JP2007153942A - Method for producing recycled polyester - Google Patents

Method for producing recycled polyester Download PDF

Info

Publication number
JP2007153942A
JP2007153942A JP2005347310A JP2005347310A JP2007153942A JP 2007153942 A JP2007153942 A JP 2007153942A JP 2005347310 A JP2005347310 A JP 2005347310A JP 2005347310 A JP2005347310 A JP 2005347310A JP 2007153942 A JP2007153942 A JP 2007153942A
Authority
JP
Japan
Prior art keywords
polyester
glycol
batch reactor
pet
depolymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005347310A
Other languages
Japanese (ja)
Inventor
Koji Shimoji
幸次 下地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005347310A priority Critical patent/JP2007153942A/en
Publication of JP2007153942A publication Critical patent/JP2007153942A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a polyester showing a good operability at spinning, whereby the quality and the grade of a polymer obtained through depolymerization of a polyester waste are improved without extending the depolymerization reaction time. <P>SOLUTION: In the method for producing the recycled polyester, the recycled polyester, glycol and an alkali compound are fed to a batch reactor to perform depolymerization, and the obtained lower polymer is subjected to a polycondensation reaction in another batch reactor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リサイクルポリエステル、特に好ましくは、繊維やポリエステル製品の製造工程で発生するリサイクルポリエステル(以下、ポリエステル屑という。)を解重合する再生ポリエステルの製造方法に関する。   The present invention relates to a method for producing recycled polyester, particularly preferably recycled polyester for depolymerizing recycled polyester (hereinafter referred to as polyester waste) generated in the production process of fibers and polyester products.

従来、例えばポリエチレンテレフタレート(PET)は、まず、テレフタル酸(TPA)とエチレングリコール(EG)がエステル化反応装置に送られてエステル化反応をさせた後、生成したポリエステル低重合体を続いて重縮合反応装置に送り、重縮合反応することにより製造される。かかるPETは、その優れた特性により繊維、フイルム、ボトル、プラスチック等として広く用いられている。これらの製造工程において発生する繊維状、フィルム状、樹脂状などのポリエステル屑の有効利用は、コストなどの点で工業的に極めて重要となっている。   Conventionally, for example, in polyethylene terephthalate (PET), first, terephthalic acid (TPA) and ethylene glycol (EG) are sent to an esterification reactor to cause esterification, and then the resulting polyester low polymer is subsequently polymerized. It is produced by sending it to a condensation reaction apparatus and carrying out a polycondensation reaction. Such PET is widely used as a fiber, film, bottle, plastic or the like because of its excellent characteristics. Effective utilization of polyester waste such as fibers, films, and resins generated in these manufacturing processes is extremely important industrially in terms of cost and the like.

ポリエステル屑の利用方法としては、例えば、ポリエステル屑を解重合するに際し、酸成分に対するグリコール成分の当量比が1.3〜2.0のビスヒドロキシエチルテレフタレートおよび/またはその低重合体を溶融状態で反応容器に存在させ、EGとポリエステル屑を同時かつ連続的に添加し、かつ攪拌しながらエステル化反応装置を215〜250℃で酸成分に対するグリコール成分の当量比を1.3〜2.0に維持して解重合した後、反応物の一部を重合反応系に供給する方法(特許文献1参照)が開示されている。   As a method of using polyester waste, for example, when depolymerizing polyester waste, bishydroxyethyl terephthalate and / or a low polymer thereof in which the equivalent ratio of glycol component to acid component is 1.3 to 2.0 is melted. It is made to exist in a reaction vessel, EG and polyester waste are added simultaneously and continuously, and while stirring, the equivalent ratio of glycol component to acid component is adjusted to 1.3 to 2.0 at 215 to 250 ° C. A method of supplying a part of the reaction product to the polymerization reaction system after maintaining and depolymerizing is disclosed (see Patent Document 1).

しかしながら、ポリエステル屑中には水分が多少含有されているため解重合の進行に伴い、この水分が反応系に蓄積し、解重合反応を抑制するという問題があった。また、ポリエステル屑の解再重合を効率的に生産できる技術は、現在のところ未だ確立されていない。   However, since some moisture is contained in the polyester waste, the moisture accumulates in the reaction system as the depolymerization proceeds, and there is a problem that the depolymerization reaction is suppressed. In addition, a technology that can efficiently produce derepolymerization of polyester waste has not been established yet.

TPAとEGよりポリエステルを製造するポリエチレンテレフタレートの工業的製造においては、酸成分に対して、反応性を向上させるため、グリコール成分を過剰に用い、両末端にグリコールが縮合されたオリゴマーとした(エステル化反応)後に、これを高温減圧下のエステル交換による脱グリコール重縮合反応により、高分子量のポリエステルを得る方法が採用されている。   In the industrial production of polyethylene terephthalate, which produces polyester from TPA and EG, in order to improve the reactivity with respect to the acid component, an excessive glycol component was used and an oligomer in which glycol was condensed at both ends (ester) After the conversion reaction), a method of obtaining a high molecular weight polyester by deglycolization polycondensation reaction by transesterification under high temperature and reduced pressure is employed.

例えば、PET屑にメタノールを添加してジメチルテレフタレート(DMT)とEGに分解する方法(特許文献2参照)などが提案されているがこれらの方法では比較的高品位の再生PETが得られるものの、回収装置が複雑であるため経済的に好ましくないという問題点があった。   For example, methods of adding methanol to PET waste and decomposing it into dimethyl terephthalate (DMT) and EG have been proposed (see Patent Document 2), but these methods can provide relatively high-quality recycled PET, There is a problem that the recovery apparatus is complicated and economically undesirable.

ポリエステル屑をグリコールで解重合して、オリゴマーとした段階でフィルター濾過することにより、容易にポリエステル屑中の異物を除去する方法(特許文献3参照)が開示されているが、このような方法だけでは軟化点が高く色調の優れた高品質の再生ポリエステルは得られない問題があった。
特公昭60−248646号公報 特開2002−167469号公報 特開2005−171138号公報
A method (see Patent Document 3) for easily removing foreign matters in the polyester waste by depolymerizing the polyester waste with glycol and performing filter filtration at the stage of making an oligomer has been disclosed, but only such a method is disclosed. However, there was a problem that a high-quality recycled polyester having a high softening point and excellent color tone could not be obtained.
Japanese Patent Publication No. 60-248646 JP 2002-167469 A JP 2005-171138 A

本発明の目的は、ポリエステル屑の解重合における上記従来技術の問題点を解消し、解重合して得られたポリマーの品質、品位を向上させ、かつ、解重合反応時間を遅延することがなく、紡糸時における操業性が良好である再生ポリエステルの製造方法を提供することにある。   The object of the present invention is to eliminate the above-mentioned problems in the prior art in depolymerization of polyester waste, improve the quality and quality of the polymer obtained by depolymerization, and without delaying the depolymerization reaction time. Another object of the present invention is to provide a method for producing a regenerated polyester having good operability during spinning.

本発明者らは、前記課題を解決するために検討した結果、本発明に到達した。すなわち、本発明は以下の(1)、(2)、(3)、(4)、(5)を要旨とするものである。
(1)リサイクルポリエステルとグリコールおよびアルカリ化合物を第1の回分式反応装置に供給して解重合を行い、得られた低重合体を第2の回分式反応装置にて重縮合反応を行うことを特徴とする再生ポリエステルの製造方法。
(2)アルカリ化合物が水酸化テトラエチルアンモニウム、水酸化ナトリウム、又は水酸化カルシウムから選ばれたものであること。
(3)アルカリ化合物の添加量が、生成する再生ポリエステル100重量部に対して0.02〜0.10重量部であること。
(4)グリコールが、エチレングリコールおよび/または1,4−ブタンジオールであること。
(5)リサイクルポリエステルが、繊維やポリエステル製品の製造工程で発生するリサイクルポリエステルであること。
The inventors of the present invention have arrived at the present invention as a result of studies to solve the above problems. That is, the gist of the present invention is the following (1), (2), (3), (4), (5).
(1) Supplying recycled polyester, glycol and alkali compound to the first batch reactor to perform depolymerization, and subjecting the resulting low polymer to a polycondensation reaction in the second batch reactor A method for producing a recycled polyester.
(2) The alkali compound is selected from tetraethylammonium hydroxide, sodium hydroxide, or calcium hydroxide.
(3) The addition amount of the alkali compound is 0.02 to 0.10 parts by weight with respect to 100 parts by weight of the regenerated polyester to be produced.
(4) The glycol is ethylene glycol and / or 1,4-butanediol.
(5) The recycled polyester is a recycled polyester generated in the manufacturing process of fibers and polyester products.

本発明によれば、ポリエステル屑を解重合する際にアルカリ化合物を添加することにより、軟化点も高く、色調も良好となり、ポリマー品質、品位を向上させ、かつ、解重合反応時間を遅延することなく、紡糸時における操業性良く、再生ポリエステルを製造することができる。また、本発明によれば、ポリエステル屑と、EG、1,4−ブタンジオール(BG)などのグリコールとを回分式反応装置を用いて解重合することにより、さらに再生ポリエステルの品質を安定化できる。   According to the present invention, by adding an alkali compound when depolymerizing polyester waste, the softening point is high, the color tone is good, the polymer quality and quality are improved, and the depolymerization reaction time is delayed. The recycled polyester can be produced with good operability during spinning. Further, according to the present invention, the quality of regenerated polyester can be further stabilized by depolymerizing polyester waste and glycols such as EG and 1,4-butanediol (BG) using a batch reactor. .

本発明においては、リサイクルポリエステルとグリコールおよびアルカリ化合物を第1の回分式反応装置に供給して解重合を行い、得られた低重合体を第2の回分式反応装置にて重縮合反応を行う。   In the present invention, the recycled polyester, glycol and alkali compound are supplied to the first batch reactor to perform depolymerization, and the resulting low polymer is subjected to a polycondensation reaction in the second batch reactor. .

本発明で使用するアルカリ化合物とは、エステル交換反応を促進するアルカリ化合物であれば如何なる物でも良く、例えばアルカリ金属の水酸化物を挙げることができる。具体的には水酸化ナトリウム、水酸化カルシウム、または水酸化テトラエチルアンモニウム等を用いることができる。   The alkali compound used in the present invention may be any compound as long as it promotes the transesterification reaction, and examples thereof include alkali metal hydroxides. Specifically, sodium hydroxide, calcium hydroxide, tetraethylammonium hydroxide, or the like can be used.

本発明において、アルカリ化合物の添加量は、生成する再生ポリエステル100重量部に対して0.02〜0.10重量部であることが好ましい。   In this invention, it is preferable that the addition amount of an alkali compound is 0.02-0.10 weight part with respect to 100 weight part of reproduction | regeneration polyester to produce | generate.

本発明で使用するポリエステルは、エチレンテレフタレートを主成分とするポリエステルであり、具体的には例えば、テレフタル酸またはその低級アルキルエステルとEGとからなるポリエステルである。そのテレフタル酸成分の一部をイソフタル酸、ナフタレンジカルボン酸、ジフェノキシエタンジカルボン酸などの芳香族ジカルボン酸や、ドデカンジオン酸、アジピン酸、セバシン酸、アゼライン酸、デカンジカルボン酸などの脂肪族カルボン酸、さらにはシクロヘキサンジカルボン酸などの脂環族ジカルボン酸、ヒドロキシ安息香酸、グリコール酸、ヒドロキシエトキシ安息香酸などのヒドロキシカルボン酸などで置き換えてもよい。また、グリコール成分の一部をBG、プロピレングリコール、ジエチレングリコール、ヘキサメチレングリコール、p−キシレングリコール、1,4−シクロヘキサジメタノール、ビスフェノールなどの脂肪族、脂環族、芳香族のジオール化合物で置き換えてもよい。さらに熱可塑性を損なわない程度であれば、三官能以上の多官能性化合物を共重合したポリエステルでもよい。また、フタル酸、ジフェニルカルボン酸、コハク酸、アジピン酸、セバシン酸、P−ヒドロキシ安息香酸等の二官能性酸の1種または2種以上を置き換えたポリエステルであってもよい。また、顔料、耐熱材、蛍光増白剤などの添加物を含んでもよい。   The polyester used in the present invention is a polyester mainly composed of ethylene terephthalate, and specifically, for example, a polyester composed of terephthalic acid or a lower alkyl ester thereof and EG. Some of the terephthalic acid components are aromatic dicarboxylic acids such as isophthalic acid, naphthalenedicarboxylic acid, diphenoxyethanedicarboxylic acid, and aliphatic carboxylic acids such as dodecanedioic acid, adipic acid, sebacic acid, azelaic acid, and decanedicarboxylic acid. Furthermore, it may be replaced with an alicyclic dicarboxylic acid such as cyclohexanedicarboxylic acid, a hydroxycarboxylic acid such as hydroxybenzoic acid, glycolic acid, or hydroxyethoxybenzoic acid. Also, a part of the glycol component is replaced with aliphatic, alicyclic or aromatic diol compounds such as BG, propylene glycol, diethylene glycol, hexamethylene glycol, p-xylene glycol, 1,4-cyclohexadimethanol, bisphenol, etc. Also good. Further, a polyester obtained by copolymerizing a trifunctional or higher polyfunctional compound may be used as long as the thermoplasticity is not impaired. Moreover, the polyester which substituted the 1 type (s) or 2 or more types of bifunctional acids, such as a phthalic acid, diphenylcarboxylic acid, a succinic acid, adipic acid, sebacic acid, and P-hydroxybenzoic acid, may be sufficient. In addition, additives such as pigments, heat-resistant materials and fluorescent brighteners may be included.

本発明で使用するリサイクルポリエステルは、繊維やポリエステル製品の製造工程で発生するリサイクルポリエステルであることが好ましい。   The recycled polyester used in the present invention is preferably a recycled polyester generated in the production process of fibers and polyester products.

本発明において回分式反応装置に供給するグリコールは、通常、原料のリサイクルポリエステルを構成するグリコールと同種のグリコールを使用する。従って、EG、BG、プロピレングリコール、ジエチレングリコール、ヘキサメチレングリコール、p−キシレングリコール、1,4−シクロヘキサジメタノール、ビスフェノールなどの脂肪族、脂環族、芳香族のジオール化合物が使用可能である。   In the present invention, the glycol supplied to the batch reactor is usually the same type of glycol as that constituting the recycled polyester as a raw material. Accordingly, aliphatic, alicyclic and aromatic diol compounds such as EG, BG, propylene glycol, diethylene glycol, hexamethylene glycol, p-xylene glycol, 1,4-cyclohexadimethanol, and bisphenol can be used.

本発明で使用する回分式反応装置は特に限定されない。解重合反応あるいは縮重合反応に各々適したものを使用すればよい。   The batch reactor used in the present invention is not particularly limited. Those suitable for the depolymerization reaction or the condensation polymerization reaction may be used.

以下、本発明方法を詳しく説明する。ポリエステルの製造では、一般的にあらかじめポリエステル低重合体が存在する回分式反応装置にポリエステル屑とEGを供給し、常圧で解重合させる。ポリエステル屑とEGを回分式反応装置に一定モル比、すなわち通常ポリエステル屑に対するEGのモル比は1.0〜2.0の範囲で供給する。第1の回分式反応装置中で行う解重合反応は、通常230〜270℃、常圧の条件にて反応させる。第1の回分式反応装置では、ほぼ解重合が完了し、生成したポリエステル低重合体が次工程の第2の回分式反応装置に送られる。第2の回分式反応装置では、250〜300℃、0.05〜30KPaの範囲で徐々に温度と、真空度を上げていくと、ポリエステルのポリマーが合成される。なお、ここではグリコール成分としてEGを用いたものについて説明しているが、本発明はグリコール成分がEGのみに限定されるものではない。また、回分式反応装置として、2槽構成のポリエステル重合方法を示したが、反応容器数はこれに限るものではない。   Hereinafter, the method of the present invention will be described in detail. In the production of polyester, generally, polyester waste and EG are supplied to a batch reactor in which a polyester low polymer is present in advance, and depolymerized at normal pressure. Polyester waste and EG are fed to the batch reactor in a fixed molar ratio, that is, the molar ratio of EG to normal polyester waste is in the range of 1.0 to 2.0. The depolymerization reaction performed in the first batch reactor is usually performed at 230 to 270 ° C. under normal pressure. In the first batch reactor, the depolymerization is almost completed, and the produced polyester low polymer is sent to the second batch reactor in the next step. In the second batch reactor, when the temperature and the degree of vacuum are gradually increased in the range of 250 to 300 ° C. and 0.05 to 30 KPa, a polyester polymer is synthesized. In addition, although the thing using EG as a glycol component is demonstrated here, this invention is not limited only to EG in a glycol component. Moreover, although the polyester polymerization method of 2 tank structure was shown as a batch type reaction apparatus, the number of reaction containers is not restricted to this.

以下、実施例にあげて本発明をさらに具体的に説明する。本実施例でいう「部」とは重量部を意味する。   Hereinafter, the present invention will be described more specifically with reference to examples. The “parts” in this example means parts by weight.

特性値の測定方法は次のとおりである。   The characteristic value is measured as follows.

(1)固有粘度
オルソクロロフェノール中、25℃で測定した値である。
(1) Intrinsic viscosity This is a value measured in orthochlorophenol at 25 ° C.

(2)色調(b値)
スガ試験機(株)製の“SC3Pカラーマシン”を使用して測定した。
(2) Color tone (b value)
Measurement was performed using “SC3P Color Machine” manufactured by Suga Test Instruments Co., Ltd.

(3)ジエチレングリコール含有率
試料1.0gに1級モノエタノールアミン2.5mlを加え、全還流下280℃で40 分間加熱後、内部標準液を加える。さらに特級テレフタル酸40gと1級エタノール5mlを加え測定用試料を調製する。該測定用試料を島津製ガスクロマトグラフィー“GC−9A”(使用カラム:島津C−R3A)を用いて測定した。
(3) Diethylene glycol content rate Add 2.5 ml of primary monoethanolamine to 1.0 g of the sample, heat at 280 ° C for 40 minutes under total reflux, and then add the internal standard solution. Further, 40 g of special grade terephthalic acid and 5 ml of primary ethanol are added to prepare a sample for measurement. The sample for measurement was measured by using a gas chromatography “GC-9A” (column used: Shimadzu C-R3A) manufactured by Shimadzu.

(4)カルボキシル基含有量
ベンジルアルコールに得られたポリエステルを溶解し、0.01N水酸化ナトリウム水 溶液で滴定することにより求めた。
(4) Carboxyl group content It calculated | required by melt | dissolving the polyester obtained in benzyl alcohol, and titrating with 0.01N sodium hydroxide aqueous solution.

実施例1
回分式反応装置1にPET屑2500部、EG870部、アルカリ化合物として水酸化テトラエチルアンモニウムを0.0157部を仕込み、原料仕込みと同時に昇温を開始して、常圧下に解重合反応を開始した。その後、解重合反応を開始して2時間50分後(この時の缶温度:245℃)に解重合反応終了となった。
Example 1
The batch reactor 1 was charged with 2500 parts of PET waste, 870 parts of EG, and 0.0157 part of tetraethylammonium hydroxide as an alkali compound. The temperature was started at the same time as the raw materials were charged, and the depolymerization reaction was started under normal pressure. Thereafter, the depolymerization reaction was completed 2 hours and 50 minutes later (can temperature at this time: 245 ° C.).

この時の反応生成物であるPET低重合体を回分式反応装置2に移液し、290℃、減圧下(1mmHg以下)で重縮合反応を行った。2時間42分後に固有粘度0.656のPETポリマーを得た。DEG量、COOH量も低い値となっており、得られたPETの色調はb値が13.7であった。得られた再生PETの物性を表1に示す。軟化点、色調も問題なく再生PETが得られることを確認した。   The PET low polymer, which is the reaction product at this time, was transferred to the batch reactor 2 and subjected to a polycondensation reaction at 290 ° C. under reduced pressure (1 mmHg or less). After 2 hours and 42 minutes, a PET polymer having an intrinsic viscosity of 0.656 was obtained. The amount of DEG and the amount of COOH were also low, and the color tone of the obtained PET had a b value of 13.7. Table 1 shows the physical properties of the obtained recycled PET. It was confirmed that regenerated PET could be obtained without any problems in softening point and color tone.

実施例2
アルカリ化合物として水酸化テトラエチルアンモニウムを0.0112部使用する以外は実施例1と同様にして解重合反応を行い、解重合反応を開始して2時間51分後(この時の缶温度:245℃)に解重合反応終了となった。
Example 2
The depolymerization reaction was carried out in the same manner as in Example 1 except that 0.0112 parts of tetraethylammonium hydroxide was used as the alkali compound, and 2 hours and 51 minutes after starting the depolymerization reaction (can temperature at this time: 245 ° C. ) Completed the depolymerization reaction.

この時の反応生成物であるPET低重合体を回分式反応装置2に移液し、290℃、減圧下(1mmHg以下)で重縮合反応を行った。2時間43分後に固有粘度0.660のPETを得た。DEG量、COOH量も低い値となっており、得られたPETの色調はb値13.2であった。得られた再生PETの物性を表1に示す。軟化点、色調も問題なく再生PETが得られることを確認した。   The PET low polymer, which is the reaction product at this time, was transferred to the batch reactor 2 and subjected to a polycondensation reaction at 290 ° C. under reduced pressure (1 mmHg or less). After 2 hours and 43 minutes, PET having an intrinsic viscosity of 0.660 was obtained. The amount of DEG and COOH were also low, and the color tone of the obtained PET had a b value of 13.2. Table 1 shows the physical properties of the obtained recycled PET. It was confirmed that regenerated PET could be obtained without any problems in softening point and color tone.

実施例3
アルカリ化合物として水酸化テトラエチルアンモニウムを0.0068部使用する以外は実施例1と同様にして解重合反応を行い、、解重合反応を開始して2時間50分後(この時の缶温度:245℃)に解重合反応終了となった。
Example 3
A depolymerization reaction was carried out in the same manner as in Example 1 except that 0.0068 parts of tetraethylammonium hydroxide was used as the alkali compound, and 2 hours and 50 minutes after the start of the depolymerization reaction (can temperature at this time: 245 (° C.), the depolymerization reaction was completed.

この時の反応生成物であるPET低重合体を回分式反応装置2に移液し、290℃、減圧下(1mmHg以下)で重縮合反応を行った。2時間40分後に固有粘度0.657のPETを得た。DEG量、COOH量も低い値となっており、得られたPETの色調はb値13.4であった。得られた再生PETの物性を表1に示す。軟化点、色調も問題なく再生PETが得られることを確認した。   The PET low polymer, which is the reaction product at this time, was transferred to the batch reactor 2 and subjected to a polycondensation reaction at 290 ° C. under reduced pressure (1 mmHg or less). After 2 hours and 40 minutes, PET having an intrinsic viscosity of 0.657 was obtained. The amount of DEG and COOH were also low, and the color tone of the obtained PET had a b value of 13.4. Table 1 shows the physical properties of the obtained recycled PET. It was confirmed that regenerated PET could be obtained without any problems in softening point and color tone.

実施例4
アルカリ化合物を水酸化ナトリウムに変える以外は実施例3と同様にして解重合反応を行い、解重合反応を開始して2時間55分後(この時の缶温度:245℃)に解重合反応終了となった。
Example 4
The depolymerization reaction was carried out in the same manner as in Example 3 except that the alkali compound was changed to sodium hydroxide, and the depolymerization reaction was completed 2 hours and 55 minutes after starting the depolymerization reaction (can temperature at this time: 245 ° C.). It became.

この時の反応生成物であるPET低重合体を回分式反応装置2に移液し、290℃、減圧下(1mmHg以下)で重縮合反応を行った。2時間42分後に固有粘度0.653のPETを得た。DEG量、COOH量も低い値となっており、得られたPETの色調はb値14.0であった。得られた再生PETの物性を表1に示す。軟化点、色調も問題なく再生PETが得られることを確認した。   The PET low polymer, which is the reaction product at this time, was transferred to the batch reactor 2 and subjected to a polycondensation reaction at 290 ° C. under reduced pressure (1 mmHg or less). After 2 hours and 42 minutes, PET having an intrinsic viscosity of 0.653 was obtained. The amounts of DEG and COOH were also low, and the color tone of the obtained PET had a b value of 14.0. Table 1 shows the physical properties of the obtained recycled PET. It was confirmed that regenerated PET could be obtained without any problems in softening point and color tone.

実施例5
PETをPBTに変える以外は実施例3と同様にして解重合反応を行い、解重合反応を開始して2時間54分後(この時の缶温度:245℃)に解重合反応終了となった。
Example 5
The depolymerization reaction was carried out in the same manner as in Example 3 except that PET was changed to PBT, and the depolymerization reaction was completed 2 hours and 54 minutes after starting the depolymerization reaction (can temperature at this time: 245 ° C.). .

この時の反応生成物であるPBT低重合体を回分式反応装置2に移液し、290℃、減圧下(1mmHg以下)で重縮合反応を行った。2時間44分後に固有粘度0.658のPBTを得た。DEG量、COOH量も低い値となっており、得られたPBTの色調はb値13.9であった。得られた再生PBTの物性を表1に示す。軟化点、色調も問題なく再生PBTが得られることを確認した。   The PBT low polymer which is the reaction product at this time was transferred to the batch reactor 2 and subjected to a polycondensation reaction at 290 ° C. under reduced pressure (1 mmHg or less). After 2 hours and 44 minutes, PBT having an intrinsic viscosity of 0.658 was obtained. The amount of DEG and COOH were also low, and the color tone of the obtained PBT had a b value of 13.9. Table 1 shows the physical properties of the obtained recycled PBT. It was confirmed that a regenerated PBT could be obtained without any problem in softening point and color tone.

比較例1
実施例1と同じ方法でPET屑2500部、BG870部を仕込み、原料仕込みと同時に昇温を開始して、常圧下に解重合反応を開始した。その後、解重合反応を開始して2時間52分後(この時の缶温度:245℃)に解重合反応終了となった。
この時の反応生成物であるPET低重合体を回分式反応装置2に移液し、290℃、減圧下(1mmHg以下)で重縮合反応を行った。2時間51分後に固有粘度0.652のポリマーを得た。DEG量、COOH量も高い値となっており、得られた再生PETの色調はb値15.3であった。軟化点が低く、色調も好ましくない再生PETしか得られなかった。
Comparative Example 1
In the same manner as in Example 1, 2500 parts of PET waste and 870 parts of BG were charged, and the temperature was increased simultaneously with the charging of the raw materials, and the depolymerization reaction was started under normal pressure. Thereafter, the depolymerization reaction was completed 2 hours and 52 minutes later (can temperature at this time: 245 ° C.).
The PET low polymer, which is the reaction product at this time, was transferred to the batch reactor 2 and subjected to a polycondensation reaction at 290 ° C. under reduced pressure (1 mmHg or less). After 2 hours and 51 minutes, a polymer with an intrinsic viscosity of 0.652 was obtained. The amount of DEG and COOH were also high, and the color tone of the obtained recycled PET had a b value of 15.3. Only regenerated PET having a low softening point and an unfavorable color tone was obtained.

Figure 2007153942
Figure 2007153942

アルカリ添加は、ポリエステル100重量部に対するアルカリ化合物の添加量である。
EGはエチレングリコール、BGは1,4−ブタンジオールである。
EAHは水産課テトラエチルアンモニウム、NaOHは水酸化ナトリウムである。
Alkali addition is the amount of alkali compound added to 100 parts by weight of polyester.
EG is ethylene glycol and BG is 1,4-butanediol.
EAH is the fishery section tetraethylammonium, and NaOH is sodium hydroxide.

Claims (5)

リサイクルポリエステルとグリコールおよびアルカリ化合物を第1の回分式反応装置に供給して解重合を行い、得られた低重合体を第2の回分式反応装置にて重縮合反応を行うことを特徴とする再生ポリエステルの製造方法。   The recycled polyester, glycol and alkali compound are supplied to the first batch reactor to perform depolymerization, and the resulting low polymer is subjected to a polycondensation reaction in the second batch reactor. A method for producing recycled polyester. アルカリ化合物が水酸化テトラエチルアンモニウム、水酸化ナトリウムおよび水酸化カルシウムから選ばれたことを特徴とする請求項1記載の再生ポリエステルの製造方法。   The method for producing a regenerated polyester according to claim 1, wherein the alkali compound is selected from tetraethylammonium hydroxide, sodium hydroxide and calcium hydroxide. アルカリ化合物の添加量が、生成するポリエステル100重量部に対して0.02〜0.10重量部であることを特徴とする請求項1又は2記載の再生ポリエステルの製造方法。   The method for producing a regenerated polyester according to claim 1 or 2, wherein the addition amount of the alkali compound is 0.02 to 0.10 parts by weight with respect to 100 parts by weight of the produced polyester. グリコールが、エチレングリコールおよび/または1,4−ブタンジオールであることを特徴とする請求項1〜3のいずれかに記載の再生ポリエステルの製造方法。   The method for producing a regenerated polyester according to any one of claims 1 to 3, wherein the glycol is ethylene glycol and / or 1,4-butanediol. リサイクルポリエステルが、繊維やポリエステル製品の製造工程で発生するリサイクルポリエステルであることを特徴とする請求項1〜4のいずれかに記載の再生ポリエステルの製造方法。   The method for producing a regenerated polyester according to any one of claims 1 to 4, wherein the recycle polyester is a recycle polyester generated in a production process of a fiber or a polyester product.
JP2005347310A 2005-11-30 2005-11-30 Method for producing recycled polyester Pending JP2007153942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005347310A JP2007153942A (en) 2005-11-30 2005-11-30 Method for producing recycled polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005347310A JP2007153942A (en) 2005-11-30 2005-11-30 Method for producing recycled polyester

Publications (1)

Publication Number Publication Date
JP2007153942A true JP2007153942A (en) 2007-06-21

Family

ID=38238719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005347310A Pending JP2007153942A (en) 2005-11-30 2005-11-30 Method for producing recycled polyester

Country Status (1)

Country Link
JP (1) JP2007153942A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173902A (en) * 2007-12-25 2009-08-06 Sumitomo Chemical Co Ltd Method for decomposing aromatic ether compound
KR101124559B1 (en) 2010-03-31 2012-03-16 웅진케미칼 주식회사 Recycled polyester staple fiber using waste polyester and method thereof
KR101240341B1 (en) 2011-05-31 2013-03-07 웅진케미칼 주식회사 Recycled polyester filament having infrared ray and ultraviolet ray shielding effect and low melting property
KR101240340B1 (en) 2010-04-23 2013-03-07 웅진케미칼 주식회사 Fire retardancy recycled polyester filament for interior and method thereof
KR101303819B1 (en) * 2011-05-31 2013-09-04 웅진케미칼 주식회사 Recycled polyester filament having low melting property and antibacterial property
JP2014500781A (en) * 2010-09-30 2014-01-16 エクイポリマーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Mixing method and mixing device
JP2015515519A (en) * 2012-03-30 2015-05-28 サウディ ベーシック インダストリーズ コーポレイション Biodegradable aliphatic-aromatic copolyester, process for its production, and article thereof
US9487625B2 (en) 2012-03-01 2016-11-08 Sabic Global Technologies B.V. Poly(butylene-co-adipate terephthalate), method of manufacture and uses thereof
US9487621B2 (en) 2011-08-30 2016-11-08 Sabic Global Technologies B.V. Method for the preparation of (polybutylene-co-adipate terephthalate) through the in situ phosphorus containing titanium based catalyst
WO2020053051A1 (en) * 2018-09-12 2020-03-19 Rittec Umwelttechnik Gmbh Method, device and use for reprocessing substantially polyalkylene terephthalate
JP2021120445A (en) * 2019-03-29 2021-08-19 ユニチカ株式会社 Recycled polyester resin and method for producing recycled polyester resin
JP2022019537A (en) * 2020-07-15 2022-01-27 南亞塑膠工業股▲分▼有限公司 Polyester film for embossing and method for producing the same
JP2022063218A (en) * 2020-10-09 2022-04-21 ユニチカ株式会社 Recycled polyester resin and method for producing recycled polyester resin

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173902A (en) * 2007-12-25 2009-08-06 Sumitomo Chemical Co Ltd Method for decomposing aromatic ether compound
KR101124559B1 (en) 2010-03-31 2012-03-16 웅진케미칼 주식회사 Recycled polyester staple fiber using waste polyester and method thereof
KR101240340B1 (en) 2010-04-23 2013-03-07 웅진케미칼 주식회사 Fire retardancy recycled polyester filament for interior and method thereof
JP2014500781A (en) * 2010-09-30 2014-01-16 エクイポリマーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Mixing method and mixing device
KR101240341B1 (en) 2011-05-31 2013-03-07 웅진케미칼 주식회사 Recycled polyester filament having infrared ray and ultraviolet ray shielding effect and low melting property
KR101303819B1 (en) * 2011-05-31 2013-09-04 웅진케미칼 주식회사 Recycled polyester filament having low melting property and antibacterial property
US9487621B2 (en) 2011-08-30 2016-11-08 Sabic Global Technologies B.V. Method for the preparation of (polybutylene-co-adipate terephthalate) through the in situ phosphorus containing titanium based catalyst
US9487625B2 (en) 2012-03-01 2016-11-08 Sabic Global Technologies B.V. Poly(butylene-co-adipate terephthalate), method of manufacture and uses thereof
JP2015515519A (en) * 2012-03-30 2015-05-28 サウディ ベーシック インダストリーズ コーポレイション Biodegradable aliphatic-aromatic copolyester, process for its production, and article thereof
WO2020053051A1 (en) * 2018-09-12 2020-03-19 Rittec Umwelttechnik Gmbh Method, device and use for reprocessing substantially polyalkylene terephthalate
JP2021120445A (en) * 2019-03-29 2021-08-19 ユニチカ株式会社 Recycled polyester resin and method for producing recycled polyester resin
JP7072764B2 (en) 2019-03-29 2022-05-23 ユニチカ株式会社 Manufacturing method of recycled polyester resin
JP2022019537A (en) * 2020-07-15 2022-01-27 南亞塑膠工業股▲分▼有限公司 Polyester film for embossing and method for producing the same
JP7200285B2 (en) 2020-07-15 2023-01-06 南亞塑膠工業股▲分▼有限公司 Polyester film for embossing and its manufacturing method
JP2022063218A (en) * 2020-10-09 2022-04-21 ユニチカ株式会社 Recycled polyester resin and method for producing recycled polyester resin
JP7247433B2 (en) 2020-10-09 2023-03-29 ユニチカ株式会社 Recycled polyester resin and method for producing recycled polyester resin

Similar Documents

Publication Publication Date Title
JP2007153942A (en) Method for producing recycled polyester
TW583216B (en) Polyester continuous production process
JP2014001257A (en) Method for producing biomass resource-derived polyester and biomass resource-derived polyester
TWI487727B (en) Method for producing polyester resin
JP2010126660A (en) Method for producing reclaimed polyester
JPH09221540A (en) Polyethylene terephthalate, hollow container, and oriented film
KR101834666B1 (en) Method of solid state polymerization for titianium based polyester
JP2015140412A (en) Method for manufacturing copolyester
JP2006016548A (en) Method for producing polyester
JP2004217721A (en) Polyester and its manufacturing method
JP5062960B2 (en) Copolyester
JP2005248005A (en) Method for manufacturing polyester
JP5215074B2 (en) Catalyst for producing polyester and production of polyester using the catalyst
JP4781701B2 (en) Method for producing polyethylene terephthalate and molded body
JP2020528467A (en) Methods for preparing polyesters with additives
EP4141043A1 (en) Valorisation of d-lactic acid stream in the production process of l-polylactic acid
EP4141042A1 (en) Valorisation of l-lactic acid stream in the production process of d-polylactic acid
JP2001048968A (en) Production of polybutylene terephtahlate
TW581777B (en) Process for producing a poly(ethylene aromatic dicarboxylate ester) resin, the resin, and fibers, films and bottle-formed products produced from the resin
JP2007269896A (en) Polyethylene terephthalate and method for producing the same
JPH06234909A (en) Polybutylene terephthalate resin composition and its production
JP2001200042A (en) Manufacturing method for polyester
JP2017145274A (en) Method of producing copolymerized polyester
JPH11106364A (en) Production of intermediate raw material for polyester
TW202413479A (en) Chemically recycled polyethylene terephthalate resin and its molded body, and method for producing chemically recycled polyethylene terephthalate resin