous petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, nonane, decane, kerosene, dimethyl when the linking group is chlorosilane. Examples include silicone, phenyl silicone, alkyl-modified silicone, polyether silicone, dimethylformamide, and the like.
Further, in the case where the bonding group is an alkoxysilane group and the film is formed by evaporating the solvent, an alcohol solvent such as methanol, ethanol, propanol or a mixture thereof can be used in addition to the solvent.

また、フッ化炭素系溶媒には、フロン系溶媒や、フロリナート(米国3M社製)、アフルード(旭硝子株式会社製)等がある。なお、これらは1種単独で用いてもよいし、良く混ざるものなら2種以上を組み合わせてもよい。更に、クロロホルム等有機塩素系の溶媒を添加してもよい。 Fluorocarbon solvents include chlorofluorocarbon solvents, fluorinate (manufactured by 3M, USA), Afludo (manufactured by Asahi Glass Co., Ltd.), and the like. These may be used alone or in combination of two or more as long as they are well mixed. Furthermore, an organic chlorine-based solvent such as chloroform may be added.

一方、上述のシラノール縮合触媒の代わりに、ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、及びアミノアルキルアルコキシシラン化合物の1つ又は2つ以上を用いた場合、同じ濃度でも処理時間を半分〜2/3程度まで短縮できた。 On the other hand, when one or more of a ketimine compound, an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound are used instead of the above-mentioned silanol condensation catalyst, the treatment time can be increased even at the same concentration. It was shortened to about half to 2/3.

更に、シラノール縮合触媒と、ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、及びアミノアルキルアルコキシシラン化合物のいずれか1つ又は2つ以上を混合(1:9〜9:1範囲で使用可能だが、通常1:1前後が好ましい。)して用いると、処理時間を更に数倍早くでき、製膜時間を数分の一まで短縮できる。 Furthermore, a silanol condensation catalyst and any one or two or more of ketimine compound, organic acid, aldimine compound, enamine compound, oxazolidine compound, and aminoalkylalkoxysilane compound are mixed (used in the range of 1: 9 to 9: 1). Although it is possible, however, it is usually preferred to be about 1: 1.) When used in this manner, the processing time can be further shortened several times, and the film forming time can be shortened to a fraction.

例えば、シラノール触媒であるジブチルスズオキサイドをケチミン化合物であるジャパンエポキシレジン社のH3に置き換え、その他の条件は同一にしてみたが、反応時間を1時間程度にまで短縮できた他は、ほぼ同様の結果が得られた。 For example, dibutyltin oxide, which is a silanol catalyst, was replaced with H3 from Japan Epoxy Resin, which is a ketimine compound, and the other conditions were the same, but the reaction time was reduced to about 1 hour, but the results were almost the same. was gotten.

更に、シラノール触媒を、ケチミン化合物であるジャパンエポキシレジン社のH3と、シラノール触媒であるジブチルスズビスアセチルアセトネートの混合物(混合比は1:1)に置き換え、その他の条件は同一にしてみたが、反応時間を20分程度に短縮できた他は、ほぼ同様の結果が得られた。 Furthermore, the silanol catalyst was replaced with a mixture of ketimine compound H3 from Japan Epoxy Resin and dibutyltin bisacetylacetonate as a silanol catalyst (mixing ratio was 1: 1), and other conditions were the same, Almost the same result was obtained except that the reaction time could be shortened to about 20 minutes.

したがって、以上の結果から、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物がシラノール縮合触媒より活性が高いことが明らかとなった。 Therefore, the above results revealed that ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds are more active than silanol condensation catalysts.

更にまた、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物からなる群より選択される1又は複数を、助触媒としてシラノール縮合触媒と共に用いると、更に活性が高くなることが確認された。 Furthermore, when one or more selected from the group consisting of ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds and aminoalkylalkoxysilane compounds are used as a co-catalyst with a silanol condensation catalyst, the activity is further increased. It was confirmed.

なお、ここで、利用できるケチミン化合物は特に限定されるものではないが、例えば、2,5,8−トリアザ−1,8−ノナジエン、3,11−ジメチル−4,7,10−トリアザ−3,10−トリデカジエン、2,10−ジメチル−3,6,9−トリアザ−2,9−ウンデカジエン、2,4,12,14−テトラメチル−5,8,11−トリアザ−4,11−ペンタデカジエン、2,4,15,17−テトラメチル−5,8,11,14−テトラアザ−4,14−オクタデカジエン、2,4,20,22−テトラメチル−5,12,19−トリアザ−4,19−トリエイコサジエン等がある。 Here, the ketimine compound that can be used is not particularly limited. For example, 2,5,8-triaza-1,8-nonadiene, 3,11-dimethyl-4,7,10-triaza-3 , 10-tridecadiene, 2,10-dimethyl-3,6,9-triaza-2,9-undecadiene, 2,4,12,14-tetramethyl-5,8,11-triaza-4,11-pentadeca Diene, 2,4,15,17-tetramethyl-5,8,11,14-tetraaza-4,14-octadecadiene, 2,4,20,22-tetramethyl-5,12,19-triaza- 4,19-trieicosadiene and the like.

更にまた、利用できる有機酸としても特に限定されるものではないが、例えば、ギ酸、あるいは酢酸、プロピオン酸、酪酸、マロン酸等があり、ほぼ同様の効果があった。 Furthermore, the organic acid that can be used is not particularly limited. For example, there are formic acid, acetic acid, propionic acid, butyric acid, malonic acid, and the like, and there were almost the same effects.

また、上記5つの実施例では、アルミナ微粒子を例として説明したが、本発明は、表面に活性水素、すなわちヒドロキシル基の水素やアミノ基あるいはイミノ基の水素等を含んだ微粒子であれば、どのような微粒子にでも適用可能であった。 In the above five embodiments, the alumina fine particles have been described as an example. However, the present invention is not limited to any fine particles containing active hydrogen, that is, hydroxyl group hydrogen, amino group or imino group hydrogen, etc. on the surface. It was applicable to such fine particles.

具体的には、ガラスより堅い透明微粒子として、アルミナ以外に、シリカやジルコニア等が適用可能であることは言うまでもない。 Specifically, it goes without saying that silica, zirconia, and the like can be applied as transparent fine particles harder than glass in addition to alumina.

(実施例6)
実施例1で作成した太陽電池の透明基材と同様の条件で作成し、水滴接触角が160度程度(実用上、水滴接触角が150度以上であれば同様の効果が得られた。)のガラス板を太陽熱温水器に装着し実用化試験を行うと、空気中の粉塵や雨水による汚れもほとんど付着せず、普通のガラスを装着した場合に比べて平均6%程度集熱効率を向上できた。また、集熱効率の経時劣化も、普通のガラスを装着した場合に比べて、数十分の一まで低減できた。
(Example 6)
It was prepared under the same conditions as the transparent substrate of the solar cell prepared in Example 1, and the water droplet contact angle was about 160 degrees (practically the same effect was obtained if the water droplet contact angle was 150 degrees or more). When the practical use test is carried out with a glass plate attached to a solar water heater, there is almost no dirt in the air or dirt due to rainwater, and the average heat collection efficiency can be improved by about 6% compared to the case of using ordinary glass. It was. In addition, the deterioration with time of the heat collection efficiency could be reduced to several tenths compared to the case where ordinary glass was attached.

以上の実験結果は、本発明の太陽電池や太陽熱温水器がきわめて耐久性が高く高効率であることを示している。 The above experimental results show that the solar cell and solar water heater of the present invention are extremely durable and highly efficient.

なお、以上の実施例では、太陽電池や太陽熱温水器の用途について開示したが、本発明の応用は、これら用途に限定されるものではなく、太陽エネルギーを利用する機器、例えば温室等にも適用できることはいうまでもない。 In the above embodiments, the use of solar cells and solar water heaters has been disclosed. However, the application of the present invention is not limited to these uses, and is also applicable to equipment using solar energy, such as a greenhouse. Needless to say, it can be done.

本発明の実施例1において、透明基材表面にエポキシ基を含む単分子膜を形成する工程を説明するために分子レベルまで拡大した概念図であり、(a)は、反応前の透明基材表面の説明図、(b)は、エポキシ基を含む単分子膜が形成された後の説明図である。In Example 1 of this invention, it is the conceptual diagram expanded to the molecular level in order to demonstrate the process of forming the monomolecular film containing an epoxy group on the transparent base material surface, (a) is the transparent base material before reaction Surface explanatory drawing, (b) is explanatory drawing after the monomolecular film containing an epoxy group was formed. 本発明の実施例1においてアルミナ微粒子表面にアミノ基を含む単分子膜を形成する工程を説明するために分子レベルまで拡大した概念図であり、(a)は、反応前のアルミナ微粒子表面の説明図、(b)は、アミノ基を含む単分子膜が形成された後の説明図である。It is the conceptual diagram expanded to the molecular level in order to demonstrate the process of forming the monomolecular film containing an amino group in the alumina fine particle surface in Example 1 of this invention, (a) is description of the alumina fine particle surface before reaction. FIG. 4B is an explanatory view after a monomolecular film containing an amino group is formed. 本発明の実施例1において透明基材表面にアルミナ微粒子を結合する工程を説明するために分子レベルまで拡大した概念図であり、(a)は、透明基材表面とアルミナ微粒子が2つの単分子膜を介して結合した説明図、(b)は、更に焼結して、2つの単分子膜を分解除去し、アルミナ微粒子を直接透明基材表面に結合固定した説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the conceptual diagram expanded to the molecular level in order to demonstrate the process which couple | bonds an alumina microparticle with the transparent base material surface in Example 1 of this invention, (a) is a single molecule with a transparent base material surface and an alumina microparticle. Explanatory drawing couple | bonded through the film | membrane, (b) is further explanatory drawing which decomposed | disassembled and removed two monomolecular films | membranes, and bonded and fixed the alumina fine particle directly on the transparent base material surface. 本発明の実施例1において作成された太陽電池であり、焼結により透明基材表面にアルミナ微粒子が直接結合固定され、更にアモルファス型太陽電池層が形成された後、光入射側表面に全面に亘わたり撥水性の単分子膜が形成された状態を説明するために分子レベルまで拡大した断面概念図である。In the solar cell produced in Example 1 of the present invention, the alumina fine particles are directly bonded and fixed to the surface of the transparent base material by sintering, and after the amorphous solar cell layer is formed, the entire surface is formed on the light incident side surface. FIG. 3 is a conceptual cross-sectional view enlarged to a molecular level in order to explain a state in which a stretched and water-repellent monomolecular film is formed. 本発明の実施例2において作成された太陽電池であり、透明基材表面にアルミナ微粒子が2つの単分子膜を介して結合固定され、光入射側表面に全面に亘わたり撥水性の単分子膜が形成された後、更に印刷法で太陽電池層が形成された状態を説明するために分子レベルまで拡大した断面概念図である。In the solar cell produced in Example 2 of the present invention, alumina fine particles are bonded and fixed to the surface of the transparent substrate through two monomolecular films, and the entire surface of the light incident side surface is a water repellent monomolecular film. FIG. 2 is a conceptual cross-sectional view enlarged to a molecular level in order to explain a state in which a solar cell layer is further formed by a printing method after the formation of.

1:太陽電池の透明基材、2:ヒドロキシル基、3:エポキシ基を含む単分子膜、4:エポキシ基を含む単分子膜で被われた透明基材、5:アルミナ微粒子、6:ヒドロキシル基、7:アミノ基、8:アミノ基を含む単分子膜、9:アミノ基を含む単分子膜で被われたアルミナ微粒子、10:アルミナ微粒子が2つの単分子膜を介して1層のみ共有結合した透明基材、10a:アルミナ微粒子が1層直接結合固定された透明基材、11:光入射、12:ITO透明電極、12a:銀ペースト櫛型電極、13:n型アモルファスシリコン層、13a:n型半導体層、14:p型アモルファスシリコン層、14a:p型半導体層、15:Al蒸着バック電極、16、16a:撥水撥油防汚性単分子膜、17、17a:表面が凸凹の撥水性単分子膜で覆われた太陽電池 1: transparent substrate of solar cell, 2: hydroxyl group, 3: monomolecular film containing epoxy group, 4: transparent substrate covered with monomolecular film containing epoxy group, 5: alumina fine particles, 6: hydroxyl group 7: Amino group, 8: Monomolecular film containing amino group, 9: Alumina fine particles covered with monomolecular film containing amino group, 10: Alumina fine particles are covalently bonded to only one layer through two monomolecular films Transparent substrate, 10a: transparent substrate on which alumina fine particles are directly bonded and fixed, 11: light incident, 12: ITO transparent electrode, 12a: silver paste comb electrode, 13: n-type amorphous silicon layer, 13a: n-type semiconductor layer, 14: p-type amorphous silicon layer, 14a: p-type semiconductor layer, 15: Al-deposited back electrode, 16, 16a: water / oil repellent / antifouling monolayer, 17, 17a: uneven surface Cover with water-repellent monolayer Solar cell

Claims (15)

光入射側透明基材の表面が該透明基材の表面に結合固定され、大きさが100nm以下の撥水撥油性の単層の透明微粒子層で覆われている太陽エネルギー利用装置であって、
前記透明微粒子の表面の一部には、一端に第1の官能基を有し、他端で前記透明微粒子の表面に結合した第1の膜化合物が結合しており、
前記透明基材の表面の一部には、一端に前記第1の官能基と反応し共有結合を形成する第2の官能基を有し、他端で前記透明基材の表面に結合した第2の膜化合物が結合しており、
前記透明微粒子は、前記第1の官能基と前記第2の官能基との反応により形成された共有結合によって前記透明基材の表面に結合固定されており、
前記第2の膜化合物が結合固定された前記透明微粒子の表面には、前記第2の官能基と反応し共有結合を形成する第3の結合基を一端に、撥水撥油性基を他端に有する撥水撥油性化合物が表面に結合固定されていることを特徴とする太陽エネルギー利用装置。
A solar energy utilization device in which the surface of the light incident side transparent base material is bonded and fixed to the surface of the transparent base material and is covered with a single layer of water and oil repellent transparent fine particles having a size of 100 nm or less,
A part of the surface of the transparent fine particle has a first functional group at one end and a first film compound bonded to the surface of the transparent fine particle at the other end,
Part of the surface of the transparent substrate has a second functional group that reacts with the first functional group at one end to form a covalent bond, and the other end binds to the surface of the transparent substrate. The two membrane compounds are bound together,
The transparent fine particles are bonded and fixed to the surface of the transparent substrate by a covalent bond formed by a reaction between the first functional group and the second functional group,
On the surface of the transparent fine particles to which the second film compound is bonded and fixed, a third bonding group that reacts with the second functional group to form a covalent bond is formed at one end, and a water / oil repellent group is formed at the other end. A solar energy utilization device characterized in that a water- and oil-repellent compound is bonded and fixed to the surface.
請求項1記載の太陽エネルギー利用装置において、前記透明微粒子が撥水撥油性被膜で覆われていることを特徴とする太陽エネルギー利用装置。 2. The solar energy utilization apparatus according to claim 1, wherein the transparent fine particles are covered with a water / oil repellent coating. 請求項2記載の太陽エネルギー利用装置において、前記撥水撥油性被膜が前記透明微粒子の表面に共有結合していることを特徴とする太陽エネルギー利用装置。 3. The solar energy utilization apparatus according to claim 2, wherein the water / oil repellent coating is covalently bonded to the surface of the transparent fine particles. 請求項2又は3に記載の太陽エネルギー利用装置において、前記撥水撥油性被膜が−CF基を含むことを特徴とする太陽エネルギー利用装置。 4. The solar energy utilization apparatus according to claim 2, wherein the water / oil repellent coating includes —CF 3 groups. 5. 請求項4記載の太陽エネルギー利用装置において、前記第1及び第2の膜化合物は、Siを介して、それぞれ前記透明微粒子及び前記透明基材の表面に共有結合していることを特徴とする太陽エネルギー利用装置。 5. The solar energy utilization apparatus according to claim 4, wherein the first and second film compounds are covalently bonded to the surfaces of the transparent fine particles and the transparent substrate through Si, respectively. Energy utilization device. 請求項4又は5に記載の太陽エネルギー利用装置において、前記撥水撥油性被膜、前記第1の膜化合物、及び前記第2の膜化合物のいずれか1つ又は2つ以上が単分子膜であることを特徴とする太陽エネルギー利用装置。 6. The solar energy utilization device according to claim 4, wherein one or more of the water / oil repellent coating, the first film compound, and the second film compound is a monomolecular film. The solar energy utilization apparatus characterized by the above-mentioned. 請求項4〜6のいずれか1項に記載の太陽エネルギー利用装置において、前記第1及び第2の官能基の一方がエポキシ基、他方がアミノ基又はイミノ基であることを特徴とする太陽エネルギー利用装置。 The solar energy utilization apparatus according to any one of claims 4 to 6, wherein one of the first and second functional groups is an epoxy group and the other is an amino group or an imino group. Use device. 光入射側透明基材の表面が該透明基材の表面に結合固定され、大きさが100nm以下の撥水撥油性の単層の透明微粒子層で覆われている太陽エネルギー利用装置であって、
前記透明微粒子は、焼結により前記透明基材の表面に結合固定されており、
前記透明微粒子の表面には、前記透明微粒子の表面官能基と反応し共有結合を形成する第の結合基を一端に、撥水撥油性基を他端に有する撥水撥油性化合物が表面に結合固定されていることを特徴とする太陽エネルギー利用装置。
A solar energy utilization device in which the surface of the light incident side transparent base material is bonded and fixed to the surface of the transparent base material and is covered with a single layer of water and oil repellent transparent fine particles having a size of 100 nm or less,
The transparent fine particles are bonded and fixed to the surface of the transparent substrate by sintering,
On the surface of the transparent fine particle, a water- and oil-repellent compound having a fourth bonding group that reacts with a surface functional group of the transparent fine particle to form a covalent bond at one end and a water- and oil-repellent group at the other end is formed on the surface. A solar energy utilization device characterized by being coupled and fixed.
請求項1〜8のいずれか1項に記載の太陽エネルギー利用装置において、前記透明微粒子が透光性のシリカ、アルミナ、又はジルコニアからなる群より選択されるものであることを特徴とする太陽エネルギー利用装置。 The solar energy utilization apparatus according to any one of claims 1 to 8, wherein the transparent fine particles are selected from the group consisting of translucent silica, alumina, or zirconia. Use device. 透明微粒子と、一端に第1の官能基を有し、他端に前記透明微粒子の表面基と反応して結合を形成する第1の結合基を有する第1の膜化合物とを反応させ、前記第1の膜化合物が前記第1の結合基を介して表面に結合した反応性透明微粒子を製造する工程Aと、
太陽エネルギー利用装置の透明基材と、一端に前記第1の官能基と反応して共有結合を形成する第2の官能基を有し、他端に前記透明基材の表面基と反応して結合を形成する第2の結合基を有する第2の膜化合物とを反応させ、前記第2の膜化合物が前記第2の結合基を介して表面に結合した反応性透明基材を製造する工程Bと、
前記反応性透明微粒子と前記反応性透明基材とを接触させ、前記第1の官能基と前記第2の官能基との反応により共有結合を形成させて前記反応性透明微粒子を前記透明基材の表面に結合固定させる工程Cと、
前記透明基材の表面に結合固定された透明微粒子と、前記第2の官能基と反応し共有結合を形成する第3の結合基を一端に、撥水撥油性基を他端に有する撥水撥油性化合物とを反応させ、前記透明微粒子の表面に撥水撥油性被膜を形成する工程Dとを含むことを特徴とする太陽エネルギー利用装置の製造方法。
Reacting the transparent fine particles with a first film compound having a first functional group at one end and a first bonding group that forms a bond by reacting with the surface group of the transparent fine particle at the other end; A step A for producing reactive transparent fine particles in which a first film compound is bonded to the surface via the first bonding group;
The solar energy utilization device has a transparent base material, a second functional group that reacts with the first functional group at one end to form a covalent bond, and reacts with a surface group of the transparent base material at the other end. Reacting with a second film compound having a second bonding group for forming a bond, and producing a reactive transparent substrate in which the second film compound is bonded to the surface via the second bonding group B and
The reactive transparent fine particles and the reactive transparent substrate are brought into contact with each other, and a covalent bond is formed by a reaction between the first functional group and the second functional group, whereby the reactive transparent fine particles are converted into the transparent substrate. Step C for bonding and fixing to the surface of
Water repellent having a transparent fine particle bonded and fixed to the surface of the transparent substrate, a third bonding group that reacts with the second functional group to form a covalent bond at one end, and a water / oil repellent group at the other end And a step D of forming a water / oil repellent film on the surface of the transparent fine particles by reacting with an oil repellent compound.
請求項10記載の太陽エネルギー利用装置の製造方法において、前記工程A〜Dのいずれか1つ又は2つ以上の後において、余分な化学吸着液を洗浄除去することを特徴とする太陽エネルギー利用装置の製造方法。 The method for manufacturing a solar energy utilization device according to claim 10, wherein after any one or two or more of the steps A to D, excess chemical adsorption solution is washed away. Manufacturing method. 請求項10又は11に記載の太陽エネルギー利用装置の製造方法において、前記第3の結合基がトリクロロシランであり、前記工程Dにおいて、前記撥水撥油性化合物と前記透明微粒子との反応はシラノール縮合触媒の存在下で行われることを特徴とする太陽エネルギー利用装置の製造方法。 The method for manufacturing a solar energy utilization device according to claim 10 or 11, wherein the third bonding group is trichlorosilane, and in the step D, the reaction between the water- and oil-repellent compound and the transparent fine particles is silanol condensation. The manufacturing method of the solar energy utilization apparatus characterized by performing in presence of a catalyst. 請求項12記載の太陽エネルギー利用装置の製造方法において、ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、及びアミノアルキルアルコキシシラン化合物からなる群より選択される1又は複数の助触媒を前記シラノール縮合触媒と共に用いることを特徴とする太陽エネルギー利用装置の製造方法。 13. The method for manufacturing a solar energy utilization device according to claim 12, wherein one or more promoters selected from the group consisting of ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds are used. A method for producing a solar energy utilization device, which is used together with a silanol condensation catalyst. 請求項10〜13のいずれか1項に記載の太陽エネルギー利用装置の製造方法において、前記透明基材がガラスであり、前記工程Cの後、酸素を含む雰囲気下で前記透明微粒子が結合固定された透明基材を焼結して有機物を全て除去し、前記透明微粒子を前記透明基材上に直接固定させる工程Eを更に含み、前記工程Dにおいて、前記第3の結合基を一端に、撥水撥油性基を他端に有する撥水撥油性化合物の代わりに、前記透明微粒子の表面官能基と反応し共有結合を形成する第4の結合基を一端に、撥水撥油性基を他端に有する撥水撥油性化合物を用いることを特徴とする太陽エネルギー利用装置の製造方法。 In the manufacturing method of the solar energy utilization apparatus of any one of Claims 10-13, the said transparent base material is glass, and the said transparent fine particle is couple | bonded and fixed in the atmosphere containing oxygen after the said process C. by sintering the transparent substrate all the organics were removed, it sees further including the step E of fixing directly the transparent fine particles on the transparent substrate, in the step D, and one end of the third linking group, Instead of the water / oil repellent compound having the water / oil repellent group at the other end, the fourth bonding group that reacts with the surface functional group of the transparent fine particles to form a covalent bond is used at one end, and the water / oil repellent group is added at the other end. The manufacturing method of the solar energy utilization apparatus characterized by using the water- and oil-repellent compound which has in an end . 請求項14記載の太陽エネルギー利用装置の製造方法において、前記焼結を400℃以上かつ前記透明基材及び前記透明微粒子の溶融温度未満の温度で行うことを特徴とする太陽エネルギー利用装置の製造方法。 15. The method of manufacturing a solar energy utilization device according to claim 14, wherein the sintering is performed at a temperature of 400 [deg.] C. or higher and lower than a melting temperature of the transparent base material and the transparent fine particles. .
JP2006165034A 2006-06-14 2006-06-14 Manufacturing method of solar energy utilization device Active JP5331977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006165034A JP5331977B2 (en) 2006-06-14 2006-06-14 Manufacturing method of solar energy utilization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006165034A JP5331977B2 (en) 2006-06-14 2006-06-14 Manufacturing method of solar energy utilization device

Publications (2)

Publication Number Publication Date
JP2007333291A JP2007333291A (en) 2007-12-27
JP5331977B2 true JP5331977B2 (en) 2013-10-30

Family

ID=38932928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006165034A Active JP5331977B2 (en) 2006-06-14 2006-06-14 Manufacturing method of solar energy utilization device

Country Status (1)

Country Link
JP (1) JP5331977B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4654443B2 (en) * 2006-06-28 2011-03-23 国立大学法人 香川大学 Manufacturing method of solar energy utilization device
JP5347125B2 (en) * 2007-03-30 2013-11-20 国立大学法人 香川大学 Water / oil repellent / antifouling antireflection film and method for producing the same, lens, glass plate, glass, optical device, solar energy utilization device and display
JP5347124B2 (en) * 2007-03-30 2013-11-20 国立大学法人 香川大学 Water and oil repellent and antifouling antireflection film, method for producing the same, lens, glass plate and glass formed therewith, optical device using them, solar energy utilization device, display
JP5343226B2 (en) * 2007-04-27 2013-11-13 国立大学法人 香川大学 Water-repellent glass plate, vehicle and building window glass using the same, and method for producing water-repellent glass plate
US9447284B2 (en) 2007-05-01 2016-09-20 Empire Technology Development Llc Water repellent glass plates
WO2009075040A1 (en) 2007-12-12 2009-06-18 Kazufumi Ogawa Solar energy utilization device and method for manufacturing the same
WO2009107190A1 (en) * 2008-02-25 2009-09-03 Ogawa Kazufumi Water repellent, oil repellent antifouling glass plate, process for producing the same, and vehicle and building utilizing the glass plate
WO2009107191A1 (en) * 2008-02-25 2009-09-03 Ogawa Kazufumi Water repellent, oil repellent antifouling glass plate, process for producing the same, and vehicle and building utilizing the glass plate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2545642B2 (en) * 1990-09-26 1996-10-23 松下電器産業株式会社 Glass
JP2637869B2 (en) * 1990-12-10 1997-08-06 松下電器産業株式会社 Adsorbed monomolecular film and method for producing the same
JPH04239633A (en) * 1991-01-23 1992-08-27 Matsushita Electric Ind Co Ltd Water and repelling film and manufacture thereof
JP3017965B2 (en) * 1991-01-23 2000-03-13 松下電器産業株式会社 Article having a water- and oil-repellent coating and method for forming the same
JPH0798401A (en) * 1993-09-28 1995-04-11 Nitto Denko Corp Antireflection film and antireflection member
JPH09100141A (en) * 1995-08-03 1997-04-15 Nippon Sheet Glass Co Ltd Production of water repellent glass
EP1167313B1 (en) * 1999-12-13 2015-09-23 Nippon Sheet Glass Co., Ltd. Low-reflection glass article
JP3597507B2 (en) * 2001-01-24 2004-12-08 松下電器産業株式会社 Fine particle array, method for producing the same, and device using the same
JP5343271B2 (en) * 2003-09-17 2013-11-13 小川 一文 Water repellent and oil repellent antifouling glass plate, production method thereof, automobile and electromagnetic cooker using the same

Also Published As

Publication number Publication date
JP2007333291A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP5331977B2 (en) Manufacturing method of solar energy utilization device
JP4654443B2 (en) Manufacturing method of solar energy utilization device
JP5347124B2 (en) Water and oil repellent and antifouling antireflection film, method for producing the same, lens, glass plate and glass formed therewith, optical device using them, solar energy utilization device, display
JP4670057B2 (en) Method for producing water and oil repellent antifouling glass plate
JP5087764B2 (en) Silicon fine particles, production method thereof, solar cell using the same, and production method thereof
JP4792575B2 (en) Water-repellent glass plate, method for producing the same, and vehicle or glass window using the same
JP5660500B2 (en) Abrasion-resistant super water- and oil-repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization device, optical device and display device
JP5572803B2 (en) Water repellent and oil repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization apparatus and optical instrument
WO2008068873A1 (en) Monolayer nanoparticle film, multilayer nanoparticle film, and manufacturing method thereof
JP2008015167A (en) Water-shedding, oil-shedding and antifouling light reflecting plate, method for manufacturing the same, and tunnel, road sign, display plate, vehicle and building using the same
JP5347125B2 (en) Water / oil repellent / antifouling antireflection film and method for producing the same, lens, glass plate, glass, optical device, solar energy utilization device and display
JP5526393B2 (en) Water repellent / oil repellent / antifouling composite film forming solution, method for producing water / oil repellent / antifouling composite film using the same, and water / oil repellent / antifouling composite film using the same
JP5804548B2 (en) Super water- and oil-repellent antifouling translucent film, production method thereof, glass window using them, solar energy utilization device, optical device, and display device
JP5326086B2 (en) Solar energy utilization apparatus and manufacturing method thereof
JP4868496B2 (en) Solar cell and manufacturing method thereof
US8658888B2 (en) Solar energy utilization device and method for manufacturing the same
JP2012220898A (en) Wear-resistant, ultra-water-repellent, oil-repellent, antifouling, and light-transmissive film, method for manufacturing the same, and glass window, solar energy utilization device, optical device, and display device using the same
JP5589215B2 (en) Solar energy utilization apparatus and manufacturing method thereof
JP5167528B2 (en) Chemisorption solution
JP2010129619A (en) Solar cell using silicon particulate, optical sensor, and method of manufacturing them
JP2007127847A (en) Antireflection film, its manufacturing method and optical apparatus using same
JP5463558B2 (en) Manufacturing method of solar energy utilization device
JP2012219003A (en) Wear-resistant water-ultrarepellent, oil-repellent antifouling glass, method for manufacturing the same, glass window using the same, solar energy utilization device, optical equipment and display device
JP5343226B2 (en) Water-repellent glass plate, vehicle and building window glass using the same, and method for producing water-repellent glass plate
JP2008013651A (en) Light-reflecting coating and light-reflecting coating film using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150