JP2003017050A - Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, non-aqueous electrolyte secondary battery and manufacturing method of positive electrode - Google Patents

Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, non-aqueous electrolyte secondary battery and manufacturing method of positive electrode

Info

Publication number
JP2003017050A
JP2003017050A JP2001195157A JP2001195157A JP2003017050A JP 2003017050 A JP2003017050 A JP 2003017050A JP 2001195157 A JP2001195157 A JP 2001195157A JP 2001195157 A JP2001195157 A JP 2001195157A JP 2003017050 A JP2003017050 A JP 2003017050A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary battery
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001195157A
Other languages
Japanese (ja)
Other versions
JP5079951B2 (en
Inventor
Satoru Fujiwara
哲 藤原
Shigeru Ono
茂 小野
Tadatoshi Murota
忠俊 室田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP2001195157A priority Critical patent/JP5079951B2/en
Priority to CNB02812992XA priority patent/CN1311574C/en
Priority to KR1020037016383A priority patent/KR100934612B1/en
Priority to PCT/JP2002/006473 priority patent/WO2003003489A1/en
Publication of JP2003017050A publication Critical patent/JP2003017050A/en
Application granted granted Critical
Publication of JP5079951B2 publication Critical patent/JP5079951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide positive electrode active material for a non-aqueous electrolyte secondary battery capable of improving the load characteristics of the non-aqueous electrolyte secondary battery, improving the capacity, filling efficiency and filling density, and a manufacturing method thereof. SOLUTION: This positive electrode active material for a non-aqueous electrolyte secondary battery is composed of the compound oxide particles containing Li and at least one kind of transition element selected form a group formed of Co, Ni, Mn and Fe, and the compound oxide particles contains 90% or more of spherical and/or elliptic spherical particles having a diameter in a range of 1.0-2.0 of D1/D2 where D1 is the maximum diameter and D2 is the minimum diameter, and this positive electrode active material is used for a non-aqueous electrolyte secondary battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水溶液を電解質
とした二次電池における、負荷特性を有効に改善し、高
容量化が可能な非水電解液2次電池用正極活物質、その
製造方法、該正極活物質を用いた非水電解液2次電池、
並びに該非水電解液2次電池用正極の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, which is capable of effectively improving load characteristics and high capacity in a secondary battery using a non-aqueous solution as an electrolyte, and its production. Method, non-aqueous electrolyte secondary battery using the positive electrode active material,
It also relates to a method for producing the positive electrode for a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】近年、ビデオカメラ、携帯型CD、携帯
電話、PDAやノートパソコン等の携帯用電子機器の小
型化、軽量化、高性能化が進んでいる。これらの携帯用
電子機器の電源には、高容量かつ重負荷特性に優れた安
全性の高い二次電池が必要とされている。このような目
的に合致した二次電池としては、シール鉛蓄電池やニッ
ケル・カドミウム蓄電池が使用されてきたが、よりエネ
ルギー密度の高い電池としてニッケル水素蓄電池や非水
電解液二次電池としてリチウムイオン二次電池が実用化
に至っている。リチウムイオン二次電池は、正極活物質
として、Liと、Co、Ni、Mn等の遷移金属との複
合酸化物を用い、負極活物質にリチウムイオンを挿入・
脱挿入できる炭素等の炭素質材料を用いた二次電池であ
り、ニッケル水素蓄電池等に比べて容量が大きく、また
電圧が高いという特徴を持っている。しかし、最近の一
層の高容量化や大電流化の要求に対して正極活物質の充
填密度を上げることや、正極活物質と混合する導電助剤
の量を減らすことにより正極活物質量を増加させるなど
の対策が必要となっている。
2. Description of the Related Art In recent years, portable electronic devices such as video cameras, portable CDs, mobile phones, PDAs and notebook computers have been reduced in size, weight and performance. As a power source for these portable electronic devices, a highly safe secondary battery having high capacity and excellent heavy load characteristics is required. Sealed lead storage batteries and nickel-cadmium storage batteries have been used as secondary batteries that meet such purposes, but nickel-metal hydride storage batteries and lithium-ion secondary batteries as non-aqueous electrolyte secondary batteries have been used as batteries with higher energy density. Secondary batteries have come into practical use. A lithium ion secondary battery uses a composite oxide of Li and a transition metal such as Co, Ni, and Mn as a positive electrode active material, and inserts lithium ions into the negative electrode active material.
It is a secondary battery that uses a carbonaceous material such as carbon that can be inserted and removed, and has the characteristics that it has a larger capacity and a higher voltage than nickel-metal hydride storage batteries and the like. However, in response to the recent demand for higher capacity and higher current, the amount of positive electrode active material is increased by increasing the packing density of the positive electrode active material and decreasing the amount of conductive additive mixed with the positive electrode active material. It is necessary to take measures such as allowing them to do so.

【0003】このような要望に答えるべく様々な研究が
なされているが、その中に正極活物質を球形にして充填
効率を高め、充填効率の向上により活物質どうしの接触
面積を増やすことによって導電性を向上させ、正極中の
導電助剤を低減して、実質的に活物質量を増加する試み
がなされている。例えば、特開平10−74516号公
報には、正極活物質を中空球形にして充填効率を向上さ
せると共に比表面積を増加し、電解液との接触面積を増
やして重負荷時の反応性を高めるという技術が開示され
ている。しかし、この方法では、活物質が中空球形であ
るため、球形による充填効率の向上を見込めるとして
も、単位体積当たりに充填できる活物質の量は低下して
しまい、高容量は望めない。また、特開平11−273
678号公報には、コバルト酸リチウム正極活物質のコ
バルト源として、球形又は楕円球形のオキシ水酸化コバ
ルトを用い、オキシ水酸化コバルトとリチウム化合物と
を混合、焼成して球形の正極活物質を製造する技術が開
示されている。更に、特開平11−288716号公報
には、1次粒子が放射状に集まった球形又は楕円球形の
水酸化ニッケルコバルトとリチウム化合物とを混合、焼
成して球形の正極活物質を製造する技術が開示されてい
る。しかし、これらの方法では、正極活物質を生成する
反応が起きる際にリチウム化合物の分解反応や遷移金属
化合物の分解反応が同時に起こる。これらの分解反応は
水蒸気や炭酸ガス等の気体の生成を伴うため、生成した
活物質は球形を保っているものの非常に空隙の多いもの
となり、単位体積当たりに充填できる活物質の量は低下
してしまい、高容量は望めない。
Various researches have been made to meet such a demand, and by making the positive electrode active material spherical, the filling efficiency is increased, and by increasing the filling efficiency, the contact area between the active materials is increased to improve the conductivity. Attempts have been made to improve the properties and reduce the amount of the conductive additive in the positive electrode to substantially increase the amount of the active material. For example, in Japanese Patent Laid-Open No. 10-74516, it is stated that the positive electrode active material is formed into a hollow sphere to improve the filling efficiency, the specific surface area is increased, and the contact area with the electrolytic solution is increased to increase the reactivity under heavy load. The technology is disclosed. However, in this method, since the active material is a hollow sphere, even if it is expected that the packing efficiency is improved by the sphere, the amount of the active material that can be packed per unit volume is reduced, and a high capacity cannot be expected. In addition, JP-A-11-273
No. 678, spherical or elliptical spherical cobalt oxyhydroxide is used as a cobalt source of a lithium cobalt oxide positive electrode active material, and cobalt oxyhydroxide and a lithium compound are mixed and fired to produce a spherical positive electrode active material. Techniques for doing so are disclosed. Further, Japanese Patent Laid-Open No. 11-288716 discloses a technique for producing a spherical positive electrode active material by mixing spherical or elliptic spherical nickel cobalt hydroxide in which primary particles are radially gathered and a lithium compound and firing the mixture. Has been done. However, in these methods, the decomposition reaction of the lithium compound and the decomposition reaction of the transition metal compound occur at the same time when the reaction of forming the positive electrode active material occurs. Since these decomposition reactions are accompanied by the generation of gases such as water vapor and carbon dioxide, the generated active material remains spherical, but has very many voids, and the amount of active material that can be filled per unit volume decreases. I cannot expect high capacity.

【0004】[0004]

【発明が解決しようとする課題】従って、本発明の目的
は、非水電解液2次電池における負荷特性を有効に改善
し、高容量化が可能な、充填効率が高く、充填密度の大
きな非水電解液2次電池用正極活物質及びその製造方法
を提供することにある。本発明の別の目的は、優れた放
電容量が得られる非水電解液2次電池及び該非水電解液
2次電池用正極の製造方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to improve the load characteristics of a non-aqueous electrolyte secondary battery effectively, to increase the capacity, to have a high packing efficiency and a large packing density. It is intended to provide a positive electrode active material for a water electrolyte secondary battery and a method for producing the same. Another object of the present invention is to provide a non-aqueous electrolyte secondary battery which can obtain an excellent discharge capacity and a method for producing a positive electrode for the non-aqueous electrolyte secondary battery.

【0005】[0005]

【課題を解決するための手段】本発明によれば、Li
と、Co、Ni、Mn及びFeからなる群より選択され
る少なくとも一種の遷移元素とを含む複合酸化物粒子か
らなり、前記複合酸化物粒子が、最長径をD1、最短径
をD2とした際のD1/D2が1.0〜2.0の範囲にあ
る球状及び/又は楕円球状の粒子を90%以上含むこと
を特徴とする非水電解液2次電池用正極活物質が提供さ
れる。また本発明によれば、Co、Ni、Mn及びFe
からなる群より選択される少なくとも一種の遷移元素の
化合物粒子と、リチウム化合物とを含む原材料を混合
し、得られた混合物を、仮焼工程として該リチウム化合
物の融点以上の温度で保持した後、本焼成工程として該
リチウム化合物の分解温度以上で保持することを特徴と
する非水電解液2次電池用正極活物質の製造方法が提供
される。更に本発明によれば、正極活物質粉末を有する
正極と、負極と、電解液とを備え、該正極活物質粉末が
上記非水電解液2次電池用正極活物質を含むことを特徴
とする非水電解液2次電池が提供される。更にまた本発
明によれば、複合酸化物粒子を含む正極活物質を成形加
工する、上記非水電解液2次電池に用いる正極の製造方
法であって、平均粒径が10%以上異なる少なくとも2
種の複合酸化物粒子を混合して正極活物質に用いる前記
複合酸化物粒子を得ることを特徴とし、該複合酸化物粒
子が、主として粒径2〜100μmの粒子からなり、且
つ平均粒径が5〜80μmであり、Liと、Co、N
i、Mn及びFeからなる群より選択される少なくとも
一種の遷移元素とを含み、最長径をD1、最短径をD2と
した際のD1/D2が1.0〜2.0の範囲にある球状及
び/又は楕円球状の粒子を90%以上含む、非水電解液
2次電池用正極の製造方法が提供される。
According to the present invention, Li
And a composite oxide particle containing at least one transition element selected from the group consisting of Co, Ni, Mn and Fe, wherein the composite oxide particle has a longest diameter of D1 and a shortest diameter of D2. Of 90% or more of spherical and / or elliptic spherical particles having D1 / D2 of 1.0 to 2.0 are provided. Also according to the invention, Co, Ni, Mn and Fe
Compound particles of at least one transition element selected from the group consisting of, and a raw material containing a lithium compound are mixed, and the resulting mixture is held at a temperature equal to or higher than the melting point of the lithium compound as a calcination step, Provided is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which is characterized by holding at a decomposition temperature of the lithium compound or higher as a main firing step. Further, according to the present invention, a positive electrode having a positive electrode active material powder, a negative electrode, and an electrolytic solution are provided, and the positive electrode active material powder contains the positive electrode active material for a non-aqueous electrolytic solution secondary battery. A non-aqueous electrolyte secondary battery is provided. Furthermore, according to the present invention, there is provided a method for producing a positive electrode used in the above non-aqueous electrolyte secondary battery, which comprises molding and processing a positive electrode active material containing composite oxide particles, wherein the average particle size differs by at least 10%.
It is characterized in that the composite oxide particles to be used in the positive electrode active material are obtained by mixing seed composite oxide particles, wherein the composite oxide particles mainly consist of particles having a particle size of 2 to 100 μm, and have an average particle size of 5 to 80 μm, Li, Co, N
A spherical shape containing at least one transition element selected from the group consisting of i, Mn and Fe, and having D1 / D2 in the range of 1.0 to 2.0 when the longest diameter is D1 and the shortest diameter is D2. And / or a method for producing a positive electrode for a non-aqueous electrolyte secondary battery, which comprises 90% or more of ellipsoidal particles.

【0006】[0006]

【発明の実施の形態】以下、本発明を更に詳細に説明す
る。本発明の非水電解液2次電池用正極活物質(以下、
本発明の正極活物質という)は、Liと、Co、Ni、
Mn及びFeからなる群より選択される少なくとも一種
の遷移元素とを含む特定の複合酸化物粒子からなる。
The present invention will be described in more detail below. Non-aqueous electrolyte secondary battery positive electrode active material of the present invention (hereinafter,
The positive electrode active material of the present invention) means Li, Co, Ni,
It consists of specific composite oxide particles containing at least one transition element selected from the group consisting of Mn and Fe.

【0007】前記複合酸化物としては、例えば、LiC
oO2、LiNiO2、LiMn24、LiFeO2や、
LiCo0.8Ni0.22、LiCo0.5Ni0.52、Li
Co0 .1Ni0.92等のLiCoXNi1-X2(0≦X≦
1)で表される酸化物等が挙げられる。本発明の正極活
物質は、上記組成に加えて、アルカリ金属、アルカリ土
類金属、Ti、Zr、Hf、Y、Sc及び希土類金属等
からなる群より選択される少なくとも一種が含まれてい
ても良い。これらの金属元素は、本発明の正極活物質の
格子間隔を広げて容量を増加させたり、充放電効率を高
めたり、正極活物質の焼結性を向上して密度を上げる等
の作用を有する。これら添加元素の添加量は、全体の1
質量%以下が好ましく、特に、0.5質量%以下、更に
は0.3質量%以下が望ましい。1質量%を超えて添加
しても密度向上が望めず、かえって本発明の正極活物質
の容量が低下する恐れがあるので好ましくない。
Examples of the composite oxide include LiC
oO 2, LiNiO 2, LiMn 2 O 4, and LiFeO 2,
LiCo 0.8 Ni 0.2 O 2 , LiCo 0.5 Ni 0.5 O 2 , Li
LiCo such Co 0 .1 Ni 0.9 O 2 X Ni 1-X O 2 (0 ≦ X ≦
Examples thereof include oxides represented by 1). In addition to the above composition, the positive electrode active material of the present invention may contain at least one selected from the group consisting of alkali metals, alkaline earth metals, Ti, Zr, Hf, Y, Sc and rare earth metals. good. These metal elements have the action of expanding the lattice spacing of the positive electrode active material of the present invention to increase the capacity, increasing the charge / discharge efficiency, improving the sinterability of the positive electrode active material and increasing the density. . The addition amount of these additional elements is 1
It is preferably not more than 0.5% by mass, more preferably not more than 0.5% by mass, and further preferably not more than 0.3% by mass. The addition of more than 1% by mass is not preferable because the density cannot be improved and the capacity of the positive electrode active material of the present invention may be reduced.

【0008】本発明の正極活物質としての複合酸化物粒
子の形状は、主に球状又は楕円球状である。針状や紡錘
状、板状、不定形のものでは、充填効率を上げることが
できないため好ましくなく、楕円球状であってもアスペ
クト比が大きく、紡錘状に近くなると充填効率が下がる
ため好ましくない。従って、前記複合酸化物粒子は、最
長径をD1、最短径をD2とした際のD1/D2(アスペク
ト比)が1.0〜2.0、好ましくは1.0〜1.5の
範囲にある球状及び/又は楕円球状の粒子を90%以上
含む。
The shape of the composite oxide particles as the positive electrode active material of the present invention is mainly spherical or ellipsoidal. Needles, spindles, plates, and irregular shapes are not preferable because the filling efficiency cannot be increased. Even if the shape is ellipsoidal, the aspect ratio is large, and if the shape is close to the spindle, the filling efficiency decreases, which is not preferable. Therefore, the composite oxide particles have a D1 / D2 (aspect ratio) of 1.0 to 2.0, preferably 1.0 to 1.5, where D1 is the longest diameter and D2 is the shortest diameter. It contains 90% or more of certain spherical and / or elliptic spherical particles.

【0009】本発明の正極活物質のタップ密度は高い方
がよい。タップ密度が低いと正極活物質の充填効率が悪
くなるため、限られた極板の体積内に多くの活物質を充
填することができず、容量が低下してしまう。本発明の
正極活物質においては、好ましくはタップ密度2.9g
/cm3以上、特に好ましくは3.0g/cm3以上、よ
り好ましくは3.1g/cm3以上である。
The tap density of the positive electrode active material of the present invention is preferably high. If the tap density is low, the filling efficiency of the positive electrode active material will be poor, so that many active materials cannot be filled in the limited volume of the electrode plate, resulting in a decrease in capacity. In the positive electrode active material of the present invention, the tap density is preferably 2.9 g.
/ Cm 3 or more, particularly preferably 3.0 g / cm 3 or more, more preferably 3.1 g / cm 3 or more.

【0010】上記タップ密度の向上には、粒子の粒度分
布と平均粒径が重要な役割をもつ。粘度分布がブロード
過ぎたり、シャープすぎたりすると粒子の充填効率が悪
くなり、平均粒径が小さすぎると粒子の表面エネルギー
が大きくなるため、このような場合も充填効率の低下を
招く。平均粒径が大きすぎると、電極を作成する際に集
電体上に活物質を均一に塗布することが困難になる。従
って、本発明の正極活物質を構成する複合酸化物粒子の
粒径は、主として2〜100μm、特に10〜100μ
mの範囲にあることが好ましく、特に、その80%以
上、更にはその85%以上、更にまた90%以上が上記
範囲にあることが望ましい。また、平均粒径は5〜80
μm、特に30〜80μm、更に30〜60μmである
ことが好ましい。平均粒径が5μm未満であったり、8
0μmより大きかったりすると、たとえ粒径の範囲が上
述の好ましい範囲にあったとしても粒度分布がシャープ
になりすぎて充填効率が低下するため好ましくない。前
記複合酸化物の比表面積は、好ましくは0.05〜0.
24m2/g、特に好ましくは0.1〜0.2m2/gで
ある。比表面積が0.05m2/g未満では、得られる
正極の内部抵抗が大きくなり、高率放電特性が低下する
ので好ましくなく、一方、0.24m2/gを超える場
合には、電解液等との反応性が高くなり、得られる正極
の熱安定性が低下するので好ましくない。また、本発明
の正極活物質を構成する複合酸化物粒子を用いて実際に
正極を製造する際には、正極活物質の充填効率を高くす
るために、上記平均粒径が異なる少なくとも2種の上記
複合酸化物粒子の混合物を用いることが好ましい。この
際、混合する複合酸化物粒子は、平均粒径が10%以上
異なることが好ましい。
In order to improve the tap density, the particle size distribution and average particle size play important roles. If the viscosity distribution is too broad or too sharp, the packing efficiency of the particles will be poor, and if the average particle size is too small, the surface energy of the particles will be large, and in such a case also the packing efficiency will be lowered. If the average particle size is too large, it becomes difficult to uniformly apply the active material onto the current collector when forming the electrode. Therefore, the particle size of the composite oxide particles constituting the positive electrode active material of the present invention is mainly 2 to 100 μm, particularly 10 to 100 μm.
It is preferably in the range of m, and particularly preferably 80% or more, more preferably 85% or more, still more preferably 90% or more. The average particle size is 5 to 80.
μm, particularly 30 to 80 μm, and further preferably 30 to 60 μm. The average particle size is less than 5 μm or 8
If it is larger than 0 μm, the particle size distribution becomes too sharp and the packing efficiency is lowered even if the particle size range is in the above-mentioned preferred range, which is not preferable. The specific surface area of the composite oxide is preferably 0.05-0.
24m 2 / g, particularly preferably 0.1 to 0.2M 2 / g. The specific than surface area of 0.05 m 2 / g, the positive electrode internal resistance of the increases obtained, it is not preferable because the high-rate discharge characteristics are lowered, whereas, if it exceeds 0.24 m 2 / g, the electrolyte solution or the like It is not preferable because the reactivity with and becomes high, and the thermal stability of the obtained positive electrode decreases. Further, when actually manufacturing a positive electrode using the composite oxide particles constituting the positive electrode active material of the present invention, in order to increase the filling efficiency of the positive electrode active material, at least two kinds of different average particle diameters are used. It is preferable to use a mixture of the above composite oxide particles. At this time, it is preferable that the mixed oxide particles to be mixed have an average particle diameter different by 10% or more.

【0011】本発明の正極活物質を製造する方法は、本
発明の正極活物質が得られれば特に限定されない。例え
ば、リチウム源となるリチウム化合物と遷移金属源とな
る遷移元素の化合物とを混合し、適当な条件を設定して
焼成する方法等により得ることができる。好ましい方法
としては、以下に示す本発明の製造方法等が挙げられ
る。本発明の製造方法は、特定の遷移金属源となる遷移
元素の化合物粒子と、リチウム源となるリチウム化合物
とを含む原材料を混合し、得られた混合物を、特定の仮
焼工程及び本焼成工程を行うことを特徴とする。
The method for producing the positive electrode active material of the present invention is not particularly limited as long as the positive electrode active material of the present invention can be obtained. For example, it can be obtained by a method of mixing a lithium compound as a lithium source and a compound of a transition element as a transition metal source, setting appropriate conditions and firing. Preferred methods include the production method of the present invention shown below. The production method of the present invention comprises mixing a raw material containing a compound particle of a transition element serving as a specific transition metal source and a lithium compound serving as a lithium source, and subjecting the resulting mixture to a specific calcination step and main firing step. It is characterized by performing.

【0012】上記リチウム源となるリチウム化合物は、
融点が800℃以下で、熱分解温度が1100℃以下で
あるものが好ましく、例えば、水酸化リチウム、塩化リ
チウム、硝酸リチウム、炭酸リチウム、硫酸リチウム等
の無機塩;蟻酸リチウム、酢酸リチウム、蓚酸リチウム
等の有機塩等が挙げられる。上記遷移金属源となる遷移
元素の化合物粒子は、Co、Ni、Mn及びFeからな
る群より選択される少なくとも一種の遷移元素の化合物
粒子であって、熱分解温度が1100℃以下であるもの
が好ましく、例えば、水酸化物や炭酸塩等が挙げられる
が、タップ密度を向上させる目的を考慮すると、熱分解
しない遷移金属の酸化物粒子が望ましい。
The lithium compound serving as the lithium source is
Those having a melting point of 800 ° C. or lower and a thermal decomposition temperature of 1100 ° C. or lower are preferable, for example, inorganic salts such as lithium hydroxide, lithium chloride, lithium nitrate, lithium carbonate, lithium sulfate; lithium formate, lithium acetate, lithium oxalate. And the like. The compound particles of the transition element serving as the transition metal source are compound particles of at least one transition element selected from the group consisting of Co, Ni, Mn and Fe, and have a thermal decomposition temperature of 1100 ° C. or lower. Preferred examples include hydroxides and carbonates, but in consideration of the purpose of improving the tap density, transition metal oxide particles that do not undergo thermal decomposition are desirable.

【0013】上記遷移金属源の粒子形状は、球状及び/
又は楕円球状の球形粒子であることが好ましい。このよ
うな粒子を得る方法としては、例えば、不定形の一次粒
子を造粒によって球形にする方法や、液状又はスラリー
状の化合物を噴霧乾燥又は噴霧焼成法によって球形にす
る方法、均一沈殿法等により球形の粒子を直接得る方法
等が挙げられる。球形の酸化物粒子とする場合は、これ
らの球形粒子を焼成して得ることができるが、この際の
焼成温度が低いとタップ密度も低くなってしまうため、
500℃以上の温度で焼成することが好ましい。球状及
び/又は楕円球状の遷移金属源は、この段階である程度
のタップ密度を有することが好ましい。この段階におけ
るタップ密度が低いと、得られる正極活物質のタップ密
度も低くなってしまう。このような球状及び/又は楕円
球状の遷移金属源のタップ密度は、好ましくは2.0g
/cm3以上、より好ましくは2.2g/cm3以上、更
に好ましくは2.4g/cm3以上である。
The particle shape of the above-mentioned transition metal source is spherical and / or
Alternatively, it is preferably an ellipsoidal spherical particle. Examples of the method for obtaining such particles include, for example, a method of forming irregularly shaped primary particles into a spherical shape by granulation, a method of forming a liquid or slurry-like compound into a spherical shape by spray drying or spray firing, a uniform precipitation method, and the like. And a method of directly obtaining spherical particles. In the case of spherical oxide particles, it can be obtained by firing these spherical particles, but because the tap density also becomes low when the firing temperature at this time is low,
It is preferable to bake at a temperature of 500 ° C. or higher. The spherical and / or ellipsoidal transition metal source preferably has some tap density at this stage. If the tap density at this stage is low, the tap density of the obtained positive electrode active material will also be low. The tap density of such a spherical and / or oval spherical transition metal source is preferably 2.0 g.
/ Cm 3 or more, more preferably 2.2 g / cm 3 or more, and further preferably 2.4 g / cm 3 or more.

【0014】本発明の製造方法において、上述のリチウ
ム源と遷移金属源とを含む原材料には、必要に応じて、
上述の添加元素、すなわち、アルカリ金属、アルカリ土
類金属、Ti、Zr、Hf、Y、Sc及び希土類金属等
からなる群より選択される少なくとも一種の金属化合物
を含んでいても良い。これら原材料の混合は公知の方法
で行なうことができる。
In the production method of the present invention, the raw material containing the above-mentioned lithium source and transition metal source may, if necessary,
It may contain at least one metal compound selected from the group consisting of the above-mentioned additional elements, that is, an alkali metal, an alkaline earth metal, Ti, Zr, Hf, Y, Sc and a rare earth metal. These raw materials can be mixed by a known method.

【0015】本発明の製造方法では、得られる本発明の
正極活物質のタップ密度を向上させる目的で、上記原材
料の混合物の焼成を、特定な仮焼工程及び特定の本焼成
工程の2段階で行う。特定の仮焼工程は、原材料に用い
たリチウム化合物の融点以上の温度に保持する。この仮
焼工程では、原材料である遷移元素の化合物粒子中にリ
チウム化合物を含浸させることを目的とする。従って、
保持温度の上限は、リチウム化合物の分解温度未満であ
ることが好ましく、且つ300〜950℃、特に500
〜800℃が望ましい。保持時間は10〜300分間が
好ましい。特定の本焼成工程は、仮焼工程を経た、例え
ば、リチウム化合物を含浸した遷移元素の化合物を、原
材料に用いたリチウム化合物の分解温度以上に保持す
る。この本焼成工程では、リチウム化合物と遷移元素の
化合物とを反応させ、目的とする本発明の正極活物質を
生成させることを目的とする。この際の温度は、リチウ
ム化合物の分解温度以上であればよいが、リチウム化合
物の分解温度が低い場合には遷移元素の化合物粒子との
反応に時間を要する場合があるため、好ましくは700
〜1100℃、より好ましくは800〜1100℃であ
る。保持時間は、短かすぎると反応が完結せず、長すぎ
ると固相反応が進行しすぎて粒子同士が付着してしまう
ことがあるため、好ましくは10〜1800分間、より
好ましくは10〜900分間である。
In the production method of the present invention, in order to improve the tap density of the obtained positive electrode active material of the present invention, firing of the mixture of the above raw materials is performed in two stages of a specific calcination step and a specific main firing step. To do. The specific calcination step is maintained at a temperature equal to or higher than the melting point of the lithium compound used as the raw material. The purpose of this calcination step is to impregnate the compound particles of the transition element, which is the raw material, with the lithium compound. Therefore,
The upper limit of the holding temperature is preferably lower than the decomposition temperature of the lithium compound, and is 300 to 950 ° C., especially 500.
~ 800 ° C is desirable. The holding time is preferably 10 to 300 minutes. In the specific main calcination step, for example, the compound of the transition element impregnated with the lithium compound that has been subjected to the calcination step is maintained at a decomposition temperature of the lithium compound used as the raw material or higher. The purpose of this main firing step is to react the lithium compound and the compound of the transition element to produce the desired positive electrode active material of the present invention. The temperature at this time may be equal to or higher than the decomposition temperature of the lithium compound, but when the decomposition temperature of the lithium compound is low, it may take time to react with the compound particles of the transition element.
˜1100 ° C., more preferably 800 to 1100 ° C. If the holding time is too short, the reaction may not be completed, and if it is too long, the solid phase reaction may proceed too much and particles may adhere to each other. Therefore, the holding time is preferably 10 to 1800 minutes, more preferably 10 to 900 minutes. It's a minute.

【0016】本発明の製造方法では、上記工程により本
発明の正極活物質を得ることができるが、必要に応じ
て、他の工程を含んでいても良い。
In the production method of the present invention, the positive electrode active material of the present invention can be obtained by the above steps, but other steps may be included if necessary.

【0017】本発明の非水電解液2次電池は、正極活物
質粉末を有する正極と、負極と、電解液とを備え、前記
正極活物質として本発明の正極活物質を含むものであれ
ば良く、他の構成、並びに他の追加の構成等は公知のも
の等から適宜選択することができる。また、上記非水電
解液2次電池に用いる正極を製造するには、上述の複合
酸化物粒子として、平均粒径が10%以上異なる少なく
とも2種の複合酸化物粒子を混合した混合物を用いるこ
とが望ましい。
The non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode having a positive electrode active material powder, a negative electrode, and an electrolytic solution, and contains the positive electrode active material of the present invention as the positive electrode active material. Well, other configurations, other additional configurations, and the like can be appropriately selected from known ones and the like. Further, in order to manufacture the positive electrode used in the non-aqueous electrolyte secondary battery, a mixture of at least two kinds of composite oxide particles having an average particle diameter different by 10% or more is used as the above-mentioned composite oxide particles. Is desirable.

【0018】[0018]

【実施例】以下、実施例により本発明を更に詳細に説明
するが、本発明はこれに限定されるものではない。実施例1 純度99.8%のコバルトメタル100gを硝酸に溶解
した後、純水で希釈し、1650mlとした。続いて、
4Nの水酸化ナトリウム溶液820mlを加え撹拌した
後にろ過し、球状又は楕円球状の粒子で構成される水酸
化物のケーキを得た。そのケーキを850℃で4時間焼
成し、137gの球状又は楕円球状の粒子である複合酸
化物粒子を得た。得られた複合酸化物粒子137gと炭
酸リチウム65gとを均一に混合した後、得られた混合
物を700℃で240分間仮焼成を行い、更に、850
℃で300分間本焼成を行って、球状又は楕円球状の粒
子を得た。得られた粒子をICP発光分光分析装置、X
線回折装置、電子顕微鏡、タップデンサー装置(セイシ
ン企業製、XYT−2000)を用いて調査した結果、
一次粒子が0.2〜10μmであり、二次粒子が10〜
100μmの複合粒子で、アスペクト比1〜1.5で、
タップ密度2.9g/cm3以上である形状を有するL
iCoO2の粒子であることが判った。また、粒子の比
表面積が、0.15m2/gであることが判った。な
お、タップ密度の測定は、得られた粒子を20mlシリ
ンダーヘ10.0g採取し、タップ高さ2cm、タップ
回数200回にて測定した。また、比表面積の測定は、
得られた粒子を1g採取し、200℃で20分間脱気
後、カンタクロム社製の商品名「NOVA2000」を用いてN
2吸着BET法により行った。これらの結果を表1に示
す。また得られた正極活物質としての粒子の1000倍
率のSEM写真を図1に、5000倍率のSEM写真を
図2にそれぞれ示す。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. Example 1 100 g of cobalt metal having a purity of 99.8% was dissolved in nitric acid and then diluted with pure water to make 1650 ml. continue,
After adding 820 ml of 4N sodium hydroxide solution and stirring, the mixture was filtered to obtain a hydroxide cake composed of spherical or elliptical spherical particles. The cake was baked at 850 ° C. for 4 hours to obtain 137 g of spherical or elliptic spherical composite oxide particles. After 137 g of the obtained composite oxide particles and 65 g of lithium carbonate were uniformly mixed, the obtained mixture was calcined at 700 ° C. for 240 minutes, and further 850
Main baking was performed at 300C for 300 minutes to obtain spherical or elliptic spherical particles. The obtained particles were analyzed by an ICP emission spectroscopy analyzer, X
As a result of investigation using a line diffraction device, an electron microscope, and a tap-dense device (XYT-2000 manufactured by Seishin Enterprise Co., Ltd.),
The primary particles are 0.2 to 10 μm, and the secondary particles are 10 to 10.
100μm composite particles, aspect ratio 1 ~ 1.5,
L having a shape with a tap density of 2.9 g / cm 3 or more
It was found to be particles of iCoO 2 . It was also found that the specific surface area of the particles was 0.15 m 2 / g. The tap density was measured by collecting 10.0 g of the obtained particles in a 20 ml cylinder and measuring the tap height at 2 cm and the number of taps at 200 times. Also, the measurement of the specific surface area is
1 g of the obtained particles was sampled, deaerated at 200 ° C. for 20 minutes, and then N was used by using the product name “NOVA2000” manufactured by Kantachrome Co., Ltd.
2 Adsorption BET method. The results are shown in Table 1. A SEM photograph of the obtained particles as the positive electrode active material at 1000 times magnification is shown in FIG. 1, and a SEM photograph at 5000 times magnification is shown in FIG.

【0019】更に、得られた粒子と、導電助剤としての
アセチレンブラックと、結着剤としてのPTFEとを重
量比で50:40:10の割合で混合し正極合剤を調製
し、ステンレス鋼鈑を集電体とした正極を作製した。ま
た、ステンレス鋼鈑を集電体としたリチウム金属の負極
を作製した。更にエチレンカーボネートとジメチルカー
ボネートとを体積比1:1の割合で混合した溶液に過塩
素酸リチウムを1mol/lの割合で溶解して電解液を
調製した。得られた正極、負極、電解液を用いリチウム
イオン2次電池を作製した。得られた電池を充電電流密
度3mA/cm2になる条件で充電上限電圧4.3V、
放電下限電圧を3Vとして初期放電容量を測定した。ま
た、得られた粒子と、導電助剤としてのグラファイト
と、結着剤としてPVDFとを質量比で90:5:5の
割合で混合しドクターブレード法により厚さ20μmの
Al集電体に塗布し、圧力3t/cm2でプレスして電
極を作製した。得られた電極の体積及び質量を測定し、
Al集電体の体積及び質量を差し引き、電極密度を算出
した。これらの結果を表1に示す。
Further, the obtained particles, acetylene black as a conductive additive, and PTFE as a binder were mixed in a weight ratio of 50:40:10 to prepare a positive electrode mixture, and a stainless steel was prepared. A positive electrode having a sheet metal as a current collector was produced. Further, a lithium metal negative electrode using a stainless steel plate as a current collector was prepared. Further, an electrolyte solution was prepared by dissolving lithium perchlorate at a ratio of 1 mol / l in a solution in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 1. A lithium ion secondary battery was produced using the obtained positive electrode, negative electrode, and electrolytic solution. The obtained battery was charged at an upper limit voltage of 4.3 V under the condition that the charging current density was 3 mA / cm 2 .
The initial discharge capacity was measured with the discharge lower limit voltage set to 3V. Further, the obtained particles, graphite as a conduction aid, and PVDF as a binder were mixed in a mass ratio of 90: 5: 5 and applied to an Al current collector having a thickness of 20 μm by a doctor blade method. Then, the electrode was prepared by pressing at a pressure of 3 t / cm 2 . The volume and mass of the obtained electrode are measured,
The electrode density was calculated by subtracting the volume and mass of the Al current collector. The results are shown in Table 1.

【0020】実施例2〜5 実施例1のケーキ焼成温度を、500℃、700℃、8
00℃又は900℃、仮焼成時間を240分間、480
分間、360分間又は640分間、本焼成温度を800
℃、850℃、900℃又は950℃、本焼成時間を6
00分間、1200分間、60時間又は100時間とそ
れぞれし、炭酸リチウムの代わりに、蓚酸リチウム47
g、硝酸リチウム35g、水酸化リチウム100g又は
硫酸リチウム44gとそれぞれした以外は実施例1と同
様の操作により球状又は楕円球状粒子を作製し、各測定
及び評価を行った。結果を表1に示す。
Examples 2 to 5 The cake baking temperature of Example 1 was set to 500 ° C, 700 ° C, 8 ° C.
00 ℃ or 900 ℃, calcination time 240 minutes, 480
Minutes, 360 minutes or 640 minutes, main firing temperature 800
℃, 850 ℃, 900 ℃ or 950 ℃, main firing time 6
00 minutes, 1200 minutes, 60 hours or 100 hours, respectively. Instead of lithium carbonate, lithium oxalate 47
g, 35 g of lithium nitrate, 100 g of lithium hydroxide, or 44 g of lithium sulfate, respectively, spherical or elliptical spherical particles were produced by the same operation as in Example 1, and each measurement and evaluation were performed. The results are shown in Table 1.

【0021】実施例6〜11 球状又は楕円球状粒子である水酸化物の代わりに、ニッ
ケル原子とコバルト原子とのモル比が、8:2、5:
5、1:9又は10:0の共沈水酸化物、若しくはコバ
ルト原子とマンガン原子とのモル比が5:1の共沈水酸
化物、マンガン原子とニッケル原子とのモル比が1:1
の共沈水酸化物を用いた以外は実施例1と同様の操作に
より球状又は楕円球状粒子を作製し、各測定及び評価を
行った。結果を表1に示す。
Examples 6 to 11 Instead of the hydroxide which is spherical or elliptical spherical particles, the molar ratio of nickel atom to cobalt atom is 8: 2, 5 :.
5, 1: 9 or 10: 0 coprecipitated hydroxide, or coprecipitated hydroxide with a cobalt atom to manganese atom molar ratio of 5: 1, and a manganese atom to nickel atom molar ratio of 1: 1.
Spherical or elliptical spherical particles were produced by the same operation as in Example 1 except that the coprecipitated hydroxide of 1 was used, and each measurement and evaluation were performed. The results are shown in Table 1.

【0022】比較例1及び2 球状又は楕円球状粒子である水酸化物の代わりに、針状
又は不定形である水酸化物を用いた以外は実施例1と同
様の操作により針状又は不定形の複合酸化物を作製し、
測定及び評価を行った。結果を表1に示す。
Comparative Examples 1 and 2 Needle-like or amorphous particles were prepared in the same manner as in Example 1 except that needle-like or amorphous hydroxides were used instead of hydroxides having spherical or elliptical spherical particles. Of the composite oxide of
Measurement and evaluation were performed. The results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】実施例12〜14 実施例1で調製した粒子を分級して、平均粒径10μm
の小粒子群と、平均粒径70μmの大粒子群とに分け、
それぞれを質量比で1:1(実施例12)、3:7(実施
例13)又は1:9(実施例14)で混合して正極活物質
を得、更に、実施例1と同様に電極を作製して各測定及
び評価を行なった。結果を表2に示す。
Examples 12 to 14 The particles prepared in Example 1 were classified to have an average particle size of 10 μm.
And a large particle group with an average particle size of 70 μm.
Each of them was mixed in a mass ratio of 1: 1 (Example 12), 3: 7 (Example 13) or 1: 9 (Example 14) to obtain a positive electrode active material. Was prepared and each measurement and evaluation were performed. The results are shown in Table 2.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】本発明の非水電解液二次電池用正極活物
質は、球状及び/又は楕円球状粒子の複合酸化物であ
り、該粒子のアスペクト比が1.0〜2.0の範囲にあ
り、タップ密度が2.9g/cm3以上であるので、こ
れを用いて電極を作成した場合、電極密度を3.4〜
3.7g/cm3程度にすることができ、非水電解液二
次電池における体積あたりの放電容量や、負荷特性を有
効に改善することができる。また本発明の製造方法で
は、このような正極活物質を容易に得ることができる。
更に、本発明の非水電解液2次電池は、本発明の正極活
物質を用いるので、放電容量及び負荷特性を向上させる
ことができる。
The positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is a composite oxide of spherical and / or elliptic spherical particles, and the aspect ratio of the particles is in the range of 1.0 to 2.0. Since the tap density is 2.9 g / cm 3 or more, when an electrode is formed using this, the electrode density is 3.4 to
It can be about 3.7 g / cm 3, and the discharge capacity per volume and load characteristics of the non-aqueous electrolyte secondary battery can be effectively improved. Further, according to the production method of the present invention, such a positive electrode active material can be easily obtained.
Furthermore, since the non-aqueous electrolyte secondary battery of the present invention uses the positive electrode active material of the present invention, the discharge capacity and load characteristics can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で調製した正極活物質としての粒子の
1000倍率のSEM写真である。
FIG. 1 is a 1000 × SEM photograph of particles prepared as a positive electrode active material in Example 1.

【図2】実施例1で調製した正極活物質としての粒子の
5000倍率のSEM写真である。
2 is a SEM photograph at 5000 magnifications of particles as a positive electrode active material prepared in Example 1. FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 室田 忠俊 兵庫県神戸市東灘区深江北町4−14−34 株式会社三徳内 Fターム(参考) 5H029 AJ03 AK03 AL12 AM03 AM05 AM07 CJ02 DJ12 DJ16 HJ00 HJ05 HJ07 HJ08 HJ14 5H050 AA08 BA16 CA07 CB12 FA12 FA17 GA02 HA05 HA07 HA08 HA14 HA20    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tadatoshi Murota             4-14-34 Fukaekita-cho, Higashinada-ku, Kobe City, Hyogo Prefecture             Santokuuchi Co., Ltd. F-term (reference) 5H029 AJ03 AK03 AL12 AM03 AM05                       AM07 CJ02 DJ12 DJ16 HJ00                       HJ05 HJ07 HJ08 HJ14                 5H050 AA08 BA16 CA07 CB12 FA12                       FA17 GA02 HA05 HA07 HA08                       HA14 HA20

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 Liと、Co、Ni、Mn及びFeから
なる群より選択される少なくとも一種の遷移元素とを含
む複合酸化物粒子からなり、前記複合酸化物粒子が、最
長径をD1、最短径をD2とした際のD1/D2が1.0〜
2.0の範囲にある球状及び/又は楕円球状の粒子を9
0%以上含むことを特徴とする非水電解液2次電池用正
極活物質。
1. A composite oxide particle comprising Li and at least one transition element selected from the group consisting of Co, Ni, Mn and Fe, wherein the composite oxide particle has a longest diameter of D1 and a shortest diameter. When the diameter is D2, D1 / D2 is 1.0 to
9 spherical and / or elliptical spherical particles in the range of 2.0
A positive electrode active material for a non-aqueous electrolyte secondary battery, which contains 0% or more.
【請求項2】 複合酸化物粒子のタップ密度が、2.9
g/cm3以上であることを特徴とする請求項1記載の
非水電解液2次電池用正極活物質。
2. The complex oxide particles have a tap density of 2.9.
The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material is g / cm 3 or more.
【請求項3】 複合酸化物粒子が、アルカリ金属、アル
カリ土類金属、Ti、Zr、Hf、Y、Sc及び希土類
金属からなる群より選択される少なくとも一種を含むこ
とを特徴とする請求項1又は2記載の正極活物質。
3. The composite oxide particles contain at least one selected from the group consisting of alkali metals, alkaline earth metals, Ti, Zr, Hf, Y, Sc and rare earth metals. Alternatively, the positive electrode active material according to item 2.
【請求項4】 複合酸化物粒子が、主として粒径2〜1
00μmの粒子からなり、且つ平均粒径が5〜80μmで
あることを特徴とする請求項1〜3のいずれか1項記載
の正極活物質。
4. The composite oxide particles mainly have a particle size of 2 to 1.
The positive electrode active material according to any one of claims 1 to 3, which is composed of particles of 00 µm and has an average particle diameter of 5 to 80 µm.
【請求項5】 複合酸化物粒子の比表面積が、0.05
〜0.24m2/gであることを特徴とする請求項1〜
4のいずれか1項記載の正極活物質。
5. The specific surface area of the composite oxide particles is 0.05.
It is -0.24 m < 2 > / g and it is characterized by the above-mentioned.
4. The positive electrode active material according to any one of 4 above.
【請求項6】 Co、Ni、Mn及びFeからなる群よ
り選択される少なくとも一種の遷移元素の化合物粒子
と、リチウム化合物とを含む原材料を混合し、得られた
混合物を、仮焼工程として該リチウム化合物の融点以上
の温度で保持した後、本焼成工程として該リチウム化合
物の分解温度以上で保持することを特徴とする請求項1
記載の非水電解液2次電池用正極活物質の製造方法。
6. A raw material containing compound particles of at least one transition element selected from the group consisting of Co, Ni, Mn and Fe and a lithium compound are mixed, and the resulting mixture is used as a calcination step. 2. The method is characterized in that, after being kept at a temperature equal to or higher than the melting point of the lithium compound, it is kept at a temperature equal to or higher than the decomposition temperature of the lithium compound as a main firing step.
A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery as described above.
【請求項7】 前記遷移元素の化合物粒子が、遷移金属
の酸化物粒子であって、その形状が、球状及び/又は楕
円球状であり、且つタップ密度が2.0g/cm3以上
であることを特徴とする請求項6記載の製造方法。
7. The compound particles of the transition element are oxide particles of a transition metal, the shape of which is spherical and / or elliptical spherical, and the tap density is 2.0 g / cm 3 or more. The manufacturing method according to claim 6, wherein:
【請求項8】 前記仮焼工程における温度が300〜9
50℃で、保持時間が10〜300分間であり、前記本
焼成工程における温度が700〜1100℃で、保持時
間が10〜1800分間であることを特徴とする請求項
5又は6記載の製造方法。
8. The temperature in the calcination step is 300 to 9
The manufacturing method according to claim 5 or 6, wherein the holding time is 10 to 300 minutes at 50 ° C, the temperature in the main firing step is 700 to 1100 ° C, and the holding time is 10 to 1800 minutes. .
【請求項9】 正極活物質粉末を有する正極と、負極
と、電解液とを備え、該正極活物質粉末が請求項1〜5
のいずれか1項記載の非水電解液2次電池用正極活物質
を含むことを特徴とする非水電解液2次電池。
9. A positive electrode having a positive electrode active material powder, a negative electrode, and an electrolytic solution, the positive electrode active material powder being one of claims 1 to 5.
9. A non-aqueous electrolyte secondary battery comprising the positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of 1.
【請求項10】 複合酸化物粒子を含む正極活物質を成
形加工する、請求項9記載の非水電解液2次電池に用い
る正極の製造方法であって、平均粒径が10%以上異な
る少なくとも2種の複合酸化物粒子を混合して正極活物
質に用いる前記複合酸化物粒子を得ることを特徴とし、
該複合酸化物粒子が、主として粒径2〜100μmの粒
子からなり、且つ平均粒径が5〜80μmであり、Li
と、Co、Ni、Mn及びFeからなる群より選択され
る少なくとも一種の遷移元素とを含み、最長径をD1、
最短径をD2とした際のD1/D2が1.0〜2.0の範
囲にある球状及び/又は楕円球状の粒子を90%以上含
む、非水電解液2次電池用正極の製造方法。
10. The method for producing a positive electrode used in a non-aqueous electrolyte secondary battery according to claim 9, wherein a positive electrode active material containing composite oxide particles is molded and processed, and the average particle size differs by at least 10%. Characterized in that two kinds of composite oxide particles are mixed to obtain the composite oxide particles used for the positive electrode active material,
The composite oxide particles are mainly composed of particles having a particle size of 2 to 100 μm and have an average particle size of 5 to 80 μm.
And at least one transition element selected from the group consisting of Co, Ni, Mn, and Fe, and having a longest diameter of D1,
A method for producing a positive electrode for a non-aqueous electrolyte secondary battery, comprising 90% or more of spherical and / or elliptical spherical particles having D1 / D2 in the range of 1.0 to 2.0 when the shortest diameter is D2.
JP2001195157A 2001-06-27 2001-06-27 Non-aqueous electrolyte secondary battery positive electrode active material, its manufacturing method, non-aqueous electrolyte secondary battery, and positive electrode manufacturing method Expired - Fee Related JP5079951B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001195157A JP5079951B2 (en) 2001-06-27 2001-06-27 Non-aqueous electrolyte secondary battery positive electrode active material, its manufacturing method, non-aqueous electrolyte secondary battery, and positive electrode manufacturing method
CNB02812992XA CN1311574C (en) 2001-06-27 2002-06-27 Nonaqueous electrolyte secondary battery-use anode active matter, prodn. method therefor, nonaqueous electrolyte secondary battery, and prodn, method for anode
KR1020037016383A KR100934612B1 (en) 2001-06-27 2002-06-27 Cathode active material for nonaqueous electrolyte secondary battery, preparation method thereof, method for manufacturing nonaqueous electrolyte secondary battery, and positive electrode
PCT/JP2002/006473 WO2003003489A1 (en) 2001-06-27 2002-06-27 Nonaqueous electrolyte secondary battery-use anode active matter, production method therefor, nonaqueous electrolyte secondary battery, and production method for anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001195157A JP5079951B2 (en) 2001-06-27 2001-06-27 Non-aqueous electrolyte secondary battery positive electrode active material, its manufacturing method, non-aqueous electrolyte secondary battery, and positive electrode manufacturing method

Publications (2)

Publication Number Publication Date
JP2003017050A true JP2003017050A (en) 2003-01-17
JP5079951B2 JP5079951B2 (en) 2012-11-21

Family

ID=19033186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001195157A Expired - Fee Related JP5079951B2 (en) 2001-06-27 2001-06-27 Non-aqueous electrolyte secondary battery positive electrode active material, its manufacturing method, non-aqueous electrolyte secondary battery, and positive electrode manufacturing method

Country Status (4)

Country Link
JP (1) JP5079951B2 (en)
KR (1) KR100934612B1 (en)
CN (1) CN1311574C (en)
WO (1) WO2003003489A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005057690A1 (en) * 2003-12-15 2005-06-23 Mitsubishi Chemical Corporation Nonaqueous electrolyte secondary battery
WO2007060906A1 (en) * 2005-11-24 2007-05-31 Nissan Motor Co., Ltd. Positive electrode active material particle for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using same
WO2011074058A1 (en) * 2009-12-14 2011-06-23 トヨタ自動車株式会社 Positive electrode active material for lithium secondary battery and use thereof
WO2013069454A1 (en) 2011-11-09 2013-05-16 株式会社Gsユアサ Active substance for nonaqueous electrolyte secondary cell, method for producing active substance, electrode for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
WO2021112434A3 (en) * 2019-12-04 2021-07-22 (주)이엠티 Cathode active material for lithium ion secondary battery, having excellent high-temperature storage characteristics, lithium ion secondary battery comprising same, and manufacturing method therefor

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101450978B1 (en) 2009-12-18 2014-10-15 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
EP2518802B1 (en) 2009-12-22 2020-11-25 JX Nippon Mining & Metals Corporation Positive electrode active material for a lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
JP5149920B2 (en) 2010-02-05 2013-02-20 トヨタ自動車株式会社 Method for producing electrode for lithium secondary battery
EP2533334B1 (en) 2010-02-05 2019-12-11 JX Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2011096522A1 (en) 2010-02-05 2011-08-11 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
KR101430843B1 (en) 2010-03-04 2014-08-18 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
WO2011108596A1 (en) 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
CN102782911B (en) 2010-03-04 2015-06-24 Jx日矿日石金属株式会社 Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
CN102782913B (en) 2010-03-04 2015-02-11 Jx日矿日石金属株式会社 Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
WO2012073549A1 (en) 2010-12-03 2012-06-07 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
TWI513663B (en) 2011-03-29 2015-12-21 Jx Nippon Mining & Metals Corp Production method of positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
EP2693536B1 (en) 2011-03-31 2017-05-03 JX Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion battery, and lithium ion battery
KR101295974B1 (en) * 2011-05-02 2013-08-13 삼성정밀화학 주식회사 Method for preparing lithium manganese oxide positive active material for lithium ion secondary battery, positive active material prepared thereby, and lithium ion secondary battery including the same
JP6292739B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6292738B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5916876B2 (en) 2012-09-28 2016-05-11 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
CN103367739A (en) * 2013-07-18 2013-10-23 桂林电子科技大学 Ellipsoidal porous-structured lithium manganate or nickel lithium manganate positive electrode material and preparation method thereof
JP2020035625A (en) * 2018-08-29 2020-03-05 株式会社田中化学研究所 Positive electrode active material particle for secondary cell and production method of positive electrode active material particle for secondary cell
KR102080310B1 (en) * 2019-02-28 2020-02-21 한화시스템 주식회사 Method for detecting target using monopulse radar and recording medium
CN114050264A (en) * 2021-11-15 2022-02-15 珠海冠宇电池股份有限公司 Negative electrode material and negative plate containing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290780A (en) * 1993-04-02 1994-10-18 Mitsubishi Electric Corp Positive electrode material for lithium secondary battery and its synthesis and evaluation, and lithium secondary battery and its manufacture
JPH09251854A (en) * 1996-03-14 1997-09-22 Matsushita Electric Ind Co Ltd Manufacture of positive active material for non-aqueous electrolyte secondary battery
JPH101316A (en) * 1996-06-10 1998-01-06 Sakai Chem Ind Co Ltd Lithium-cobalt multiple oxide and production thereof, and lithium ion secondary battery
JPH11135119A (en) * 1997-10-27 1999-05-21 Matsushita Electric Ind Co Ltd Active material and positive plate for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery
JPH11246225A (en) * 1997-10-30 1999-09-14 Samsung Display Devices Co Ltd Lithium multiple oxide, its production and lithium secondary cell having positive electrode containing that lithium multiple oxide as active material
JP2000082466A (en) * 1998-07-02 2000-03-21 Nippon Chem Ind Co Ltd Positive electrode active material and nonaqueous electrolyte secondary battery
JP2000182618A (en) * 1998-12-10 2000-06-30 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery
JP2000215895A (en) * 1998-11-17 2000-08-04 Hitachi Maxell Ltd Nonaqueous secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3591195B2 (en) * 1997-03-07 2004-11-17 日亜化学工業株式会社 Cathode active material for lithium ion secondary batteries
JP3355126B2 (en) * 1998-01-30 2002-12-09 同和鉱業株式会社 Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP3110728B1 (en) * 1999-05-06 2000-11-20 同和鉱業株式会社 Cathode active material and cathode for non-aqueous secondary batteries
JP2001135313A (en) * 1999-11-02 2001-05-18 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using positive electrode active material
JP2001155729A (en) * 1999-11-24 2001-06-08 Sumitomo Metal Mining Co Ltd Positive electrode active material for use in non-aqueous secondary battery and non-aqueous electrolyte secondary battery using it

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290780A (en) * 1993-04-02 1994-10-18 Mitsubishi Electric Corp Positive electrode material for lithium secondary battery and its synthesis and evaluation, and lithium secondary battery and its manufacture
JPH09251854A (en) * 1996-03-14 1997-09-22 Matsushita Electric Ind Co Ltd Manufacture of positive active material for non-aqueous electrolyte secondary battery
JPH101316A (en) * 1996-06-10 1998-01-06 Sakai Chem Ind Co Ltd Lithium-cobalt multiple oxide and production thereof, and lithium ion secondary battery
JPH11135119A (en) * 1997-10-27 1999-05-21 Matsushita Electric Ind Co Ltd Active material and positive plate for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery
JPH11246225A (en) * 1997-10-30 1999-09-14 Samsung Display Devices Co Ltd Lithium multiple oxide, its production and lithium secondary cell having positive electrode containing that lithium multiple oxide as active material
JP2000082466A (en) * 1998-07-02 2000-03-21 Nippon Chem Ind Co Ltd Positive electrode active material and nonaqueous electrolyte secondary battery
JP2000215895A (en) * 1998-11-17 2000-08-04 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2000182618A (en) * 1998-12-10 2000-06-30 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005057690A1 (en) * 2003-12-15 2005-06-23 Mitsubishi Chemical Corporation Nonaqueous electrolyte secondary battery
US8137846B2 (en) 2003-12-15 2012-03-20 Mitsubishi Chemical Corporation Nonaqueous-electrolyte secondary battery
WO2007060906A1 (en) * 2005-11-24 2007-05-31 Nissan Motor Co., Ltd. Positive electrode active material particle for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using same
JP2007173210A (en) * 2005-11-24 2007-07-05 Nissan Motor Co Ltd Positive active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this
WO2011074058A1 (en) * 2009-12-14 2011-06-23 トヨタ自動車株式会社 Positive electrode active material for lithium secondary battery and use thereof
US8986570B2 (en) 2009-12-14 2015-03-24 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for lithium secondary battery and use thereof
WO2013069454A1 (en) 2011-11-09 2013-05-16 株式会社Gsユアサ Active substance for nonaqueous electrolyte secondary cell, method for producing active substance, electrode for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
WO2021112434A3 (en) * 2019-12-04 2021-07-22 (주)이엠티 Cathode active material for lithium ion secondary battery, having excellent high-temperature storage characteristics, lithium ion secondary battery comprising same, and manufacturing method therefor

Also Published As

Publication number Publication date
KR20040015266A (en) 2004-02-18
JP5079951B2 (en) 2012-11-21
WO2003003489A1 (en) 2003-01-09
KR100934612B1 (en) 2009-12-31
CN1520621A (en) 2004-08-11
CN1311574C (en) 2007-04-18

Similar Documents

Publication Publication Date Title
JP5079951B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, its manufacturing method, non-aqueous electrolyte secondary battery, and positive electrode manufacturing method
JP4280012B2 (en) Lithium transition metal composite oxide
JP4268392B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
US7504180B2 (en) Positive electrode material for lithium secondary battery and process for producing the same
JP4318313B2 (en) Positive electrode active material powder for lithium secondary battery
JP4613943B2 (en) Lithium transition metal-based compound powder, method for producing the same, spray-dried body as a pre-fired body, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5251401B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP4276442B2 (en) Positive electrode active material powder for lithium secondary battery
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
JP2018530140A (en) Nickel-based positive electroactive material
JP3362564B2 (en) Non-aqueous electrolyte secondary battery, and its positive electrode active material and method for producing positive electrode plate
JP6273581B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JPWO2004082046A1 (en) Positive electrode active material powder for lithium secondary battery
JPWO2004051771A1 (en) Method for producing positive electrode active material for lithium secondary battery
JPH11135119A (en) Active material and positive plate for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery
JP2002184402A (en) Positive electrode active material for lithium secondary battery, and battery
JPWO2004088776A1 (en) Method for producing positive electrode active material for lithium secondary battery
JP2005336004A (en) Nickel manganese cobalt based multiple oxide, lamellar lithium nickel manganese cobalt based multiple oxide, lithium secondary cell positive electrode material, positive electrode for lithium secondary cell and lithium secondary cell using the same
WO2011030486A1 (en) Silicon oxide and anode material for lithium ion secondary cell
JP3229544B2 (en) Nickel-cobalt hydroxide for non-aqueous electrolyte battery active material
JP4096094B2 (en) Method for producing layered rock salt type lithium nickelate powder
JP6624631B2 (en) Lithium transition metal composite oxide and method for producing the same
JP2003288899A (en) Positive electrode active material for nonaqueous electrolyte secondary cell
JP4199506B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP4053763B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5079951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees