JP2007169538A - Ultraviolet ray blocking material, visible light selective transmission filter, visible light selective transmission resin material and light source - Google Patents

Ultraviolet ray blocking material, visible light selective transmission filter, visible light selective transmission resin material and light source Download PDF

Info

Publication number
JP2007169538A
JP2007169538A JP2005371405A JP2005371405A JP2007169538A JP 2007169538 A JP2007169538 A JP 2007169538A JP 2005371405 A JP2005371405 A JP 2005371405A JP 2005371405 A JP2005371405 A JP 2005371405A JP 2007169538 A JP2007169538 A JP 2007169538A
Authority
JP
Japan
Prior art keywords
monoclinic
visible light
ultraviolet
selective transmission
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005371405A
Other languages
Japanese (ja)
Inventor
Akira Kawakatsu
晃 川勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2005371405A priority Critical patent/JP2007169538A/en
Publication of JP2007169538A publication Critical patent/JP2007169538A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve ultraviolet ray blocking capability at low cost and also reduce the cost for the blocking, by shifting the wavelength for ultraviolet ray blocking to a longer side than that of ZnO. <P>SOLUTION: The ultraviolet ray blocking material is characterized in that it is mainly composed of a mixed oxides of monoclinic crystals of Bi<SB>2</SB>O<SB>3</SB>and cubical crystals of CeO<SB>2</SB>at a ratio of 12-6:1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、紫外線遮断材料、この紫外線遮断材料を用いた可視光選択透過フィルター、可視光選択透過樹脂材料及び光源に関する。   The present invention relates to an ultraviolet blocking material, a visible light selective transmission filter using the ultraviolet blocking material, a visible light selective transmission resin material, and a light source.

周知の如く、家屋、ビルディング等の建造物、電車、自動車、航空機等の輸送機等の窓、あるいは冷蔵もしくは冷凍ショーケース等に用いられるガラスの表面には、赤外線による温度上昇を軽減したり、また紫外線による各種構造物や食品、その他の物品等の劣化を防止するために、一般に赤外線と紫外線との少なくとも一方を反射または吸収する樹脂製フィルムが貼着されている。   As is well known, the glass surface used for buildings such as houses, buildings, trains, cars, airplanes, etc., or glass used for refrigerated or frozen showcases, etc. Moreover, in order to prevent deterioration of various structures, foods, and other articles caused by ultraviolet rays, a resin film that reflects or absorbs at least one of infrared rays and ultraviolet rays is generally attached.

従来、例えば紫外線をカットするための膜材料には、酸化亜鉛(ZnO)系材料が主に使用されている。ところで、紫外線をカットするために使用されているZnO遮断膜では、カット波長は約380nm以下であるが、より長波長側のカットが望ましく、例えばBiまたはInをドープしたZnO系材料が提案されている。一方、熱線をカットする膜材料には、例えば錫ドープ酸化インジウム粉末(ITO粉末)が使用されているが、同時に300〜400nmの紫外線をカットする材料はほとんど知られていない。紫外線と赤外線の両者をカットする膜材料としては、例えばZnO:Alや、(ZnO)・In(k=2〜20)の六方晶複合酸化物(k:偶数)が提案されている(特許文献1)。しかし、これらの膜材料では、紫外線のカットはZnOと同等か、あるいはカット波長が幾分短波長側にシフトするため若干低下する。 Conventionally, for example, a zinc oxide (ZnO) -based material is mainly used as a film material for cutting ultraviolet rays. By the way, in the ZnO blocking film used for cutting ultraviolet rays, the cut wavelength is about 380 nm or less, but it is desirable to cut on the longer wavelength side. For example, a ZnO-based material doped with Bi or In has been proposed. Yes. On the other hand, for example, tin-doped indium oxide powder (ITO powder) is used as a film material for cutting heat rays, but few materials are known for cutting ultraviolet rays of 300 to 400 nm at the same time. The film material for cutting both the ultraviolet and infrared, for example ZnO: Al and, (ZnO) k · In 2 O 3 (k = 2~20) hexagonal composite oxide (k: even number) is proposed (Patent Document 1). However, in these film materials, the cut of ultraviolet rays is the same as that of ZnO, or slightly decreases because the cut wavelength is somewhat shifted to the short wavelength side.

また、周知のように、水銀輝線の深紫外線(254nm)を使用して、可視光を放射する光源としての蛍光ランプでは、近紫外光(365nm)や可視光(405nm)等にも水銀輝線のスペクトルが存在している。ここで、主な昆虫のすう光曲線は370nm付近が最大であることから、従来、低誘虫仕様の蛍光ランプには380nm以下の波長をカットする紫外線遮断膜が塗布されている。このような紫外線遮断膜の材料の多くは、耐久性、コスト面からZnOやTiOが使用されている。 Further, as is well known, in a fluorescent lamp as a light source that emits visible light using deep ultraviolet rays (254 nm) of mercury emission lines, mercury emission lines are also emitted in near ultraviolet light (365 nm), visible light (405 nm), and the like. A spectrum exists. Here, since the fluorescence curve of the main insects is maximum around 370 nm, conventionally, a fluorescent lamp with a low susceptibility specification is coated with an ultraviolet blocking film that cuts a wavelength of 380 nm or less. Many of the materials for such an ultraviolet blocking film use ZnO or TiO 2 in terms of durability and cost.

更に、従来、ガラス基板の表面に金属酸化物被膜を形成し、該被膜が酸化ビスマスを含有した紫外線透過防止ガラス(特許文献2)、あるいは酸化チタン、酸化セリウム及び酸化ビスマスを含有した光学薄膜(特許文献3)が知られている。
特開2003−336034号公報 特開平7−53240号公報 特開平10−236847号公報
Further, conventionally, a metal oxide film is formed on the surface of a glass substrate, and the film is an ultraviolet light transmission preventing glass containing bismuth oxide (Patent Document 2), or an optical thin film containing titanium oxide, cerium oxide and bismuth oxide ( Patent Document 3) is known.
JP 2003-336034 A JP-A-7-53240 JP-A-10-236847

ところで、昆虫のすう光曲線の分布は長波長側が550nmまで広がっており、ZnOのようなカット材料ではカット波長が約380nm以下であるため、非誘虫作用を効果的に得るにはより長波長側のカットが望ましい。また、蛍光ランプは照明用途であるため、人間の視感度曲線の下限の波長である410nm以上をカットするのはランプ効率、演色性の観点から好ましくない。しかし、これらの条件を満たす適切な無機材料が存在しないので、約410nm前後のカットは、プラスチック製フィルムやチューブあるいは有機化合物を使用することで実用化されている。   By the way, the long-wavelength side of the insect's luminous curve distribution extends to 550 nm, and a cut material such as ZnO has a cut wavelength of about 380 nm or less. The cut of is desirable. Further, since the fluorescent lamp is used for illumination, it is not preferable from the viewpoint of lamp efficiency and color rendering to cut 410 nm or more, which is the lower limit wavelength of the human visibility curve. However, since there is no suitable inorganic material that satisfies these conditions, a cut of about 410 nm has been put to practical use by using a plastic film, tube, or organic compound.

ここで、プラスチック製フィルムやチューブあるいは有機化合物を用いる場合には、蛍光ランプの外管へ被覆するため製造が煩雑であるとともに、コストも高くなる。また、耐熱性や紫外線による劣化に対する耐久性も問題である。更に、ZnOにInをドープした膜が長波長側までカットできることが特許文献1に開示されているが、材料と製造コストや工程数が多いという問題点があった。   Here, when a plastic film, a tube, or an organic compound is used, the outer tube of the fluorescent lamp is coated, so that the manufacturing is complicated and the cost is increased. In addition, heat resistance and durability against deterioration by ultraviolet rays are also problems. Furthermore, although Patent Document 1 discloses that a film in which ZnO is doped with In can be cut to a long wavelength side, there is a problem in that the material, the manufacturing cost, and the number of processes are large.

本発明は、こうした問題点を解消するためになされたもので、ZnOよりも紫外線をカットする波長を長波長側にシフトさせて紫外線カット能力を向上でき且つ低コストの紫外線遮断材料、及びこの材料を用いた可視光選択透過フィルター、可視光選択透過樹脂材料、光源を提供することを目的とする。   The present invention has been made in order to solve such problems, and can shift the wavelength for cutting ultraviolet rays to a longer wavelength side than ZnO to improve the ultraviolet ray cutting ability and reduce the cost, and this material. An object of the present invention is to provide a visible light selective transmission filter, a visible light selective transmission resin material, and a light source.

本発明者は、ZnOにInをドープした膜を蛍光ランプに使用した場合の課題を解決するため、以前(ZnO)・Inの粉体を水溶液化して膜にする方法を考えた。しかし、(ZnO)・Inの粉体のみでは410nmまでのカット率は高いが、500nm以上の吸収が多く光束が低下する、あるいは粒径が大きいと紫外線が若干透過してしまう問題があった。こうしたことから、本発明者は、亜鉛複合酸化物の結晶構造を最適化することでカット波長を長波長側にカットさせる発明を提案した。しかし、この提案では紫外カット波長を長波長側にカットさせる目的は達成できたが、複合酸化物にInが含まれる為、コスト高を招くという問題があった。そこで、本発明者は、種々研究を重ねたところ、今回、400−430nmでありZnOよりも紫外カット波長を長波長側にシフトさせて紫外カット能力を向上でき、且つ低コストの紫外線遮断材料を究明するに至った。 In order to solve the problem in the case where a film in which ZnO is doped with In is used in a fluorescent lamp, the present inventor previously considered a method of forming a film by forming an aqueous solution of (ZnO) k · In 2 O 3 powder. . However, (ZnO) k · In alone 2 O 3 powder is higher cut rates of up to 410 nm, the absorption of more than 500nm is much luminous flux drops, or problems with a large grain size ultraviolet resulting in transmissive slightly was there. For these reasons, the present inventor has proposed an invention in which the cut wavelength is cut to the long wavelength side by optimizing the crystal structure of the zinc composite oxide. However, with this proposal, the purpose of cutting the ultraviolet cut wavelength to the longer wavelength side could be achieved, but there was a problem that the composite oxide contained In and thus increased costs. Therefore, the present inventor has conducted various studies, and this time, 400 to 430 nm, which can improve the ultraviolet cut ability by shifting the ultraviolet cut wavelength to a longer wavelength side than ZnO, and a low-cost ultraviolet blocking material. I came to investigate.

請求項1記載の紫外線遮蔽材料は、単斜晶Biと立方晶CeOの混合酸化物を主成分とし、単斜晶Biと立方晶CeOの比率が12〜6:1であることを特徴とする。
請求項2記載の紫外線遮蔽材料は、前記単斜晶Biと立方晶CeOの混合酸化物を主成分としたものを被膜状に形成された状態で700〜600℃で熱処理されていることを特徴とする。
UV shielding material according to claim 1 is mainly composed of a mixed oxide of monoclinic Bi 2 O 3 and cubic CeO 2, monoclinic Bi 2 O 3 and the ratio of cubic CeO 2 is from 12 to 6: It is characterized by 1.
The ultraviolet shielding material according to claim 2 is heat-treated at 700 to 600 ° C. in a state in which the monoclinic Bi 2 O 3 and cubic CeO 2 mixed oxide as a main component is formed in a film shape. It is characterized by being.

請求項3記載の可視光選択透過フィルターは、請求項1記載の紫外線遮断材料を粉砕したものに、無機または有機バインダーを混ぜて成膜して得られることを特徴とする。
請求項4記載の可視光選択透過樹脂材料は、請求項1記載の紫外線遮断材料を主成分とするものを粉砕したものを金属酸化物で表面処理し、これを透光性樹脂に混合して成型して得られることを特徴とする。
The visible light selective transmission filter according to claim 3 is obtained by forming a film by mixing the ultraviolet blocking material according to claim 1 with an inorganic or organic binder.
The visible light selective transmission resin material according to claim 4 is obtained by subjecting a material obtained by pulverizing the main component of the ultraviolet blocking material according to claim 1 to a surface treatment with a metal oxide, and mixing this with a translucent resin. It is obtained by molding.

請求項5記載の可視光選択透過樹脂材料は、前記金属酸化物がSi,Al,Zrの少なくとも一種の金属からなる酸化物であることを特徴とする。
請求項6記載の光源は、透光性容器の内面または外面に、単斜晶Biと立方晶CeOの混合酸化物を主成分とし、単斜晶Biと立方晶CeOの比率が12〜6:1である紫外線遮断材料から形成された紫外線遮断層が設けられており、前記透光性容器の内部に発光手段が配設されていることを特徴とする。ここで、発光手段としては、放電による分子(気体)発光、蛍光体層からの励起発光、白熱フィラメントやLED等の固定発光をそれぞれ生起する構成が挙げられる。
The visible light selective transmission resin material according to claim 5 is characterized in that the metal oxide is an oxide made of at least one of Si, Al, and Zr.
Source of claim 6, the inner surface or outer surface of the translucent vessel, as a main component a mixed oxide of monoclinic Bi 2 O 3 and cubic CeO 2, monoclinic Bi 2 O 3 and cubic CeO An ultraviolet blocking layer formed of an ultraviolet blocking material having a ratio of 2 to 12 to 6: 1 is provided, and a light emitting means is disposed inside the translucent container. Here, examples of the light emitting means include configurations that cause molecular (gas) light emission by discharge, excitation light emission from the phosphor layer, and fixed light emission of incandescent filaments, LEDs, and the like.

本発明によれば、単斜晶Biと立方晶CeOの混合酸化物を主成分とし、単斜晶Biと立方晶CeOの比率を12〜6:1とすることにより、短波長吸収端側の透過率50%波長が400〜430nmであり、ZnOよりも紫外カット波長を長波長側にシフトさせて紫外線カット能力を向上させるとともに、ZnO:In系材料のInのように高コストの材料を使用することが無いので低コストの紫外線遮断材料、可視光選択透過フィルター、可視光選択透過樹脂材料または光源が得られる。 According to the present invention, a mixed oxide of monoclinic Bi 2 O 3 and cubic CeO 2 is a main component, and the ratio of monoclinic Bi 2 O 3 and cubic CeO 2 is 12 to 6: 1. Thus, the transmittance at the short wavelength absorption end side is 400 to 430 nm, the ultraviolet cut wavelength is shifted to the longer wavelength side than ZnO to improve the ultraviolet cut ability, and the ZnO: In based material In Thus, a low-cost ultraviolet blocking material, a visible light selective transmission filter, a visible light selective transmission resin material, or a light source can be obtained.

以下、この発明の実施の形態について図面を参照して説明する。
本発明は、例えば醸造所,製飴所関連、スーパー,コンビニエンスストア,デパートの食品売り場のショーケース等の食品関係、衣料品店,ショーウィンドウ,デパートの衣料品売り場等の衣類関係、学術的に貴重な作品を展示する美術館・博物館関係、印刷工場,製紙工場,書店,文具店,オフィス等の紙製品を多く扱う紙類関係のように広い分野における紫外線遮断材料、UVカットフィルム、UVカットシートとして使用可能である。
Embodiments of the present invention will be described below with reference to the drawings.
The present invention includes, for example, food-related products such as breweries, brewery-related products, supermarkets, convenience stores, department store food department showcases, clothing-related items such as clothing stores, show windows, department store clothing departments, and academically. UV blocking materials, UV cut films, UV cut sheets in a wide range of fields such as museums, museums that display precious works, papers that handle many paper products such as printing factories, paper factories, bookstores, stationery stores, offices, etc. Can be used as

本発明において、紫外線遮断材料は、単斜晶Biと立方晶CeOの混合酸化物を主成分とし、単斜晶Biと立方晶CeOの比率が12〜6:1であることを特徴とする。「単斜晶Biと立方晶CeOの混合酸化物を主成分とし」とは、両者の配合割合が全体の50%以上であることを意味する。これらの混合酸化物には酸化亜鉛を混ぜることができる。また、両者の比率が上記範囲を外れると、紫外線のカットが十分でない。具体的には、図3のように、単斜晶Biの比率が多いと、長波長側の反射率の立ち上がりが遅く、その比率が少ないと立ち上がりが早くなる。なお、図3は単斜晶Biと立方晶CeOの比率が9:1の場合の紫外線遮断材料による膜の反射率と波長との関係を示す特性図である。また、図中の符番(a)は本発明による曲線、符番(b)は単斜晶Biの比率が9未満の場合の曲線(一点鎖線)、符番(c)はその比率が9を超える場合の曲線(点線)を示す。 In the present invention, ultraviolet blocking material, a main component a mixed oxide of monoclinic Bi 2 O 3 and cubic CeO 2, the ratio of monoclinic Bi 2 O 3 and cubic CeO 2 is from 12 to 6: 1 It is characterized by being. “The main component is a mixed oxide of monoclinic Bi 2 O 3 and cubic CeO 2 ” means that the blending ratio of both is 50% or more of the whole. These mixed oxides can be mixed with zinc oxide. Further, if the ratio between the two is out of the above range, the ultraviolet rays are not sufficiently cut. Specifically, as shown in FIG. 3, when the ratio of monoclinic Bi 2 O 3 is large, the rise of reflectance on the long wavelength side is slow, and when the ratio is small, the rise is fast. FIG. 3 is a characteristic diagram showing the relationship between the reflectance of the film and the wavelength of the ultraviolet blocking material when the ratio of monoclinic Bi 2 O 3 and cubic CeO 2 is 9: 1. In the figure, the number (a) is a curve according to the present invention, the number (b) is a curve (dotted line) when the ratio of monoclinic Bi 2 O 3 is less than 9, and the number (c) A curve (dotted line) when the ratio exceeds 9 is shown.

本発明の紫外線遮断材料は、前記単斜晶Biと立方晶CeOの混合酸化物を主成分とするものが直接700〜600℃で熱処理されていてもよいし、あるいは前記単斜晶Biと立方晶CeOの混合酸化物を主成分とするものが膜の状態で700〜600℃で熱処理されていることを特徴とする。ここで、「膜の状態」とは、各々の酸化物を分散した液を混合し、これを膜にしたものを意味する。 As the ultraviolet blocking material of the present invention, a material mainly composed of a mixed oxide of the monoclinic Bi 2 O 3 and cubic CeO 2 may be directly heat-treated at 700 to 600 ° C., or the monoclinic A main component of mixed oxide of crystal Bi 2 O 3 and cubic CeO 2 is heat-treated at 700 to 600 ° C. in a film state. Here, the “film state” means a liquid in which each oxide is mixed to form a film.

本発明の可視選択透過フィルターは、前記単斜晶Biと立方晶CeOの混合酸化物を主成分とするものを粉砕したものに、無機又は有機バインダーを混ぜて成膜することにより得られる。また、前記単斜晶Biと立方晶CeOの混合酸化物を粉砕したものを金属酸化物で表面処理し、これを透光性樹脂に混合して成型することにより、例えばUVカットフィルムやUVカットシート等の可視選択透過透明樹脂材料が得られる。ここで、金属酸化物としては、Si,Al,Zrの少なくとも一種からなる金属酸化物が挙げられる。 The visible selective transmission filter of the present invention is formed by mixing an inorganic or organic binder with a pulverized material containing a mixed oxide of monoclinic Bi 2 O 3 and cubic CeO 2 as a main component. can get. In addition, by pulverizing the mixed oxide of the monoclinic Bi 2 O 3 and cubic CeO 2 with a metal oxide, this is mixed with a translucent resin and molded, for example, UV-cut. Visible selectively transmissive transparent resin materials such as films and UV cut sheets are obtained. Here, examples of the metal oxide include a metal oxide composed of at least one of Si, Al, and Zr.

本発明の実施形態としての光源は、例えば白熱電球やHIDランプ、蛍光ランプが挙げられるが、これらに限定されない。
本発明において、透光性容器の内面または外面に、単斜晶Biと立方晶CeOの混合酸化物を主成分とし、単斜晶Biと立方晶CeOの質量比率が12〜6:1である紫外線遮断材料から形成された紫外線遮断層が設けることにより、395nm以下の紫外線をほぼ100%カットでき、400〜410nmの可視光も60%以上カットできるため、誘虫性が低く、従来の光源よりも虫が集まりにくくなる。また、500〜780nmの可視光は殆ど吸収しないため、本発明の紫外線遮断層が設けられていない光源と比べて光束の低下が少ない。更に、蛍光ランプ取替え時にプラスチックや樹脂のチューブ等で覆う必要がないため、取り付けが簡単である。
Examples of the light source as an embodiment of the present invention include, but are not limited to, an incandescent bulb, an HID lamp, and a fluorescent lamp.
In the present invention, the mass ratio of monoclinic Bi 2 O 3 and cubic CeO 2 is mainly composed of a mixed oxide of monoclinic Bi 2 O 3 and cubic CeO 2 on the inner or outer surface of the translucent container. By providing an ultraviolet blocking layer formed of an ultraviolet blocking material having a ratio of 12 to 6: 1, it is possible to cut almost 100% of ultraviolet rays of 395 nm or less, and 60% or more of visible light of 400 to 410 nm. The insects are less likely to collect than conventional light sources. Further, since visible light of 500 to 780 nm is hardly absorbed, there is little decrease in luminous flux as compared with a light source not provided with the ultraviolet blocking layer of the present invention. Furthermore, it is not necessary to cover the fluorescent lamp with a plastic or resin tube when replacing the fluorescent lamp.

(第1の実施形態)
本発明の第1の実施形態に係る紫外線遮蔽材料は、単斜晶Biと立方晶CeOの混合酸化物からなり、単斜晶Biと立方晶CeOの比率が9:1であることを特徴とする。この紫外線遮断材料は次のようにして製造した。即ち、まず、平均粒径約30nmの単斜晶Biと平均粒径約50nmの立方晶CeOの比率を9:1で混合した。次に、この混合物をルツボ内に入れ、大気中600℃以上例えば650℃で5時間熱処理し反応させることにより、粒径約100nmの紫外線遮断材料を得た。
これにより、短波長吸収端側の透過率50%波長が400〜430nmであり高紫外線カットと熱線カット機能を有する紫外線遮断材料の粉末を得た。
(First embodiment)
Ultraviolet shielding material according to the first embodiment of the present invention consists of a mixed oxide of monoclinic Bi 2 O 3 and cubic CeO 2, the ratio of monoclinic Bi 2 O 3 and cubic CeO 2 9 : 1. This ultraviolet blocking material was manufactured as follows. That is, first, the ratio of monoclinic Bi 2 O 3 having an average particle diameter of about 30 nm and cubic CeO 2 having an average particle diameter of about 50 nm was mixed at 9: 1. Next, the mixture was placed in a crucible and subjected to a heat treatment in the atmosphere at 600 ° C. or higher, for example, 650 ° C. for 5 hours to obtain an ultraviolet blocking material having a particle size of about 100 nm.
As a result, a powder of an ultraviolet blocking material having a transmittance of 50% on the short wavelength absorption end side of 400 to 430 nm and having a high ultraviolet cutting function and a heat ray cutting function was obtained.

得られた粉末をX線回折したところ、主成分は単斜晶Biと立方晶CeOであることが確認された。また、反射特性を測定したところ、粉末試料の短波長吸収端側の透過率50%波長が400〜430nmであり、優れた紫外線カット機能および熱線カット機能を有することが確認された。なお、実際に紫外線遮断材料として使用する場合には、前述の製法で得られた粉末を所定の粒径に粉砕、分級し、必要に応じて所定の表面処理が施されたものが好適である。また、コーティング材料として使用する場合には、有機系または水溶性の分散液等に分散して利用する。 X-ray diffraction of the obtained powder confirmed that the main components were monoclinic Bi 2 O 3 and cubic CeO 2 . Moreover, when the reflection characteristic was measured, the transmittance | permeability 50% wavelength of the short wavelength absorption end side of a powder sample is 400-430 nm, and it was confirmed that it has the outstanding ultraviolet ray cut function and heat ray cut function. In addition, when actually used as an ultraviolet blocking material, it is preferable to pulverize and classify the powder obtained by the above-described manufacturing method into a predetermined particle size and perform a predetermined surface treatment as necessary. . When used as a coating material, it is dispersed in an organic or water-soluble dispersion or the like.

このように、第1の実施形態の紫外線遮断材料によれば、短波長吸収端側の透過率50%波長が400〜430nmで、ZnOよりも紫外線カット波長を長波長側にシフトさせて紫外線カット能力を向上させ、かつ熱線カット機能を有するという効果が得られた。既述した図3は、第1の実施形態で得られた紫外線遮断材料に無機または有機バインダーを使用して堆積して膜とし、この膜の透過特性を調べたものである。
なお、第1の実施形態の紫外線遮断材料の粒径は特に限定されないが、光学特性の関係から好ましくは平均粒径10nm〜1μm、最適には30nm〜100nmである。
Thus, according to the ultraviolet blocking material of the first embodiment, the transmittance 50% wavelength on the short wavelength absorption end side is 400 to 430 nm, and the ultraviolet cut wavelength is shifted to the longer wavelength side than ZnO to cut ultraviolet rays. The effect that the capability was improved and it had a heat ray cut function was acquired. FIG. 3 described above is a film obtained by depositing the ultraviolet blocking material obtained in the first embodiment using an inorganic or organic binder to form a film, and examining the transmission characteristics of this film.
The particle size of the ultraviolet blocking material of the first embodiment is not particularly limited, but is preferably an average particle size of 10 nm to 1 μm, and most preferably 30 nm to 100 nm, from the viewpoint of optical characteristics.

また、比較例として、単斜晶Biを使用して第1の実施形態と同様な操作手順で紫外線遮断材料を得た場合、550nm前後から透過率が低下しはじめ、400nm付近のカットが低いので、使用困難であることが判明した。 In addition, as a comparative example, when monoclinic Bi 2 O 3 is used and an ultraviolet blocking material is obtained by the same operation procedure as in the first embodiment, the transmittance starts to decrease from around 550 nm, and a cut around 400 nm is obtained. Was found to be difficult to use.

(第2の実施形態)
図1及び図2は、本発明の第2の実施形態に蛍光ランプ(光源)の説明図であり、図1(A)は同蛍光ランプの一部を切欠して示す全体図、図1(B)は図1(A)のX−X線に沿う断面図である。また、図1は図2(A)の蛍光ランプのバルブ断面を拡大して示す膜構造の模式図である。
(Second Embodiment)
1 and 2 are explanatory views of a fluorescent lamp (light source) according to a second embodiment of the present invention. FIG. 1A is an overall view in which a part of the fluorescent lamp is cut away, and FIG. B) is a cross-sectional view taken along line XX in FIG. FIG. 1 is a schematic diagram of a film structure showing an enlarged bulb cross section of the fluorescent lamp of FIG.

蛍光ランプ11は、直管状のソーダガラス製のガラスバルブ(透光性容器)12とこのバルブ12の両端に設けられた口金13,13とから構成されている。バルブ12の内面には、図1(B)及び図2に示すように、紫外線遮断層としての紫外線カット層14、蛍光体層15が順次形成されている。ここで、紫外線カット層14は単斜晶Biと立方晶CeOからなり、膜厚は1〜5μmである。前記蛍光体層15は、JIS Z 9112に規定される3波長域発光形の複数の蛍光体が塗布されたものである。即ち、蛍光体層15は、波長が約450nm(青色)、540nm(緑色)及び610nm(赤色)の少なくとも3つの単色光が組み合わされる。その結果、蛍光ランプ11は、色温度がおよそ5000Kの昼白色区分の白色光を照射するようになっている。 The fluorescent lamp 11 includes a straight tubular soda glass glass bulb (translucent container) 12 and caps 13 and 13 provided at both ends of the bulb 12. As shown in FIGS. 1B and 2, an ultraviolet cut layer 14 and a phosphor layer 15 are sequentially formed on the inner surface of the bulb 12 as an ultraviolet blocking layer. Here, the ultraviolet cut layer 14 is composed of monoclinic Bi 2 O 3 and cubic CeO 2 and has a thickness of 1 to 5 μm. The phosphor layer 15 is formed by applying a plurality of phosphors of a three-wavelength region emission type defined in JIS Z 9112. That is, the phosphor layer 15 is a combination of at least three monochromatic lights having wavelengths of about 450 nm (blue), 540 nm (green), and 610 nm (red). As a result, the fluorescent lamp 11 emits white light in the daytime white section having a color temperature of about 5000K.

上記蛍光ランプ11は、次のようにして製造した。即ち、まず、平均粒径約30nmの単斜晶Biと平均粒径約50nmの立方晶CeOの比率を9:1で混合した後、650℃で5時間熱処理し、粒径約100nmの単斜晶Biと立方晶CeOによる複合酸化物粉体を生成した。次に、この粉体を水溶液にした後、粒径(約100nm)の複合酸化物粉体の水溶液をバルブ12の内面にコーティングした。つづいて、コーティングした層が乾燥した後、3波長蛍光体を塗布し、ベーキング、封止、排気工程を経てバルブ12の内面に膜厚1μmの紫外線カット層14,蛍光体層15が順次形成された蛍光ランプ(形名FL20SSEXD)を作製した。また、比較例1として実施形態の紫外線カット層を形成していない蛍光ランプも作製した。 The fluorescent lamp 11 was manufactured as follows. That is, first, a ratio of monoclinic Bi 2 O 3 having an average particle size of about 30 nm and cubic CeO 2 having an average particle size of about 50 nm was mixed at 9: 1, and then heat-treated at 650 ° C. for 5 hours to obtain a particle size of about A composite oxide powder of 100 nm monoclinic Bi 2 O 3 and cubic CeO 2 was produced. Next, after making this powder into an aqueous solution, the inner surface of the valve 12 was coated with an aqueous solution of a composite oxide powder having a particle size (about 100 nm). Subsequently, after the coated layer is dried, a three-wavelength phosphor is applied, and an ultraviolet cut layer 14 and a phosphor layer 15 having a thickness of 1 μm are sequentially formed on the inner surface of the bulb 12 through baking, sealing, and exhaust processes. A fluorescent lamp (model name FL20SSEXD) was prepared. Moreover, the fluorescent lamp which does not form the ultraviolet-ray cut layer of embodiment as the comparative example 1 was also produced.

なお、第2の実施形態において、紫外線カット層14はバルブ12の外面に形成してもよいことはいうまでもないが、ガラス12への紫外線照射量を少なくしてガラス成分の劣化を抑えるためには、やはりバルブ12の内面に成膜した方がよい。   In the second embodiment, it goes without saying that the ultraviolet cut layer 14 may be formed on the outer surface of the bulb 12, but in order to reduce the amount of ultraviolet irradiation to the glass 12 and suppress deterioration of the glass component. It is better to form a film on the inner surface of the valve 12.

第2の実施形態の蛍光ランプによれば、395nm以下の紫外線をほぼ100%カットでき、400〜410nmの可視光も60%以上カットできるため、誘虫性が低くなる。屋外評価試験の結果、蛍光ランプよりも虫が集まりにくくなっていることが確認された。また、実施形態の紫外線カット層は500〜780nmの可視光を殆ど吸収しないため、比較例の蛍光ランプと比べて光束の低下が少ない。更に、蛍光ランプの外面に取替え時にプラスチックや樹脂のチューブ等で覆う必要がないため、取り付けが簡単である。   According to the fluorescent lamp of the second embodiment, ultraviolet rays of 395 nm or less can be cut almost 100%, and visible light of 400 to 410 nm can be cut by 60% or more. As a result of the outdoor evaluation test, it was confirmed that insects are less likely to collect than fluorescent lamps. Moreover, since the ultraviolet cut layer of the embodiment hardly absorbs visible light of 500 to 780 nm, the decrease in luminous flux is less than that of the fluorescent lamp of the comparative example. Furthermore, since it is not necessary to cover the fluorescent lamp with the outer surface of the fluorescent lamp with a plastic or resin tube, it is easy to install.

この発明は、上記実施形態そのままに限定されるものではなく、その実施の段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。具体的には、上記実施形態では単斜晶Biと立方晶CeOの比率が9:1である場合について述べたが、これに限らず、その比率は12〜6:1の範囲にあればよい。また、紫外線遮断層の構成は単斜晶Biと立方晶CeOが主成分であるが、これらに例えば酸化亜鉛を混合した層を用いてもよい。更に、紫外線遮断層を構成する酸化物の粒径や紫外線遮断の厚みも、上記実施形態に記載されたものに限らず、適宜組み合わせることができる。 The present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the spirit of the invention in the stage of implementation. Specifically, in the above embodiment, the case where the ratio of monoclinic Bi 2 O 3 and cubic CeO 2 is 9: 1 has been described, but the present invention is not limited to this, and the ratio ranges from 12 to 6: 1. If it is in. The ultraviolet blocking layer is composed mainly of monoclinic Bi 2 O 3 and cubic CeO 2, but a layer in which, for example, zinc oxide is mixed may be used. Furthermore, the particle diameter of the oxide constituting the ultraviolet blocking layer and the thickness of the ultraviolet blocking are not limited to those described in the above embodiment, and can be appropriately combined.

図1は、本発明の第2の実施形態に係る蛍光ランプの説明図である。FIG. 1 is an explanatory diagram of a fluorescent lamp according to a second embodiment of the present invention. 図2は、図1の蛍光ランプに使用される膜構造の概略断面図である。FIG. 2 is a schematic cross-sectional view of a film structure used in the fluorescent lamp of FIG. 図3は、図1の蛍光ランプに使用される膜の反射率と波長との関係を示す特性図である。FIG. 3 is a characteristic diagram showing the relationship between the reflectance and wavelength of the film used in the fluorescent lamp of FIG.

符号の説明Explanation of symbols

11…蛍光ランプ(光源)、12…ガラスバルブ、14…紫外線カット槽(紫外線遮断層)、15…蛍光体層。   DESCRIPTION OF SYMBOLS 11 ... Fluorescent lamp (light source), 12 ... Glass bulb, 14 ... Ultraviolet cut tank (ultraviolet blocking layer), 15 ... Phosphor layer.

Claims (6)

単斜晶Biと立方晶CeOの混合酸化物を主成分とし、単斜晶Biと立方晶CeOの比率が12〜6:1であることを特徴とする紫外線遮断材料。 UV blocking characterized by comprising a mixed oxide of monoclinic Bi 2 O 3 and cubic CeO 2 as a main component and a ratio of monoclinic Bi 2 O 3 and cubic CeO 2 being 12 to 6: 1 material. 前記単斜晶Biと立方晶CeOの混合酸化物を主成分としたものを被膜状に形成された状態で700〜600℃で熱処理されていることを特徴とする請求項1記載の紫外線遮断材料。 2. A heat treatment at 700 to 600 ° C. in a state in which a film composed mainly of a mixed oxide of monoclinic Bi 2 O 3 and cubic CeO 2 is formed. UV blocking material. 請求項1記載の紫外線遮断材料を粉砕したものに、無機または有機バインダーを混ぜて成膜して得られることを特徴とする可視光選択透過フィルター。 A visible light selective transmission filter obtained by forming a film by mixing an inorganic or organic binder with the pulverized ultraviolet blocking material according to claim 1. 請求項1記載の紫外線遮断材料を主成分とするものを粉砕したものを金属酸化物で表面処理し、これを透光性樹脂に混合して成型して得られることを特徴とする可視光選択透過樹脂材料。 Visible light selection characterized by being obtained by pulverizing a material mainly composed of the ultraviolet blocking material according to claim 1 with a surface treatment with a metal oxide, and mixing and molding it with a translucent resin Transparent resin material. 前記金属酸化物がSi,Al,Zrの少なくとも一種の金属からなる酸化物であることを特徴とする請求項5記載の可視光選択透過樹脂材料。 6. The visible light selective transmission resin material according to claim 5, wherein the metal oxide is an oxide made of at least one of Si, Al, and Zr. 透光性容器の内面または外面に、単斜晶Biと立方晶CeOの混合酸化物を主成分とし、単斜晶Biと立方晶CeOの比率が12〜6:1である紫外線遮断材料から形成された紫外線遮断層が設けられており、前記透光性容器の内部に発光手段が配設されていることを特徴とする光源。 The inner or outer surface of the translucent vessel, as a main component a mixed oxide of monoclinic Bi 2 O 3 and cubic CeO 2, the ratio of monoclinic Bi 2 O 3 and cubic CeO 2 is from 12 to 6: 1. A light source comprising an ultraviolet blocking layer formed of an ultraviolet blocking material which is 1, and light emitting means disposed in the translucent container.
JP2005371405A 2005-12-26 2005-12-26 Ultraviolet ray blocking material, visible light selective transmission filter, visible light selective transmission resin material and light source Pending JP2007169538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005371405A JP2007169538A (en) 2005-12-26 2005-12-26 Ultraviolet ray blocking material, visible light selective transmission filter, visible light selective transmission resin material and light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005371405A JP2007169538A (en) 2005-12-26 2005-12-26 Ultraviolet ray blocking material, visible light selective transmission filter, visible light selective transmission resin material and light source

Publications (1)

Publication Number Publication Date
JP2007169538A true JP2007169538A (en) 2007-07-05

Family

ID=38296522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005371405A Pending JP2007169538A (en) 2005-12-26 2005-12-26 Ultraviolet ray blocking material, visible light selective transmission filter, visible light selective transmission resin material and light source

Country Status (1)

Country Link
JP (1) JP2007169538A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090002A (en) * 2008-10-09 2010-04-22 Tayca Corp Production method of monoclinic particulate bismuth oxide, ultraviolet ray shielding dispersion and production method of the same, and ultraviolet ray shielding coating composition
JP2010090001A (en) * 2008-10-09 2010-04-22 Tayca Corp Ultraviolet ray shielding dispersion and ultraviolet ray shielding coating composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10236847A (en) * 1996-12-25 1998-09-08 Nippon Sheet Glass Co Ltd Optical thin film, its forming composition and ultraviolet-absorbing and heat ray-reflecting glass using the composition
JP2005162914A (en) * 2003-12-03 2005-06-23 Nippon Shokubai Co Ltd Ultraviolet light-shielding film, metal oxide particle for ultraviolet light shielding, and composition for formation of ultraviolet light shielding material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10236847A (en) * 1996-12-25 1998-09-08 Nippon Sheet Glass Co Ltd Optical thin film, its forming composition and ultraviolet-absorbing and heat ray-reflecting glass using the composition
JP2005162914A (en) * 2003-12-03 2005-06-23 Nippon Shokubai Co Ltd Ultraviolet light-shielding film, metal oxide particle for ultraviolet light shielding, and composition for formation of ultraviolet light shielding material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090002A (en) * 2008-10-09 2010-04-22 Tayca Corp Production method of monoclinic particulate bismuth oxide, ultraviolet ray shielding dispersion and production method of the same, and ultraviolet ray shielding coating composition
JP2010090001A (en) * 2008-10-09 2010-04-22 Tayca Corp Ultraviolet ray shielding dispersion and ultraviolet ray shielding coating composition

Similar Documents

Publication Publication Date Title
WO2011108053A1 (en) Led lamp and led illumination device
JPWO2011142127A1 (en) LED module, LED lamp and lighting device
CN104412712B (en) The method that layer including luminescent material, lamp, illuminating equipment stacked and manufactured this layer stacking
JP3424566B2 (en) Fluorescent lamps and lighting equipment
CN107001928B (en) From the method and product of surface emission radiation
JPWO2013118206A1 (en) Translucent shell member for LED lamp
EP1746126A1 (en) UV blocking material, UV blocking visible selectively transmitting filter, visible selectively transmitted resin material, light source and lighting fixture
CN101045550B (en) Ultraviolet cut material, ultraviolet cut filter, discharge lamp and lighting apparatus
JP2007169538A (en) Ultraviolet ray blocking material, visible light selective transmission filter, visible light selective transmission resin material and light source
EP3237574B1 (en) Phosphor converted led
EP3730979A1 (en) Light-emitting apparatus
JP4136810B2 (en) Tube heater
JP6644233B2 (en) Light emitting device
JP4984686B2 (en) UV blocking material, UV blocking visible selective transmission filter, visible selective transmission resin material, light source and lighting device
JP6687349B2 (en) Liquid crystal display
US20050215430A1 (en) Photocatalyst material
TW200849314A (en) Fluorescent lamp
JP2006091532A (en) Uv protection member, lamp and lighting fixture
JP5045979B2 (en) UV cut filter, tube and lighting fixture
Hong et al. Effects of scattering particles on the color rendering and color dispersion of white light-emitting diodes studied by optical simulation
JP2007291361A (en) Ultraviolet cut material, ultraviolet cut filter, tubular-bulb, and lighting apparatus
JP2007231092A (en) Material for blocking ultraviolet ray and infrared ray, visual light-selectively passing filter, tube-bulb and illuminator
JP2007180002A (en) Light source
JP2014146016A (en) Color wheel for projector, and light emitting device for projector
JPH053022A (en) Halogen bulb

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Effective date: 20110614

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018