JP2015056384A - Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery - Google Patents

Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery Download PDF

Info

Publication number
JP2015056384A
JP2015056384A JP2013191045A JP2013191045A JP2015056384A JP 2015056384 A JP2015056384 A JP 2015056384A JP 2013191045 A JP2013191045 A JP 2013191045A JP 2013191045 A JP2013191045 A JP 2013191045A JP 2015056384 A JP2015056384 A JP 2015056384A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
lithium ion
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013191045A
Other languages
Japanese (ja)
Other versions
JP6273115B2 (en
Inventor
明央 上澤
Norihisa UESAWA
明央 上澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013191045A priority Critical patent/JP6273115B2/en
Publication of JP2015056384A publication Critical patent/JP2015056384A/en
Application granted granted Critical
Publication of JP6273115B2 publication Critical patent/JP6273115B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material for a lithium ion battery, easy to handle, having excellent battery characteristics.SOLUTION: The positive electrode active material for a lithium ion battery has a value (A-B)/B represented by a ratio of a difference of an average diameter of circles circumscribing positive electrode active materials (A) and an average diameter of circles inscribing the same positive electrode active materials (B) obtained from a cross sectional image with respect to the average diameter of circles inscribing the same positive electrode active materials of 0.73 to 1.30.

Description

本発明は、リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池に関する。   The present invention relates to a positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery.

リチウムイオン電池の正極活物質には、一般にリチウム含有遷移金属酸化物が用いられている。具体的には、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等であり、特性改善(高容量化、サイクル特性、保存特性、内部抵抗低減、レート特性)や安全性を高めるためにこれらを複合化することが進められている。車載用やロードレベリング用といった大型用途におけるリチウムイオン電池には、これまでの携帯電話用やパソコン用とは異なった特性が求められている。 Lithium-containing transition metal oxides are generally used as positive electrode active materials for lithium ion batteries. Specifically, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), etc., improved characteristics (higher capacity, cycle characteristics, storage characteristics, reduced internal resistance) In order to improve the rate characteristics and safety, it is underway to combine them. Lithium ion batteries for large-scale applications such as in-vehicle use and load leveling are required to have different characteristics from those of conventional mobile phones and personal computers.

リチウムイオン電池には種々の特性があるが、この中でも重要な性能の一つとされるのが、「レート特性」である。「レート特性」とは低電流で充放電した際の容量と高電流で充放電した際の容量の比で表される。レート特性が大きいと、充放電における電流値を大きくした際の容量損失が小さく抑えられる。一般に、リチウムイオン電池のレート特性を改善する場合、正極活物質の粒子径を減少させ、リチウムイオン電池内における電気化学反応(「電荷移動反応」と呼ばれる)が起こる反応活性面を増大させて電気化学反応の律速段階を抑制している。このような技術は、例えば特許文献1等に開示されている。   Lithium ion batteries have various characteristics. Among them, one of the important performances is “rate characteristics”. “Rate characteristic” is represented by the ratio of the capacity when charging / discharging at a low current to the capacity when charging / discharging at a high current. When the rate characteristic is large, the capacity loss when the current value in charge / discharge is increased can be suppressed to a small value. In general, when improving the rate characteristics of a lithium ion battery, the particle size of the positive electrode active material is reduced, and the reaction active surface in which an electrochemical reaction (called “charge transfer reaction”) occurs in the lithium ion battery is increased. Suppresses the rate-limiting step of the chemical reaction. Such a technique is disclosed in, for example, Patent Document 1.

特開平10−069910号公報Japanese Patent Laid-Open No. 10-069910

しかしながら、正極活物質の粒子径を減少させてしまうと、粉体のハンドリングに難が生じる。また、電極塗工の段階において、粒子径が小さいことに起因して比表面積が大きくなるため、塗工液のレオロジー特性に難が生じやすい。このように、レート特性を向上させるために正極活物質の粒子径を減少させると、正極活物質の取り扱いが困難となるという問題が生じてしまう。   However, if the particle size of the positive electrode active material is reduced, it becomes difficult to handle the powder. Further, at the electrode coating stage, the specific surface area is increased due to the small particle diameter, so that the rheological properties of the coating liquid are likely to be difficult. Thus, if the particle diameter of the positive electrode active material is reduced in order to improve the rate characteristics, there arises a problem that handling of the positive electrode active material becomes difficult.

そこで、本発明は、取り扱いが容易で、且つ、良好な電池特性を有するリチウムイオン電池用正極活物質を提供することを課題とする。   Accordingly, an object of the present invention is to provide a positive electrode active material for a lithium ion battery that is easy to handle and has good battery characteristics.

本発明者は、鋭意検討した結果、正極活物質の断面像の内接円の平均径に対する、外接円の平均径と内接円の平均径との差の割合を制御することで、正極活物質の取り扱い性を損なうことなく、正極活物質の表面の実効的な反応表面積を増大させて、リチウムイオン電池のレート特性を改善することが可能となることを見出した。   As a result of intensive studies, the inventor has controlled the positive electrode active material by controlling the ratio of the difference between the average diameter of the circumscribed circle and the average diameter of the inscribed circle to the average diameter of the inscribed circle of the cross-sectional image of the positive electrode active material. It was found that the rate characteristics of the lithium ion battery can be improved by increasing the effective reaction surface area of the surface of the positive electrode active material without impairing the handling of the material.

上記知見を基礎にして完成した本発明は一側面において、正極活物質の断面像から得られる正極活物質に内接する円の平均径(B)に対する同一の正極活物質に外接する円の平均径(A)と同一の正極活物質に内接する円の平均径(B)との差の割合で表される(A−B)/B値が0.73〜1.30であるリチウムイオン電池用正極活物質である。   In one aspect, the present invention completed on the basis of the above knowledge has an average diameter of a circle circumscribing the same positive electrode active material with respect to an average diameter (B) of a circle inscribed in the positive electrode active material obtained from a cross-sectional image of the positive electrode active material. (A) for a lithium ion battery having a (A−B) / B value of 0.73 to 1.30 expressed as a ratio of a difference from an average diameter (B) of a circle inscribed in the same positive electrode active material It is a positive electrode active material.

本発明は別の一側面において、本発明のリチウムイオン電池用正極活物質を用いたリチウムイオン電池用正極である。   In another aspect, the present invention is a positive electrode for a lithium ion battery using the positive electrode active material for a lithium ion battery of the present invention.

本発明は更に別の一側面において、本発明のリチウムイオン電池用正極を用いたリチウムイオン電池である。   In still another aspect, the present invention is a lithium ion battery using the positive electrode for a lithium ion battery of the present invention.

本発明によれば、取り扱いが容易で、且つ、良好な電池特性を有するリチウムイオン電池用正極活物質を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the positive electrode active material for lithium ion batteries which is easy to handle and has a favorable battery characteristic can be provided.

実施例1のSIM観察写真(三次元及び断面)である。2 is a SIM observation photograph (three-dimensional and cross section) of Example 1. FIG. 比較例1のSIM観察写真(三次元及び断面)である。4 is a SIM observation photograph (three-dimensional and cross section) of Comparative Example 1;

(リチウムイオン電池用正極活物質の構成)
本発明のリチウムイオン電池用正極活物質の材料としては、一般的なリチウムイオン電池用正極活物質として有用な化合物を広く用いることができるが、特に、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等のリチウム含有遷移金属酸化物を用いるのが好ましい。このような材料を用いて作製される本発明のリチウムイオン電池用正極活物質は、
組成式:LixNi1-yy2+α
(前記式において、0.9≦x≦1.2であり、0<y≦0.7であり、−0.1≦α≦0.1であり、Mは金属である。)
であってもよい。ここで、リチウムイオン電池用正極活物質における全金属に対するリチウムの比率が0.9〜1.2としているが、これは、0.9未満では、安定した結晶構造を保持し難いおそれがあり、1.2超では電池の高容量が確保できなくなるおそれがあるためである。なお、「y」は、リチウムイオン電池用正極活物質における全金属に対する金属M全体の比率を示す。例えば、MがMn及びCoで構成されているとすると、Mnの比率とCoの比率との合計がyとなる。
(Configuration of positive electrode active material for lithium ion battery)
As a material for the positive electrode active material for lithium ion batteries of the present invention, compounds useful as a general positive electrode active material for lithium ion batteries can be widely used. In particular, lithium cobaltate (LiCoO 2 ), lithium nickelate It is preferable to use a lithium-containing transition metal oxide such as (LiNiO 2 ) or lithium manganate (LiMn 2 O 4 ). The positive electrode active material for a lithium ion battery of the present invention produced using such a material is
Composition formula: Li x Ni 1- y My O 2 + α
(In the above formula, 0.9 ≦ x ≦ 1.2, 0 <y ≦ 0.7, −0.1 ≦ α ≦ 0.1, and M is a metal.)
It may be. Here, the ratio of lithium to all metals in the positive electrode active material for a lithium ion battery is 0.9 to 1.2, but if it is less than 0.9, it may be difficult to maintain a stable crystal structure, This is because if it exceeds 1.2, the high capacity of the battery may not be ensured. “Y” indicates the ratio of the entire metal M to the total metal in the positive electrode active material for a lithium ion battery. For example, if M is composed of Mn and Co, the sum of the ratio of Mn and the ratio of Co is y.

リチウムイオン電池用正極活物質は、上記Mが、Mn及びCoから選択される1種以上であるのが好ましい。更に、不純物として、Ti、V、Cr、Fe、Mg、Cu、Zn、Al、Sn及びZrから選択される1種以上が0.05質量%以下含まれていてもよい。上記の不純物が総量として、0.05質量%以下含まれていても、このような金属であれば電気化学的な阻害要因とはならないため、放電容量等の劣化要因とは成り得ない。また、上記のような不純物を有することで熱安定性に有利になるといった特性も有する。   In the positive electrode active material for a lithium ion battery, the M is preferably at least one selected from Mn and Co. Furthermore, 0.05 mass% or less of 1 or more types selected from Ti, V, Cr, Fe, Mg, Cu, Zn, Al, Sn, and Zr as impurities may be included. Even if the above impurities are contained in a total amount of 0.05% by mass or less, such a metal cannot be an electrochemical inhibiting factor, and therefore cannot be a degradation factor such as a discharge capacity. Moreover, it has the characteristic that it becomes advantageous to thermal stability by having the above impurities.

正極活物質の断面像から得られる正極活物質に内接する円の平均径(B)に対する同一の正極活物質に外接する円の平均径(A)と同一の正極活物質に内接する円の平均径(B)との差の割合で表される(A−B)/B値を増大させると、正極活物質の粒子径を保ったまま、粒子の比表面積を増大させることができ、それにより正極活物質の取り扱い性を損なうことなく、正極活物質の表面の実効的な反応表面積を増大させて、リチウムイオン電池のレート特性を改善することが可能となる。このような観点から、本発明の正極活物質は、(A−B)/B値が0.73〜1.30に制御されている。(A−B)/B値が0.73未満であれば、粒子に対する比表面積が低くなり、正極材表面における電荷移動反応が進行しなくなり、電流が取り出し難くなるという問題が生じる。さらに、(A−B)/B値が1.30を超えると、電荷移動反応が起こりやすくなる一方で、電池反応には主となる電気化学反応以外に電池性能を劣化させる副反応が起こる確率が高くなるという問題が生じるおそれがある。また、(A−B)/B値は0.80〜1.25であるのがより好ましく、0.90〜1.20であるのが更により好ましい。正極活物質の粒子径を保ったまま、粒子の比表面積を増大させるための手段としては、例えば、粒子の粒径を保ったまま、表面粗さを増大させるという手段が挙げられる。   The average of the circles inscribed in the same positive electrode active material as the average diameter (A) of the circles circumscribing the same positive electrode active material with respect to the average diameter (B) of the circle inscribed in the positive electrode active material obtained from the cross-sectional image of the positive electrode active material Increasing the (AB) / B value represented by the ratio of the difference from the diameter (B) can increase the specific surface area of the particles while maintaining the particle diameter of the positive electrode active material, thereby Without impairing the handleability of the positive electrode active material, the effective reaction surface area of the surface of the positive electrode active material can be increased to improve the rate characteristics of the lithium ion battery. From such a viewpoint, in the positive electrode active material of the present invention, the (AB) / B value is controlled to 0.73 to 1.30. When the (A−B) / B value is less than 0.73, the specific surface area with respect to the particles becomes low, the charge transfer reaction on the surface of the positive electrode material does not proceed, and there is a problem that it becomes difficult to take out the current. Furthermore, when the (A−B) / B value exceeds 1.30, the charge transfer reaction is likely to occur, while the battery reaction has a probability of causing a side reaction that degrades battery performance in addition to the main electrochemical reaction. There is a risk that the problem will be high. Further, the (A−B) / B value is more preferably 0.80 to 1.25, and even more preferably 0.90 to 1.20. Examples of means for increasing the specific surface area of the particles while maintaining the particle diameter of the positive electrode active material include means for increasing the surface roughness while maintaining the particle diameter of the particles.

ここで、正極活物質の断面像から得られる正極活物質に外接する円と内接する円の定義をする。正極活物質の断面SIM像を観察した際に、粒子を構成する多角の物質の外側の端部を結んでできる最小の円及び多角の物質の内側の端部を結んでできる最大の円をそれぞれ外接円及び内接円と近似し、本発明ではそれらをそれぞれ外接する円、内接する円と定義する。本発明において、正極活物質の断面像の内接円の平均径及び外接円の平均径は、以下のように測定される。
まず、後述の図1に示されるような、正極活物質粒子の断面SEM像またはSIM像を取得する。図1から分かるように正極活物質は多数の1次粒子から形成される2次粒子の形態を有する。取得した断面SIM像を市販の画像解析ソフトを用いて読み込み、2次粒子を形成している任意の正極活物質を選択する。その際、2次粒子間に明らかに割れ(クラック)等が発生しており、1次粒子もしくは2次粒子の判定ができない場合はその粒子を測定対象とせず、図1及び図2に示すような粒子を2次粒子として判断する。本発明で述べられる外接円と内接円に関しては上述した通り、取得した断面SIM像から得られる外接円と内接円の直径をそれぞれ測定し、それぞれ正極活物質に外接する円の平均径(A)、正極活物質に内接する円の平均径(B)とする。
Here, a circle circumscribing a circle circumscribing the positive electrode active material obtained from a cross-sectional image of the positive electrode active material is defined. When observing a cross-sectional SIM image of the positive electrode active material, the smallest circle formed by connecting the outer ends of the polygonal substances constituting the particles and the maximum circle formed by connecting the inner ends of the polygonal substances are respectively In the present invention, these are defined as a circumscribed circle and an inscribed circle, respectively. In the present invention, the average diameter of the inscribed circle and the average diameter of the circumscribed circle in the cross-sectional image of the positive electrode active material are measured as follows.
First, a cross-sectional SEM image or SIM image of positive electrode active material particles as shown in FIG. As can be seen from FIG. 1, the positive electrode active material has a form of secondary particles formed from a large number of primary particles. The acquired cross-sectional SIM image is read using commercially available image analysis software, and an arbitrary positive electrode active material forming secondary particles is selected. At that time, cracks or the like are clearly generated between the secondary particles, and when the primary particles or the secondary particles cannot be determined, the particles are not measured, as shown in FIG. 1 and FIG. Particles are judged as secondary particles. With respect to the circumscribed circle and the inscribed circle described in the present invention, as described above, the diameters of the circumscribed circle and the inscribed circle obtained from the acquired cross-sectional SIM image are respectively measured, and the average diameter of the circle circumscribed with the positive electrode active material ( A) The average diameter (B) of the circle inscribed in the positive electrode active material.

正極活物質は、平均粒径(D50)が2〜20μmであり、D90−D10が3〜20μmであるのが好ましい。このような構成によれば、上記(A−B)/B値を制御された正極活物質の取り扱いがより容易となり、且つ、より良好な電池特性が得られる。
また、正極活物質は、平均粒径(D50)が4〜13μmであり、D90−D10が5〜18μmであるのがより好ましく、平均粒径(D50)が7〜11μmであり、D90−D10が8〜17μmであるのが更により好ましい。
The positive electrode active material preferably has an average particle diameter (D50) of 2 to 20 μm and D90-D10 of 3 to 20 μm. According to such a configuration, it becomes easier to handle the positive electrode active material whose (A−B) / B value is controlled, and better battery characteristics can be obtained.
The positive electrode active material has an average particle diameter (D50) of 4 to 13 μm, more preferably D90-D10 of 5 to 18 μm, an average particle diameter (D50) of 7 to 11 μm, and D90-D10. Is more preferably 8 to 17 μm.

(リチウムイオン電池用正極及びそれを用いたリチウムイオン電池の構成)
本発明の実施形態に係るリチウムイオン電池用正極は、例えば、上述の構成のリチウムイオン電池用正極活物質と、導電助剤と、バインダーとを混合して調製した正極合剤をアルミニウム箔等からなる集電体の片面または両面に設けた構造を有している。また、本発明の実施形態に係るリチウムイオン電池は、このような構成のリチウムイオン電池用正極を備えている。
(Configuration of positive electrode for lithium ion battery and lithium ion battery using the same)
The positive electrode for a lithium ion battery according to an embodiment of the present invention includes, for example, a positive electrode mixture prepared by mixing a positive electrode active material for a lithium ion battery having the above-described configuration, a conductive additive, and a binder from an aluminum foil or the like. The current collector has a structure provided on one side or both sides. Moreover, the lithium ion battery which concerns on embodiment of this invention is equipped with the positive electrode for lithium ion batteries of such a structure.

(リチウムイオン電池用正極活物質の製造方法)
次に、本発明の実施形態に係るリチウムイオン電池用正極活物質の製造方法について詳細に説明する。
まず、金属塩溶液を作製する。当該金属は、Ni、及び、Mn及びCoである。また、金属塩は硫酸塩、塩化物、硝酸塩、酢酸塩等であり、特に硝酸塩が好ましい。これは、焼成原料中に不純物として混入してもそのまま焼成できるため洗浄工程が省けることと、硝酸塩が酸化剤として機能し、焼成原料中の金属の酸化を促進する働きがあるためである。金属塩に含まれる各金属を所望のモル比率となるように調整しておく。これにより、正極活物質中の各金属のモル比率が決定する。
(Method for producing positive electrode active material for lithium ion battery)
Next, the manufacturing method of the positive electrode active material for lithium ion batteries which concerns on embodiment of this invention is demonstrated in detail.
First, a metal salt solution is prepared. The metals are Ni, Mn and Co. The metal salt is sulfate, chloride, nitrate, acetate, etc., and nitrate is particularly preferable. This is because even if it is mixed as an impurity in the firing raw material, it can be fired as it is, so that the washing step can be omitted, and nitrate functions as an oxidant, and promotes the oxidation of the metal in the firing raw material. Each metal contained in the metal salt is adjusted so as to have a desired molar ratio. Thereby, the molar ratio of each metal in the positive electrode active material is determined.

次に、炭酸リチウムを純水に懸濁させ、その後、上記金属の金属塩溶液を投入して金属炭酸塩溶液スラリーを作製する。このとき、スラリー中に微小粒のリチウム含有炭酸塩が析出する。なお、金属塩として硫酸塩や塩化物等熱処理時にそのリチウム化合物が反応しない場合は飽和炭酸リチウム溶液で洗浄した後、濾別する。硝酸塩や酢酸塩のように、そのリチウム化合物が熱処理中にリチウム原料として反応する場合は洗浄せず、そのまま濾別し、乾燥することにより焼成前駆体として用いることができる。
次に、濾別したリチウム含有炭酸塩を乾燥することにより、リチウム塩の複合体(リチウムイオン電池正極材用前駆体)の粉末を得る。
Next, lithium carbonate is suspended in pure water, and then the metal salt solution of the metal is added to prepare a metal carbonate solution slurry. At this time, fine particles of lithium-containing carbonate precipitate in the slurry. If the lithium compound does not react during heat treatment such as sulfate or chloride as a metal salt, it is washed with a saturated lithium carbonate solution and then filtered off. When the lithium compound reacts as a lithium raw material during the heat treatment, such as nitrate or acetate, it can be used as a calcined precursor by washing and drying as it is without washing.
Next, the lithium-containing carbonate separated by filtration is dried to obtain a lithium salt composite (precursor for lithium ion battery positive electrode material) powder.

次に、所定の大きさの容量を有する焼成容器を準備し、この焼成容器にリチウムイオン電池正極材用前駆体の粉末を充填する。次に、リチウムイオン電池正極材用前駆体の粉末が充填された焼成容器を、焼成炉へ移設し、焼成を行うことで、正極活物質の表面構造を制御する。この際、こう鉢に充填された紛体を振とう機にかけることでリチウムイオン電池正極材用前駆体の充填密度を制御する。この効果により、焼成中の前駆体内に存在する空隙が変化し、焼成時にこの空隙内を反応ガスが移動するため、微細な表面構造を有するリチウムイオン電池用正極材を製造することが可能となる。より詳細には、焼成工程において、空気雰囲気及び酸素雰囲気下において、焼成温度と焼成時間とを制御し、焼成熱量を調整し、かつ、充填密度を750(kg/m3)以上950(kg/m3)以下に制御してリチウムイオン電池正極材用前駆体の粒子間に存在する空隙を制御することにより、正極活物質の表面構造について、正極活物質の断面像から得られる正極活物質に内接する円の平均径(B)に対する同一の正極活物質に外接する円の平均径(A)と同一の正極活物質に内接する円の平均径(B)との差の割合で表される(A−B)/B値が0.73以上となるように調整することができる。
当該充填密度が750(kg/m3)未満であれば、粒子間に存在する空気層が増加してしまい、焼成時の熱伝達に問題が生じる。焼成時の熱伝達が十分に行われない場合、正極活物質の焼成が十分に行われないため、正極活物質の結晶性が低下する。その場合、正極活物質の結晶性が低下したことにより、放電容量が低下してしまうという問題が生じる。また、当該充填密度が950(kg/m3)超であれば、焼成時に発生するガス拡散が十分に行われず、焼成反応が進行しなくなるため、反応生成物の特性が悪くなるという問題が生じる。
特に、1次粒子径が1〜2μm程度と小さい場合に顕著であるが、2次粒子としての形状は凹凸が生じ難いものとなる。ここで、焼成時の熱量を増加させると、1次粒子径が増大するため、2次粒子を形成した際に、1次粒子の形状に起因して2次粒子の表面に凹凸が形成されると考えられる。そのため、焼成温度を変化させることにより、正極活物質の1次粒子径が変化し、1次粒子の凝集体である正極活物質の表面に凹凸が形成されると考えられる。正極活物質の表面の凹凸は小さすぎても大きすぎても問題が生じる。具体的には、正極活物質に内接する円の平均径(B)に対する同一の正極活物質に外接する円の平均径(A)と同一の正極活物質に内接する円の平均径(B)との差の割合で表される(A−B)/B値が0.73未満であれば、粒子に対する比表面積が低くなり、正極材表面における電荷移動反応が進行しなくなり、電流が取り出し難くなる。さらに、(A−B)/B値が1.30超であれば、電荷移動反応が起こりやすくなる一方で、電池反応には主となる電気化学反応以外に電池性能を劣化させる副反応が起こる確率が高くなるおそれがある。そこで、焼成工程では、焼成温度880〜950℃で、6〜18時間の焼成を行う。
その後、焼成容器から粉末を取り出し、市販の解砕装置等を用いて解砕を行うことにより正極活物質の粉体を得る。
Next, a firing container having a predetermined capacity is prepared, and this firing container is filled with a precursor powder for a lithium ion battery positive electrode material. Next, the surface structure of the positive electrode active material is controlled by moving the firing container filled with the precursor powder for the lithium ion battery positive electrode material to a firing furnace and performing firing. At this time, the filling density of the precursor for the lithium ion battery positive electrode material is controlled by applying the powder filled in the mortar to a shaker. Due to this effect, the voids existing in the precursor during firing change, and the reaction gas moves in the voids during firing. Therefore, it becomes possible to produce a positive electrode material for a lithium ion battery having a fine surface structure. . More specifically, in the firing step, the firing temperature and the firing time are controlled in the air atmosphere and the oxygen atmosphere, the firing heat quantity is adjusted, and the packing density is 750 (kg / m 3 ) or more and 950 (kg / kg). m 3 ) By controlling the voids existing between the particles of the precursor for the lithium ion battery cathode material by controlling to the following, the surface structure of the cathode active material is changed to the cathode active material obtained from the cross-sectional image of the cathode active material. It is expressed as a ratio of a difference between an average diameter (A) of a circle circumscribing the same positive electrode active material and an average diameter (B) of a circle inscribed in the same positive electrode active material with respect to the average diameter (B) of the inscribed circle. Adjustment can be made such that the (A−B) / B value is 0.73 or more.
If the packing density is less than 750 (kg / m 3 ), the air layer existing between the particles increases, which causes a problem in heat transfer during firing. When heat transfer during firing is not sufficiently performed, the positive electrode active material is not sufficiently fired, so that the crystallinity of the positive electrode active material is lowered. In that case, there arises a problem that the discharge capacity is reduced due to a decrease in crystallinity of the positive electrode active material. Further, if the packing density exceeds 950 (kg / m 3 ), gas diffusion generated at the time of firing is not sufficiently performed, and the firing reaction does not proceed, resulting in a problem that the characteristics of the reaction product are deteriorated. .
This is particularly noticeable when the primary particle diameter is as small as about 1 to 2 μm, but the shape as the secondary particles is less likely to cause unevenness. Here, when the amount of heat at the time of firing is increased, the primary particle diameter increases, so that when the secondary particles are formed, irregularities are formed on the surface of the secondary particles due to the shape of the primary particles. it is conceivable that. Therefore, it is considered that by changing the firing temperature, the primary particle diameter of the positive electrode active material is changed, and irregularities are formed on the surface of the positive electrode active material which is an aggregate of primary particles. A problem arises if the surface roughness of the positive electrode active material is too small or too large. Specifically, the average diameter (B) of the circle inscribed in the same positive electrode active material as the average diameter (A) of the circle circumscribed in the same positive electrode active material with respect to the average diameter (B) of the circle inscribed in the positive electrode active material If the (A−B) / B value expressed by the ratio of the difference between the two is less than 0.73, the specific surface area for the particles is low, the charge transfer reaction on the surface of the positive electrode material does not proceed, and the current is difficult to extract. Become. Furthermore, if the (A−B) / B value exceeds 1.30, a charge transfer reaction is likely to occur, while a side reaction that degrades battery performance occurs in addition to the main electrochemical reaction in the battery reaction. Probability may be high. Therefore, in the firing step, firing is performed at a firing temperature of 880 to 950 ° C. for 6 to 18 hours.
Thereafter, the powder is taken out from the firing container and pulverized using a commercially available pulverizer or the like to obtain a positive electrode active material powder.

以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。   Examples for better understanding of the present invention and its advantages are provided below, but the present invention is not limited to these examples.

(実施例1〜6)
まず、金属塩に含まれる各金属が表1のモル比率となるように調整した硝酸塩を準備した。次に、炭酸リチウムを純水に懸濁させた後、この金属塩溶液を投入した。
この処理により溶液中に微小粒のリチウム含有炭酸塩が析出したが、この析出物を、フィルタープレスを使用して濾別した。
続いて、析出物を乾燥してリチウム含有炭酸塩(リチウムイオン電池正極材用前駆体)を得た。
次に、焼成容器を準備し、この焼成容器内にリチウム含有炭酸塩を表1に記載の充填密度により充填した。ここで、充填密度の調整は振とう機によって行った。次に、焼成容器を、大気圧下、空気又は酸素雰囲気炉に入れて、表1に記載の焼成温度及び焼成時間によって加熱保持した後冷却して酸化物を得た。
次に、得られた酸化物を解砕することで、リチウムイオン二次電池正極材の粉末を得た。
(Examples 1-6)
First, nitrates adjusted so that each metal contained in the metal salt had a molar ratio shown in Table 1 were prepared. Next, after suspending lithium carbonate in pure water, this metal salt solution was added.
By this treatment, fine particles of lithium-containing carbonate were precipitated in the solution, and this precipitate was filtered off using a filter press.
Subsequently, the precipitate was dried to obtain a lithium-containing carbonate (a precursor for a lithium ion battery positive electrode material).
Next, a baking container was prepared, and lithium-containing carbonate was filled in the baking container at a packing density shown in Table 1. Here, the packing density was adjusted by a shaker. Next, the firing container was placed in an air or oxygen atmosphere furnace under atmospheric pressure, heated and held at the firing temperature and firing time shown in Table 1, and then cooled to obtain an oxide.
Next, the obtained oxide was crushed to obtain a lithium ion secondary battery positive electrode powder.

(比較例1〜3)
比較例1〜3として、金属塩に含まれる各金属を表1に示すような組成とし、焼成条件以外は、実施例1〜6と同様の処理を行った。
(Comparative Examples 1-3)
As Comparative Examples 1-3, each metal contained in the metal salt had a composition as shown in Table 1, and the same treatment as in Examples 1-6 was performed except for the firing conditions.

(評価)
−正極材組成の評価−
各正極材(組成式:LixNi1-yy2+α)中の金属含有量は、誘導結合プラズマ発光分光分析装置(ICP−OES)で測定し、各金属の組成比(モル比)を算出した。また、酸素含有量はLECO法で測定しαを算出した。αは実施例1では0.01、実施例4では−0.07、実施例6では0.08であった。これらの数値は表1に記載の通りとなった。
(Evaluation)
-Evaluation of composition of positive electrode material-
Each positive electrode material (composition formula: Li x Ni 1-y M y O 2 + α) metal content in the measured inductively coupled plasma emission spectrometer (ICP-OES), the composition ratio (mole of each metal Ratio). The oxygen content was measured by the LECO method and α was calculated. α was 0.01 in Example 1, -0.07 in Example 4, and 0.08 in Example 6. These numerical values are as shown in Table 1.

−正極活物質に内接する円の平均径(B)に対する同一の正極活物質に外接する円の平均径(A)と同一の正極活物質に内接する円の平均径(B)との差の割合で表される(A−B)/B値の評価−
まず、正極活物質の断面SIM像を取得した。取得した断面SIM像を市販の画像解析ソフトを用いて読み込み、2次粒子を形成している任意の正極活物質を選択した。その際、2次粒子間に明らかに割れ(クラック)等が発生しており、1次粒子もしくは2次粒子の判定ができない場合はその粒子を測定対象とせず、図1及び図2に示すような粒子を2次粒子として判断した。本発明で述べられる外接円と内接円に関しては上述した通り、取得した断面SIM像から得られる外接円と内接円の直径をそれぞれ測定し、それぞれ正極活物質に外接する円の平均径(A)、正極活物質に内接する円の平均径(B)とした。続いて、当該平均径(B)に対する、当該平均径(A)と当該平均径(B)との差の割合で表される(A−B)/B値を算出した。
The difference between the average diameter (A) of the circle circumscribing the same positive electrode active material and the average diameter (B) of the circle inscribed in the same positive electrode active material with respect to the average diameter (B) of the circle inscribed in the positive electrode active material Evaluation of (AB) / B value expressed as a percentage-
First, a cross-sectional SIM image of the positive electrode active material was obtained. The obtained cross-sectional SIM image was read using commercially available image analysis software, and an arbitrary positive electrode active material forming secondary particles was selected. At that time, cracks or the like are clearly generated between the secondary particles, and when the primary particles or the secondary particles cannot be determined, the particles are not measured, as shown in FIG. 1 and FIG. Particles were judged as secondary particles. With respect to the circumscribed circle and the inscribed circle described in the present invention, as described above, the diameters of the circumscribed circle and the inscribed circle obtained from the acquired cross-sectional SIM image are respectively measured, and the average diameter of the circle circumscribed with the positive electrode active material ( A), the average diameter (B) of the circle inscribed in the positive electrode active material. Then, (AB) / B value represented by the ratio of the difference of the said average diameter (A) and the said average diameter (B) with respect to the said average diameter (B) was computed.

−正極活物質の平均粒径(D50)及びD90−D10の評価−
粒子径(D50)は、日機装株式会社製のマイクロトラックMT3000EX IIで測定した粒度分布における50%径とした。また、同様に測定した粒度分布における10%径をD10とし、90%径をD90とした。ここで、D10、D50、D90とは、ある紛体の集団の全体積を100%として累積曲線を求めたとき、その累積曲線がそれぞれ10%、50%、90%となる点の粒径を表す。
-Evaluation of average particle diameter (D50) and D90-D10 of positive electrode active material-
The particle size (D50) was 50% in the particle size distribution measured with Microtrack MT3000EX II manufactured by Nikkiso Co., Ltd. Similarly, the 10% diameter in the particle size distribution measured in the same manner was D10, and the 90% diameter was D90. Here, D10, D50, and D90 represent the particle sizes at points where the cumulative curves are 10%, 50%, and 90%, respectively, when the total volume of a certain powder group is 100%. .

−レート特性の評価−
各正極材と、導電材と、バインダーとを90:5:5の割合で秤量し、バインダーを有機溶媒(N−メチルピロリドン)に溶解したものに、正極材料と導電材とを混合してスラリー化し、Al箔上に塗布して乾燥後にプレスして正極とした。続いて、対極をLiとした評価用の2032型コインセルを作製し、電解液に1M−LiPF6をEC−DMC(1:1)に溶解したものを用いて、電流密度0.2Cの放電容量に対する電流密度1Cの放電容量を比としてレート特性と定義した。また、当該コインセルの充放電試験温度は55℃であった。
これらの結果を表1に示す。
-Evaluation of rate characteristics-
Each positive electrode material, conductive material, and binder are weighed in a ratio of 90: 5: 5, and the positive electrode material and the conductive material are mixed into a slurry in which the binder is dissolved in an organic solvent (N-methylpyrrolidone). And coated on an Al foil, dried and pressed to obtain a positive electrode. Subsequently, a 2032 type coin cell for evaluation with Li as the counter electrode was prepared, and a discharge capacity of 0.2 C current density was obtained by using 1M-LiPF 6 dissolved in EC-DMC (1: 1) as an electrolyte. The rate characteristic was defined as the ratio of the discharge capacity at a current density of 1 C to The charge / discharge test temperature of the coin cell was 55 ° C.
These results are shown in Table 1.

(評価結果)
実施例1〜6は、いずれも(A−B)/B値が0.73〜1.30であり、良好なレート特性が得られた。
比較例1〜3は、(A−B)/Bが0.73〜1.30の範囲外であったため、レート特性と放電容量を同時に満たすことができなかった。
図1に、実施例1のSIM観察写真(上図が三次元観察写真、下図が断面観察写真)を示す。図2に、比較例1のSIM観察写真(上図が三次元観察写真、下図が断面観察写真)を示す。
(Evaluation results)
In each of Examples 1 to 6, (A−B) / B value was 0.73 to 1.30, and good rate characteristics were obtained.
In Comparative Examples 1 to 3, since (A−B) / B was outside the range of 0.73 to 1.30, the rate characteristics and the discharge capacity could not be satisfied at the same time.
FIG. 1 shows a SIM observation photograph of Example 1 (the upper figure is a three-dimensional observation photograph, and the lower figure is a cross-sectional observation photograph). In FIG. 2, the SIM observation photograph (the upper figure is a three-dimensional observation photograph, the lower figure is a cross-sectional observation photograph) of the comparative example 1 is shown.

Claims (8)

正極活物質の断面像から得られる正極活物質に内接する円の平均径(B)に対する同一の正極活物質に外接する円の平均径(A)と同一の正極活物質に内接する円の平均径(B)との差の割合で表される(A−B)/B値が0.73〜1.30であるリチウムイオン電池用正極活物質。   The average of the circles inscribed in the same positive electrode active material as the average diameter (A) of the circles circumscribing the same positive electrode active material with respect to the average diameter (B) of the circle inscribed in the positive electrode active material obtained from the cross-sectional image of the positive electrode active material The positive electrode active material for lithium ion batteries whose (AB) / B value represented by the ratio of a difference with a diameter (B) is 0.73-1.30. 前記(A−B)/B値が0.80〜1.25である請求項1に記載のリチウムイオン電池用正極活物質。   The positive electrode active material for a lithium ion battery according to claim 1, wherein the (A−B) / B value is 0.80 to 1.25. 前記(A−B)/B値が0.90〜1.20である請求項2に記載のリチウムイオン電池用正極活物質。   The positive electrode active material for a lithium ion battery according to claim 2, wherein the (A−B) / B value is 0.90 to 1.20. 組成式:LixNi1-yy2+α
(前記式において、0.9≦x≦1.2であり、0<y≦0.7であり、−0.1≦α≦0.1であり、Mは金属である。)
で表される請求項1〜3のいずれか一項に記載のリチウムイオン電池用正極活物質。
Composition formula: Li x Ni 1- y My O 2 + α
(In the above formula, 0.9 ≦ x ≦ 1.2, 0 <y ≦ 0.7, −0.1 ≦ α ≦ 0.1, and M is a metal.)
The positive electrode active material for lithium ion batteries as described in any one of Claims 1-3 represented by these.
前記Mが、Mn及びCoから選択される1種以上である請求項4に記載のリチウムイオン電池用正極活物質。   The positive electrode active material for a lithium ion battery according to claim 4, wherein the M is one or more selected from Mn and Co. 不純物として、Ti、V、Cr、Fe、Mg、Cu、Zn、Al、Sn及びZrから選択される1種以上を0.05質量%以下含む請求項4又は5に記載のリチウムイオン電池用正極活物質。   The positive electrode for a lithium ion battery according to claim 4 or 5, which contains 0.05% by mass or less of one or more selected from Ti, V, Cr, Fe, Mg, Cu, Zn, Al, Sn, and Zr as impurities. Active material. 請求項1〜6のいずれか一項に記載のリチウムイオン電池用正極活物質を用いたリチウムイオン電池用正極。   The positive electrode for lithium ion batteries using the positive electrode active material for lithium ion batteries as described in any one of Claims 1-6. 請求項7に記載のリチウムイオン電池用正極を用いたリチウムイオン電池。   The lithium ion battery using the positive electrode for lithium ion batteries of Claim 7.
JP2013191045A 2013-09-13 2013-09-13 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery Active JP6273115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013191045A JP6273115B2 (en) 2013-09-13 2013-09-13 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013191045A JP6273115B2 (en) 2013-09-13 2013-09-13 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery

Publications (2)

Publication Number Publication Date
JP2015056384A true JP2015056384A (en) 2015-03-23
JP6273115B2 JP6273115B2 (en) 2018-01-31

Family

ID=52820630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013191045A Active JP6273115B2 (en) 2013-09-13 2013-09-13 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery

Country Status (1)

Country Link
JP (1) JP6273115B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019160572A (en) * 2018-03-13 2019-09-19 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode and lithium secondary battery
WO2023108481A1 (en) * 2021-12-15 2023-06-22 宁德新能源科技有限公司 Electrochemical apparatus and electronic apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1069910A (en) * 1995-11-24 1998-03-10 Fuji Chem Ind Co Ltd Lithium nickel composite oxide, manufacture thereof, and positive electrode active substance for secondary battery
JP2007173210A (en) * 2005-11-24 2007-07-05 Nissan Motor Co Ltd Positive active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this
WO2011083648A1 (en) * 2010-01-06 2011-07-14 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery using same
WO2012020769A1 (en) * 2010-08-10 2012-02-16 Agcセイミケミカル株式会社 Method for producing nickel-containing complex compound
JP2013032283A (en) * 2005-06-28 2013-02-14 Toda Kogyo Europe Gmbh Inorganic compound
JP2013120724A (en) * 2011-12-08 2013-06-17 Sony Corp Electrode, secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1069910A (en) * 1995-11-24 1998-03-10 Fuji Chem Ind Co Ltd Lithium nickel composite oxide, manufacture thereof, and positive electrode active substance for secondary battery
JP2013032283A (en) * 2005-06-28 2013-02-14 Toda Kogyo Europe Gmbh Inorganic compound
JP2007173210A (en) * 2005-11-24 2007-07-05 Nissan Motor Co Ltd Positive active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this
WO2011083648A1 (en) * 2010-01-06 2011-07-14 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery using same
WO2012020769A1 (en) * 2010-08-10 2012-02-16 Agcセイミケミカル株式会社 Method for producing nickel-containing complex compound
JP2013120724A (en) * 2011-12-08 2013-06-17 Sony Corp Electrode, secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019160572A (en) * 2018-03-13 2019-09-19 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode and lithium secondary battery
WO2023108481A1 (en) * 2021-12-15 2023-06-22 宁德新能源科技有限公司 Electrochemical apparatus and electronic apparatus

Also Published As

Publication number Publication date
JP6273115B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
JP5467144B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5923036B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5313392B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5819199B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5819200B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
TWI479726B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
JP5843753B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6399737B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
TWI549343B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
WO2012098724A1 (en) Method for producing positive-electrode active material for lithium-ion battery and positive-electrode active material for lithium-ion battery
TWI423507B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
WO2011108659A1 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery.
WO2013084536A1 (en) Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
JP2012169224A (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5876739B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6026404B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6273115B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2011187419A (en) Positive electrode for lithium ion battery, and lithium ion battery
JP2018006346A (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5550948B2 (en) Method for producing positive electrode for lithium ion battery
WO2013084535A1 (en) Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
JP6377379B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6017364B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
TWI469934B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171010

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180105

R150 Certificate of patent or registration of utility model

Ref document number: 6273115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250