JP2007173210A - Positive active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this - Google Patents

Positive active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this Download PDF

Info

Publication number
JP2007173210A
JP2007173210A JP2006263369A JP2006263369A JP2007173210A JP 2007173210 A JP2007173210 A JP 2007173210A JP 2006263369 A JP2006263369 A JP 2006263369A JP 2006263369 A JP2006263369 A JP 2006263369A JP 2007173210 A JP2007173210 A JP 2007173210A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006263369A
Other languages
Japanese (ja)
Other versions
JP5428125B2 (en
Inventor
Shin Nagayama
森 長山
Yasuhiko Osawa
康彦 大澤
Mikio Kawai
幹夫 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006263369A priority Critical patent/JP5428125B2/en
Priority to PCT/JP2006/323075 priority patent/WO2007060906A1/en
Publication of JP2007173210A publication Critical patent/JP2007173210A/en
Application granted granted Critical
Publication of JP5428125B2 publication Critical patent/JP5428125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive active material for a nonaqueous electrolyte secondary battery capable of enhancing output characteristics of the nonaqueous electrolyte secondary battery. <P>SOLUTION: The positive active material for the nonaqueous electrolyte secondary battery has a ratio of an average maximum major axis diameter to an average minor axis diameter of 1.5 to 1000. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、正極活物質に関し、特に出力特性に優れる非水電解質二次電池を提供できる正極活物質に関する。   The present invention relates to a positive electrode active material, and more particularly to a positive electrode active material capable of providing a nonaqueous electrolyte secondary battery having excellent output characteristics.

近年、自動車の排気ガスによる大気汚染が世界的な問題となっている中で、電気を動力源とする電気自動車やエンジンとモータを組み合わせて走行するハイブリッド車、燃料電池を動力源とする燃料電池車などが注目を集めており、これらに搭載される高エネルギー密度、高出力密度の電池の開発が産業上重要な位置を占めている。さらにエンジンのみを動力とする自動車も、多種多様な電動機器の搭載を可能にする高電圧バッテリーを搭載する車両が実用化されている。リチウムイオン二次電池などの二次電池は、そのエネルギー密度や放電電圧の高さから、このような車両に適した電池であると考えられ、さまざまな開発が進められている。   In recent years, air pollution caused by exhaust gas from automobiles has become a global problem. Electric vehicles powered by electricity, hybrid vehicles that run in combination with an engine and motor, and fuel cells powered by a fuel cell Cars are attracting attention, and the development of batteries with high energy density and high output density installed in them occupies an important industrial position. In addition, automobiles powered only by an engine have been put into practical use with vehicles equipped with a high-voltage battery that enables various electric devices to be installed. Secondary batteries such as lithium ion secondary batteries are considered to be suitable for such vehicles because of their high energy density and high discharge voltage, and various developments are underway.

リチウムイオン二次電池は、基本的には、Liイオンの吸蔵・放出が可能な正極および負極を、セパレータを介して配置し、これに電解質を満たした構成を有している。前記セパレータは、ポーラスかつ電気的絶縁性を有するものからなり、正極と負極とが接触することにより発生する内部短絡の防止などを目的として用いられる。   A lithium ion secondary battery basically has a configuration in which a positive electrode and a negative electrode capable of occluding and releasing Li ions are arranged via a separator and filled with an electrolyte. The separator is made of porous and electrically insulating material, and is used for the purpose of preventing an internal short circuit generated when the positive electrode and the negative electrode are in contact with each other.

かような電池において充放電を行った場合、電池放電時には負極成分のリチウムをLiイオンとして電解質に放出し、正極では電解質からLiイオンを吸蔵することで発電する。また、電池充電時には、正極から電解質へLiイオンを放出し、電解質中のLiイオンを負極に析出させる。このようにLiイオンが電解質を出入りするのと同時に、集電体からの電子が導電助剤を通して移動することにより、電極反応が進行して充放電が行われるのである。   When such a battery is charged and discharged, during battery discharge, lithium as a negative electrode component is released as Li ions to the electrolyte, and at the positive electrode, power is generated by inserting Li ions from the electrolyte. Further, when charging the battery, Li ions are released from the positive electrode to the electrolyte, and Li ions in the electrolyte are deposited on the negative electrode. In this way, Li ions move in and out of the electrolyte, and at the same time, electrons from the current collector move through the conductive assistant, so that the electrode reaction proceeds and charge / discharge is performed.

ハイブリッドなどの自動車用電源に用いられる二次電池には、始動、発進、加速時にパワーアシストをするためにある一定時間に大きな出力、すなわち大電流放電特性が要求されている。そこで、二次電池の高出力化を図るためには、電極において電極活物質の平均粒子径を小さくしたり電極活物質層の厚さを薄くしたりして、電極反応面積を増やしつつ電極活物質層内の電子伝導性及びリチウムイオン拡散性を向上させる手段が用いられている(特許文献1)。
特開2000−260423号公報
A secondary battery used for a power source for an automobile such as a hybrid is required to have a large output, that is, a large current discharge characteristic for a certain period of time in order to perform power assist during starting, starting, and acceleration. Therefore, in order to increase the output of the secondary battery, the electrode active material layer can be increased while reducing the average particle diameter of the electrode active material or the electrode active material layer in the electrode while increasing the electrode reaction area. Means for improving electron conductivity and lithium ion diffusibility in the material layer is used (Patent Document 1).
JP 2000-260423 A

従来の二次電池では、特に平均粒子径が10μm以下と微細化された電極活物質を用いた電極活物質層において十分な電子伝導性を確保するために、高圧でプレスをかけて電極活物質や導電助剤などの電極構成材料の密着性を高めている。   In a conventional secondary battery, in order to ensure sufficient electron conductivity in an electrode active material layer using an electrode active material refined with an average particle diameter of 10 μm or less, the electrode active material is pressed at a high pressure. And adhesion of electrode constituent materials such as conductive additives.

しかしながら、前記電極内では、電極活物質層における電極活物質の充填率が高くなり電極活物質間の空隙がつぶれてしまい、電極活物質層内に電解液を充分に含浸させることが困難となる。この結果、電極における電子伝導性は向上するものの、電解質と電極活物質との接触面積が著しく小さくなりLiイオンの拡散抵抗が大きくなるため、高出力の二次電池を得るのが困難となる問題があった。このような問題は、水溶液を含む電解質と比較してLiイオンの伝導度が低い非水電解質を用い、負極活物質と比較して電子伝導性が低い正極活物質を用いた非水電解質二次電池における正極において特に生じ易い。したがって、非水電解質二次電池の高出力化を図るためには、非水電解質二次電池の正極において生じる上記問題を解決するのが有効な手段である。   However, in the electrode, the filling rate of the electrode active material in the electrode active material layer is increased, and the gap between the electrode active materials is crushed, making it difficult to sufficiently impregnate the electrode active material layer with the electrolytic solution. . As a result, although the electron conductivity in the electrode is improved, the contact area between the electrolyte and the electrode active material is remarkably reduced and the diffusion resistance of Li ions is increased, which makes it difficult to obtain a high-power secondary battery. was there. Such a problem is that a non-aqueous electrolyte secondary electrode using a non-aqueous electrolyte having a low Li ion conductivity compared to an electrolyte containing an aqueous solution and a positive electrode active material having a low electronic conductivity compared to a negative electrode active material. It is particularly likely to occur in the positive electrode of a battery. Therefore, in order to increase the output of the non-aqueous electrolyte secondary battery, it is an effective means to solve the above-mentioned problem that occurs in the positive electrode of the non-aqueous electrolyte secondary battery.

そこで、本発明では、非水電解質二次電池の出力特性を向上させることができる非水電解質二次電池用正極活物質を提供することを目的とする。   Accordingly, an object of the present invention is to provide a positive electrode active material for a non-aqueous electrolyte secondary battery that can improve the output characteristics of the non-aqueous electrolyte secondary battery.

本発明者らは、長軸に対する短軸のアスペクト比が特定の値を有する非水電解質二次電池用正極活物質を用いることにより、正極における空隙を十分に確保でき、上記課題を解決できることを見出した。   By using a positive electrode active material for a non-aqueous electrolyte secondary battery in which the aspect ratio of the short axis to the long axis has a specific value, the present inventors can sufficiently secure voids in the positive electrode and solve the above problems. I found it.

すなわち、本発明は、平均最短軸径に対する平均最長軸径の比が1.5〜1000である非水電解質二次電池用正極活物質により上記課題を解決する。   That is, this invention solves the said subject with the positive electrode active material for nonaqueous electrolyte secondary batteries whose ratio of the average longest axis diameter with respect to an average shortest axis diameter is 1.5-1000.

本発明の非水電解質二次電池用正極活物質によれば、大電流を流した際の出力特性に優れる非水電解質二次電池を提供することが可能となる。   According to the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having excellent output characteristics when a large current is passed.

本発明の第一は、平均最短軸径に対する平均最長軸径の比が1.5〜1000である非水電解質二次電池用正極活物質(単に「正極活物質」とも記載する)である。   The first of the present invention is a positive electrode active material for a non-aqueous electrolyte secondary battery having a ratio of an average longest axis diameter to an average shortest axis diameter of 1.5 to 1000 (also simply referred to as “positive electrode active material”).

最短軸径に対する最長軸径の比、すなわちアスペクト比が大きな値を有する正極活物質は、板状、針状などの形状を多く含む。このように、縦方向または横方向のみの一次元的に広がった形状を有する正極活物質は、種々の方向を持って配置されることにより、正極活物質層における空隙率を確保することができる。また、このような正極活物質は、球状の正極活物質と比較して広い表面積を有していることから、正極活物質や導電助剤などの電極構成材料同士の接触抵抗を低減することが可能となる。したがって、かような正極活物質によれば、正極活物質層内の空隙率を確保することができリチウムイオンの拡散抵抗を低下させることなく十分な電子伝導性を確保することができ、二次電池の高出力化が可能となる。   The ratio of the longest shaft diameter to the shortest shaft diameter, that is, the positive electrode active material having a large aspect ratio includes many shapes such as a plate shape and a needle shape. As described above, the positive electrode active material having a shape that expands one-dimensionally only in the vertical direction or the horizontal direction can be provided with various directions, thereby ensuring the porosity in the positive electrode active material layer. . Moreover, since such a positive electrode active material has a large surface area compared with a spherical positive electrode active material, it can reduce the contact resistance between electrode constituent materials, such as a positive electrode active material and a conductive support agent. It becomes possible. Therefore, according to such a positive electrode active material, the porosity in the positive electrode active material layer can be ensured, and sufficient electron conductivity can be ensured without lowering the diffusion resistance of lithium ions. The output of the battery can be increased.

本発明による正極活物質は、平均最短軸径に対する平均最長軸径の比が、1.5〜1000であり、好ましくは2〜100である。この際、平均最短軸径に対する平均最長軸径の比が1000を超えると、下記実施例、特に実施例3および比較例3との比較から示されるように、このような正極活物質を用いて薄膜を形成しても、薄膜を基板から剥がすのが非常に困難であるあるいは不可能となり、好ましくない。また、平均最短軸径に対する平均最長軸径の比が1.5未満であると、充填度合いが上昇して正極活物質層内の空隙率を確保することが困難であり、やはり好ましくない。   In the positive electrode active material according to the present invention, the ratio of the average longest axis diameter to the average shortest axis diameter is 1.5 to 1000, preferably 2 to 100. At this time, when the ratio of the average longest shaft diameter to the average shortest shaft diameter exceeds 1000, as shown by comparison with the following examples, particularly Example 3 and Comparative Example 3, using such a positive electrode active material, Even if a thin film is formed, it is very difficult or impossible to peel the thin film from the substrate, which is not preferable. Moreover, when the ratio of the average longest axis diameter to the average shortest axis diameter is less than 1.5, it is difficult to secure the porosity in the positive electrode active material layer due to an increase in the degree of filling, which is also not preferable.

前記正極活物質のアスペクト比は、正極活物質の最長軸径(最大径)と、それに直行する径をもって最短軸径(最小径)とし、電子顕微鏡を利用して測定することができる。アスペクト比の測定は、正極活物質の電子顕微鏡写真を撮影し、写真から正極活物質を10個以上、好ましくは100個以上無造作に抽出し、個々の正極活物質の最長軸径(最大径)および最短軸径(最小径)を画像処理ソフトウェア等で測定し、その平均を算出することにより行われる。   The aspect ratio of the positive electrode active material can be measured using an electron microscope, with the longest axis diameter (maximum diameter) of the positive electrode active material and the diameter perpendicular to the longest axis diameter being the shortest axis diameter (minimum diameter). The aspect ratio is measured by taking an electron micrograph of the positive electrode active material, extracting 10 or more positive electrode active materials, preferably 100 or more, randomly from the photo, and measuring the longest axis diameter (maximum diameter) of each positive electrode active material. The shortest shaft diameter (minimum diameter) is measured by image processing software or the like, and the average is calculated.

前記正極活物質の平均最短軸径は、好ましくは10μm以下、より好ましくは8〜0.02μm、さらにより好ましくは5〜0.05μm、特に好ましくは3〜0.1μmとするのがよい。このように正極活物質を微細化することで、電子伝導性を確保しつつ反応表面積を増やすことができ、二次電池のさらなる高出力化が可能となる。特に、前記正極活物質の平均最短軸径が0.02μmを下回る場合には、下記実施例、特に実施例3および比較例3との比較から示されるように、このような正極活物質を用いて薄膜を形成しても、薄膜を基板から剥がすのが非常に困難であるあるいは不可能となるおそれがある。   The average shortest axis diameter of the positive electrode active material is preferably 10 μm or less, more preferably 8 to 0.02 μm, still more preferably 5 to 0.05 μm, and particularly preferably 3 to 0.1 μm. Thus, by miniaturizing the positive electrode active material, it is possible to increase the reaction surface area while ensuring electronic conductivity, and it is possible to further increase the output of the secondary battery. In particular, when the average shortest axis diameter of the positive electrode active material is less than 0.02 μm, such a positive electrode active material is used as shown by comparison with the following examples, particularly Example 3 and Comparative Example 3. Even if a thin film is formed, it may be very difficult or impossible to remove the thin film from the substrate.

前記正極活物質において、最短軸径に対する最長軸径の比が、1.5〜1000、より好ましくは2.0〜100である正極活物質(I)を、前記正極活物質の全量に対して、50〜100個数%含むのが好ましい。これにより、正極活物質における電子伝導性の向上およびリチウムイオンの拡散抵抗の低減ができ、二次電池のさらなる高出力化が図れる。正極活物質の個数は、用いた電極等の一部を抜き取り、電子顕微鏡等で観察することにより、容易に測定することが可能である。   In the positive electrode active material, the positive electrode active material (I) in which the ratio of the longest axis diameter to the shortest axis diameter is 1.5 to 1000, more preferably 2.0 to 100, is added to the total amount of the positive electrode active material. 50 to 100% by number is preferable. As a result, the electron conductivity in the positive electrode active material can be improved and the diffusion resistance of lithium ions can be reduced, and the output of the secondary battery can be further increased. The number of positive electrode active materials can be easily measured by extracting a part of the used electrode and observing it with an electron microscope or the like.

前記正極活物質(I)は、前記正極活物質の全量に対して、50〜100個数%含むのが好ましいが、より好ましくは70〜99個数%、特に好ましくは80〜95個数%とするのがよい。   The positive electrode active material (I) is preferably contained in an amount of 50 to 100% by number, more preferably 70 to 99% by number, particularly preferably 80 to 95% by number based on the total amount of the positive electrode active material. Is good.

前記正極活物質(I)の形状は、特に制限されないが、板状、円盤状、回転楕円状、柱状、および針状よりなる群から選択される少なくとも一種が好ましく挙げられる。これらの形状であれば、正極活物質層において十分な空隙を確保することができる。   The shape of the positive electrode active material (I) is not particularly limited, but at least one selected from the group consisting of a plate shape, a disc shape, a spheroid shape, a column shape, and a needle shape is preferable. If it is these shapes, sufficient space | gap can be ensured in a positive electrode active material layer.

例えば、回転楕円状の形状を有する正極活物質(I)としては、図1に示す形状が挙げられる。図1(A)は長軸方向に対する回転楕円体の形状を有する正極活物質(I)の模式図であり、前記正極活物質(I)はラグビーボール状の形状を有する。また、図1(B)は短軸方向に対する回転楕円体の形状を有する正極活物質(I)の模式図である。   For example, the positive electrode active material (I) having a spheroidal shape includes the shape shown in FIG. FIG. 1A is a schematic view of a positive electrode active material (I) having a spheroid shape with respect to the major axis direction, and the positive electrode active material (I) has a rugby ball shape. FIG. 1B is a schematic view of the positive electrode active material (I) having a spheroid shape with respect to the minor axis direction.

前記正極活物質(I)の形状として、特に好ましくは、柱状、針状、および前記正極活物質(I)の長軸方向に対する回転楕円状よりなる群から選択される少なくとも一種である。これらの一次元的な広がりを有する形状であれば、プレスなどにより正極活物質(I)が一様に水平方向に積層されるのを抑制することができ、正極活物質層において十分な空隙を確保するとともにリチウムイオンの拡散経路を短くすることができ、二次電池のさらなる高出力化が可能となる。   The shape of the positive electrode active material (I) is particularly preferably at least one selected from the group consisting of a columnar shape, a needle shape, and a spheroid shape with respect to the major axis direction of the positive electrode active material (I). If these shapes have a one-dimensional extent, the positive electrode active material (I) can be prevented from being uniformly laminated in the horizontal direction by pressing or the like, and sufficient voids can be formed in the positive electrode active material layer. In addition, the diffusion path of lithium ions can be shortened, and the output of the secondary battery can be further increased.

本発明による正極活物質は、所定の形状を有する以外は組成などに特に制限はない。前記正極活物質は、好ましくはリチウムイオンを吸蔵および放出する組成を有する。好ましい一例としては、遷移金属とリチウムとの複合酸化物であるリチウム−遷移金属複合酸化物が挙げられる。具体的には、LiCoOなどのLi・Co系複合酸化物、LiNiOなどのLi・Ni系複合酸化物、スピネルLiMnなどのLi・Mn系複合酸化物、LiFeOなどのLi・Fe系複合酸化物およびこれらの遷移金属の一部を他の元素により置換したものなどが使用できる。これらリチウム−遷移金属複合酸化物は、反応性、サイクル特性に優れ、低コストな材料である。そのためこれらの材料を電極に用いることにより、出力特性に優れた電池を形成することが可能である。この他、前記正極活物質としては、LiFePOなどの遷移金属とリチウムのリン酸化合物や硫酸化合物;V、MnO、TiS、MoS、MoOなどの遷移金属酸化物や硫化物;PbO、AgO、NiOOHなど、を用いることもできる。 The positive electrode active material according to the present invention is not particularly limited in composition or the like other than having a predetermined shape. The positive electrode active material preferably has a composition that absorbs and releases lithium ions. A preferable example is a lithium-transition metal composite oxide that is a composite oxide of a transition metal and lithium. Specifically, Li · Co-based composite oxide such as LiCoO 2, Li · Ni-based composite oxide such as LiNiO 2, Li · Mn-based composite oxide such as spinel LiMn 2 O 4, Li · such LiFeO 2 Fe-based composite oxides and those obtained by replacing some of these transition metals with other elements can be used. These lithium-transition metal composite oxides are excellent in reactivity and cycle characteristics, and are low-cost materials. Therefore, it is possible to form a battery having excellent output characteristics by using these materials for electrodes. In addition, examples of the positive electrode active material include transition metal oxides such as LiFePO 4 and lithium phosphate compounds and sulfuric acid compounds; transition metal oxides such as V 2 O 5 , MnO 2 , TiS 2 , MoS 2 , and MoO 3 , and sulfides. Materials; PbO 2 , AgO, NiOOH, etc. can also be used.

本発明による正極活物質の用途としては、特に制限されないが、非水電解質二次電池用正極に用いられるのが好ましい。具体的には、非水電解質二次電池用正極における正極活物質層に用いられるのが好ましい。これにより出力特性に優れる非水電解質二次電池を提供することができる。   Although it does not restrict | limit especially as a use of the positive electrode active material by this invention, It is preferable to use for the positive electrode for nonaqueous electrolyte secondary batteries. Specifically, it is preferably used for a positive electrode active material layer in a positive electrode for a nonaqueous electrolyte secondary battery. Thereby, a non-aqueous electrolyte secondary battery having excellent output characteristics can be provided.

本発明の第二は、正極活物質を含む正極活物質層を有する非水電解質二次電池用正極であって、前記正極活物質が、上述した本発明の第一の正極活物質である非水電解質二次電池用正極(単に、「正極」とも記載する)である。前記正極によれば、出力特性に優れる非水電解質二次電池を提供することが可能である。   The second of the present invention is a positive electrode for a non-aqueous electrolyte secondary battery having a positive electrode active material layer containing a positive electrode active material, wherein the positive electrode active material is the first positive electrode active material of the present invention described above. It is a positive electrode for water electrolyte secondary batteries (also simply referred to as “positive electrode”). According to the positive electrode, it is possible to provide a nonaqueous electrolyte secondary battery having excellent output characteristics.

本発明の正極において、正極活物質層の空隙率は、好ましくは30〜60%、より好ましくは35〜55%、特に好ましくは40〜50%とするのがよい。正極活物質層の空隙率が、30%以上であれば十分な空隙を確保することができリチウムイオンの拡散抵抗を低減させることができ、60%以下であれば正極活物質や導電助剤などの接触抵抗を低減させることができる。   In the positive electrode of the present invention, the porosity of the positive electrode active material layer is preferably 30 to 60%, more preferably 35 to 55%, and particularly preferably 40 to 50%. If the porosity of the positive electrode active material layer is 30% or more, sufficient voids can be secured and the diffusion resistance of lithium ions can be reduced, and if it is 60% or less, the positive electrode active material, the conductive assistant, etc. The contact resistance can be reduced.

なお、正極活物質層の空隙率は、正極を理論密度で完全充填した場合の厚みを計算し、実際の膜厚と比較することにより算出できる。   The porosity of the positive electrode active material layer can be calculated by calculating the thickness when the positive electrode is completely filled with the theoretical density and comparing it with the actual film thickness.

また、正極活物質層の厚さは、5〜200μm、特に10〜100μmとするのがよい。正極活物質層の厚さが、5μm以上であれば十分な放電容量が得られ、200μm以下であれば正極活物質層における電子およびリチウムイオンの拡散距離を大幅に短くすることができ、拡散抵抗を小さくすることができる。   The thickness of the positive electrode active material layer is preferably 5 to 200 μm, particularly 10 to 100 μm. If the thickness of the positive electrode active material layer is 5 μm or more, a sufficient discharge capacity can be obtained, and if it is 200 μm or less, the diffusion distance of electrons and lithium ions in the positive electrode active material layer can be significantly shortened, and the diffusion resistance Can be reduced.

本発明の正極は、上述した特定のアスペクト比を有する正極活物質を含むことを特徴とするものである。正極活物質層には、正極活物質の他には特に制限されないが、イオン伝導性を高めるための電解質塩、電子伝導性を高めるための導電助剤、バインダー、および電解質などが含まれ得る。   The positive electrode of the present invention includes a positive electrode active material having the specific aspect ratio described above. In addition to the positive electrode active material, the positive electrode active material layer is not particularly limited, but may include an electrolyte salt for increasing ion conductivity, a conductive additive for increasing electron conductivity, a binder, an electrolyte, and the like.

電解質塩としては、特に限定されないが、BETI(リチウムビス(パーフルオロエチレンスルホニルイミド);Li(CSONとも記載)、LiBF、LiPF、LiN(SOCF、LiN(SO、LiBOB(リチウムビスオキサイドボレート)またはこれらの混合物などが挙げられる。 The electrolyte salt is not particularly limited, but BETI (lithium bis (perfluoroethylenesulfonylimide); also described as Li (C 2 F 5 SO 2 ) 2 N), LiBF 4 , LiPF 6 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiBOB (lithium bisoxide borate) or a mixture thereof.

導電助剤としては、アセチレンブラック、カーボンブラック、グラファイト等が挙げられる。バインダーとしては、ポリフッ化ビニリデン(PVDF)、SBR、ポリイミドなどが使用できる。しかし、導電助剤およびバインダーがこれらに限定されないことは言うまでもない。   Examples of the conductive assistant include acetylene black, carbon black, and graphite. As the binder, polyvinylidene fluoride (PVDF), SBR, polyimide, or the like can be used. However, it goes without saying that the conductive assistant and the binder are not limited to these.

電解質としては、有機溶媒を使用した非水電解質が好ましく挙げられる。これにより、正極活物質層におけるイオン伝導がスムーズになり、電池全体としての出力向上が図れる。   As the electrolyte, a non-aqueous electrolyte using an organic solvent is preferably exemplified. Thereby, the ion conduction in the positive electrode active material layer becomes smooth, and the output of the entire battery can be improved.

非水電解質としては、液状電解質(電解液)、固体電解質、高分子ゲル電解質のいずれであってもよい。非水電解質は、好ましい一例を以下に示すが、通常の二次電池で用いられるものであればよく特に限定されない。   The nonaqueous electrolyte may be any of a liquid electrolyte (electrolytic solution), a solid electrolyte, and a polymer gel electrolyte. The nonaqueous electrolyte is not particularly limited as long as it is used in a normal secondary battery.

電解液としては、LiBOB(リチウムビスオキサイドボレート)、LiPF、LiBF、LiClO、LiAsF、LiTaF、LiAlCl、Li10Cl10等の無機酸陰イオン塩、LiCFSO、Li(CFSON、Li(CSON等の有機酸陰イオン塩の中から選ばれる、少なくとも1種類の電解質塩を含み、プロピレンカーボネート(PC)、エチレンカーボネート(EC)等の環状カーボネート類;ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の鎖状カーボネート類;テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジブトキシエタン等のエーテル類;γ−ブチロラクトン等のラクトン類;アセトニトリル等のニトリル類;プロピオン酸メチル等のエステル類;ジメチルホルムアミド等のアミド類;酢酸メチル、蟻酸メチルの中から選ばれる少なくともから1種類または2種以上を混合した、非プロトン性溶媒等の有機溶媒(可塑剤)を用いたものなどが使用できる。 As an electrolytic solution, LiBOB (lithium bis oxide borate), LiPF 6, LiBF 4, LiClO 4, LiAsF 6, LiTaF 6, LiAlCl 4, Li 2 B 10 inorganic acid anion salts 10 such as Cl, LiCF 3 SO 3, It contains at least one electrolyte salt selected from organic acid anion salts such as Li (CF 3 SO 2 ) 2 N, Li (C 2 F 5 SO 2 ) 2 N, propylene carbonate (PC), ethylene Cyclic carbonates such as carbonate (EC); chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate; tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2- Ethers such as dibutoxyethane; γ- Lactones such as butyrolactone; nitriles such as acetonitrile; esters such as methyl propionate; amides such as dimethylformamide; and at least one selected from methyl acetate and methyl formate, or a mixture of two or more The thing using organic solvents (plasticizer), such as a protic solvent, can be used.

固体電解質としては、イオン伝導性を有する高分子から構成されるものであれば特に限定されない。例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、これらの共重合体などが挙げられる。かようなポリアルキレンオキシド系高分子は、上述した電解質塩をよく溶解しうる。また、架橋構造を形成することによって、優れた機械的強度が発現する。   The solid electrolyte is not particularly limited as long as it is composed of a polymer having ion conductivity. Examples thereof include polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof. Such a polyalkylene oxide polymer can dissolve the above-described electrolyte salt well. Moreover, excellent mechanical strength is exhibited by forming a crosslinked structure.

高分子ゲル電解質としては、特に限定されないが、イオン伝導性を有する電解質用高分子に電解液を含んだもの、イオン伝導性を持たない電解質用高分子の骨格中に同様の電解液を保持させたものなどが挙げられる。   The polymer gel electrolyte is not particularly limited, but the same electrolyte solution is held in a skeleton of an electrolyte polymer having an ionic conductivity or an electrolyte polymer having no ionic conductivity. Etc.

高分子ゲル電解質に含まれる電解液としては、上述したものと同様である。また、イオン伝導性を有する電解質用高分子としては、上述した固体電解質などが用いられる。イオン伝導性を持たない電解質用高分子としては、例えば、ポリフッ化ビニリデン(PVDF)、ポリビニルクロライド(PVC)、ポリアクリロニトリル(PAN)、ポリメチルメタクリレート(PMMA)などのゲル化ポリマーを形成するモノマーが使用できる。ただし、これらに限られるわけではない。なお、PAN、PMMAなどは、どちらかと言うとイオン伝導性がほとんどない部類に入るものであるため、上記イオン伝導性を有する電解質用高分子とすることもできるが、ここでは高分子ゲル電解質に用いられるイオン伝導性を持たない電解質用高分子として例示したものである。   The electrolyte solution contained in the polymer gel electrolyte is the same as described above. In addition, as the electrolyte polymer having ion conductivity, the above-described solid electrolyte or the like is used. Examples of the polymer for electrolyte that does not have ion conductivity include monomers that form gelled polymers such as polyvinylidene fluoride (PVDF), polyvinyl chloride (PVC), polyacrylonitrile (PAN), and polymethyl methacrylate (PMMA). Can be used. However, it is not necessarily limited to these. Note that PAN, PMMA, etc. are in a class that has almost no ionic conductivity, and therefore can be used as the polymer for electrolytes having the ionic conductivity. It is illustrated as a polymer for electrolyte that does not have ionic conductivity.

高分子ゲル電解質中の電解質用高分子(ホストポリマー)と電解液との比率(質量比)は、使用目的などに応じて決定すればよいが、2:98〜90:10の範囲である。これにより、正極活物質層の外周部からの電解質の染み出しについても、絶縁層や絶縁処理部を設けることで効果的にシールすることができる。そのため、上記高分子ゲル電解質中のホストポリマーと電解液との比率(質量比)に関しても、比較的電池特性を優先したものとすることができる。   The ratio (mass ratio) between the electrolyte polymer (host polymer) and the electrolyte solution in the polymer gel electrolyte may be determined according to the purpose of use, but is in the range of 2:98 to 90:10. Thereby, it can seal effectively also about the oozing-out of the electrolyte from the outer peripheral part of a positive electrode active material layer by providing an insulating layer and an insulation process part. Therefore, it is possible to give priority to battery characteristics relatively with respect to the ratio (mass ratio) between the host polymer and the electrolytic solution in the polymer gel electrolyte.

本発明の正極の構造は、特に制限されないが、正極活物質層は集電体の片面に形成される。前記集電体としては、従来の二次電池において用いられているものであれば特に制限されず、アルミニウム、銅、ステンレス(SUS)、チタン、ニッケルなど、導電性の材料から構成されるものであればよい。集電体の厚さは、10〜50μm程度であればよい。   The structure of the positive electrode of the present invention is not particularly limited, but the positive electrode active material layer is formed on one side of the current collector. The current collector is not particularly limited as long as it is used in a conventional secondary battery, and is made of a conductive material such as aluminum, copper, stainless steel (SUS), titanium, or nickel. I just need it. The thickness of the current collector may be about 10 to 50 μm.

また、本発明の正極がバイポーラ電池などに用いられる場合には、集電体の一方の面に本発明の第一の正極活物質を含む正極活物質層が形成され、他方の面に従来一般的な負極活物質を含む負極活物質層が形成された、本発明の正極を用いてなるバイポーラ電極であってもよく、正極の用途に併せて構造を決定するのが望ましい。   In addition, when the positive electrode of the present invention is used for a bipolar battery or the like, a positive electrode active material layer containing the first positive electrode active material of the present invention is formed on one surface of a current collector, and the conventional surface is generally used on the other surface. It may be a bipolar electrode using the positive electrode of the present invention in which a negative electrode active material layer containing a negative electrode active material is formed, and it is desirable to determine the structure in accordance with the use of the positive electrode.

本発明の第三は、上述した本発明の第二の非水電解質二次電池用正極を用いた非水電解質二次電池である。本発明の第二の非水電解質二次電池用正極によれば、大電流で充放電した際の出力特性に優れる非水電解質二次電池を提供することが可能となる。   A third aspect of the present invention is a nonaqueous electrolyte secondary battery using the above-described second positive electrode for a nonaqueous electrolyte secondary battery of the present invention. According to the second positive electrode for a non-aqueous electrolyte secondary battery of the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having excellent output characteristics when charged and discharged with a large current.

前記二次電池の構成は、第二の正極を用いること以外は従来公知の技術を適宜参照できる。例えば、正極と、負極と、セパレータおよび電解質とを有する二次電池において、前記正極に、本発明の第二の正極を用いた二次電池などが挙げられる。   For the configuration of the secondary battery, conventionally known techniques can be referred to as appropriate, except that the second positive electrode is used. For example, in a secondary battery having a positive electrode, a negative electrode, a separator, and an electrolyte, a secondary battery using the second positive electrode of the present invention can be used as the positive electrode.

本発明の二次電池に用いられる負極としては特に制限されず、従来一般的に用いられている負極であればよい。具体的には、銅、ニッケル、チタン、SUSなどからなる集電体上に、カーボンなどの負極活物質を少なくとも含む負極活物質層が塗布されてなる従来の構成を有する負極である。   It does not restrict | limit especially as a negative electrode used for the secondary battery of this invention, What is necessary is just a negative electrode generally used conventionally. Specifically, the negative electrode has a conventional configuration in which a negative electrode active material layer containing at least a negative electrode active material such as carbon is applied on a current collector made of copper, nickel, titanium, SUS, or the like.

本発明の二次電池は、正極および負極をセパレータを介して重ね合わせ、これに電解質を含浸させるなどにより得られる。   The secondary battery of the present invention is obtained by superposing a positive electrode and a negative electrode through a separator and impregnating this with an electrolyte.

本発明の二次電池に用いられるセパレータとしては、従来一般的に用いられているものであれば、特に制限なく用いることができる。例えば、微孔性ポリエチレンフィルム、微孔性ポリプロピレンフィルム、微孔性エチレン−プロピレンコポリマーフィルムなどのポリオレフィン系樹脂の多孔膜または不織布、これらの積層体などが挙げられる。これらは、電解質(電解液)との反応性を低く抑えることができるという優れた効果を有する。他に、ポリオレフリン系樹脂不織布またはポリオレフィン系樹脂多孔膜を補強材層に用い、前記補強材層中にフッ化ビニリデン樹脂化合物を充填した複合樹脂膜なども挙げられる。また、セパレータの代わりに固体電解質または高分子ゲル電解質などからなる電解質層を採用してもよい。   As the separator used in the secondary battery of the present invention, any separator that is conventionally used can be used without particular limitation. Examples thereof include porous membranes or nonwoven fabrics of polyolefin resins such as microporous polyethylene film, microporous polypropylene film, microporous ethylene-propylene copolymer film, and laminates thereof. These have the outstanding effect that the reactivity with electrolyte (electrolyte solution) can be restrained low. In addition, a composite resin film in which a polyolefin resin non-woven fabric or a polyolefin resin porous film is used as a reinforcing material layer, and the reinforcing material layer is filled with a vinylidene fluoride resin compound may be used. Further, instead of the separator, an electrolyte layer made of a solid electrolyte or a polymer gel electrolyte may be employed.

セパレータの厚さは、使用用途に応じて適宜決定すればよいが、自動車等のモータ駆動用二次電池などの用途においては、15〜50μm程度とすればよい。また、セパレータの多孔度、大きさなどは、得られる二次電池の特性を考慮して、適宜決定すればよい。   The thickness of the separator may be appropriately determined according to the usage, but may be about 15 to 50 μm in the usage of a secondary battery for driving a motor such as an automobile. Further, the porosity, size, etc. of the separator may be appropriately determined in consideration of the characteristics of the obtained secondary battery.

セパレータに含浸させる電解質としては、正極活物質層に用いられるものと同様のものが挙げられ、これは本発明の第一において記載した通りである。   Examples of the electrolyte impregnated in the separator include the same electrolytes used in the positive electrode active material layer, as described in the first aspect of the present invention.

正極、負極、およびセパレータは電池ケースなどに収納される。電池ケースとしては、電池を使用する際の外部からの衝撃、環境劣化を防止し得るものを用いるとよい。例えば、高分子フィルムと金属箔を複合積層したラミネート素材からなる電池ケースをその周辺部を熱融着にて接合するか、あるいは、袋状にしたその開口部を熱融着することにより密閉されてなり、この熱融着部から正極リード端子、負極リード端子を取り出す構造としたものである。このとき正負極の各リード端子を取り出す個所は特に1箇所に限定されない。また電池ケースを構成する材質は上記のものに限定されず、プラスチック、金属、ゴム等、あるいはこれらの組み合わせによる材質が可能であり、形状もフィルム、板、箱状等のものを使用できる。また、ケース内側と外側とを導通するターミナルを設け、ターミナルの内側に集電体を、ターミナルの外側にリード端子を接続して電流を取り出す方法も適用できる。   The positive electrode, the negative electrode, and the separator are housed in a battery case or the like. As the battery case, it is preferable to use a battery case that can prevent external impact and environmental degradation when the battery is used. For example, a battery case made of a laminate material in which a polymer film and a metal foil are laminated together is sealed by bonding the peripheral part thereof by heat sealing, or by heat-sealing the bag-shaped opening. Thus, the positive electrode lead terminal and the negative electrode lead terminal are taken out from the heat fusion part. At this time, the location where the lead terminals of the positive and negative electrodes are taken out is not particularly limited to one location. Moreover, the material which comprises a battery case is not limited to the above-mentioned thing, The material by plastics, a metal, rubber | gum, etc., or these combination is possible, and things, such as a film, a board, and a box shape, can be used for a shape. In addition, a method of providing a terminal that conducts between the inside and outside of the case, connecting a current collector inside the terminal, and connecting a lead terminal outside the terminal to take out current can be applied.

本発明の二次電池の構造としては、特に限定されず、形態・構造で区別した場合には、積層型電池、巻回型電池など、従来公知のいずれの形態・構造にも適用し得るものである。また、二次電池内の電気的な接続形態で見た場合、バイポーラ型ではない内部並列接続タイプの電池およびバイポーラ型の内部直列接続タイプの電池のいずれにも適用し得るものである。本発明の二次電池は、好ましくはバイポーラ型の電池である。通常の電池に比べて単電池の電圧が高く、容量、出力特性に優れた電池を構成できる。   The structure of the secondary battery of the present invention is not particularly limited, and can be applied to any conventionally known form / structure such as a stacked battery or a wound battery when distinguished by form / structure. It is. Further, when viewed in terms of electrical connection in the secondary battery, it can be applied to both an internal parallel connection type battery and a bipolar internal series connection type battery that are not bipolar. The secondary battery of the present invention is preferably a bipolar battery. Compared with a normal battery, the voltage of a single cell is high, and a battery excellent in capacity and output characteristics can be configured.

上述した本発明による二次電池は、実用性の観点からリチウムイオン二次電池として用いるのが好ましいが、他に、ニッケル水素二次電池、ニッケルカドミウム二次電池、ナトリウムイオン二次電池、カリウムイオン二次電池、マグネシウムイオン二次電池、カルシウムイオン二次電池、などの二次電池にも適用することができる。   The secondary battery according to the present invention described above is preferably used as a lithium ion secondary battery from the viewpoint of practicality. Besides, a nickel hydrogen secondary battery, a nickel cadmium secondary battery, a sodium ion secondary battery, a potassium ion The present invention can also be applied to secondary batteries such as secondary batteries, magnesium ion secondary batteries, and calcium ion secondary batteries.

さらに、本発明の二次電池は、複数個接続して構成した組電池とすることができる。すなわち、本発明の二次電池を少なくとも2個以上を用いて直列および/または並列に接続して組電池化することにより、高容量、高出力の電池モジュールを形成することが出来る。そのため、使用目的ごとの電池容量や出力に対する要求に、比較的安価に対応することが可能になる。   Furthermore, the secondary battery of this invention can be used as the assembled battery comprised by connecting two or more. That is, a battery module with high capacity and high output can be formed by connecting at least two or more secondary batteries of the present invention in series and / or in parallel to form an assembled battery. Therefore, it becomes possible to respond to the demand for battery capacity and output for each purpose of use at a relatively low cost.

具体的には、例えば、上記の二次電池をN個並列に接続し、N個並列にした二次電池をさらにM個直列にして金属製ないし樹脂製の組電池ケースに収納し、組電池とする。この際、二次電池の直列/並列接続数は、使用目的に応じて決定する。例えば、電気自動車(EV)やハイブリッド電気自動車(HEV)などの大容量電源として、高エネルギー密度、高出力密度が求められる車両の駆動用電源に適用し得るように組み合わせればよい。また、組電池用の正極端子および負極端子と、各二次電池の電極リードとは、リード線等を用いて電気的に接続すればよい。また、二次電池同士を直列/並列に接続する際には、スペーサやバスバーのような適当な接続部材を用いて電気的に接続すればよい。ただし、本発明の組電池は、ここで説明したものに制限されるべきものではなく、従来公知のものを適宜採用することができる。また、該組電池には、使用用途に応じて、各種計測機器や制御機器類を設けてもよく、例えば、電池電圧を監視するために電圧計測用コネクタなどを設けておいてもよいなど、特に制限されるものではない。   Specifically, for example, the above-mentioned N secondary batteries are connected in parallel, and the M secondary batteries are arranged in series and housed in a metal or resin battery pack case. And At this time, the number of series / parallel connections of the secondary batteries is determined according to the purpose of use. For example, as a large-capacity power source such as an electric vehicle (EV) or a hybrid electric vehicle (HEV), it may be combined so as to be applicable to a driving power source for a vehicle that requires high energy density and high output density. Moreover, what is necessary is just to electrically connect the positive electrode terminal and negative electrode terminal for assembled batteries, and the electrode lead of each secondary battery using a lead wire. Further, when the secondary batteries are connected in series / parallel, they may be electrically connected using an appropriate connection member such as a spacer or a bus bar. However, the assembled battery of the present invention should not be limited to those described here, and conventionally known ones can be appropriately employed. In addition, the assembled battery may be provided with various measuring devices and control devices according to usage, for example, a voltage measuring connector may be provided to monitor the battery voltage, etc. There is no particular limitation.

本発明の二次電池および組電池は、上述のように優れた出力特性を有している。したがって、エネルギー密度および出力特性に関して、とりわけ厳しい要求がなされる車両、例えば、電気自動車、燃料電池自動車やハイブリッド電気自動車等のバッテリーや駆動用電源として好適であり、走行性能に優れた車両を提供できる。また、電気自動車ないしハイブリッド電気自動車の車体中央部の座席下に本発明の二次電池および/または組電池を駆動用電源として搭載するのが、社内空間およびトランクルームを広く取れるため便利である。ただし、本発明では、これらに何ら制限されるべきものではなく、本発明の二次電池または組電池は、車両の床下、トランクルーム、エンジンルーム、屋根、ボンネットフード内などに設置することができる。   The secondary battery and the assembled battery of the present invention have excellent output characteristics as described above. Therefore, it is suitable as a battery or a driving power source for vehicles that are particularly demanding in terms of energy density and output characteristics, such as electric vehicles, fuel cell vehicles, and hybrid electric vehicles, and can provide vehicles with excellent running performance. . In addition, it is convenient to install the secondary battery and / or the assembled battery of the present invention as a driving power source under the seat at the center of the body of an electric vehicle or hybrid electric vehicle because a large in-house space and a trunk room can be obtained. However, the present invention is not limited to these, and the secondary battery or the assembled battery of the present invention can be installed under the floor of a vehicle, in a trunk room, an engine room, a roof, a hood, or the like.

本発明の第四は、本発明の第一の正極活物質の製造方法である。   4th of this invention is a manufacturing method of the 1st positive electrode active material of this invention.

本発明の第一の正極活物質の製造方法の一実施形態としては、正極活物質前駆体を、縦と横の長さが異なる篩目を有する篩で篩分ける工程を有する方法が用いられる。   As one embodiment of the first method for producing a positive electrode active material of the present invention, there is used a method having a step of sieving the positive electrode active material precursor with a sieve having sieves having different vertical and horizontal lengths.

従来の正極活物質の製造方法としては、例えば、リチウム−遷移金属複合酸化物の場合、リチウム化合物と遷移金属化合物を混合し、得られた混合物を焼成して、リチウム−遷移金属複合酸化物とする方法が広く用いられている。しかしながら、前記従来の方法により得られた正極活物質では球状のものが多く含まれ、その他にも種々の形状が含まれる。そこで、本発明では、従来の方法により得られた種々の形状を有する正極活物質を正極活物質前駆体として用い、これを所定の形状の篩目を有する篩で篩分けることにより、本発明の第一の正極活物質を製造する方法を提供する。   As a conventional method for producing a positive electrode active material, for example, in the case of a lithium-transition metal composite oxide, a lithium compound and a transition metal compound are mixed, and the obtained mixture is fired to obtain a lithium-transition metal composite oxide and This method is widely used. However, the positive electrode active material obtained by the conventional method includes many spherical materials and various other shapes. Therefore, in the present invention, the positive electrode active material having various shapes obtained by the conventional method is used as a positive electrode active material precursor, and this is screened with a sieve having a predetermined mesh shape. A method for producing a first positive electrode active material is provided.

まず、正極活物質前駆体とは、上記の通り、球形、棒状、鱗片状、板状、円盤状、回転楕円状、柱状、および針状など、種々の形状を有する従来の方法により得られた正極活物質を用いる。このような種々の形状を有する正極活物質前駆体の製造方法としては、所望の組成を有する正極活物質が得られるように従来公知の方法を用いればよく、例えば、特開2002−279986号公報、特開2003−217584号公報などに記載の方法が用いられる。   First, as described above, the positive electrode active material precursor was obtained by a conventional method having various shapes such as a spherical shape, a rod shape, a scale shape, a plate shape, a disc shape, a spheroid shape, a column shape, and a needle shape. A positive electrode active material is used. As a method for producing a positive electrode active material precursor having such various shapes, a conventionally known method may be used so as to obtain a positive electrode active material having a desired composition. For example, JP-A-2002-279986 The method described in JP-A-2003-217484 is used.

次に、平均最短軸径に対する平均最長軸径の比が1.5〜1000である本発明の正極活物質を得るために、正極活物質前駆体を、縦と横の長さが異なる篩目を有する篩で篩分ける。ここでは、便宜上篩目の長手方向を横、と定義する。本発明の正極活物質は一次元的に広がった形状を有することから、前記篩により、最短軸径に対する最長軸径の比が1.5未満の正極活物質前駆体の殆どを篩上に除去して本発明の第一の正極活物質を得ることができる。   Next, in order to obtain the positive electrode active material of the present invention in which the ratio of the average longest axis diameter to the average shortest axis diameter is 1.5 to 1000, the positive electrode active material precursor is sieved with different vertical and horizontal lengths. Sift with a sieve having Here, for convenience, the longitudinal direction of the mesh is defined as horizontal. Since the positive electrode active material of the present invention has a one-dimensionally expanded shape, most of the positive electrode active material precursor having a ratio of the longest axis diameter to the shortest axis diameter of less than 1.5 is removed on the sieve by the sieve. Thus, the first positive electrode active material of the present invention can be obtained.

本発明の第一の正極活物質を得るためには、前記篩が有する篩目の縦と横の長さを調整するのがより好ましい。具体的には、前記篩の篩目の縦と横の長さの比率を、好ましくは1.5〜1000倍、より好ましくは2〜100倍とするのがよい。これにより、正極活物質前駆体から正極活物質を十分な精度で篩分けることができる。横方向の篩目は特に長さを規定する必要は無いが、篩の強度上1000倍程度未満であることが好ましい。   In order to obtain the first positive electrode active material of the present invention, it is more preferable to adjust the vertical and horizontal lengths of the meshes of the sieve. Specifically, the ratio of the vertical and horizontal lengths of the sieve screen is preferably 1.5 to 1000 times, more preferably 2 to 100 times. Thereby, the positive electrode active material can be sieved from the positive electrode active material precursor with sufficient accuracy. The length of the sieve mesh in the lateral direction is not particularly limited, but is preferably less than about 1000 times due to the strength of the sieve.

また、前記篩の篩目の縦の長さは、好ましくは0.1〜100μm、より好ましくは0.5〜10μmとするのがよい。前記篩目の横の長さは、好ましくは0.15〜100,000μm、より好ましくは0.75〜10,000μmとするのがよい。   The vertical length of the sieve mesh is preferably 0.1 to 100 μm, more preferably 0.5 to 10 μm. The horizontal length of the sieve mesh is preferably 0.15 to 100,000 μm, more preferably 0.75 to 10,000 μm.

ここで、前記篩目の縦の長さと横の長さの各最大部が上記条件であれば篩目の形状は特に制限されない。篩目の形状としては、長方形、台形、変形三角形、変形六角形、菱形などが挙げられるが、長方形であるのが特に好ましい。また篩の材質、線形、織り方にも制限はなく、打ち抜き板でもよい。篩の織り方としては、上記条件を有する篩目が容易に得られることから、トン・キャップ織、タイロッド織が好ましく挙げられる。また篩の材質、線形、織り方にも制限はなく、打ち抜き板でもよい。   Here, the shape of the mesh is not particularly limited as long as the maximum portions of the vertical length and the horizontal length of the mesh are the above conditions. Examples of the shape of the sieve mesh include a rectangle, a trapezoid, a deformed triangle, a deformed hexagon, and a rhombus, but a rectangle is particularly preferable. Moreover, there is no restriction | limiting in the material of a sieve, alignment, and a weave, A punching board may be sufficient. Preferred examples of the weaving method of the sieve include a ton cap weave and a tie rod weave because a sieve having the above conditions can be easily obtained. Moreover, there is no restriction | limiting in the material of a sieve, alignment, and a weave, A punching board may be sufficient.

本発明の正極活物質では、最短軸径に対する最長軸径の比が1.5〜1000である正極活物質(I)を多く含むのが望ましい。そこで、前記正極活物質(I)の含有率を向上させる観点から、本発明の方法では、上述の通り、正極活物質前駆体を、縦と横の長さが異なる篩目を有する篩で篩分けた後、縦と横の長さが等しい篩目を有する篩でさらに篩分ける工程を有するのが望ましい。これにより、最短軸径に対する最長軸径の比が1.5〜1000である正極活物質(I)が篩上に残り、上記工程において除去しきれなかった最短軸径に対する最長軸径の比が1.5未満の正極活物質前駆体のみを篩に透過させることができる。   The positive electrode active material of the present invention preferably contains a large amount of the positive electrode active material (I) having a ratio of the longest axis diameter to the shortest axis diameter of 1.5 to 1000. Therefore, from the viewpoint of improving the content of the positive electrode active material (I), in the method of the present invention, as described above, the positive electrode active material precursor is sieved with a sieve having sieves having different vertical and horizontal lengths. After dividing, it is desirable to have a step of further sieving with a sieve having sieves having the same vertical and horizontal lengths. Thereby, the positive electrode active material (I) having a ratio of the longest shaft diameter to the shortest shaft diameter of 1.5 to 1000 remains on the sieve, and the ratio of the longest shaft diameter to the shortest shaft diameter that could not be removed in the above process is Only a positive electrode active material precursor of less than 1.5 can be passed through the sieve.

縦と横の長さが等しい篩目を有する篩において、篩目の縦と横の長さの差を、好ましくは10%以下、より好ましくは5%以下とするのがよい。これにより、正極活物質前駆体から正極活物質(I)をさらに高い精度で篩分けることができる。   In a sieve having sieves having the same vertical and horizontal lengths, the difference between the vertical and horizontal lengths of the sieves is preferably 10% or less, more preferably 5% or less. Thereby, the positive electrode active material (I) can be screened with higher accuracy from the positive electrode active material precursor.

また、前記篩の篩目は、好ましくは0.1〜100μm、より好ましくは0.5〜10μmとするのがよい。   Moreover, the mesh size of the sieve is preferably 0.1 to 100 μm, more preferably 0.5 to 10 μm.

ここで、前記篩目の縦の長さと横の長さの各最大部が上記条件であれば篩目の形状は特に制限されない。篩目の形状としては、正方形、楕円形、扇型、菱形等などが挙げられるが、正方形であるのが特に好ましい。また篩の材質、線形、織り方にも制限はなく、打ち抜き板でもよい。   Here, the shape of the mesh is not particularly limited as long as the maximum portions of the vertical length and the horizontal length of the mesh are the above conditions. Examples of the shape of the sieve mesh include a square, an ellipse, a fan shape, a rhombus, and the like, and a square is particularly preferable. Moreover, there is no restriction | limiting in the material of a sieve, alignment, and a weave, A punching board may be sufficient.

また、正極活物質(I)を多く含有し、アスペクト比が高い正極活物質を得るために、上述した各篩で篩い分ける工程を繰返して行ってもよい。   Further, in order to obtain a positive electrode active material containing a large amount of the positive electrode active material (I) and having a high aspect ratio, the above-described process of sieving with each sieve may be repeated.

本発明の第一の正極活物質の製造方法としては、上述した方法の他、次の方法も用いられる。   As a method for producing the first positive electrode active material of the present invention, the following method may be used in addition to the method described above.

本発明の第一の正極活物質の製造方法の他の実施形態としては、正極活物質の原料化合物を混合し、得られた混合物を、回転楕円状、または針状に成形する工程を有する方法が用いられる。   As another embodiment of the first method for producing a positive electrode active material of the present invention, a method comprising mixing raw material compounds of a positive electrode active material and molding the resulting mixture into a spheroid or needle shape Is used.

原料化合物としては、所望する組成を有する正極活物質が得られるように適宜選択して用いればよい。例えば、リチウム−遷移金属複合酸化物からなる正極活物質を作製する場合には、原料化合物として、リチウム化合物、および、遷移金属化合物などが挙げられる。   The raw material compound may be appropriately selected and used so that a positive electrode active material having a desired composition can be obtained. For example, when a positive electrode active material made of a lithium-transition metal composite oxide is prepared, examples of the raw material compound include a lithium compound and a transition metal compound.

前記リチウム化合物としては、リチウム元素を含む水酸化物、酸化物、有機酸塩、炭酸塩、シュウ酸塩などが挙げられる。具体的には、LiOH・HO,LiCO,CHCOOLiなどが挙げられる。 Examples of the lithium compound include hydroxides, oxides, organic acid salts, carbonates, and oxalates containing a lithium element. Specifically, LiOH · H 2 O, Li 2 CO 3, etc. CH 3 COOLi, and the like.

前記遷移金属化合物において、遷移金属としては正極活物質として一般的に用いられているものであればよく、Mn、Ti、Li、Fe、Ni、Mg、Zn、Co、Cr、Al、B、Si、Sn、P、V、Sb、Nb、Ta、Mo、及びWからなる群から選ばれる1種類以上の元素などが挙げられる。前記遷移金属化合物としては、遷移金属元素を含む水酸化物、酸化物、有機酸塩、炭酸塩、シュウ酸塩、硝酸塩、塩酸塩、硫酸塩などが挙げられる。具体的には、酸化コバルト、酸化マンガン、酸化ニッケルなどが挙げられる。   In the transition metal compound, any transition metal that is generally used as a positive electrode active material may be used. Mn, Ti, Li, Fe, Ni, Mg, Zn, Co, Cr, Al, B, Si , Sn, P, V, Sb, Nb, Ta, Mo, and one or more elements selected from the group consisting of W and the like. Examples of the transition metal compound include hydroxides, oxides, organic acid salts, carbonates, oxalates, nitrates, hydrochlorides, and sulfates containing a transition metal element. Specific examples include cobalt oxide, manganese oxide, and nickel oxide.

本発明の方法では、所望の組成を有する正極活物質が得られるように上記した原料化合物を所定比混合し、得られた混合物を回転楕円状、柱状、または針状に成形する。   In the method of the present invention, the above-described raw material compounds are mixed in a predetermined ratio so that a positive electrode active material having a desired composition is obtained, and the resulting mixture is formed into a spheroid, columnar, or needle shape.

このとき、前記混合物は、原料化合物の他に、バインダーをさらに含むのが好ましい。これにより混合物の成形性が向上し、得られる正極活物質の形状を調整しやすくなる。   At this time, the mixture preferably further contains a binder in addition to the raw material compound. Thereby, the moldability of the mixture is improved, and the shape of the obtained positive electrode active material can be easily adjusted.

前記バインダーとしては、カルボキシメチルセルロース、ポリビニルアルコール、ポリビニルアルコール、カルボキシメチルセルロース、メチルセルロース、ポリアクリル酸Na、リグニンスルホン酸Naメチルセルロース、ヒドロキシエチルセルロース、ポリアクリル酸、ポリアクリルアミド、ポリエチレンオキシドなどが好ましく用いられる。混合物における前記バインダーの含有量は、固形分の総重量に対して、好ましくは0.1〜20質量%、より好ましくは1〜10質量%とするのがよい。これにより混合物の成形性を向上させることができる。   As the binder, carboxymethyl cellulose, polyvinyl alcohol, polyvinyl alcohol, carboxymethyl cellulose, methyl cellulose, polyacrylic acid Na, lignin sulfonic acid Na methyl cellulose, hydroxyethyl cellulose, polyacrylic acid, polyacrylamide, polyethylene oxide and the like are preferably used. The content of the binder in the mixture is preferably 0.1 to 20% by mass, more preferably 1 to 10% by mass, based on the total weight of the solid content. Thereby, the moldability of the mixture can be improved.

前記混合物には、成形性をさらに向上させるために、さらに溶媒を含んでいてもよい。前記溶媒としては、水、プロピレンカーボネート(PC)、エチレンカーボネート(EC)等の環状カーボネート類;ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の鎖状カーボネート類;テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジブトキシエタン等のエーテル類;γ−ブチロラクトン等のラクトン類;アセトニトリル等のニトリル類;プロピオン酸メチル等のエステル類;ジメチルホルムアミド等のアミド類;酢酸メチル、蟻酸メチルの中から選ばれる少なくともから1種類または2種以上を混合した、非プロトン性溶媒等の有機溶媒などが挙げられる。混合物における前記溶媒の含有量は、固形分の総重量に対して、好ましくは0.1〜20質量%、より好ましくは1〜10質量%とするのがよい。これにより混合物の成形性を向上させることができる。   The mixture may further contain a solvent in order to further improve moldability. Examples of the solvent include water, cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC); chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate; tetrahydrofuran, 2-methyltetrahydrofuran, 1, 4 -Ethers such as dioxane, 1,2-dimethoxyethane, 1,2-dibutoxyethane; Lactones such as γ-butyrolactone; Nitriles such as acetonitrile; Esters such as methyl propionate; Amides such as dimethylformamide An organic solvent such as an aprotic solvent in which at least one selected from methyl acetate and methyl formate is mixed. The content of the solvent in the mixture is preferably 0.1 to 20% by mass, more preferably 1 to 10% by mass, based on the total weight of the solid content. Thereby, the moldability of the mixture can be improved.

前記混合物を回転楕円状に成形するには、上記の通りにして得られた混合物を、平板で挟み、前記平板を摺動させる方法が用いられる。これにより、前記混合物を平板間で転動させて所望の形状に成形することができる。また、2つのローラーを接触、もしくは一定のギャップを設けて、両ロールの対向部が上昇するように回転させ、そのローラー上に上記の混合物を置くことでも、成型することが可能である。   In order to form the mixture into a spheroid shape, a method is used in which the mixture obtained as described above is sandwiched between flat plates and the flat plates are slid. Thereby, the said mixture can be rolled between flat plates and shape | molded in a desired shape. Alternatively, the two rollers can be contacted or provided with a certain gap and rotated so that the opposing portions of both rolls rise, and the mixture can be placed on the rollers.

前記混合物を平板間に挟む際に、前記混合物は、予め球状に造粒しているのが好ましい。これにより、所望の形状を有する正極活物質を製造し易くなる。前記混合物は、好ましくは平均粒径が、好ましくは0.1〜100μm、より好ましくは1〜50μm程度に造粒されているのがよい。また、前記混合物の造粒方法としては、特に制限されず、噴霧造粒方法、撹拌造粒方法、圧縮造粒方法または流動造粒方法などが用いられ、従来公知の造粒方法に順じて行えばよい。   When the mixture is sandwiched between flat plates, the mixture is preferably granulated in advance into a spherical shape. Thereby, it becomes easy to manufacture a positive electrode active material having a desired shape. The mixture is preferably granulated with an average particle diameter of preferably 0.1 to 100 μm, more preferably about 1 to 50 μm. In addition, the granulation method of the mixture is not particularly limited, and spray granulation method, stirring granulation method, compression granulation method, fluidized granulation method and the like are used, following the conventionally known granulation method. Just do it.

前記平板、ロールの材質、形状などについては、表面が平滑であり、混合物を摺動させることが可能であれば特に制限なく用いることができる。前記平板の材質として、具体的には、アルミニウム、銅、ステンレス(SUS)、チタン、ニッケル、シリカガラス、などが挙げられる。   As for the material and shape of the flat plate and roll, any surface can be used without particular limitation as long as the surface is smooth and the mixture can be slid. Specific examples of the material for the flat plate include aluminum, copper, stainless steel (SUS), titanium, nickel, and silica glass.

前記平板を摺動させるには、前記混合物を挟んだ平板を、加圧しながら水平方向に円運動させる方法、一方向への往復運動をする方法などを用いればよく、特に制限されない。前記平板を摺動させる条件は、所望するアスペクト比を有する正極活物質を得られるように適宜決定すればよい。   In order to slide the flat plate, a method of circularly moving the flat plate sandwiched with the mixture in a horizontal direction while applying pressure, a method of reciprocating in one direction, or the like may be used. The conditions for sliding the flat plate may be appropriately determined so that a positive electrode active material having a desired aspect ratio can be obtained.

前記ロールは接触させても良いし、所定の幅以下になった粒子を落とすためにわずかなギャップを設けてもよい。ギャップの幅は目標とする活物質の短軸長によって決まり、好ましくは10μm以下、より好ましくは8〜0.02μm、さらにより好ましくは5〜0.05μm、特に好ましくは3〜0.1μmとするのがよい。   The rolls may be brought into contact with each other, or a slight gap may be provided to drop particles having a predetermined width or less. The width of the gap is determined by the short axis length of the target active material, and is preferably 10 μm or less, more preferably 8 to 0.02 μm, still more preferably 5 to 0.05 μm, and particularly preferably 3 to 0.1 μm. It is good.

また、前記混合物を針状に成形するには、上記の通りにして得られた混合物を、紡糸用口金などを用い所定の孔径を有する穴から押出し、繊維状に成形したものを粉砕する方法などが用いられる。   Further, in order to form the mixture into a needle shape, the mixture obtained as described above is extruded from a hole having a predetermined hole diameter using a spinneret or the like, and a method of pulverizing a fiber shape is obtained. Is used.

前記混合物を押出す穴の孔径としては、所望のアスペクト比を有する正極活物質が得られるように適宜決定すればよいが、好ましくは10μm以下、より好ましくは8〜0.02μm、さらにより好ましくは5〜0.05μm、特に好ましくは3〜0.1μmとするのがよい。   The hole diameter of the hole through which the mixture is extruded may be appropriately determined so as to obtain a positive electrode active material having a desired aspect ratio, but is preferably 10 μm or less, more preferably 8 to 0.02 μm, and even more preferably. The thickness is preferably 5 to 0.05 μm, particularly preferably 3 to 0.1 μm.

繊維状に成形した混合物を粉砕するには、ボールミル,ジェットミル、スタンプミル、ローラーミルなど、公知の粉砕方法を用いて行えばよい。   In order to pulverize the mixture formed into a fiber shape, a known pulverization method such as a ball mill, a jet mill, a stamp mill, or a roller mill may be used.

本発明の方法では、上記の通りにして混合物を所定の形状に成形した後、焼成することにより本発明の第一の正極活物質が得られる。   In the method of the present invention, the first positive electrode active material of the present invention is obtained by forming the mixture into a predetermined shape as described above and then firing the mixture.

所定の形状に成形した混合物の焼成温度は、特に制限されないが、好ましくは200〜3000℃、より好ましくは300〜1500℃とするのがよい。また、焼成時間としては、1〜100時間程度行えばよい。   The firing temperature of the mixture formed into a predetermined shape is not particularly limited, but is preferably 200 to 3000 ° C, more preferably 300 to 1500 ° C. Moreover, what is necessary is just to perform about 1 to 100 hours as baking time.

本発明の第一の正極活物質の製造方法としては、上述した方法の他、次の方法も用いられる。   As a method for producing the first positive electrode active material of the present invention, the following method may be used in addition to the method described above.

本発明の第一の正極活物質の製造方法の他の実施形態としては、正極活物質の原料化合物を薄膜に成形した後、粉砕する工程を有する方法が用いられる。   As other embodiment of the manufacturing method of the 1st positive electrode active material of this invention, the method which has the process of grind | pulverizing, after forming the raw material compound of a positive electrode active material into a thin film is used.

原料化合物を混合して薄膜に成形する方法としては、ゾルゲル法、真空蒸着法、スパッタ法など、従来一般的な薄膜形成方法を用いて行えばよい。なかでも、低コストであり、かつ、正極活物質の製造が容易であることから、ゾルゲル法を用いて行うのが好ましい。   As a method of mixing raw material compounds into a thin film, a conventional thin film forming method such as a sol-gel method, a vacuum deposition method, or a sputtering method may be used. Among them, it is preferable to use a sol-gel method because of low cost and easy production of the positive electrode active material.

ゾルゲル法を用いて原料化合物を薄膜に成形するには、原料化合物を含むゾル溶液を、平板上に塗布した後に加水分解・縮合反応により流動性を失ったゲルとし、このゲルを焼成する方法が好ましく用いられる。   In order to form a raw material compound into a thin film using the sol-gel method, there is a method in which a sol solution containing the raw material compound is applied to a flat plate, and then the gel loses fluidity due to hydrolysis / condensation reaction, and this gel is baked. Preferably used.

前記原料化合物としては、リチウム−遷移金属複合酸化物からなる正極活物質を作製する場合には、リチウムおよび遷移金属のアルコキシドや塩が用いられる。リチウムおよび遷移金属の塩の形態としては、水酸化物、硝酸塩、亜硝酸塩、炭酸塩、酢酸塩、硫酸塩、オキシ硝酸塩、ハロゲン化物、金属錯体塩などが挙げられる。   As the raw material compound, lithium and transition metal alkoxides and salts are used in the case of producing a positive electrode active material composed of a lithium-transition metal composite oxide. Examples of lithium and transition metal salts include hydroxides, nitrates, nitrites, carbonates, acetates, sulfates, oxynitrates, halides, metal complex salts, and the like.

前記ゾル溶液は、原料化合物を水−アルコール溶液などに添加することにより調製できる。前記溶液におけるアルコールとしては、メタノール、エタノール、イソプロピルアルコール、ブタノール等が挙げられる。アルコールと水の割合は、約0.5〜5倍(モル比)とするのが好ましい。   The sol solution can be prepared by adding a raw material compound to a water-alcohol solution or the like. Examples of the alcohol in the solution include methanol, ethanol, isopropyl alcohol, butanol and the like. The ratio of alcohol to water is preferably about 0.5 to 5 times (molar ratio).

ゾル溶液に添加する前記原料化合物は、水に対して、金属成分の重量が0.1〜20質量%、特に0.5〜10質量%となるように添加するのが好ましい。   The raw material compound to be added to the sol solution is preferably added so that the weight of the metal component is 0.1 to 20% by mass, particularly 0.5 to 10% by mass with respect to water.

前記ゾル溶液には、安定化剤として、ポリビニルアルコール、エタノールアミンなどを添加してもよい。前記安定化剤は、溶液に含まれる総金属イオンモル数の0.5〜3倍のモル数となるように添加するのが好ましい。   Polyvinyl alcohol, ethanolamine or the like may be added to the sol solution as a stabilizer. The stabilizer is preferably added so that the number of moles is 0.5 to 3 times the total number of moles of metal ions contained in the solution.

上記した原料化合物を含むゾル溶液を塗布する平板の材質、形状などは、特に制限されない。例えば、前記平板の材質としては、アルミニウム、銅、ステンレス(SUS)、チタン、ニッケルなどが挙げられる。   The material and shape of the flat plate on which the sol solution containing the raw material compound is applied is not particularly limited. For example, examples of the material of the flat plate include aluminum, copper, stainless steel (SUS), titanium, and nickel.

前記平板上にゾル溶液を塗布する方法としては、スピンコート、スリットダイコーター、リバースロールコーター、リップコーター、ブレードコーター、ナイフコーター、グラビアコーター、ディップコーターなど、公知の塗布方法を用いればよい。   As a method for coating the sol solution on the flat plate, a known coating method such as spin coating, slit die coater, reverse roll coater, lip coater, blade coater, knife coater, gravure coater, dip coater or the like may be used.

平板上に塗布したゾル溶液をゲル化させるには、従来公知の方法を用いればよいが、例えば、塩基性触媒または酸性触媒下で加水分解・重縮合反応を行う方法が挙げられる。具体的には、平板上に塗布したゾル溶液に、塩基性触媒または酸性触媒をさらに塗布し、乾燥させる方法などが好ましく挙げられる。   In order to gel the sol solution coated on the flat plate, a conventionally known method may be used. For example, a method of performing a hydrolysis / polycondensation reaction under a basic catalyst or an acidic catalyst may be mentioned. Specifically, a method of further applying a basic catalyst or an acidic catalyst to a sol solution coated on a flat plate and drying it is preferable.

塩基性触媒としては、アンモニウム水溶液、エチルアミン、ジエチルアミン、トリエチルアミン等のアミン類、などが挙げられ、pH9〜14程度のものを用いるのが一般的である。また、酸性触媒としては、塩酸、硝酸、硫酸、リン酸などが挙げられ、pH1〜5程度のものを用いるのが一般的である。反応速度の観点からは、塩基性触媒を用いるのが好ましいが、原料を均一に反応させる点では酸触媒が好ましい。このため、必要に応じて触媒を使い分けると良い。   Examples of the basic catalyst include aqueous ammonium solutions, amines such as ethylamine, diethylamine, and triethylamine, and those having a pH of about 9 to 14 are generally used. Moreover, hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, etc. are mentioned as an acidic catalyst, and it is common to use a thing about pH 1-5. From the viewpoint of the reaction rate, it is preferable to use a basic catalyst, but an acid catalyst is preferable in that the raw materials are reacted uniformly. For this reason, it is good to use a catalyst properly as needed.

塩基性触媒または酸性触媒を塗布したゾル溶液を乾燥させるには、特に制限されないが、好ましくは100〜500℃、より好ましくは150〜300℃に加熱するのが好ましい。また、乾燥時間は、1〜100時間程度とすればよい。   The sol solution coated with a basic catalyst or an acidic catalyst is not particularly limited, but is preferably heated to 100 to 500 ° C, more preferably 150 to 300 ° C. The drying time may be about 1 to 100 hours.

平板上のゾル溶液をゲル化させた後は、空気中、または酸素気流中などの雰囲気下、好ましくは200〜600℃、より好ましくは200〜400℃で焼成する。また、焼成時間は、1〜100時間程度とすればよい。   After the sol solution on the flat plate is gelled, it is fired at 200 to 600 ° C., more preferably 200 to 400 ° C. in an atmosphere such as air or oxygen stream. The firing time may be about 1 to 100 hours.

平板上に形成された原料化合物からなるゲルの厚さは、所望の形状を有する正極活物質(I)を得る観点からは、好ましくは10μm以下、より好ましくは5〜0.05μm、特に好ましくは3〜0.1μmとするのがよい。   The thickness of the gel composed of the raw material compound formed on the flat plate is preferably 10 μm or less, more preferably 5 to 0.05 μm, particularly preferably from the viewpoint of obtaining the positive electrode active material (I) having a desired shape. It is good to set it as 3-0.1 micrometer.

本発明の方法では、上記の通りにして平板上に成形した原料化合物からなる薄膜を、粉砕することにより、本発明の第一の正極活物質が得られる。   In the method of the present invention, the first positive electrode active material of the present invention is obtained by pulverizing a thin film made of a raw material compound formed on a flat plate as described above.

原料化合物からなる薄膜を粉砕するには、スクレイパー、基板への衝撃などを用いて前記平板上から薄膜を掻き取った後に、ボールミル,ジェットミル、スタンプミル、ローラーミルなど、公知の粉砕方法を用いて行えばよい。   In order to pulverize the thin film made of the raw material compound, after scraping the thin film from the flat plate using a scraper, impact on the substrate, etc., a known pulverization method such as a ball mill, a jet mill, a stamp mill, or a roller mill is used. Just do it.

以下、本発明を実施例に基づいて具体的に説明する。なお、本発明は、これらの実施例のみに限定されることはない。   Hereinafter, the present invention will be specifically described based on examples. In addition, this invention is not limited only to these Examples.

(実施例1−1)
(1)電極活物質の作製
コバルト酸リチウム粉末(LiCoO、平均粒径8μm)を、8μm×20μmの大きさの篩目を有する篩(I)と、8μm×8μmの大きさの篩目を有する篩(II)に順次かけた。篩(II)上に残ったコバルト酸リチウム粉末を走査型電子顕微鏡で観察したところ、100個のコバルト酸リチウム粉末の平均値で、最長軸径9.5μm、最短軸径4.8μmの概略柱状で、アスペクト比が2であった。また、篩(II)上に残ったコバルト酸リチウム粉末は、アスペクト比が1.5以下のコバルト酸リチウム粉末を35個数%含んでいた。篩(II)上に残ったコバルト酸リチウム粉末を電極活物質として用いて、下記手順に従って二次電池を作製した。
(Example 1-1)
(1) Production of electrode active material Lithium cobalt oxide powder (LiCoO 2 , average particle size 8 μm) was sieved with a sieve (I) having a sieve size of 8 μm × 20 μm and a sieve having a size of 8 μm × 8 μm. The sieve (II) having was sequentially applied. When the lithium cobaltate powder remaining on the sieve (II) was observed with a scanning electron microscope, the average value of 100 lithium cobaltate powders was approximately columnar with a longest shaft diameter of 9.5 μm and a shortest shaft diameter of 4.8 μm. The aspect ratio was 2. Further, the lithium cobaltate powder remaining on the sieve (II) contained 35% by number of lithium cobaltate powder having an aspect ratio of 1.5 or less. Using the lithium cobalt oxide powder remaining on the sieve (II) as an electrode active material, a secondary battery was produced according to the following procedure.

(2)コイン型リチウム二次電池の作製
前記電極活物質と、アセチレンブラックと、ポリフッ化ビニリデン(PVdF)とを質量比で90:5:5となるように混合し、N−メチルピロリドンに溶解してスラリーを作成した。このスラリーをバーコーターを用いてアルミ箔上に6mg/cmの塗布重量となるように塗布し、130℃で1時間乾燥させた後、ロールプレスを複数回掛け、前記アルミ箔上に正極活物質層(厚さ26μm、空隙率40%)が形成された正極板を得た。
(2) Production of coin-type lithium secondary battery The electrode active material, acetylene black, and polyvinylidene fluoride (PVdF) are mixed at a mass ratio of 90: 5: 5 and dissolved in N-methylpyrrolidone. Thus, a slurry was prepared. This slurry was applied on an aluminum foil using a bar coater so as to have an application weight of 6 mg / cm 2 , dried at 130 ° C. for 1 hour, and then subjected to a roll press a plurality of times, and positive electrode activation was performed on the aluminum foil. A positive electrode plate on which a material layer (thickness 26 μm, porosity 40%) was formed was obtained.

負極として、箔状のリチウム金属(厚さ100μm、直径18mmΦ)をステンレスの電池蓋にはめ込み圧着した。   As the negative electrode, foil-like lithium metal (thickness: 100 μm, diameter: 18 mmΦ) was fitted into a stainless steel battery lid and pressed.

次に、前記正極板を16mmΦで打ち抜いて得られた正極を、ステンレスの外装缶内に配し、これにポリプロピレン微多孔膜(厚さ30μm)のセパレータを載置した。これに、1M LiPF/EC+PC(体積比 1:1)の電解質を注液し、前記電池蓋を載せて、スチレンブタジエンゴムとピッチの混合物からなるシーラントを隙間無く充填した後に外装缶をかしめて封口して、コイン型リチウム二次電池を作製した。この電池の寸法は、直径20mm、高さ3.2mmである。 Next, the positive electrode obtained by punching out the positive electrode plate at 16 mmΦ was placed in a stainless steel outer can, and a separator made of a polypropylene microporous film (thickness 30 μm) was placed thereon. To this, an electrolyte of 1M LiPF 6 / EC + PC (volume ratio 1: 1) was poured, the battery lid was placed, and a sealant composed of a mixture of styrene butadiene rubber and pitch was filled without any gaps, and then the outer can was caulked. Sealed to produce a coin-type lithium secondary battery. The dimensions of this battery are 20 mm in diameter and 3.2 mm in height.

(3)評価
上記で作製した二次電池を、0.1mA/cmで3サイクル充放電した後、満充電状態にし、10mA/cmで放電を行なった。このときの放電直後の電圧降下から求めた抵抗値と、0.1mA/cmの容量に対する放電容量を、それぞれ測定した。結果を表1に示す。
(3) Evaluation The secondary battery produced above was charged and discharged for 3 cycles at 0.1 mA / cm 2 , then fully charged, and discharged at 10 mA / cm 2 . The resistance value obtained from the voltage drop immediately after the discharge at this time and the discharge capacity with respect to the capacity of 0.1 mA / cm 2 were measured. The results are shown in Table 1.

(実施例1−2)
コバルト酸リチウム粉末(LiCoO、平均粒径8μm)を、8μm×8μmの大きさの篩目を有する篩にかけた。前記篩を透過したコバルト酸リチウム粉末と、実施例1と同様にして得られた篩(II)上に残ったコバルト酸リチウム粉末とを、質量比で1:1となるように混合した。得られた混合物を走査型電子顕微鏡で観察したところ、100個のコバルト酸リチウム粉末の平均値で、最長軸径7.0μm、最短軸径4.6μmの概略柱状で、アスペクト比が1.5であった。また、前記篩を透過したコバルト酸リチウム粉末は、アスペクト比が1.5以下のコバルト酸リチウム粉末を50個数%含んでいた。
(Example 1-2)
Lithium cobaltate powder (LiCoO 2 , average particle size 8 μm) was passed through a sieve having a mesh size of 8 μm × 8 μm. The lithium cobaltate powder that had passed through the sieve and the lithium cobaltate powder remaining on the sieve (II) obtained in the same manner as in Example 1 were mixed at a mass ratio of 1: 1. When the obtained mixture was observed with a scanning electron microscope, the average value of 100 lithium cobaltate powders was an approximately columnar shape having a longest shaft diameter of 7.0 μm and a shortest shaft diameter of 4.6 μm, and an aspect ratio of 1.5. Met. Moreover, the lithium cobaltate powder which permeate | transmitted the said sieve contained 50 number% of lithium cobaltate powder whose aspect ratio is 1.5 or less.

前記混合物を電極活物質として用いた以外は、実施例1と同様にして二次電池を作製し、これを評価した。結果を表1に示す。   A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the mixture was used as an electrode active material. The results are shown in Table 1.

(実施例1−3)
実施例1と同様にして得られた篩(II)上に残ったコバルト酸リチウム粉末を、6μm×20μmの大きさの篩目を有する篩にさらにかけた。前記篩上に残ったコバルト酸リチウム粉末を走査型電子顕微鏡で観察したところ、100個のコバルト酸リチウム粉末の平均値で、最長軸径12.3μm、最短軸径4.9μmの概略柱状で、アスペクト比が2.5であった。また、篩上に残ったコバルト酸リチウム粉末は、アスペクト比が1.5以下のコバルト酸リチウム粉末を20個数%含んでいた。前記篩上に残ったコバルト酸リチウム粉末を電極活物質として用いた以外は、実施例1と同様にして二次電池を作製し、これを評価した。結果を表1に示す。
(Example 1-3)
The lithium cobaltate powder remaining on the sieve (II) obtained in the same manner as in Example 1 was further passed through a sieve having a sieve mesh size of 6 μm × 20 μm. When the lithium cobaltate powder remaining on the sieve was observed with a scanning electron microscope, the average value of 100 lithium cobaltate powders was approximately columnar with a longest shaft diameter of 12.3 μm and a shortest shaft diameter of 4.9 μm. The aspect ratio was 2.5. Further, the lithium cobaltate powder remaining on the sieve contained 20% by number of lithium cobaltate powder having an aspect ratio of 1.5 or less. A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the lithium cobaltate powder remaining on the sieve was used as an electrode active material. The results are shown in Table 1.

(実施例1−4)
実施例1のコイン型リチウム二次電池の作製において、プレス圧の変更により、前記アルミ箔上に正極活物質層(厚さ22μm、空隙率30%)とした以外は、実施例1と同様にして二次電池を作製し、これを評価した。結果を表1に示す。
(Example 1-4)
In the production of the coin-type lithium secondary battery of Example 1, the same procedure as in Example 1 was conducted except that a positive electrode active material layer (thickness 22 μm, porosity 30%) was formed on the aluminum foil by changing the press pressure. A secondary battery was fabricated and evaluated. The results are shown in Table 1.

(実施例1−5)
実施例1のコイン型リチウム二次電池の作製において、プレス圧の変更により、前記アルミ箔上に正極活物質層(厚さ24μm、空隙率35%)とした以外は、実施例1と同様にして二次電池を作製し、これを評価した。結果を表1に示す。
(Example 1-5)
In the production of the coin-type lithium secondary battery of Example 1, the same procedure as in Example 1 was conducted except that a positive electrode active material layer (thickness 24 μm, porosity 35%) was formed on the aluminum foil by changing the press pressure. A secondary battery was fabricated and evaluated. The results are shown in Table 1.

(実施例1−6)
実施例1のコイン型リチウム二次電池の作製において、プレス圧の変更により、前記アルミ箔上に正極活物質層(厚さ28μm、空隙率45%)とした以外は、実施例1と同様にして二次電池を作製し、これを評価した。結果を表1に示す。
(Example 1-6)
In the manufacture of the coin-type lithium secondary battery of Example 1, the same procedure as in Example 1 was conducted except that a positive electrode active material layer (thickness 28 μm, porosity 45%) was formed on the aluminum foil by changing the press pressure. A secondary battery was fabricated and evaluated. The results are shown in Table 1.

(実施例1−7)
実施例1のコイン型リチウム二次電池の作製において、プレス圧の変更により、前記アルミ箔上に正極活物質層(厚さ31μm、空隙率50%)とした以外は、実施例1と同様にして二次電池を作製し、これを評価した。結果を表1に示す。
(Example 1-7)
In the production of the coin-type lithium secondary battery of Example 1, the same procedure as in Example 1 was conducted except that a positive electrode active material layer (thickness 31 μm, porosity 50%) was formed on the aluminum foil by changing the press pressure. A secondary battery was fabricated and evaluated. The results are shown in Table 1.

(実施例1−8)
実施例1のコイン型リチウム二次電池の作製において、プレス圧の変更により、前記アルミ箔上に正極活物質層(厚さ34μm、空隙率55%)とした以外は、実施例1と同様にして二次電池を作製し、これを評価した。結果を表1に示す。
(Example 1-8)
In the production of the coin-type lithium secondary battery of Example 1, the same procedure as in Example 1 was conducted except that a positive electrode active material layer (thickness 34 μm, porosity 55%) was formed on the aluminum foil by changing the press pressure. A secondary battery was fabricated and evaluated. The results are shown in Table 1.

(実施例1−9)
実施例1のコイン型リチウム二次電池の作製において、プレス圧の変更により、前記アルミ箔上に正極活物質層(厚さ38μm、空隙率60%)とした以外は、実施例1と同様にして二次電池を作製し、これを評価した。結果を表1に示す。
(Example 1-9)
In the production of the coin-type lithium secondary battery of Example 1, the same procedure as in Example 1 was conducted except that a positive electrode active material layer (thickness 38 μm, porosity 60%) was formed on the aluminum foil by changing the press pressure. A secondary battery was fabricated and evaluated. The results are shown in Table 1.

(比較例1−1)
実施例1で用いたコバルト酸リチウム粉末(LiCoO、平均粒径8μm)を篩をかけずにそのまま電極活物質として用いた以外は、実施例1と同様にして二次電池を作製し、これを評価した。結果を表1に示す。
(Comparative Example 1-1)
A secondary battery was prepared in the same manner as in Example 1 except that the lithium cobaltate powder (LiCoO 2 , average particle size 8 μm) used in Example 1 was used as an electrode active material without being sieved. Evaluated. The results are shown in Table 1.

なお、前記コバルト酸リチウム粉末を、走査型電子顕微鏡で観察したところ、100個のコバルト酸リチウム粉末の平均値で、最長軸径8.2μm、最短軸径6.7μmの概略球状で、アスペクト比が1.2であった。また、前記コバルト酸リチウム粉末は、アスペクト比が1.5以下のコバルト酸リチウム粉末を88個数%含んでいた。   When the lithium cobaltate powder was observed with a scanning electron microscope, the average value of 100 lithium cobaltate powders was approximately spherical with a longest shaft diameter of 8.2 μm and a shortest shaft diameter of 6.7 μm. Was 1.2. The lithium cobaltate powder contained 88% by number of lithium cobaltate powder having an aspect ratio of 1.5 or less.

(実施例2−1)
酸化コバルトと炭酸リチウムをコバルトとリチウムの比が1:1となるように混合した後に粉砕し、得られた混合物をレーザ回折法で測定したところ平均粒径が約1μmである事を確認した。この混合物に1質量%のカルボキシメチルセルロースを添加し、若干の水を加えて流動層造粒装置により造粒し、レーザ回折法で測定することにより平均粒径11μmの球状粒子を得た。この球状粒子をSUS平板間に挟み、少量ずつ摺動させた後に取り出し、走査型電子顕微鏡で観察したところ100個の平均値で、最長軸径16μm、最短軸径9μm、アスペクト比1.8の形状を有するラグビーボール状の粒子を得た。この粒子を900℃で24時間焼成し、コバルト酸リチウム粒子(LiCoO)を得た。得られたコバルト酸リチウム粒子を走査型電子顕微鏡で観察したところ100個の平均値で、最長軸径14μm、最短軸径8μm、アスペクト比1.7であった。また、前記コバルト酸リチウム粉末は、アスペクト比が1.5以下のコバルト酸リチウム粉末を43個数%含んでいた。
(Example 2-1)
Cobalt oxide and lithium carbonate were mixed so that the ratio of cobalt to lithium was 1: 1, and then pulverized. The obtained mixture was measured by a laser diffraction method, and it was confirmed that the average particle diameter was about 1 μm. 1% by mass of carboxymethylcellulose was added to this mixture, a slight amount of water was added, granulated by a fluidized bed granulator, and spherical particles having an average particle diameter of 11 μm were obtained by measurement by a laser diffraction method. These spherical particles were sandwiched between SUS flat plates and slid little by little and taken out. When observed with a scanning electron microscope, the average value of 100 particles had a longest shaft diameter of 16 μm, a shortest shaft diameter of 9 μm, and an aspect ratio of 1.8. Rugby ball-like particles having a shape were obtained. The particles were fired at 900 ° C. for 24 hours to obtain lithium cobaltate particles (LiCoO 2 ). When the obtained lithium cobalt oxide particles were observed with a scanning electron microscope, the average value of 100 particles was a longest shaft diameter of 14 μm, a shortest shaft diameter of 8 μm, and an aspect ratio of 1.7. The lithium cobaltate powder contained 43% by number of lithium cobaltate powder having an aspect ratio of 1.5 or less.

前記コバルト酸リチウム粒子を電極活物質として用いた以外は、実施例1と同様にして二次電池を作製し、これを評価した。結果を表1に示す。   A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the lithium cobalt oxide particles were used as the electrode active material. The results are shown in Table 1.

(比較例2−1)
酸化コバルトと炭酸リチウムをコバルトとを用い、実施例2−1と同様にして、平均粒径11μmの球状粒子を得た。ここで、実施例2−1の摺動工程を行なわず、この球状粒子を、900℃で24時間焼成し、コバルト酸リチウム粒子(LiCoO)を得た。前記コバルト酸リチウム粒子を走査型電子顕微鏡で観察したところ100個の平均値で、最長軸径11μm、最短軸径10μm、アスペクト比1.1であった。また、前記球状粒子は、アスペクト比が1.5以下のコバルト酸リチウム粉末を93個数%含んでいた。
(Comparative Example 2-1)
Using cobalt oxide and lithium carbonate as cobalt, spherical particles having an average particle diameter of 11 μm were obtained in the same manner as in Example 2-1. Here, without performing the sliding step of Example 2-1, the spherical particles were fired at 900 ° C. for 24 hours to obtain lithium cobaltate particles (LiCoO 2 ). When the lithium cobalt oxide particles were observed with a scanning electron microscope, the average value of 100 particles was a longest shaft diameter of 11 μm, a shortest shaft diameter of 10 μm, and an aspect ratio of 1.1. The spherical particles contained 93% by number of lithium cobaltate powder having an aspect ratio of 1.5 or less.

前記コバルト酸リチウム粒子を電極活物質として用いた以外は、実施例1と同様にして二次電池を作製し、これを評価した。結果を表1に示す。   A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the lithium cobalt oxide particles were used as the electrode active material. The results are shown in Table 1.

(実施例3−1)
LiOCH及びCo(Cを、コバルトとリチウムの質量比が1:1となるように混合し、これを水−エタノール(50:50)溶液1Lに加えて、混合した。さらに、これに安定化剤としてポリビニルアルコール0.5質量%を加えて混合した。得られた混合物を、平滑なアルミナ基板上にバーコーターによりギャップ20μmで塗布し、25%アンモニウム水溶液をスプレー噴霧することにより塗布し、50℃で真空乾燥させた。これにより、前記基板上にLiとCoとの複合酸化物を含むゲルを生成させ、乾燥炉中で200℃で24時間乾燥させ後、700℃で10時間焼成し、前記基板上にコバルト酸リチウム(LiCoO)からなる厚さ3μmの薄膜を得た。
(Example 3-1)
LiOCH 3 and Co (C 2 H 3 O 2 ) 2 were mixed so that the mass ratio of cobalt to lithium was 1: 1, and this was added to 1 L of a water-ethanol (50:50) solution and mixed. . Furthermore, 0.5 mass% of polyvinyl alcohol was added to this as a stabilizer and mixed. The obtained mixture was coated on a smooth alumina substrate with a bar coater at a gap of 20 μm, sprayed with a 25% aqueous ammonium solution, and vacuum dried at 50 ° C. As a result, a gel containing a composite oxide of Li and Co is formed on the substrate, dried in a drying furnace at 200 ° C. for 24 hours, and then baked at 700 ° C. for 10 hours. A thin film having a thickness of 3 μm made of (LiCoO 2 ) was obtained.

前記薄膜を基板から掻き取り、軽く乳鉢により粉砕することで得られた粉末を、走査型電子顕微鏡で観察したところ100個の平均値で、最長軸径7μm、最短軸径3μm、アスペクト比2.3の鱗片状のコバルト酸リチウム粉末を得た。また、前記コバルト酸リチウム粉末は、アスペクト比が1.5以下のコバルト酸リチウム粉末を60個数%含んでいた。   The powder obtained by scraping the thin film from the substrate and lightly pulverizing it with a mortar was observed with a scanning electron microscope. As a result, the average of 100 powders had a longest shaft diameter of 7 μm, a shortest shaft diameter of 3 μm, and an aspect ratio of 2. 3 scale-like lithium cobaltate powder was obtained. The lithium cobaltate powder contained 60% by number of lithium cobaltate powder having an aspect ratio of 1.5 or less.

前記コバルト酸リチウム粒子を電極活物質として用いた以外は、実施例1と同様にして二次電池を作製し、これを評価した。結果を表1に示す。   A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the lithium cobalt oxide particles were used as the electrode active material. The results are shown in Table 1.

(実施例3−2)
LiOCH及びCo(Cを、コバルトとリチウムの質量比が1:1となるように混合し、これを水−エタノール(50:50)溶液1Lに加えて、混合した。さらに、これに安定化剤としてポリビニルアルコール0.5質量%を加えて混合した。得られた混合物を、平滑なアルミナ基板上にバーコーターによりギャップ10μmで塗布し、25%アンモニウム水溶液をスプレー噴霧することにより塗布し、50℃で真空乾燥させた。これにより、前記基板上にLiとCoとの複合酸化物を含むゲルを生成させ、乾燥炉中で200℃で24時間乾燥させ後、700℃で10時間焼成し、前記基板上にコバルト酸リチウム(LiCoO)からなる厚さ約1μmの薄膜を得た。
(Example 3-2)
LiOCH 3 and Co (C 2 H 3 O 2 ) 2 were mixed so that the mass ratio of cobalt to lithium was 1: 1, and this was added to 1 L of a water-ethanol (50:50) solution and mixed. . Furthermore, 0.5 mass% of polyvinyl alcohol was added to this as a stabilizer and mixed. The obtained mixture was applied on a smooth alumina substrate with a bar coater at a gap of 10 μm, sprayed with a 25% aqueous ammonium solution, and vacuum dried at 50 ° C. As a result, a gel containing a composite oxide of Li and Co is formed on the substrate, dried in a drying furnace at 200 ° C. for 24 hours, and then baked at 700 ° C. for 10 hours. A thin film made of (LiCoO 2 ) and having a thickness of about 1 μm was obtained.

前記薄膜を基板に傷をつけて掻き取り、得られた粉末を、走査型電子顕微鏡で観察したところ100個の平均値で、最長軸径120μm、最短軸径1.1μm、アスペクト比11の鱗片状のコバルト酸リチウム粉末を得た。また、前記コバルト酸リチウム粉末は、アスペクト比が1.5以下のコバルト酸リチウム粉末を2個数%含んでいた。   The thin film was scratched on the substrate and scraped off, and the obtained powder was observed with a scanning electron microscope. As a result, a scale having an average value of 100, a longest shaft diameter of 120 μm, a shortest shaft diameter of 1.1 μm, and an aspect ratio of 11 A lithium cobaltate powder was obtained. The lithium cobaltate powder contained 2% by number of lithium cobaltate powder having an aspect ratio of 1.5 or less.

前記コバルト酸リチウム粒子を電極活物質として用いた以外は、実施例1と同様にして二次電池を作製し、これを評価した。結果を表1に示す。   A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the lithium cobalt oxide particles were used as the electrode active material. The results are shown in Table 1.

(実施例3−3)
LiOCH及びCo(Cを、コバルトとリチウムの質量比が1:1となるように混合し、これを水−エタノール(50:50)溶液2Lに加えて、混合した。さらに、これに安定化剤としてポリビニルアルコール1.0質量%を加えて混合した。得られた混合物を、平滑なアルミナ基板上にバーコーターによりギャップ2μmで塗布し、25%アンモニウム水溶液をスプレー噴霧することにより塗布し、50℃で真空乾燥させた。これにより、前記基板上にLiとCoとの複合酸化物を含むゲルを生成させ、乾燥炉中で200℃で24時間乾燥させ後、700℃で10時間焼成し、前記基板上にコバルト酸リチウム(LiCoO)からなる厚さ約0.05μmの薄膜を得た。
(Example 3-3)
LiOCH 3 and Co (C 2 H 3 O 2 ) 2 were mixed so that the mass ratio of cobalt to lithium was 1: 1, and this was added to 2 L of a water-ethanol (50:50) solution and mixed. . Further, 1.0% by mass of polyvinyl alcohol was added as a stabilizer and mixed. The obtained mixture was coated on a smooth alumina substrate with a bar coater at a gap of 2 μm, sprayed with a 25% aqueous ammonium solution, and vacuum dried at 50 ° C. As a result, a gel containing a composite oxide of Li and Co is formed on the substrate, dried in a drying furnace at 200 ° C. for 24 hours, and then baked at 700 ° C. for 10 hours. A thin film made of (LiCoO 2 ) and having a thickness of about 0.05 μm was obtained.

前記薄膜を基板を曲げて傷をつけて掻き取り、得られた粉末を、走査型電子顕微鏡で観察したところ100個の平均値で、最長軸径47μm、最短軸径0.05μm、アスペクト比940の鱗片状のコバルト酸リチウム粉末を得た。また、前記コバルト酸リチウム粉末は、アスペクト比が1.5以下のコバルト酸リチウム粉末を0個数%含んでいた。   The thin film was bent by scratching the substrate, and the obtained powder was observed with a scanning electron microscope. As a result, the average value of 100 powders, the longest shaft diameter was 47 μm, the shortest shaft diameter was 0.05 μm, and the aspect ratio was 940. Scale-like lithium cobaltate powder was obtained. The lithium cobaltate powder contained 0 number% of lithium cobaltate powder having an aspect ratio of 1.5 or less.

前記コバルト酸リチウム粒子を電極活物質として用いた以外は、実施例1と同様にして二次電池を作製し、これを評価した。結果を表1に示す。   A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the lithium cobalt oxide particles were used as the electrode active material. The results are shown in Table 1.

(比較例3−1)
LiOCH及びCo(Cを、コバルトとリチウムの質量比が1:1となるように混合し、これを水−エタノール(50:50)溶液5Lに加えて、混合した。さらに、これに安定化剤としてポリビニルアルコール3.0質量%を加えて混合した。得られた混合物を、平滑なアルミナ基板上にバーコーターによりギャップ1μmで塗布し、25%アンモニウム水溶液をスプレー噴霧することにより塗布し、50℃で真空乾燥させた。これにより、前記基板上にLiとCoとの複合酸化物を含むゲルを生成させ、乾燥炉中で200℃で24時間乾燥させ後、700℃で10時間焼成し、前記基板上にコバルト酸リチウム(LiCoO)からなる厚さ約0.015μmの薄膜を得た。
(Comparative Example 3-1)
LiOCH 3 and Co (C 2 H 3 O 2 ) 2 were mixed so that the mass ratio of cobalt to lithium was 1: 1, and this was added to 5 L of a water-ethanol (50:50) solution and mixed. . Furthermore, 3.0 mass% of polyvinyl alcohol was added to this as a stabilizer and mixed. The obtained mixture was coated on a smooth alumina substrate with a bar coater at a gap of 1 μm, sprayed with a 25% aqueous ammonium solution, and vacuum dried at 50 ° C. As a result, a gel containing a composite oxide of Li and Co is formed on the substrate, dried in a drying furnace at 200 ° C. for 24 hours, and then baked at 700 ° C. for 10 hours. A thin film made of (LiCoO 2 ) and having a thickness of about 0.015 μm was obtained.

前記薄膜は、基板からはがすことができなかった。   The thin film could not be peeled from the substrate.

本発明による正極活物質の模式図を示す(図1(A)は長軸方向に対する回転楕円体の形状を有する正極活物質(I)の模式図であり、図1(B)は短軸方向に対する回転楕円体の形状を有する正極活物質(I)の模式図である)。The schematic diagram of the positive electrode active material by this invention is shown (FIG. 1 (A) is a schematic diagram of positive electrode active material (I) which has the shape of a spheroid with respect to a major axis direction, FIG.1 (B) is a minor axis direction. It is a schematic diagram of the positive electrode active material (I) having a spheroid shape with respect to FIG.

Claims (14)

平均最短軸径に対する平均最長軸径の比が1.5〜1000である、非水電解質二次電池用正極活物質。   A positive electrode active material for a nonaqueous electrolyte secondary battery, wherein a ratio of an average longest axis diameter to an average shortest axis diameter is 1.5 to 1000. 前記平均最短軸径が0.02〜10μmである請求項1記載の非水電解質二次電池用正極活物質。   The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the average shortest axis diameter is 0.02 to 10 μm. 最短軸径に対する最長軸径の比が1.5〜1000である正極活物質(I)を、前記正極活物質の全量に対して50〜100個数%含む請求項1または2に記載の非水電解質二次電池用正極活物質。   The non-aqueous solution according to claim 1, wherein the positive electrode active material (I) having a ratio of the longest shaft diameter to the shortest shaft diameter of 1.5 to 1000 is 50 to 100% by number with respect to the total amount of the positive electrode active material. Positive electrode active material for electrolyte secondary battery. 前記正極活物質(I)の形状が、板状、円盤状、回転楕円状、柱状、および針状よりなる群から選択される少なくとも一種である請求項1〜3のいずれかに記載の非水電解質二次電池用正極活物質。   The non-aqueous solution according to any one of claims 1 to 3, wherein the shape of the positive electrode active material (I) is at least one selected from the group consisting of a plate shape, a disc shape, a spheroid shape, a column shape, and a needle shape. Positive electrode active material for electrolyte secondary battery. 前記正極活物質(I)の形状が、柱状、針状、および前記正極活物質(I)の長軸方向に対する回転楕円状よりなる群から選択される少なくとも一種である請求項1〜4のいずれかに記載の非水電解質二次電池用正極活物質。   The shape of the positive electrode active material (I) is at least one selected from the group consisting of a columnar shape, a needle shape, and a spheroid shape with respect to the major axis direction of the positive electrode active material (I). A positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1. 正極活物質を含む正極活物質層を有する二次電池用正極であって、
前記正極活物質が、請求項1〜5のいずれかに記載の非水電解質二次電池用正極活物質である非水電解質二次電池用電極。
A positive electrode for a secondary battery having a positive electrode active material layer containing a positive electrode active material,
The electrode for nonaqueous electrolyte secondary batteries whose said positive electrode active material is a positive electrode active material for nonaqueous electrolyte secondary batteries in any one of Claims 1-5.
前記正極活物質層の空隙率が、30〜60%である請求項6記載の非水電解質二次電池用電極。   The electrode for a nonaqueous electrolyte secondary battery according to claim 6, wherein a porosity of the positive electrode active material layer is 30 to 60%. 請求項6または7に記載の非水電解質二次電池用正極を用いた非水電解質二次電池。   A non-aqueous electrolyte secondary battery using the positive electrode for a non-aqueous electrolyte secondary battery according to claim 6 or 7. 請求項8記載の非水電解質二次電池を複数個接続して構成される組電池。   An assembled battery comprising a plurality of nonaqueous electrolyte secondary batteries according to claim 8 connected. 請求項8記載の非水電解質二次電池、または、請求項9に記載の組電池が搭載されてなる車両。   A vehicle on which the nonaqueous electrolyte secondary battery according to claim 8 or the assembled battery according to claim 9 is mounted. 最短軸径に対する最長軸径の比が1.5〜1000である非水電解質二次電池用正極活物質の製造方法であって、
電極活物質前駆体を、縦と横の長さが異なる篩目を有する篩で篩分ける工程を有する非水電解質二次電池用正極活物質の製造方法。
A method for producing a positive electrode active material for a nonaqueous electrolyte secondary battery, wherein the ratio of the longest shaft diameter to the shortest shaft diameter is 1.5 to 1000,
The manufacturing method of the positive electrode active material for non-aqueous electrolyte secondary batteries which has the process of sieving an electrode active material precursor with the sieve which has a mesh which differs in the vertical and horizontal length.
前記電極活物質前駆体を、前記縦と横の長さが異なる篩目を有する篩で篩分けた後、縦と横の長さが等しい篩目を有する篩でさらに篩分ける工程を有する請求項11に記載の非水電解質二次電池用正極活物質の製造方法。   The method further comprising: sieving the electrode active material precursor with a sieve having sieves having the same vertical and horizontal lengths after sieving the precursor with the sieves having different vertical and horizontal lengths. 11. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to 11. 最短軸径に対する最長軸径の比が1.5〜1000である非水電解質二次電池用正極活物質の製造方法であって、
原料化合物を混合し、得られた混合物を、回転楕円状、または針状に成形する工程を有する非水電解質二次電池用正極活物質の製造方法。
A method for producing a positive electrode active material for a nonaqueous electrolyte secondary battery, wherein the ratio of the longest shaft diameter to the shortest shaft diameter is 1.5 to 1000,
The manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries which has the process of mixing a raw material compound and shape | molding the obtained mixture in a spheroid or needle shape.
最短軸径に対する最長軸径の比が1.5〜1000である非水電解質二次電池用正極活物質の製造方法であって、
原料化合物を薄膜状に成形した後、粉砕する工程を有する非水電解質二次電池用正極活物質の製造方法。
A method for producing a positive electrode active material for a nonaqueous electrolyte secondary battery, wherein the ratio of the longest shaft diameter to the shortest shaft diameter is 1.5 to 1000,
The manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries which has the process of grind | pulverizing, after shape | molding a raw material compound in a thin film form.
JP2006263369A 2005-11-24 2006-09-27 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same Active JP5428125B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006263369A JP5428125B2 (en) 2005-11-24 2006-09-27 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
PCT/JP2006/323075 WO2007060906A1 (en) 2005-11-24 2006-11-20 Positive electrode active material particle for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005339521 2005-11-24
JP2005339521 2005-11-24
JP2006263369A JP5428125B2 (en) 2005-11-24 2006-09-27 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2007173210A true JP2007173210A (en) 2007-07-05
JP5428125B2 JP5428125B2 (en) 2014-02-26

Family

ID=38067133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006263369A Active JP5428125B2 (en) 2005-11-24 2006-09-27 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same

Country Status (2)

Country Link
JP (1) JP5428125B2 (en)
WO (1) WO2007060906A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015904A (en) * 2008-07-04 2010-01-21 Nissan Motor Co Ltd Nonaqueous electrolyte secondary battery
JP2010108907A (en) * 2008-11-03 2010-05-13 Imara Corp Lithium secondary battery having positive electrode composition and method for manufacturing the same
CN102148364A (en) * 2010-02-05 2011-08-10 丰田自动车株式会社 Production method for electrode for battery, electrode produced by production method, and battery including electrode
JP2011204638A (en) * 2010-03-26 2011-10-13 Mitsubishi Materials Corp POSITIVE ELECTRODE ACTIVE MATERIAL FOR Li-ION CELL AND METHOD OF MANUFACTURING THE SAME
JP2012009151A (en) * 2010-06-22 2012-01-12 Ngk Insulators Ltd Positive electrode of lithium secondary battery, and lithium secondary battery
JP2012089342A (en) * 2010-10-19 2012-05-10 Sharp Corp Cathode active material, manufacturing method thereof, cathode, and nonaqueous electrolytic secondary battery
KR20140039225A (en) * 2011-05-12 2014-04-01 어플라이드 머티어리얼스, 인코포레이티드 Precursor formulation for battery active materials??synthesis
JP2014067694A (en) * 2012-09-04 2014-04-17 Ngk Insulators Ltd Method for producing positive electrode active material for lithium secondary battery or precursor thereof
JP2015056384A (en) * 2013-09-13 2015-03-23 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2015210928A (en) * 2014-04-25 2015-11-24 株式会社豊田自動織機 Positive electrode for nonaqueous secondary battery and nonaqueous secondary battery
EP3208870A4 (en) * 2014-10-15 2017-08-23 Tokyo University of Science Foundation Negative electrode for potassium ion secondary batteries, negative electrode for potassium ion capacitors, potassium ion secondary battery, potassium ion capacitor, and binder for negative electrodes of potassium ion secondary batteries or negative electrodes of potassium ion capacitors
KR20190076767A (en) * 2017-12-22 2019-07-02 주식회사 포스코 Manufacturing method of a positive electrode active material for rechargeable battery, positive electrode active material for rechargeable battery manufacture using the same, and rechargeable battery including the same
US10439204B2 (en) 2015-03-06 2019-10-08 Rise Innventia Ab Electrode active coating for a lithium-ion battery and method of production therefore

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5820662B2 (en) * 2010-09-06 2015-11-24 株式会社Nttファシリティーズ Lithium ion secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275277A (en) * 1992-05-18 1994-09-30 Mitsubishi Cable Ind Ltd Lithium secondary battery
JP2000223111A (en) * 1999-01-28 2000-08-11 Kyocera Corp Electrochemical element
JP2001023640A (en) * 1999-07-09 2001-01-26 Seimi Chem Co Ltd Lithium secondary battery
JP2001202948A (en) * 2000-01-19 2001-07-27 Sanyo Electronic Components Co Ltd Active material for positive electrode and method of fabrication
JP2002208399A (en) * 2000-11-09 2002-07-26 Japan Storage Battery Co Ltd Positive electrode active material for secondary battery and its manufacturing method as well as nonaqueous electrolyte secondary battery equipped with same
JP2003017050A (en) * 2001-06-27 2003-01-17 Santoku Corp Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, non-aqueous electrolyte secondary battery and manufacturing method of positive electrode
JP2006066170A (en) * 2004-08-26 2006-03-09 Daiken Kagaku Kogyo Kk Lithium manganate powder of spinel structure, manufacturing method of the same, electrode, and lithium group secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275277A (en) * 1992-05-18 1994-09-30 Mitsubishi Cable Ind Ltd Lithium secondary battery
JP2000223111A (en) * 1999-01-28 2000-08-11 Kyocera Corp Electrochemical element
JP2001023640A (en) * 1999-07-09 2001-01-26 Seimi Chem Co Ltd Lithium secondary battery
JP2001202948A (en) * 2000-01-19 2001-07-27 Sanyo Electronic Components Co Ltd Active material for positive electrode and method of fabrication
JP2002208399A (en) * 2000-11-09 2002-07-26 Japan Storage Battery Co Ltd Positive electrode active material for secondary battery and its manufacturing method as well as nonaqueous electrolyte secondary battery equipped with same
JP2003017050A (en) * 2001-06-27 2003-01-17 Santoku Corp Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, non-aqueous electrolyte secondary battery and manufacturing method of positive electrode
JP2006066170A (en) * 2004-08-26 2006-03-09 Daiken Kagaku Kogyo Kk Lithium manganate powder of spinel structure, manufacturing method of the same, electrode, and lithium group secondary battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015904A (en) * 2008-07-04 2010-01-21 Nissan Motor Co Ltd Nonaqueous electrolyte secondary battery
US9099738B2 (en) 2008-11-03 2015-08-04 Basvah Llc Lithium secondary batteries with positive electrode compositions and their methods of manufacturing
JP2010108907A (en) * 2008-11-03 2010-05-13 Imara Corp Lithium secondary battery having positive electrode composition and method for manufacturing the same
CN102148364A (en) * 2010-02-05 2011-08-10 丰田自动车株式会社 Production method for electrode for battery, electrode produced by production method, and battery including electrode
JP2011165404A (en) * 2010-02-05 2011-08-25 Toyota Motor Corp Method of manufacturing electrode for battery, electrode obtained by this method, and battery with this electrode
US8518584B2 (en) 2010-02-05 2013-08-27 Toyota Jidosha Kabushiki Kaisha Production method for electrode for battery, electrode produced by production method, and battery including electrode
JP2011204638A (en) * 2010-03-26 2011-10-13 Mitsubishi Materials Corp POSITIVE ELECTRODE ACTIVE MATERIAL FOR Li-ION CELL AND METHOD OF MANUFACTURING THE SAME
JP2012009151A (en) * 2010-06-22 2012-01-12 Ngk Insulators Ltd Positive electrode of lithium secondary battery, and lithium secondary battery
JP2012089342A (en) * 2010-10-19 2012-05-10 Sharp Corp Cathode active material, manufacturing method thereof, cathode, and nonaqueous electrolytic secondary battery
KR20140039225A (en) * 2011-05-12 2014-04-01 어플라이드 머티어리얼스, 인코포레이티드 Precursor formulation for battery active materials??synthesis
KR101941557B1 (en) * 2011-05-12 2019-01-23 어플라이드 머티어리얼스, 인코포레이티드 Precursor formulation for battery active materials synthesis
JP2014067694A (en) * 2012-09-04 2014-04-17 Ngk Insulators Ltd Method for producing positive electrode active material for lithium secondary battery or precursor thereof
JP2015056384A (en) * 2013-09-13 2015-03-23 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2015210928A (en) * 2014-04-25 2015-11-24 株式会社豊田自動織機 Positive electrode for nonaqueous secondary battery and nonaqueous secondary battery
EP3208870A4 (en) * 2014-10-15 2017-08-23 Tokyo University of Science Foundation Negative electrode for potassium ion secondary batteries, negative electrode for potassium ion capacitors, potassium ion secondary battery, potassium ion capacitor, and binder for negative electrodes of potassium ion secondary batteries or negative electrodes of potassium ion capacitors
US10593992B2 (en) 2014-10-15 2020-03-17 Tokyo University Of Science Foundation Negative electrode for potassium ion secondary batteries, negative electrode for potassium ion capacitors, potassium ion secondary battery, potassium ion capacitor, and binder for negative electrodes of potassium ion secondary batteries or negative electrodes of potassium ion capacitors
US10439204B2 (en) 2015-03-06 2019-10-08 Rise Innventia Ab Electrode active coating for a lithium-ion battery and method of production therefore
KR20190076767A (en) * 2017-12-22 2019-07-02 주식회사 포스코 Manufacturing method of a positive electrode active material for rechargeable battery, positive electrode active material for rechargeable battery manufacture using the same, and rechargeable battery including the same
KR102043783B1 (en) 2017-12-22 2019-11-12 주식회사 포스코 Manufacturing method of a positive electrode active material for rechargeable battery, positive electrode active material for rechargeable battery manufacture using the same, and rechargeable battery including the same

Also Published As

Publication number Publication date
JP5428125B2 (en) 2014-02-26
WO2007060906A1 (en) 2007-05-31

Similar Documents

Publication Publication Date Title
JP5428125B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP4407211B2 (en) Nonaqueous electrolyte secondary battery
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
KR101026903B1 (en) Electrode for secondary battery and secondary battery using same
JP5625273B2 (en) Method for producing positive electrode material for lithium ion battery
US8916295B2 (en) Positive electrode active material for lithium ion secondary battery
EP2819219B1 (en) Bipolar electrode and bipolar lithium-ion secondary battery using same
JP5370937B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
KR20130031373A (en) Active material, process for production of active material, and lithium ion secondary battery
US10439209B2 (en) Electrode and non-aqueous electrolyte secondary battery
JP2010205609A (en) Electrode and battery using this
WO2014010526A1 (en) Non-aqueous electrolyte secondary battery
JP2007257862A (en) Electrode for secondary battery, and secondary battery
JP4984422B2 (en) Method for manufacturing electrode for secondary battery
JP2006059641A (en) Electrode for secondary battery and secondary battery using it
US20140011083A1 (en) Electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery including the same
WO2017150311A1 (en) Negative-electrode active material and lithium ion secondary battery using same
US7378189B2 (en) Electrode material for lithium secondary battery, electrode structure employing electrode material, and lithium secondary battery having electrode structure
KR20090084693A (en) Non-aqueous electrolyte battery and negative electrode, and method for manufacturing the same
JP7038956B2 (en) Negative electrode active material with high output characteristics and lithium secondary battery containing it
JP2006179367A (en) Method of manufacturing electrode for battery
JP7233013B2 (en) Non-aqueous electrolyte secondary battery
CN112447941B (en) Nonaqueous electrolyte secondary battery
EP3869586A1 (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7476788B2 (en) Battery Module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5428125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250