JP2007165096A - Positive electrode for lithium secondary battery, and nonaqueous lithium secondary battery using it - Google Patents

Positive electrode for lithium secondary battery, and nonaqueous lithium secondary battery using it Download PDF

Info

Publication number
JP2007165096A
JP2007165096A JP2005359282A JP2005359282A JP2007165096A JP 2007165096 A JP2007165096 A JP 2007165096A JP 2005359282 A JP2005359282 A JP 2005359282A JP 2005359282 A JP2005359282 A JP 2005359282A JP 2007165096 A JP2007165096 A JP 2007165096A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
secondary battery
lithium secondary
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005359282A
Other languages
Japanese (ja)
Other versions
JP5025951B2 (en
Inventor
Satoko Kaneko
聡子 金子
Masahiko Taniguchi
雅彦 谷口
Asao Iwata
麻男 岩田
Ryuji Shiozaki
竜二 塩崎
Noboru Koyama
昇 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Mitsui and Co Ltd
Shirouma Science Co Ltd
Original Assignee
Mitsui and Co Ltd
Shirouma Science Co Ltd
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui and Co Ltd, Shirouma Science Co Ltd, Fuji Heavy Industries Ltd filed Critical Mitsui and Co Ltd
Priority to JP2005359282A priority Critical patent/JP5025951B2/en
Publication of JP2007165096A publication Critical patent/JP2007165096A/en
Application granted granted Critical
Publication of JP5025951B2 publication Critical patent/JP5025951B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal oxide system positive electrode for a non-aqueous lithium secondary battery which can show stably a relatively high charge and discharge capacity from an initial stage, even if a negative electrode material containing lithium is not used for negative electrode material, when incorporated in the non-aqueous lithium secondary battery, and a non-aqueous lithium secondary battery using the same. <P>SOLUTION: The positive electrode for the lithium secondary battery is provided with a conductive substrate and a positive electrode material layer formed on the surface of this conductive substrate. The positive electrode material contains as an active material an oxide of at least one kind of element selected from the V-group elements and VI-group elements in the periodic-law table, and the oxide has a crystal structure and is doped with lithium. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウム二次電池用正極およびそれを用いた非水系リチウム二次電池に関する。   The present invention relates to a positive electrode for a lithium secondary battery and a non-aqueous lithium secondary battery using the same.

従来、非水系リチウム二次電池においては、正極材料として、コバルト酸リチウム、マンガン酸リチウム、およびニッケル酸リチウムが広く用いられている。しかし、これらの正極材料を用いた二次電池の充放電容量は、理論的にも、コバルト酸リチウムで137mAh/g、マンガン酸リチウムで148mAh/g、ニッケル酸リチウムで193mAh/gに留まり、200mAh/gを超える充放電容量を得ることができなかった。   Conventionally, lithium cobaltate, lithium manganate, and lithium nickelate have been widely used as positive electrode materials in non-aqueous lithium secondary batteries. However, the charge / discharge capacity of the secondary battery using these positive electrode materials theoretically remains 137 mAh / g for lithium cobaltate, 148 mAh / g for lithium manganate, 193 mAh / g for lithium nickelate, and 200 mAh. The charge / discharge capacity exceeding / g could not be obtained.

これに対し、五酸化バナジウム(V)系正極材料は、理論的には高い充放電容量が得られるものであり、そのリチウム二次電池への応用研究が盛んに行われている。 On the other hand, a vanadium pentoxide (V 2 O 5 ) -based positive electrode material can theoretically obtain a high charge / discharge capacity, and its application research to lithium secondary batteries has been actively conducted.

例えば、非特許文献1および非特許文献2には、層状化合物である五酸化バナジウムの層間にポリ(3,4−エチレンジオキシチオフェン)(PEDOT)を挿入した有機・無機ハイブリッド正極が記載されている。また、非特許文献3には、高エネルギー密度を有する2,5−ジメルカプト−1,3,4−チアジアゾール(DMcT)を五酸化バナジウムの層間に挿入した正極材料が記載されている。
J. Mater. Chem. 2001, 11, 2470-2475 Electrochemistry Communication 4 (2002) 384-387 Langmuir 1999, 15, 669-973
For example, Non-Patent Document 1 and Non-Patent Document 2 describe an organic / inorganic hybrid positive electrode in which poly (3,4-ethylenedioxythiophene) (PEDOT) is inserted between layers of vanadium pentoxide, which is a layered compound. Yes. Non-Patent Document 3 describes a positive electrode material in which 2,5-dimercapto-1,3,4-thiadiazole (DMcT) having a high energy density is inserted between vanadium pentoxide layers.
J. Mater. Chem. 2001, 11, 2470-2475 Electrochemistry Communication 4 (2002) 384-387 Langmuir 1999, 15, 669-973

しかし、上記非特許文献1〜3に開示された正極のいずれも、非水系リチウム二次電池に組んだ際に、負極にリチウム含有負極材料を用いることが必要である。また、これらのリチウム二次電池は、初期の充放電容量が低い。   However, when any of the positive electrodes disclosed in Non-Patent Documents 1 to 3 is assembled in a non-aqueous lithium secondary battery, it is necessary to use a lithium-containing negative electrode material for the negative electrode. Moreover, these lithium secondary batteries have a low initial charge / discharge capacity.

従って、本発明は、非水系リチウム二次電池に組んだ際に、負極にリチウムを含む負極材料を用いずとも、比較的高い充放電容量を初期段階から安定に示し得る非水系リチウム二次電池用の金属酸化物系正極およびそれを用いた非水系リチウム二次電池を提供することを目的とする。   Therefore, the present invention provides a non-aqueous lithium secondary battery that can stably exhibit a relatively high charge / discharge capacity from the initial stage without using a negative electrode material containing lithium as a negative electrode when assembled in a non-aqueous lithium secondary battery. An object of the present invention is to provide a metal oxide positive electrode and a non-aqueous lithium secondary battery using the same.

本発明の1つの側面によれば、導電性基体と、この導電性基体の表面に形成された正極材料の層を備え、前記正極材料は、活物質として周期律表第V族元素および第VI族元素から選ばれる少なくとも1種の元素の酸化物を含み、前記酸化物は結晶構造を有しているとともに、リチウムがドープされていることを特徴とするリチウム二次電池用正極が提供される。   According to one aspect of the present invention, a conductive substrate and a layer of a positive electrode material formed on the surface of the conductive substrate are provided, and the positive electrode material includes a group V element and a group VI element of the periodic table as an active material. There is provided a positive electrode for a lithium secondary battery comprising an oxide of at least one element selected from group elements, wherein the oxide has a crystal structure and is doped with lithium .

また、本発明の別の側面によれば、正極と、負極と、前記正極と負極の間に配置された電解質層を備え、前記正極が、本発明のリチウム電池用正極からなることを特徴とする二次電池が提供される。   According to another aspect of the present invention, a positive electrode, a negative electrode, and an electrolyte layer disposed between the positive electrode and the negative electrode are provided, and the positive electrode includes the positive electrode for a lithium battery according to the present invention. A secondary battery is provided.

本発明によれば、非水系リチウム二次電池に組んだ際に、負極にリチウムを含む負極材料を用いずとも、比較的高い充放電容量を初期段階から安定に示し得るリチウム二次電池用の金属酸化物系正極およびそれを用いた非水系リチウム二次電池を提供することができる。   According to the present invention, when assembled in a non-aqueous lithium secondary battery, the lithium secondary battery can stably exhibit a relatively high charge / discharge capacity from the initial stage without using a negative electrode material containing lithium for the negative electrode. A metal oxide positive electrode and a non-aqueous lithium secondary battery using the same can be provided.

以下、本発明をより詳しく説明する。   Hereinafter, the present invention will be described in more detail.

本発明のリチウム電池用正極は、導電性基体と、この導電性基体の表面に形成された正極材料の層を備える。正極材料は活物質として、周期律表第V族元素および第VI族元素から選ばれる少なくとも1種の元素の酸化物を含む。本発明ではこれら元素のうち、金属元素を用いる。この金属元素の酸化物を以下、金属酸化物という。金属酸化物は、酸化バナジウムおよび酸化ニオブであることが好ましく、五酸化バナジウムであることが特に好ましい。金属酸化物は、結晶構造を有している。このことは、本発明のリチウム電池用正極の活物質に含まれる金属酸化物が、X線回折パターンにおいて、回折角2θで、結晶構造に特有の18〜20°の範囲にピークを有することを意味する。   The positive electrode for a lithium battery of the present invention includes a conductive substrate and a layer of a positive electrode material formed on the surface of the conductive substrate. The positive electrode material contains an oxide of at least one element selected from Group V elements and Group VI elements of the periodic table as an active material. In the present invention, among these elements, metal elements are used. Hereinafter, the oxide of the metal element is referred to as a metal oxide. The metal oxide is preferably vanadium oxide and niobium oxide, and particularly preferably vanadium pentoxide. The metal oxide has a crystal structure. This means that the metal oxide contained in the active material of the positive electrode for a lithium battery of the present invention has a peak in the range of 18 to 20 ° peculiar to the crystal structure at a diffraction angle of 2θ in the X-ray diffraction pattern. means.

本発明において、上記結晶性金属酸化物にはリチウムがドープされている。リチウムは、例えば、バナジウム金属に対して当モル量以下の量でドープされていることが好ましい。リチウムのドープ量がバナジウム金属に対して当モル量を超えると、五酸化バナジウムの結晶系が変化する傾向を示す。   In the present invention, the crystalline metal oxide is doped with lithium. Lithium is preferably doped, for example, in an amount equal to or less than that of vanadium metal. When the doping amount of lithium exceeds an equimolar amount with respect to the vanadium metal, the crystal system of vanadium pentoxide tends to change.

本発明によれば、上記活物質は、結晶構造を有する(従って層状構造を有する)金属酸化物を、非水系溶媒中、リチウム源の存在下で加熱するという簡単な方法により得ることができる。より具体的には、例えば、金属酸化物とリチウム源を非水系溶媒に入れ、還流下に、例えば12時間以上加熱することができる。   According to the present invention, the active material can be obtained by a simple method of heating a metal oxide having a crystal structure (and thus a layered structure) in a non-aqueous solvent in the presence of a lithium source. More specifically, for example, a metal oxide and a lithium source can be placed in a non-aqueous solvent and heated under reflux, for example, for 12 hours or more.

上記非水系溶媒は、結晶性の金属酸化物を溶かさずに、一方でリチウム源を溶かすものである。例えば、アルコールが好ましく、特にエタノールが好ましい。   The non-aqueous solvent dissolves the lithium source while not dissolving the crystalline metal oxide. For example, alcohol is preferable, and ethanol is particularly preferable.

リチウム源は酸素と反応して水を副生しない無機リチウム化合物であり、リチウムカルコゲニドであることが好ましい。リチウムカルコゲニドの好ましい例を挙げると、硫化リチウム、セレン化リチウム、テルル化リチウムであり、硫化リチウムが特に好ましい。   The lithium source is an inorganic lithium compound that does not by-produce water by reacting with oxygen, and is preferably lithium chalcogenide. Preferable examples of lithium chalcogenides are lithium sulfide, lithium selenide, and lithium telluride, and lithium sulfide is particularly preferable.

本発明の方法により金属酸化物とリチウムカルコゲニドを加熱すると、金属酸化物の酸化力によりカルコゲンが酸化析出し、遊離したリチウムイオンが金属酸化物に取り込まれ、金属酸化物へのリチウムドープが達成される。リチウム源として用いるリチウムカルコゲニドは、水に溶けてアルカリ性を呈するものであり、他方、金属酸化物はアルカリに溶けるものである。従って、反応に用いる溶媒(反応媒体)が水系であると、金属酸化物は当該反応系中で溶けて、その結晶構造を維持することができない。また、用いるリチウム源が水酸化リチウムのように、酸素と反応して水を生成するものであれば、やはり金属酸化物は当該反応系中で溶けてしまう。この反応で析出したカルコゲンは、得られる活物質中に残存する。カルコゲンは活物質中に0.4重量%以上、好ましくは0.4〜5重量%の割合で含まれ得る。   When metal oxide and lithium chalcogenide are heated by the method of the present invention, chalcogen is oxidized and precipitated by the oxidizing power of the metal oxide, liberated lithium ions are taken into the metal oxide, and lithium doping to the metal oxide is achieved. The Lithium chalcogenide used as a lithium source is soluble in water and exhibits alkalinity, while metal oxide is soluble in alkali. Therefore, when the solvent (reaction medium) used in the reaction is aqueous, the metal oxide is dissolved in the reaction system and the crystal structure cannot be maintained. In addition, if the lithium source to be used is one that reacts with oxygen to produce water, such as lithium hydroxide, the metal oxide is dissolved in the reaction system. The chalcogen precipitated by this reaction remains in the obtained active material. Chalcogen can be contained in the active material in an amount of 0.4% by weight or more, preferably 0.4 to 5% by weight.

本発明の方法は、金属酸化物とリチウム源を還流下で加熱するという簡便な方法であるために、活物質の製造に特殊な設備を必要とすることなく、従来通常用いられる設備を用いることができる。   Since the method of the present invention is a simple method in which the metal oxide and the lithium source are heated under reflux, conventionally used equipment is used without requiring special equipment for the production of the active material. Can do.

本発明の正極材料は、上記活物質に加えて、導電性粒子を含むことが好ましい。   The positive electrode material of the present invention preferably contains conductive particles in addition to the active material.

導電性粒子は、本発明の非水系リチウム二次電池用正極材料の導電性を向上させる。導電性粒子の例を挙げると、導電性カーボン(ケッチェンブラック等の導電性カーボン等)、銅、鉄、銀、ニッケル、パラジウム、金、白金、インジウム、タングステン等の金属、酸化インジウム、酸化スズ等の導電性金属酸化物等である。これら導電性粒子は、上記金属酸化物の重量の1〜30%の割合で含まれることが好ましい。   The conductive particles improve the conductivity of the positive electrode material for a non-aqueous lithium secondary battery of the present invention. Examples of conductive particles include conductive carbon (conductive carbon such as ketjen black), copper, iron, silver, nickel, palladium, gold, platinum, indium, tungsten and other metals, indium oxide, tin oxide Conductive metal oxides and the like. These conductive particles are preferably contained in a proportion of 1 to 30% of the weight of the metal oxide.

本発明において、正極材料の層を支持する基体(集電体)は、少なくとも本発明の正極材料と接する表面において導電性を示す導電性基体である。この基体は、金属、導電性金属酸化物、導電性カーボン等の導電性材料で形成することができるが、銅、金、アルミニウムもしくはそれらの合金または導電性カーボンで形成することが好ましい。あるいは、基体は非導電性材料で形成された基体本体をこれら導電性材料で被覆することによっても形成することができる。   In the present invention, the substrate (current collector) that supports the layer of the positive electrode material is a conductive substrate that exhibits conductivity at least on the surface in contact with the positive electrode material of the present invention. The substrate can be formed of a conductive material such as metal, conductive metal oxide, or conductive carbon, but is preferably formed of copper, gold, aluminum, an alloy thereof, or conductive carbon. Alternatively, the substrate can also be formed by coating a substrate body formed of a nonconductive material with these conductive materials.

本発明において、正極材料の層は、10〜100μmの厚さを有することが好ましい。   In the present invention, the positive electrode material layer preferably has a thickness of 10 to 100 μm.

本発明の正極は、上記正極材料にポリフッ化ビニリデン(PVDF)等のバインダを加え、これを適当な溶媒によりスラリーとし、このスラリーを導電性基体上に塗布、乾燥することによって得ることができる。   The positive electrode of the present invention can be obtained by adding a binder such as polyvinylidene fluoride (PVDF) to the positive electrode material, making this a slurry with an appropriate solvent, and applying and drying this slurry on a conductive substrate.

本発明の非水系リチウム二次電池は、上記正極と、負極と、前記正極と負極の間に配置された電解質層を備える。   The non-aqueous lithium secondary battery of this invention is equipped with the said positive electrode, a negative electrode, and the electrolyte layer arrange | positioned between the said positive electrode and negative electrode.

本発明の非水系リチウム二次電池において、負極は、通常使用されているリチウム系材料で形成することができる。このようなリチウム系材料としては、金属リチウムやリチウム合金(例えばLi−Al合金)のようなリチウム系金属材料、スズやケイ素のような金属とリチウムとの金属間化合物材料、窒化リチウムのようなリチウム化合物、またはリチウムインターカレーション炭素材料を例示することができる。しかしながら、本発明のリチウム二次電池用正極材料は、予め(電池としての使用前から)リチウムが層状の金属酸化物にドープされているために、負極にリチウムを含む負極材料を用いずとも、初期段階から安定した充放電容量を示すことができる。そのような非リチウム系負極材料としては、カーボンが好適である。非リチウム系負極材料を用いると、デントライト状リチウムの析出を有効に回避することができる。   In the nonaqueous lithium secondary battery of the present invention, the negative electrode can be formed of a commonly used lithium material. Examples of such lithium-based materials include lithium-based metal materials such as metallic lithium and lithium alloys (for example, Li-Al alloys), intermetallic compound materials of metals and lithium such as tin and silicon, and lithium nitride. A lithium compound or a lithium intercalation carbon material can be exemplified. However, the positive electrode material for a lithium secondary battery of the present invention is preliminarily doped with a layered metal oxide (before use as a battery), so even without using a negative electrode material containing lithium in the negative electrode, A stable charge / discharge capacity can be exhibited from the initial stage. Carbon is suitable as such a non-lithium negative electrode material. If a non-lithium negative electrode material is used, precipitation of dentlite-like lithium can be effectively avoided.

電解質としては、CFSOLi、CSOLi、(CFSONLi、(CFSOCLi、LiBF、LiPF、LiClO等のリチウム塩を使用することができる。これら電解質を溶解する溶媒は非水系溶媒である。非水系溶媒には、鎖状カーボネート、環状カーボネート、環状エステル、ニトリル化合物、酸無水物、アミド化合物、ホスフェート化合物、アミン化合物等が含まれる。非水系溶媒の具体例を挙げると、エチレンカーボネート、ジエチルカーボネート(DEC)、プロピレンカーボネート、ジメトキシエタン、γ−ブチロラクトン、n−メチルピロリジノン、N,N’−ジメチルアセトアミド、アセトニトリル、あるいはプロピレンカーボネートとジメトキシエタンとの混合物、スルホランとテトラヒドロフランとの混合物等である。正極と負極との間に介挿される電解質層としては、上記電解質の非水系溶媒中の溶液であってもよいし、この電解質溶液を含むポリマーゲル(ポリマーゲル電解質)であってもよい。 As an electrolyte, lithium salts such as CF 3 SO 3 Li, C 4 F 9 SO 8 Li, (CF 3 SO 2 ) 2 NLi, (CF 3 SO 2 ) 3 CLi, LiBF 4 , LiPF 6 , LiClO 4 are used. can do. The solvent that dissolves these electrolytes is a non-aqueous solvent. Non-aqueous solvents include chain carbonates, cyclic carbonates, cyclic esters, nitrile compounds, acid anhydrides, amide compounds, phosphate compounds, amine compounds, and the like. Specific examples of the non-aqueous solvent include ethylene carbonate, diethyl carbonate (DEC), propylene carbonate, dimethoxyethane, γ-butyrolactone, n-methylpyrrolidinone, N, N′-dimethylacetamide, acetonitrile, or propylene carbonate and dimethoxyethane. And a mixture of sulfolane and tetrahydrofuran. The electrolyte layer interposed between the positive electrode and the negative electrode may be a solution of the electrolyte in a non-aqueous solvent or a polymer gel (polymer gel electrolyte) containing the electrolyte solution.

以下、本発明を実施例により説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to this.

実施例1〜4
2gの五酸化バナジウム(V)と、この五酸化バナジウムに対して0.5〜3.6モル当量(表1参照)の硫化リチウム(LiS)とをエタノール50ml中に入れ、還流下に12時間加熱を行い、緑色〜黒色の沈殿物を得た。この沈殿物をろ過し、100℃で終夜真空乾燥することにより目的の活物質を得た。この活物質のLiおよびVについてICP分析を行い、Li/Vモル比を算出した。結果を表1に示す。

Figure 2007165096
Examples 1-4
2 g of vanadium pentoxide (V 2 O 5 ) and 0.5 to 3.6 molar equivalents (see Table 1) of lithium sulfide (Li 2 S) with respect to the vanadium pentoxide were placed in 50 ml of ethanol, Heating was performed for 12 hours under reflux to obtain a green to black precipitate. The precipitate was filtered and vacuum dried at 100 ° C. overnight to obtain the target active material. ICP analysis was performed on Li and V of this active material, and the Li / V molar ratio was calculated. The results are shown in Table 1.
Figure 2007165096

表1からわかるように、仕込みモル比Li/Vが0.5である場合は仕込みモル比通りにリチウムが五酸化バナジウムにドープされて、LiVが生成していた。仕込みモル比Li/Vが1以上になると、リチウムは五酸化バナジウムに仕込みモル比通りにドープされなかったが、五酸化バナジウム1モルに対して少なくともリチウムが1原子ドープされていることが確認された。また、得られた活物質の硫黄分析を行った。結果を表1に併記する。全ての活物質に硫黄が0.4重量%以上含まれていることが確認された。 As can be seen from Table 1, when the charged molar ratio Li / V was 0.5, lithium was doped into vanadium pentoxide according to the charged molar ratio, and LiV 2 O 5 was generated. When the charged molar ratio Li / V was 1 or more, lithium was not doped in the vanadium pentoxide according to the charged molar ratio, but it was confirmed that at least one atom of lithium was doped per mole of vanadium pentoxide. It was. The obtained active material was analyzed for sulfur. The results are also shown in Table 1. It was confirmed that all active materials contained 0.4% by weight or more of sulfur.

さらに、得られた活物質のX線回折分析も行った。X線回折パターンを図1に示す。実施例1のX線回折パターンを線a、実施例2のX線回折パターンを線b、実施例3のX線回折パターンを線c、実施例4のX線回折パターンを線dで示す。三角印は、LiVの代表的なピーク位置を示す。図1によれば、実施例1〜4のリチウムドープ五酸化バナジウムのX線回折パターンは、全て、回折角2θで、五酸化バナジウムの結晶構造に特有の18〜20°の範囲にピークを有するために、全ての五酸化バナジウムが結晶構造を有していることが立証された。とりわけ、線aおよび線bで示されるリチウムドープ五酸化バナジウムは、18°に高いピークを有する。また、活物質中のLi/Vモル比が1.0以上である線cおよびdで示される活物質のX線回折パターンによれば、リチウムドープ五酸化バナジウムの結晶系が変化していることがわかった。 Furthermore, X-ray diffraction analysis of the obtained active material was also performed. The X-ray diffraction pattern is shown in FIG. The X-ray diffraction pattern of Example 1 is indicated by line a, the X-ray diffraction pattern of Example 2 by line b, the X-ray diffraction pattern of Example 3 by line c, and the X-ray diffraction pattern of Example 4 by line d. Triangles, shows the typical peak position of LiV 2 O 5. According to FIG. 1, the X-ray diffraction patterns of the lithium-doped vanadium pentoxides of Examples 1 to 4 all have a diffraction angle of 2θ and have a peak in the range of 18 to 20 ° characteristic of the crystal structure of vanadium pentoxide. Therefore, it was proved that all vanadium pentoxide has a crystal structure. In particular, lithium-doped vanadium pentoxide represented by lines a and b has a high peak at 18 °. In addition, according to the X-ray diffraction pattern of the active material indicated by lines c and d in which the Li / V molar ratio in the active material is 1.0 or more, the crystal system of lithium-doped vanadium pentoxide is changed. I understood.

比較例1
エタノールの代わりに水を用いたこと以外は実施例1〜4と同様の操作を行った。しかし、五酸化バナジウムが水に溶解してしまったため、結晶性の五酸化バナジウムを含む本発明の活物質を得ることができなかった。
Comparative Example 1
The same operation as in Examples 1 to 4 was performed except that water was used instead of ethanol. However, since vanadium pentoxide was dissolved in water, the active material of the present invention containing crystalline vanadium pentoxide could not be obtained.

比較例2
リチウム源として、硫化リチウムの代わりに水酸化リチウムを用いたこと以外は実施例1〜4と同様の操作を行った。本比較例でも五酸化バナジウムが溶媒中に溶解してしまったために、結晶性の五酸化バナジウムを含む本発明の活物質を得ることができなかった。
Comparative Example 2
The same operation as in Examples 1 to 4 was performed except that lithium hydroxide was used instead of lithium sulfide as the lithium source. Also in this comparative example, since the vanadium pentoxide was dissolved in the solvent, the active material of the present invention containing crystalline vanadium pentoxide could not be obtained.

実施例5〜8、比較例3
実施例1〜4で得られた活物質に、活物質の25重量%に相当する量の導電性カーボンブラックおよび5重量%に相当する量のポリフッ化ビニリデン(PVDF)(バインダ)とを混合し、溶媒としてN−メチルピロリドン(NMP)を用いてスラリーとした後、アルミニウム箔上にドクターブレード法によってコーティングし、乾燥して正極を作製した。この正極を用い、電解質液として、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との体積比1:3の混合溶媒中に1M濃度でLiBFを含有する溶液を用い、負極としてカーボンを用いて非水系リチウム二次電池を組み立て、0.1C放電にて充放電評価を行った。なお、活物質として、リチウムがドープされていない五酸化バナジウムを用いた以外は同様に作製した非水系リチウム二次電池(比較例3)についても充放電評価を行った。各電池について、活物質1グラム当たりの初期充電容量を表2に示す。ここで、初期充電容量は、0.1Cの電流量を用いて、開放電位から4.2Vまで変化させた際の容量である。

Figure 2007165096
Examples 5-8, Comparative Example 3
The active material obtained in Examples 1 to 4 was mixed with conductive carbon black in an amount corresponding to 25% by weight of the active material and polyvinylidene fluoride (PVDF) (binder) in an amount corresponding to 5% by weight. A slurry was prepared using N-methylpyrrolidone (NMP) as a solvent, and then coated on an aluminum foil by a doctor blade method and dried to prepare a positive electrode. Using this positive electrode, as the electrolyte solution, using a solution containing LiBF 4 at a concentration of 1M in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 1: 3, and using carbon as the negative electrode A non-aqueous lithium secondary battery was assembled, and charge / discharge evaluation was performed at 0.1 C discharge. In addition, charge / discharge evaluation was performed also about the non-aqueous lithium secondary battery (comparative example 3) produced similarly except having used vanadium pentoxide which is not doped with lithium as an active material. Table 2 shows the initial charge capacity per gram of active material for each battery. Here, the initial charge capacity is a capacity when changing from an open potential to 4.2 V using a current amount of 0.1 C.
Figure 2007165096

本発明の非水系リチウム二次電池は、比較例と比べて、初期充電容量が有意に増加した。特に、活物質中のLi/Vモル比が1.0以下である場合に高い初期充電容量が得られた。中でもLi/Vモル比が1.0である実施例7において200mAh/gを超える初期充電容量が得られた。   In the nonaqueous lithium secondary battery of the present invention, the initial charge capacity was significantly increased as compared with the comparative example. In particular, a high initial charge capacity was obtained when the Li / V molar ratio in the active material was 1.0 or less. In particular, in Example 7 where the Li / V molar ratio was 1.0, an initial charge capacity exceeding 200 mAh / g was obtained.

実施例1〜4で調製した活物質のX線回折パターン。The X-ray-diffraction pattern of the active material prepared in Examples 1-4.

Claims (8)

導電性基体と、この導電性基体の表面に形成された正極材料の層を備え、前記正極材料は、活物質として周期律表第V族元素および第VI族元素から選ばれる少なくとも1種の元素の酸化物を含み、前記酸化物は結晶構造を有しているとともに、リチウムがドープされていることを特徴とするリチウム二次電池用正極。   And a positive electrode material layer formed on a surface of the conductive substrate, wherein the positive electrode material is at least one element selected from Group V elements and Group VI elements of the periodic table as an active material. A positive electrode for a lithium secondary battery, wherein the oxide has a crystal structure and is doped with lithium. 前記酸化物が、五酸化バナジウムであることを特徴とする請求項1に記載のリチウム二次電池用正極。   The positive electrode for a lithium secondary battery according to claim 1, wherein the oxide is vanadium pentoxide. 前記リチウムが、バナジウムに対して当モル量以下の量でドープされていることを特徴とする請求項2に記載のリチウム二次電池用正極。   The positive electrode for a lithium secondary battery according to claim 2, wherein the lithium is doped in an amount equal to or less than an equimolar amount with respect to vanadium. 前記活物質が、前記酸化物を非水系溶媒中、リチウム源の存在下で加熱することにより得られることを特徴とする請求項1〜3のいずれか一項に記載のリチウム二次電池用正極。   The positive electrode for a lithium secondary battery according to any one of claims 1 to 3, wherein the active material is obtained by heating the oxide in a non-aqueous solvent in the presence of a lithium source. . 前記リチウム源が、リチウムカルコゲニドであることを特徴とする請求項4に記載のリチウム二次電池用正極。   The positive electrode for a lithium secondary battery according to claim 4, wherein the lithium source is lithium chalcogenide. 前記活物質が、カルコゲンを0.4重量%以上含むことを特徴とする請求項5に記載の非水系リチウム二次電池用正極。   The positive electrode for a non-aqueous lithium secondary battery according to claim 5, wherein the active material contains 0.4 wt% or more of chalcogen. 前記正極材料が、導電性粒子をさらに含むことを特徴とする請求項1〜6のいずれか一項に記載のリチウム電池用正極。   The said positive electrode material further contains electroconductive particle, The positive electrode for lithium batteries as described in any one of Claims 1-6 characterized by the above-mentioned. 正極と、負極と、前記正極と負極の間に配置された電解質層を備え、前記正極が、請求項1〜7のいずれか一項に記載のリチウム電池用正極からなることを特徴とする非水系リチウム二次電池。   A positive electrode, a negative electrode, and an electrolyte layer disposed between the positive electrode and the negative electrode, wherein the positive electrode comprises the positive electrode for a lithium battery according to any one of claims 1 to 7. Water-based lithium secondary battery.
JP2005359282A 2005-12-13 2005-12-13 Positive electrode for lithium secondary battery and non-aqueous lithium secondary battery using the same Expired - Fee Related JP5025951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005359282A JP5025951B2 (en) 2005-12-13 2005-12-13 Positive electrode for lithium secondary battery and non-aqueous lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005359282A JP5025951B2 (en) 2005-12-13 2005-12-13 Positive electrode for lithium secondary battery and non-aqueous lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2007165096A true JP2007165096A (en) 2007-06-28
JP5025951B2 JP5025951B2 (en) 2012-09-12

Family

ID=38247790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005359282A Expired - Fee Related JP5025951B2 (en) 2005-12-13 2005-12-13 Positive electrode for lithium secondary battery and non-aqueous lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5025951B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04269467A (en) * 1991-02-25 1992-09-25 Seiko Electronic Components Ltd Nonaqueous electrolyte secondary battery
JPH04363874A (en) * 1989-12-11 1992-12-16 Saft (Soc Accumulateurs Fixes Traction) Sa Rechargeable electrochemical battery including cathode of vanadium oxide base
JPH06295743A (en) * 1993-04-02 1994-10-21 Shin Kobe Electric Mach Co Ltd Lithium solid electrolyte battery
JPH10302769A (en) * 1997-04-24 1998-11-13 Ricoh Co Ltd Secondary battery electrode and secondary battery using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363874A (en) * 1989-12-11 1992-12-16 Saft (Soc Accumulateurs Fixes Traction) Sa Rechargeable electrochemical battery including cathode of vanadium oxide base
JPH04269467A (en) * 1991-02-25 1992-09-25 Seiko Electronic Components Ltd Nonaqueous electrolyte secondary battery
JPH06295743A (en) * 1993-04-02 1994-10-21 Shin Kobe Electric Mach Co Ltd Lithium solid electrolyte battery
JPH10302769A (en) * 1997-04-24 1998-11-13 Ricoh Co Ltd Secondary battery electrode and secondary battery using the same

Also Published As

Publication number Publication date
JP5025951B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP5835107B2 (en) Nonaqueous electrolyte secondary battery
JP3769291B2 (en) Non-aqueous electrolyte battery
KR101390057B1 (en) Non-aqueous electrolyte secondary battery and process for producing the same
JP5196118B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
KR101045416B1 (en) Lithium titanate powder, preparation method thereof, electrode and secondary battery comprising the same
WO2018168505A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte composition, method for producing solid electrolyte-containing sheet, and method for producing all-solid-state secondary battery
KR20110031291A (en) Metal oxide negative electrodes for lithium-ion electrochemical cells and batteries
JP5245201B2 (en) Negative electrode, secondary battery
WO2011111228A1 (en) Electrode active material and method for producing electrode active material
JP5510002B2 (en) Active material manufacturing method and electrode manufacturing method
JP2015088266A (en) Lithium battery
US10164255B2 (en) Silicon material and negative electrode of secondary battery
JP2016031852A (en) Nonaqueous electrolyte secondary battery
JP5391832B2 (en) Secondary battery and manufacturing method thereof
JP4892174B2 (en) Organic / inorganic hybrid electrode and secondary battery using the same
JP5141356B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5445912B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
WO2011111227A1 (en) Electrode active material and method for producing electrode active material
JP5025951B2 (en) Positive electrode for lithium secondary battery and non-aqueous lithium secondary battery using the same
JP2008300233A (en) Electrode material, manufacturing method thereof, and nonaqueous lithium secondary battery
JP2008077886A (en) Nonaqueous electrolyte battery
JP5063891B2 (en) Positive electrode material for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same
US10217990B2 (en) Silicon material and negative electrode of secondary battery
WO2019065288A1 (en) Nonaqueous electrolyte for lithium ion secondary batteries, and lithium ion secondary battery using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees