JP2007146292A - Vapor deposition method for vapor-phase organic matter, and vapor deposition system for vapor-phase organic matter utilizing the same - Google Patents

Vapor deposition method for vapor-phase organic matter, and vapor deposition system for vapor-phase organic matter utilizing the same Download PDF

Info

Publication number
JP2007146292A
JP2007146292A JP2006309862A JP2006309862A JP2007146292A JP 2007146292 A JP2007146292 A JP 2007146292A JP 2006309862 A JP2006309862 A JP 2006309862A JP 2006309862 A JP2006309862 A JP 2006309862A JP 2007146292 A JP2007146292 A JP 2007146292A
Authority
JP
Japan
Prior art keywords
vapor
phase organic
organic
chamber
organic matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006309862A
Other languages
Japanese (ja)
Inventor
Dong-Soo Kim
キム、ドン−ス
Gyeong Bin Bae
ベ、ギョン−ビン
Dong-Kwon Choi
チェ、ドン−ゴン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANS Inc
Original Assignee
ANS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020020017755A external-priority patent/KR100358727B1/en
Priority claimed from KR10-2002-0061629A external-priority patent/KR100375076B1/en
Application filed by ANS Inc filed Critical ANS Inc
Publication of JP2007146292A publication Critical patent/JP2007146292A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45589Movable means, e.g. fans
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4485Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation without using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make fine adjustment of the mixing amount of organic materials by uniformly depositing a vapor-phase organic matter by evaporation on a substrate having a wide area and depositing an organic thin film at a high speed thereon. <P>SOLUTION: The vapor deposition system for the vapor-phase organic matter includes: a base material stabilizing section 140 for stabilizing a base material 10; a jetting section 110 for jetting the vapor-phase organic matter in the direction of the stabilizing section of the base material; a vapor deposition chamber 100 including a heat insulating heater 130; a carrier gas lead-in hole formed in a hole shape so as to lead in the carrier gas for carrying the vapor-phase organic matter; and a lead-out hole formed in a hole shape so as to lead out the organic matter vapor and the carrier gas. The system includes: a crucible 220 capable of storing the organic matter; an organic matter chamber 200 internally including an organic matter heater for heating the inside of the crucible; a flow rate control section 400 for controlling the amount of the carrier gas to be led into the organic matter chamber and the velocity of flow thereof; a transfer pipe 210 for the vapor-phase organic matter in which the organic matter in the organic matter chamber can move to the jetting section; and a vacuum pump 150. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、半導体装置の製造装置及びその製造方法において、有機物材料を使用した気相有機物の蒸着方法及び気相有機物の蒸着装置に係り、より詳しくは、上部に設置された噴射部によって気相有機物を重力方向へ噴射させることによって、広い面積の基板に均一に薄膜を高速で形成させて、蒸着物質として希釈ガスを使用してスキャンヘッドに小さめの大きさの熱源を継続的に移動させて有機薄膜の広い面積基板を精密、かつ安定的な厚さに調整することのできる広い面積基板の気相有機物の蒸着方法と、これを利用した気相有機物の蒸着装置およびその方法に関するものである。     The present invention relates to a semiconductor device manufacturing apparatus and a manufacturing method thereof, and more particularly to a vapor phase organic material deposition method and a vapor phase organic material deposition apparatus using an organic material. By spraying organic matter in the direction of gravity, a thin film is uniformly formed at a high speed on a large area substrate, and a small heat source is continuously moved to the scan head using a dilution gas as a deposition material. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor-phase organic material vapor deposition method for a large-area substrate capable of adjusting a large-area substrate of an organic thin film to a precise and stable thickness, a vapor-phase organic vapor deposition apparatus using the same, and a method therefor .

最近に至って、有機化合物、有機金属化合物として機能性高分子化合物による薄膜形成技術は、半導体メモリ−の絶縁層材料以外にも伝導性材料、光電子材料、有機発光(Electro−luminescence)素子材料等の関心が集まっている。     Recently, thin film formation technology using functional polymer compounds as organic compounds and organometallic compounds has been developed in addition to insulating materials for semiconductor memories, such as conductive materials, optoelectronic materials, and organic light emitting (Electro-luminescence) element materials. Interest is gathered.

これまでに開発された有機薄膜形成方法中、代表的な技術の1つとして使用される真空蒸着法は、真空チェンバーの下部に熱蒸発源とその上部に成膜用基板を設置して薄膜を形成するものである。この真空蒸着法を利用した有機薄膜形成装置の概略的な構成を見てみると、真空チェンバーに連結された真空排気系が存在し、これを利用して真空チェンバーの一定の真空を保持させてから、真空チェンバーの下部に配置された1つ以上の有機薄膜材料の熱蒸発源から有機薄膜材料である有機物を蒸発させる。有機薄膜材料の熱蒸発源は円筒形状または方形状の容器であって、その内部に成膜用有機物材料を収容する。容器材料としては、石英、セラミックス等が使用され、容器部の周辺には一定のパタ−ン模様の加熱用ヒーターが囲繞されているため、一定量の電力を加えると容器周辺の温度が上昇するととに、容器も加熱されて一定温度になると有機物の蒸発が始まる。温度は容器の下部または上部に設置された温度調節用熱伝帯によって検測されて有機蒸発材料を一定温度に保持して所望の蒸発速度が得られるようにした。蒸発された有機物は容器の上部から一定距離を離れた部位に配置されたガラスまたはウエハ−材質からなる基板に蒸発移動後に基板の表面に吸着、蒸着、再蒸発等の連続的な過程を経て基板上に固体化されて薄膜を形成せしめる技術である。     Among the organic thin film forming methods that have been developed so far, the vacuum deposition method used as one of the representative techniques is to install a thin film by installing a thermal evaporation source at the bottom of the vacuum chamber and a deposition substrate at the top. To form. Looking at the schematic configuration of an organic thin film forming apparatus using this vacuum deposition method, there is an evacuation system connected to the vacuum chamber, and this is used to maintain a constant vacuum in the vacuum chamber. From the thermal evaporation source of one or more organic thin film materials disposed in the lower part of the vacuum chamber, the organic substance that is the organic thin film material is evaporated. The thermal evaporation source of the organic thin film material is a cylindrical or rectangular container, and the organic material for film formation is accommodated therein. As the container material, quartz, ceramics, etc. are used, and a heater with a certain pattern pattern is surrounded around the container part. Therefore, if a certain amount of electric power is applied, the temperature around the container rises. In addition, when the container is heated to a certain temperature, the organic matter starts to evaporate. The temperature was measured by a thermoregulatory heat transfer belt installed at the bottom or top of the vessel to keep the organic evaporation material at a constant temperature so that the desired evaporation rate was obtained. The evaporated organic substance is evaporated and transferred to the substrate made of glass or wafer material located at a certain distance from the upper part of the container, and then is subjected to continuous processes such as adsorption, vapor deposition, and re-evaporation on the surface of the substrate. It is a technology that solidifies on top to form a thin film.

ここで、有機薄膜材料の有機化合物は蒸気化される蒸気圧が高く、加熱による熱分解温度が蒸発温度と近接されているため、長時間にわたる安定された有機蒸発速度の制御が容易でないことから、高速薄膜蒸着が難しい。また、真空チェンバー内の熱蒸発源から放出された蒸気化された有機薄膜材料は、熱蒸発源容器の上部のCRUCIBLEHOLE形状(開口部)に相応する指向性をもつことになり、これは限られた狭い範囲内に局限されて基板に到達するようになることから、大面積基板に形成される均一な有機薄膜を得がたい。さらに、有機薄膜の均一な薄膜を形成するために指向性の補正手段とし基板を一定速度で回転させつつ成膜をすることによって、回転半径が大きくなって蒸着装備がそれに相応する大きさに大型化され、真空装備の不要な有効面積まで有機薄膜が形成されるため、高価の有機材料の使用効率が極めて低下されて生産性の低下をもたらした。     Here, the organic compound of the organic thin film material has a high vapor pressure to be vaporized, and since the thermal decomposition temperature by heating is close to the evaporation temperature, it is not easy to control the organic evaporation rate over a long period of time. High-speed thin film deposition is difficult. In addition, the vaporized organic thin film material released from the thermal evaporation source in the vacuum chamber has directivity corresponding to the CRUCABLEBLE shape (opening) at the top of the thermal evaporation source container, which is limited. Therefore, it is limited within a narrow range and reaches the substrate, so that it is difficult to obtain a uniform organic thin film formed on a large area substrate. Furthermore, by forming a film while rotating the substrate at a constant speed as a directivity correction means in order to form a uniform thin film of organic thin film, the rotation radius becomes large and the deposition equipment becomes large in size corresponding to it. As a result, the organic thin film is formed up to an effective area that does not require vacuum equipment, so that the use efficiency of expensive organic materials is extremely reduced, resulting in a decrease in productivity.

このように、真空蒸着法では有機薄膜を利用した有機発光素子及び機能性薄膜を応用した製品を製造するにあたって、低い成膜速度、低い有機材料の使用効率、有機薄膜層のばらつき性、主材料(Host材料)と発色材料(Dopant材料)の混合量の微細調整の難しさ、熱蒸発源温度調節、基板の大型化に伴う均一な有機薄膜の形成困難等などのもろもろの問題点があるが、その一例として、添付された図1を参照して従来の真空蒸着装置について述べることにする。     As described above, in the vacuum evaporation method, when manufacturing an organic light emitting device using an organic thin film and a product using a functional thin film, a low film formation speed, a low use efficiency of an organic material, an organic thin film layer variability, a main material There are various problems such as difficulty in fine adjustment of the mixing amount of (Host material) and coloring material (Dopant material), adjustment of the temperature of the thermal evaporation source, difficulty in forming a uniform organic thin film due to the increase in size of the substrate, etc. As an example, a conventional vacuum deposition apparatus will be described with reference to FIG.

図1は、従来の真空蒸着装置の一例を示す。
図1に示す従来の真空蒸着装置に従えば、まず、モリブデンボート(6)に蒸着させる物質の適当量を予測して載置してから、真空チェンバー(1)内の圧力を10〜6torr程度に下げる。その後、温度調節装置を利用して蒸着物質が金属である場合、その金属の融点近傍まで熱を上げてから、再度微細に調節しつつ気化される時まで温度を上げる。この際、徐々にモリブデンボート(6)上の物質の蒸発が始まると、あらかじめ装着されていたシャッター(5)を開けて蒸発された物質分子を基板に蒸着させる。この際、シャッター(5)はモリブデンボート(6)上にある物質が気化される直前に残存する不純物が基板に蒸着されないように防止する役割を果す。
FIG. 1 shows an example of a conventional vacuum deposition apparatus.
According to the conventional vacuum deposition apparatus shown in FIG. 1, first, an appropriate amount of a substance to be deposited on the molybdenum boat (6) is predicted and placed, and then the pressure in the vacuum chamber (1) is set to about 10 to 6 torr. To lower. Thereafter, when the vapor deposition material is a metal using a temperature control device, the temperature is raised to the time of vaporization while finely adjusting again after raising the heat to the vicinity of the melting point of the metal. At this time, when evaporation of the substance on the molybdenum boat (6) starts gradually, the previously attached shutter (5) is opened to deposit the evaporated substance molecules on the substrate. At this time, the shutter (5) serves to prevent impurities remaining immediately before the substance on the molybdenum boat (6) is vaporized from being deposited on the substrate.

このような真空蒸着装置は、蒸着させる物質の適確な量を予測しがたいことから、多量の物質をモリブデンボート(6)に装着させなければならず、所望の方向への蒸気(Vapor)の誘導が不可能であるため、前記蒸着過程を数回にわたって繰返す場合は、チェンバー内が汚染されて毎度内部をクリーニングをしなければならない煩しさがある。さらに、モリブデンボート(6)上に載置される物質の量、シャッター(4)の開閉時間、さらに、温度調節による気化時間が厚さ調節の変数であり、かかる変数を全体的に微細に調整することが不可能である。     In such a vacuum deposition apparatus, since it is difficult to predict an appropriate amount of the material to be deposited, a large amount of material must be mounted on the molybdenum boat (6), and vapor in a desired direction (Vapor). Therefore, when the deposition process is repeated several times, the inside of the chamber is contaminated and the inside must be cleaned each time. Furthermore, the amount of substance placed on the molybdenum boat (6), the opening and closing time of the shutter (4), and the vaporization time by temperature adjustment are the variables for thickness adjustment, and these variables are finely adjusted as a whole. Is impossible to do.

一方で、有機半導体の製作方法には、単位蒸着源を使用する方法と最近プリンストン大学でマックスステイン(Max Shtein)氏らが提案したOVPD(Organic Vapor Phase Deposition)方法がある。     On the other hand, organic semiconductor fabrication methods include a method using a unit vapor deposition source and an OVPD (Organic Vapor Phase Deposition) method recently proposed by Max Stain et al. At Princeton University.

単位蒸着ソースタンクを使用する有機半導体製作方法は、有機半導体で使用される各層を蒸着する時間が長くかかるし、各層の蒸着時に使用される物質の使用量が多い上、蒸着された膜の密度と基板に対する接着力が良好でない問題点があることから、有機半導体を量産するための量産歩留まりが落ちる。さらに、量産のための広い面積基板の製造工程に制限がある。つまり、現在は370X470mm大きさの基板を使用するのが限界である。     The organic semiconductor manufacturing method using the unit vapor deposition source tank takes a long time to deposit each layer used in the organic semiconductor, requires a large amount of materials used during the deposition of each layer, and the density of the deposited film. As a result, there is a problem that the adhesive strength to the substrate is not good, so that the mass production yield for mass production of the organic semiconductor is lowered. Furthermore, there is a limitation in the manufacturing process of a large area substrate for mass production. In other words, the current limit is to use a substrate having a size of 370 × 470 mm.

また、OVPD方法はマックスステイン氏らの提案したAxitron方式において、気相有機物を運送ガスを使用して有機半導体に使用される各層を製作する方式である。この方法は、単位蒸着源を使用する方式より有機物質の使用効率を高められるし、広い面積基板の有機半導体の製作が理論的には可能である。ところで、OVPD方式を使用するAxitron方法は既存のCVD方式のスキャンヘッドを使用しており、実際に200X200mm大きさの基板を試験的に使用してテストをしているが、熱に弱い有機薄膜に問題を起こしうる。     The OVPD method is a method in which each layer used for an organic semiconductor is manufactured by using a transport gas as a vapor phase organic substance in the Axitron method proposed by Maxstein et al. In this method, the use efficiency of the organic substance can be increased as compared with the method using the unit evaporation source, and it is theoretically possible to manufacture an organic semiconductor having a large area substrate. By the way, the Axitron method using the OVPD method uses an existing CVD method scan head, and actually tests using a 200 × 200 mm size substrate as a test. Can cause problems.

さらに、広い面積基板用として製作するためには、370X470mm以上のシャワーヘッドを製作しなければならないが、この構成自体が難点を有している。なおかつ、Axitron方式の蒸着方法は蒸着ソースタンク(714)とスキャンヘッドの高温熱源が固定されている。さらに、有機半導体の製作でのドーピングは2つ以上のスキャンヘッドをシステム内に装着して個別的な温度調整を可能ならしめる。しかしながら、既存のOVPD方式は1つのスキャンヘッドだけを使用することから、熱的特性が相対的に異なる2種以上のドーピング物質が使用されてドーピングされる場合、熱的特性が良好でない物質に変質されうる短所がある。     Furthermore, in order to manufacture for a large area substrate, a shower head of 370 × 470 mm or more must be manufactured, but this configuration itself has a drawback. In addition, in the Axitron type vapor deposition method, the vapor deposition source tank (714) and the high-temperature heat source of the scan head are fixed. In addition, doping in the fabrication of organic semiconductors allows two or more scan heads to be installed in the system to allow individual temperature adjustments. However, since the existing OVPD method uses only one scan head, when two or more kinds of doping materials having relatively different thermal characteristics are used and doped, the OVPD method changes to a material having poor thermal characteristics. There are disadvantages that can be done.

つまり、既存の2種方式は有機半導体物質が広い面積基板の基板に良好に蒸着できない問題点がある。     In other words, the existing two-type method has a problem that the organic semiconductor material cannot be deposited on a substrate having a large area.

そこで、この発明は上記種々の問題点を解決するためになされたものであって、この発明の第一の目的は、広い面積の基板に気相有機物を均一に蒸着させることができるし、有機薄膜を高速に成膜させることができるし、有機材料混合量の微細調整が可能な気相有機物の蒸着方法と、これを利用した気相有機物の蒸着装置を提供することにある。     Therefore, the present invention has been made to solve the above-mentioned various problems. The first object of the present invention is to uniformly vapor-phase organic substances on a large area substrate, An object of the present invention is to provide a vapor phase organic material vapor deposition method capable of forming a thin film at high speed and finely adjusting the amount of organic material mixed, and a vapor phase organic material vapor deposition apparatus using the vapor phase organic material vapor deposition method.

さらに、この発明の第二の目的は、有機半導体物質が広い面積基板に蒸着できるよう、蒸着源ソースタンク内で有機物質の粒子を希釈することによって、有機薄膜の基板に対する接着力を増加させつつ精密で、かつ安定的に厚さを調整することができるし、バッファーチェンバーと蒸着チェンバーのゲート弁を利用して、完全に分離されてスキャンヘッドの熱源が広い面積の基板上と蒸着チェンバー内の温度上昇を防止できる広い面積基板の気相気相有機物の蒸着方法と、これを利用した気相有機物の蒸着装置を提供することにある。     Furthermore, the second object of the present invention is to increase the adhesion of the organic thin film to the substrate by diluting the particles of the organic material in the deposition source tank so that the organic semiconductor material can be deposited on a large area substrate. Thickness can be adjusted accurately and stably, and the gate valve of the buffer chamber and the deposition chamber is used to completely separate the heat source of the scan head on the large area substrate and in the deposition chamber. An object of the present invention is to provide a vapor phase vapor phase organic material vapor deposition method for a large area substrate capable of preventing a temperature rise and a vapor phase organic vapor deposition apparatus using the vapor deposition method.

上記のような目的を達成するためになされたこの発明に従う気相有機物の蒸着装置は、外部と隔離される内部空間を備えており、該内部空間の床面に気相有機物を蒸着させる母材を安着せしめる母材安着部を備え、該母材安着部の上端に位置されて気相有機物を前記母材の安着部方向へ噴射する噴射部と、上端壁面及び側壁面内に熱を発散する1つ以上の保温ヒーターを含んで構成される蒸着チェンバーと、気相有機物を運搬する運搬ガスが引き込まれるよう穴形状に形成された1つ以上の運搬ガス引込ホールと、有機物蒸気及び運搬ガスが引き出されうるよう穴形状に形成された1つ以上の気相有機物の引出ホールを備えており、耐熱材の材質で有機物を貯蔵できるよう、内部空間を備える形状に形成されたるつぼと、該るつぼの外部を囲繞しており、有機物が蒸発される温度まで前記るつぼ内を加熱する有機物加熱ヒーターを内部に含む1つ以上の有機物チェンバーと、前記運搬ガスの引込ホールに連結されて前記有機物チェンバー内に引き込まれる運搬ガス量と流速を制御する流量制御部と、前記蒸着チェンバー及び有機物チェンバーを貫通するように形成されており、前記有機物チェンバー内の気相有機物が前記噴射部に移動できるよう管形状からなる気相有機物の移送管と、前記蒸着チェンバーの内部圧力を低める真空ポンプとを含んで構成される。   A vapor-phase organic matter vapor deposition apparatus according to the present invention made to achieve the above object has an internal space that is isolated from the outside, and a base material that vapor-deposits the vapor-phase organic material on the floor surface of the internal space A base material seating portion for seating, and an injection portion that is positioned at the upper end of the base material seating portion and jets vapor phase organic matter toward the seating portion of the base material; A vapor deposition chamber configured to include one or more heat retaining heaters for dissipating heat, one or more transport gas inlet holes formed in a hole shape so that a transport gas for transporting a vapor phase organic material is drawn, and organic vapor And one or more gas phase organic substance extraction holes formed in a hole shape so that the carrier gas can be extracted, and a crucible formed in a shape having an internal space so that the organic substance can be stored with a heat-resistant material. And the outside of the crucible One or more organic material chambers including an organic material heater for heating the inside of the crucible to a temperature at which the organic material is evaporated, and transporting that is connected to the transporting hole for the transporting gas and drawn into the organic material chamber A gas flow rate control unit that controls a gas amount and a flow rate, and a vapor phase that is formed so as to penetrate the vapor deposition chamber and the organic material chamber, and has a tubular shape so that the gas phase organic matter in the organic material chamber can move to the injection unit. It includes an organic material transfer pipe and a vacuum pump that lowers the internal pressure of the vapor deposition chamber.

さらに、この発明に従う気相有機物の蒸着方法は、内部に有機物を含んでいる有機物チェンバーの外面に接触する加熱ヒーターは、熱を発散して前記有機物を蒸発温度以上に加熱する1段階と、前記加熱ヒーターによって気化された気相有機物は、熱を発散する定温ヒーターに囲繞されている気相有機物の移送管を通して気相有機物を蒸着させる母材が位置している蒸着チェンバーの噴射部に移動する2段階と、前記噴射部に移動された前記気相有機物は、母材安着部の上端に据置されている前記母材の上端から重力方向へ噴射されて前記母材の上端面に蒸着される3段階とからなる。   Further, in the vapor phase organic material vapor deposition method according to the present invention, the heater contacting the outer surface of the organic material chamber containing the organic material in the inside dissipates heat and heats the organic material to the evaporation temperature or more, The vapor phase organic material vaporized by the heater is moved to a spraying portion of a vapor deposition chamber where a base material for vapor phase organic material deposition is located through a vapor phase organic material transfer pipe surrounded by a constant temperature heater that radiates heat. The vapor phase organic substance moved to the injection unit in two stages is sprayed in the direction of gravity from the upper end of the base material placed at the upper end of the base material attachment part and deposited on the upper end surface of the base material. It consists of three stages.

さらに、この発明に従う広い面積基板の気相有機物蒸着装置は、気相有機物蒸着装置において、不活性ガスを保有したガスレザバー及びMFC(Mass Flow Controller)の調整下に流れる不活性ガスを加熱するガスヒーターと、温度保持のために連結管の外部にワインディングされたヒーターパイプと、蒸着されるガス及び有機物質を内装し、前記ガスヒーターによって高温ガスと有機物粒子を希釈した状態で加熱して、希釈された有機物気体状態を発生せしめる少なくとも1つの蒸着ソースタンクと、前記希釈された有機物粒子の移動を監視して調整する蒸着速度調整器を付着したスキャンヘッドと、バッファーチェンバーと前記希釈された有機物粒子の移動を開放及び閉鎖するようにゲーティングするゲート弁と、前記蒸着ソースタンクから流入された前記希釈された粒子を広い面積基板に蒸着する蒸着チェンバーとを備えるが、前記ガスヒーターは、前記蒸着
ソースタンクをガス量が調整されるようガスを加熱して熱源を内部に注入して、前記ゲート弁は前記バッファーチェンバーと前記蒸着チェンバーとの間に設置されて前記スキャンヘッドの熱源による広い面積基板上と蒸着チェンバー内の温度上昇を遮断することを特徴とする。
Furthermore, the vapor phase organic substance vapor deposition apparatus for a large area substrate according to the present invention is a gas heater for heating an inert gas flowing under the control of a gas reservoir holding an inert gas and an MFC (Mass Flow Controller) in the vapor phase organic substance vapor deposition apparatus. And a heater pipe wound outside the connecting pipe to maintain the temperature, and a gas and an organic substance to be deposited are housed, and the gas heater is heated to dilute the hot gas and organic particles in a diluted state. At least one vapor deposition source tank for generating an organic gas state, a scan head having a vapor deposition rate controller for monitoring and adjusting the movement of the diluted organic particles, a buffer chamber, and the diluted organic particles. A gate valve that gates the movement to open and close, and the front A vapor deposition chamber for vapor-depositing the diluted particles introduced from the vapor deposition source tank on a large-area substrate; and the gas heater heats the gas to adjust the amount of gas in the vapor deposition source tank to The gate valve is installed between the buffer chamber and the vapor deposition chamber, and blocks temperature rise on the large area substrate and in the vapor deposition chamber due to the heat source of the scan head.

さらに、この発明に従う気相有機物蒸着方法において、不活性ガスを保有したガスレザバー及びMFCの調整下に蒸着ソースタンクから流れる不活性ガスをガスヒーターであって、ガス量が調整されるようガスを加熱して熱源を内部に注入して加熱する段階と、連結管の外部にワインディングされたヒーターパイプによって温度を保持する段階と、蒸着されるガス及び有機物質を内装し、少なくとも1つの蒸着ソースタンクが前記ガスヒーターによって高温のガスと有機物粒子を希釈した状態で加熱して希釈された有機物気体状態を発生せしめる段階と、前記希釈された有機物粒子の移動を監視して調整し、蒸着速度調整器を付着したスキャンヘッドとバッファーチェンバーと前記希釈された有機物粒子の移動を開放及び閉鎖するようにゲーティングをする段階と、前記ゲート弁と前記蒸着ソースタンクから流入された前記希釈された粒子を蒸着チェンバー内の広い面積基板に蒸着する段階と、前記ゲート弁は前記バッファーチェンバーと前記蒸着チェンバーとの間に設置されて、前記スキャンヘッドの熱源による広い面積基板上と蒸着チェンバー内の温度上昇を遮断する段階と、前記バッファーチェンバー内で前記スキャンヘッドが移動する際に伴って分離された有機物質が再循環するように設置された補助るつぼによって収集する段階とを含む。   Furthermore, in the vapor phase organic material vapor deposition method according to the present invention, the inert gas flowing from the vapor deposition source tank under the adjustment of the gas reservoir holding the inert gas and the MFC is a gas heater, and the gas is heated so that the gas amount is adjusted. And heat-injecting the heat source into the interior, heating the heater pipe wound outside the connection pipe, maintaining the temperature, and depositing a gas and an organic material, and at least one deposition source tank is provided. A step of generating a diluted organic substance gas state by heating in a state in which a high-temperature gas and organic substance particles are diluted by the gas heater, and monitoring and adjusting the movement of the diluted organic substance particles, and a deposition rate controller The gate is attached to open and close the movement of the adhering scan head and buffer chamber and the diluted organic particles. Depositing the diluted particles introduced from the gate valve and the deposition source tank on a large area substrate in a deposition chamber; and the gate valve includes a buffer chamber and a deposition chamber. The organic material separated between the step of blocking the temperature rise on the large area substrate and the deposition chamber by the heat source of the scan head and moving the scan head in the buffer chamber Collecting with an auxiliary crucible installed for recirculation.

さらに、この発明の気相有機物蒸着方法は、有機半導体装置の製造方法において、蒸着装置内で基板を蒸着チェンバー内にローディングする段階(s710)と、蒸着ソースタンクを予備的に加熱して高温ガスを200〜600℃の温度下で注入する段階(s712)と、前記蒸着ソースタンク内での高温ガスと有機物粒子が混合体を形成して温度を加熱すると、SGHP(Solid Gas Heterogeneous Phase)物質が発生する段階(s714)と、前記蒸着ソースタンクから連結管を通して多量の気相有機物であるSGHP物質をバッファーチェンバーに伝達する段階(s716)と、前記バッファーチェンバーで気相有機物センサを使用して気相有機物の流量を測定して、その気相有機物の流量が事前に設定された量に到達すると、バッファーゲート弁を開放する段階(s718)と、スキャンヘッドの動作で気相有機物を蒸着する段階(s720)と、その後、事前にセッティングされた蒸着時間経過後、スキャンヘッドが移動する段階(s722)と、及び前記バッファーゲート弁を閉鎖して基板をアンローディングする段階(s724)とを含む。   Furthermore, the vapor phase organic material vapor deposition method of the present invention is a method of manufacturing an organic semiconductor device, wherein a step of loading a substrate into a vapor deposition chamber in the vapor deposition apparatus (s710), and a vapor deposition source tank is preliminarily heated to produce a high temperature gas. Injecting at a temperature of 200 to 600 ° C. (s712), and heating the temperature by forming a mixture of the hot gas and organic particles in the vapor deposition source tank, a SGHP (Solid Gas Heterogeneous Phase) material is formed. Generating (s714), transferring a large amount of SGHP material, which is a gas phase organic substance, from the deposition source tank through a connecting pipe to the buffer chamber (s716), and using a gas phase organic substance sensor in the buffer chamber. Measure the flow rate of the phase organics and set the flow rate of the gas phase organics in advance. When the amount reaches a predetermined amount, the step of opening the buffer gate valve (s718), the step of depositing the vapor phase organic material by the operation of the scan head (s720), and then the elapse of a predetermined deposition time, Moving (s722), and closing the buffer gate valve to unload the substrate (s724).

上述のように、この発明に従う気相有機物の蒸着方法と、これを利用した気相有機物の蒸着装置を利用すると、まず、広い面積の基板に気相有機物を均一に蒸着させることができるし、有機薄膜を高速で成膜させることができ、有機材料混合量の微細調整が可能になる。さらに、気相有機物を蒸着させる部位のみに気相有機物を噴射するため、気相有機物を効果的に蒸着させうるし、有機物材料を節約できる長所がある。     As described above, by using the vapor phase organic material deposition method according to the present invention and the vapor phase organic material deposition apparatus using the vapor phase organic material, first, the vapor phase organic material can be uniformly deposited on a substrate having a large area. An organic thin film can be formed at a high speed, and fine adjustment of the organic material mixing amount becomes possible. Further, since the vapor phase organic material is sprayed only on the portion where the vapor phase organic material is deposited, the vapor phase organic material can be effectively deposited, and there is an advantage that the organic material can be saved.

さらに、この発明は有機半導体の製作時に使用される気相有機物の蒸着方法と、これを利用した気相有機物の蒸着装置に従えば、蒸着源ソースタンク内で有機物質粒子を希釈することによって、有機薄膜の基板に対する接着力を増加させつつ精密で、かつ安定的に厚さを調整できるし、バッファーチェンバーと蒸着チェンバーがゲート弁を利用して完全に分離されて、スキャンヘッドの小さめの大きい熱源が継続的に移動するようにして、スキャンヘッドの熱源の広い面積基板上と蒸着チェンバー内の温度上昇が防止できる。さらに、多量の物質保管が可能な蒸着ソースタンクを採用して、下向式においてマスクによるシャドウ効果が除去されうるため、厚さの厚いシャドウマスクを使用することができる。
つまり、シャドウマスクの整列部分を解決することのできる優れた効果がある。
Further, according to the present invention, according to the vapor phase organic material vapor deposition method used in the production of the organic semiconductor and the vapor phase organic material vapor deposition apparatus using the vapor phase organic material, by diluting the organic substance particles in the vapor deposition source tank, The thickness can be adjusted accurately and stably while increasing the adhesion of the organic thin film to the substrate, and the buffer chamber and the deposition chamber are completely separated using a gate valve, so that the scan head has a smaller and larger heat source. As a result, the temperature of the heat source of the scan head can be prevented from rising on the large area substrate and in the vapor deposition chamber. Furthermore, since a shadow effect by the mask can be eliminated in a downward type by using a vapor deposition source tank capable of storing a large amount of material, a thick shadow mask can be used.
That is, there is an excellent effect that can solve the alignment portion of the shadow mask.

[実施例1]
以下、添付された図に沿ってこの発明の実施例1について述べることにする。
[Example 1]
Embodiment 1 of the present invention will be described below with reference to the attached drawings.

図2aは、この発明に従う気相有機物の蒸着装置の平面図である。
この実施例の気相有機物の蒸着装置は、有機物を母材に蒸着せしめる実施例1の蒸着チェンバーと、有機物を加熱して気相に状態を変換せしめる有機物チェンバーと、気相有機物を噴射する噴射部の動作を駆動する駆動装置と有機物チェンバーを含む補助チェンバーとからなる。
FIG. 2 a is a plan view of a vapor phase organic material deposition apparatus according to the present invention.
The vapor phase organic material vapor deposition apparatus according to this embodiment includes a vapor deposition chamber according to the first embodiment that deposits an organic material on a base material, an organic material chamber that heats the organic material to convert the state into a gas phase, and a jet that ejects the vapor phase organic material. A driving device for driving the operation of the unit and an auxiliary chamber including an organic material chamber.

実施例1の蒸着チェンバー(100)は、外部と隔離される内部空間を備えており、前記内部空間の床面に気相有機物を蒸着させる母材(10)を安着させることのできる構造を備える。さらに、蒸着チェンバー(100)は母材(10)の上端部に位置されて気相有機物を母材(10)の上端面に噴射する噴射部(110)と、噴射部(110)と結合して噴射部(110)の摺動を案内するガイド板(図示せず)と、摺動可能に結合される一字型に長めに形成されたガイドレール(120)と、ガイドレール(120)を固支するガイドレール支持板(122)と、上端壁面及び側壁面内部に位置し、熱を発散して蒸着チェンバー(100)内の温度を一定温度以上に保持せしめる1つ以上の保温ヒーター(130)とを含んで構成される。     The vapor deposition chamber (100) of Example 1 has an internal space that is isolated from the outside, and has a structure that allows a base material (10) for vapor-phase organic material to be deposited on the floor surface of the internal space to be seated. Prepare. Furthermore, the vapor deposition chamber (100) is positioned at the upper end of the base material (10), and injects the vapor phase organic material onto the upper end surface of the base material (10), and is connected to the injection unit (110). A guide plate (not shown) that guides the sliding of the injection unit (110), a guide rail (120) that is formed to be slidably long, and a guide rail (120). A guide rail support plate (122) that is fixedly supported, and one or more heat-retaining heaters (130) that are located inside the upper end wall surface and the side wall surface and dissipate heat to keep the temperature in the deposition chamber (100) at a predetermined temperature or higher. ).

有機物チェンバー(200)は、内部に貯蔵された有機物に熱を加えて有機物を気化せしめる構造にてなり、管形状に形成されており、蒸着チェンバー(100)を貫通して噴射部(110)に連結された気相有機物の移送管(210)と結合されて気相有機物を噴射部(110)に移送させうるように形成されている。     The organic material chamber (200) has a structure in which the organic material stored inside is heated to vaporize the organic material, and is formed in a tube shape. The organic material chamber (200) penetrates the vapor deposition chamber (100) to the injection unit (110). The gas phase organic substance is coupled to the connected gas phase organic substance transfer pipe (210) so that the gas phase organic substance can be transferred to the injection unit (110).

補助チェンバー(300)は、ガイドレール(120)を伝って噴射部(110)が移動できるよう、蒸着チェンバー(100)を貫通してガイドレール(120)と平行な方向へ噴射部(110)と結合される移動軸(130)と、移動軸(130)と結合されており、移送部(314)と結合されてガイドレール(120)と平行な方向へ移動する移動ブロック(312)と、気相有機物の移送管(210)及び移動軸(130)が蒸着チェンバー(100)を貫通した部分に位置されており、高真空の蒸着チェンバー(100)と低真空または大気状態の補助チェンバー(300)間の真空度差を緩衝及び隔離させつつ、両側2つのチェンバーを連結せしめる密封フランジ(320)及びベローズ(322)と、有機物チェンバー(200)とを内部に備える。     The auxiliary chamber (300) passes through the vapor deposition chamber (100) in a direction parallel to the guide rail (120) so that the injection unit (110) can move along the guide rail (120). A moving shaft (130) to be coupled, a moving block (312) coupled to the moving shaft (130), coupled to the transfer unit (314), and moving in a direction parallel to the guide rail (120); A phase organic material transfer pipe (210) and a moving shaft (130) are positioned in a portion passing through the deposition chamber (100), and a high vacuum deposition chamber (100) and a low vacuum or atmospheric auxiliary chamber (300). A sealing flange (320) and a bellows (322) for connecting the two chambers on both sides, and an organic chamber (2 0) and the inside equipped with a.

図2bは、図2aにおけるA−A線矢視断面図を示す。
図2bから見るように、蒸着チェンバー(100)内には、上部面と側面に蒸着チェンバー(100)の内部温度を一定温度に保持する保温ヒーター(130)が備えられており、蒸着チェンバー(100)の床面には有機物を蒸着させる母材(10)を安着せしめる母材安着部(140)が備えられており、母材安着部(140)の上部には気相有機物を噴射する噴射部(110)が位置する。さらに、蒸着チェンバー(100)の下端外面には蒸着チェンバー(100)内を高真空につくる真空ポンプ(150)を備える。
FIG. 2b shows a cross-sectional view taken along line AA in FIG. 2a.
As shown in FIG. 2b, the vapor deposition chamber (100) is provided with a heat retaining heater (130) for maintaining the internal temperature of the vapor deposition chamber (100) at a constant temperature on the upper surface and the side surface. ) Is provided with a base material attachment part (140) for attaching a base material (10) for vapor deposition of organic substances, and vapor phase organic matter is sprayed on the upper part of the base material attachment part (140). The injection part (110) which performs is located. Furthermore, a vacuum pump (150) for creating a high vacuum in the vapor deposition chamber (100) is provided on the outer surface of the lower end of the vapor deposition chamber (100).

補助チェンバー(300)内の下端には、有機物を気化せしめる有機物チェンバー(200)が備えられており、有機物チェンバー(200)から引き出された気相有機物が噴射部(110)まで移送されうるよう、移送路の役割を果す気相有機物の移送管(210)が有機物チェンバー(200)の上端に連結されており、有機物チェンバー(200)と気相有機物の移送管(210)との間には、噴射部(110)の移動を制御する移送
部(314)が位置されている。さらに、補助チェンバー(300)は不活性ガスを有機物チェンバー(200)内に注入し、不活性ガスの注入量を制御する流量制御部を外部に備える。有機物チェンバー(200)に注入される不活性ガスは気相有機物の移動媒体の役割を果し、気相有機物の移送量を微細に制御し、気相有機物を均一に分散せしめる役割を果す。
At the lower end of the auxiliary chamber (300), an organic material chamber (200) for vaporizing organic materials is provided, and vapor phase organic material drawn from the organic material chamber (200) can be transferred to the injection unit (110). A vapor phase organic substance transfer pipe (210) serving as a transfer path is connected to an upper end of the organic substance chamber (200), and between the organic substance chamber (200) and the vapor phase organic substance transfer pipe (210), A transfer part (314) for controlling the movement of the injection part (110) is located. Further, the auxiliary chamber (300) is provided with a flow rate control unit for injecting an inert gas into the organic material chamber (200) and controlling an injection amount of the inert gas. The inert gas injected into the organic material chamber (200) plays a role of a gas phase organic matter transfer medium, finely controls the transport amount of the gas phase organic matter, and plays a role of uniformly dispersing the gas phase organic matter.

図2cは、図2aのB−B線矢視断面図を示す。
図2cから見るように、噴射部(110)と結合されているガイド板(112)は、噴射部(110)の運動方向を案内するガイドレール(120)と摺動可能な構造で結合されており、母材(10)を安着せしめる母材安着部(140)は水平面方向へ微細移動が可能に電磁石(142)を利用した電磁石移動装置を備える。
FIG. 2c shows a cross-sectional view taken along line BB in FIG. 2a.
As shown in FIG. 2c, the guide plate (112) coupled to the injection unit (110) is coupled to the guide rail (120) for guiding the movement direction of the injection unit (110) in a slidable structure. The base material seating part (140) for seating the base material (10) is provided with an electromagnet moving device using an electromagnet (142) that can be moved finely in the horizontal plane direction.

母材安着部(140)に適用される電磁石移動装置は、特許出願された”電磁石を利用した有機電界発光素子製作用蒸着装置及びこれ利用した蒸着方法”(韓国の特許出願番号:10−2001−0077739)の技術を引用して構成されうるが、これに限定されるのではない。さらに、電磁石移動装置以外の従来の移動装置を採用するのも可能であることはいうまでもない。     The electromagnet moving device applied to the base material attachment part (140) is a patent application “Organic electroluminescence device manufacturing vapor deposition apparatus using electromagnet and vapor deposition method using the same” (Korea patent application number: 10- 2001-0077739). However, the present invention is not limited to this. Furthermore, it goes without saying that a conventional moving device other than the electromagnet moving device may be employed.

ガイドレール(120)を伝って噴射部(110)の位置を調整して電磁石の移動装置を利用して母材安着部(140)の位置を調整することによって、噴射部(110)と母材(10)の位置をより適確に整列できるようになり、これにつれて、より適確で、かつ効果的な気相有機物の噴射が図られることになる。     By adjusting the position of the injection part (110) along the guide rail (120) and adjusting the position of the base material attachment part (140) using the electromagnet moving device, the injection part (110) and the mother part are adjusted. The position of the material (10) can be more accurately aligned, and accordingly, more accurate and effective gas phase organic matter injection is achieved.

図2dは、図2bのC部の有機物チェンバーの詳細図である。
有機物チェンバー(200)は、有機物を貯蔵できるよう、内部空間を備える耐熱材質の密閉型状に形成されており、気相有機物を運搬する運搬ガスが引き込まれるよう、ホール形状に形成された運搬ガス引込ホール(222)と有機物蒸気及び運搬ガスが引き出されうるよう、ホール形状に形成された気相有機物の引出ホール(224)が形成されているるつぼ(220)と、るつぼ(220)の外部に囲繞されており、有機物が蒸発される温度まで前記有機物チェンバー内を加熱する有機物加熱ヒーター(230)を内部に含む。
FIG. 2d is a detailed view of the organic material chamber in section C of FIG. 2b.
The organic material chamber (200) is formed in a sealed shape made of a heat-resistant material having an internal space so that the organic material can be stored, and the carrier gas formed in a hole shape so that the carrier gas carrying the gas phase organic matter is drawn. A crucible (220) in which a gas-phase organic substance extraction hole (224) formed in a hole shape is formed so that the organic vapor and the carrier gas can be extracted, and the outside of the crucible (220). An organic material heater (230) that is enclosed and heats the inside of the organic material chamber to a temperature at which the organic material is evaporated is included.

管形状に形成されており、図2bに示す流量制御部(400)に連結されている運搬ガス引込管(240)は、有機物チェンバー(200)を貫通してるつぼ(220)に形成された運搬ガス引込ホール(222)に連結されることによって、流量制御部(400)から注入される不活性ガスがるつぼ(220)内に引き込まれるようにする。     The transport gas inlet pipe (240) formed in a tube shape and connected to the flow control unit (400) shown in FIG. 2b is transported in the crucible (220) through the organic material chamber (200). The inert gas injected from the flow control unit (400) is drawn into the crucible (220) by being connected to the gas inlet hole (222).

さらに、管形状に形成されており、図2bに示す噴射部(110)に連結されている気相有機物の移送管(210)は、有機物チェンバー(200)を貫通してるつぼ(220)に形成された運搬ガス引出ホール(224)に連結されることによって、有機物加熱ヒーター(230)によって加熱されて気化された有機物が母材に気相有機物を噴射する噴射部(110)に移送されるようにする。     Furthermore, a gas phase organic substance transfer pipe (210) formed in a tube shape and connected to the injection section (110) shown in FIG. 2b is formed in the crucible (220) through the organic substance chamber (200). By connecting to the transported gas extraction hole (224), the organic material heated and vaporized by the organic material heater (230) is transferred to the injection unit (110) for injecting the vapor phase organic material onto the base material. To.

図3は、この発明に従う気相有機物の蒸着装置のさまざまな動作態様を示す。
図3aは、シャワーヘッド形状の噴射部が移動し、気相有機物を噴射する状態を示す。
FIG. 3 shows various modes of operation of the vapor phase organic vapor deposition apparatus according to the present invention.
FIG. 3a shows a state in which the shower head-shaped injection unit moves and injects vapor phase organic matter.

気相有機物の(22)を噴射する噴射部の態様は、気相有機物の(22)が均一に噴射されうるよう気相有機物の(22)が噴射される噴射口をさまざまな形状に製作できる。図3aでは噴射口(図示せず)が小経で複数個を形成されたシャワーヘッド形状の噴射
部を利用して蒸着作業を行う形状を示している。
The aspect of the injection unit for injecting the vapor phase organic substance (22) can produce the injection port through which the vapor phase organic substance (22) is injected in various shapes so that the vapor phase organic substance (22) can be uniformly injected. . FIG. 3 a shows a shape in which a vapor deposition operation is performed using a shower head-shaped injection portion in which a plurality of injection ports (not shown) are formed with small diameters.

噴射部が一定位置に固定されて気相有機物を噴射する場合は、気相有機物が母材の全面にわたって均一に噴射されない問題点が生じるが、図3aから見るように、母材(10)の上面に気相有機物の(22)を噴射する噴射部(110)がガイドレール方向へ水平移動して気相有機物の(22)を噴射すると、母材(10)の全面にわたって気相有機物の(22)を均一に蒸着される。この場合、母材(10)に蒸着される気相有機物の(22)が2種以上の場合は、噴射部(110)に気相有機物を移送する以前の気相有機物の移送管(210)に異種の気相有機物を混合する混合タンク(250)を備えて、2種以上の気相有機物のが均一に混合されうるようにする。さらに、混合タンク(250)内には、2種以上の気相有機物のが混合タンク(250)内に引き込まれて混合タンク(250)外部に引き出される中に均質に混ぜられるようにするために、1つ以上の隔膜を備える。     When the jet part is fixed at a fixed position and jets the gas phase organic matter, there is a problem that the gas phase organic matter is not jetted uniformly over the entire surface of the base material, but as seen from FIG. When the injection part (110) for injecting (22) of the gas phase organic substance on the upper surface moves horizontally in the direction of the guide rail and injects (22) of the gas phase organic substance, the (10) of the gas phase organic substance ( 22) is uniformly deposited. In this case, when there are two or more types of vapor phase organic substances (22) deposited on the base material (10), the vapor phase organic substance transfer pipe (210) before transferring the vapor phase organic substances to the injection unit (110). And a mixing tank (250) for mixing different kinds of vapor phase organic substances so that two or more kinds of vapor phase organic substances can be uniformly mixed. Further, in the mixing tank (250), two or more kinds of gas phase organic substances are uniformly mixed while being drawn into the mixing tank (250) and pulled out of the mixing tank (250). One or more diaphragms are provided.

図3bは、シャワーヘッド形状の噴射部が気相有機物を噴射する際、母材を安着させた母材安着部が電磁石を利用した移送方法を通して水平方向へ移動する状態を示す。     FIG. 3b shows a state where the base material seating portion on which the base material is seated moves in the horizontal direction through a transfer method using an electromagnet when the shower head-shaped jetting unit ejects the gas phase organic matter.

噴射部(110)が気相有機物の(22)を噴射する中に噴射部(110)を水平方向へ移動する図2aの場合とは逆に、図3bに示すように、噴射部(110)が気相有機物の(22)を噴射する中に母材(10)を安着させた母材安着部(140)を水平方向へ移動させると、母材(10)の上面に気相有機物(22)が均一に蒸着される図2aの場合の効果と同一の効果が得られることになる。さらに、ガイドレールによって噴射部(110)が移動する図3aの場合とは異なり、図3bに示すように、噴射部(110)が気相有機物の(22)を噴射する中、母材安着部(140)を水平方向へ移動せしめる方法は、電磁石を利用した移送方法を使用するため、より微細に母材安着部(140)の移動を制御できるようになる。     In contrast to the case of FIG. 2a in which the injection unit (110) is moved in the horizontal direction while the injection unit (110) is injecting (22) of the vapor phase organic substance, as shown in FIG. 3b, the injection unit (110) When the base material seating part (140) on which the base material (10) is seated is moved in the horizontal direction while spraying the gas phase organic matter (22), the gas phase organic matter is formed on the upper surface of the base material (10). The same effect as in the case of FIG. 2a where (22) is uniformly deposited will be obtained. Further, unlike the case of FIG. 3a in which the injection part (110) is moved by the guide rail, while the injection part (110) injects the gaseous organic substance (22) as shown in FIG. Since the method of moving the part (140) in the horizontal direction uses a transfer method using an electromagnet, the movement of the base material attachment part (140) can be controlled more finely.

図3cは、噴射チューブを利用して気相有機物を母材に蒸着せしめる状態を示す。
噴射チューブを利用する蒸着装置は、図3cに示すように、2種以上の気相有機物を均一に混合する混合タンク(250)を通して蒸着チェンバー(100)内に移送された気相有機物(22)を石英、セラミックスまたは金属材質からなり、直径3〜20mmの管形状に形成された噴射チューブ(112)を通して母材(10)の上面に蒸着せしめる構造をもっている。噴射チューブ(112)を利用した気相有機物の蒸着装置は平坦で、かつ迅速な高速成膜の有機薄膜を形成する。
FIG. 3c shows a state in which vapor phase organic substances are deposited on the base material using the injection tube.
As shown in FIG. 3c, the vapor deposition apparatus using a spray tube is a vapor phase organic substance (22) transferred into the vapor deposition chamber (100) through a mixing tank (250) for uniformly mixing two or more kinds of vapor phase organic substances. Is deposited on the upper surface of the base material (10) through a spray tube (112) made of quartz, ceramics or metal and formed in a tube shape with a diameter of 3 to 20 mm. The vapor-phase organic material vapor deposition apparatus using the spray tube (112) is flat and forms a high-speed organic thin film at high speed.

図3dは、噴射チューブが回転及び上下に移動をし、母材に気相有機物を蒸着せしめる状態を示す。
図3cに示す蒸着装置は、蒸着チェンバー(100)の上端に噴射チューブ(112)を回転せしめる回転モータ(114)と、噴射チューブ(112)を上下垂直に移動せしめる垂直移動モータ(116)を備えて、噴射チューブ(112)が回転及び上下移動をしつつ気相有機物の(22)を母材(10)の上端に噴射できるように構成されている。さらに、噴射チューブ(112)は回転モータ(114)によって回転される際、気相有機物の(22)が噴射される噴射チューブ(112)の終端が円運動をできるよう、段付型の屈折をもつように形成される。
FIG. 3d shows the state where the spray tube rotates and moves up and down to deposit vapor phase organics on the base material.
The vapor deposition apparatus shown in FIG. 3c includes a rotation motor (114) that rotates the spray tube (112) at the upper end of the vapor deposition chamber (100), and a vertical movement motor (116) that moves the spray tube (112) vertically. Thus, the jet tube (112) is configured to jet the vapor phase organic substance (22) to the upper end of the base material (10) while rotating and moving up and down. Further, when the injection tube (112) is rotated by the rotary motor (114), stepped refraction is performed so that the end of the injection tube (112) from which the vapor phase organic substance (22) is injected can perform circular motion. It is formed to have.

回転モータ(114)及び垂直移動モータ(116)によって噴射チューブ(112)の位置を自在に調整できることから、図3cに示す蒸着装置は気相有機物をより均一に噴射できるようになる。     Since the position of the spray tube (112) can be freely adjusted by the rotation motor (114) and the vertical movement motor (116), the vapor deposition apparatus shown in FIG. 3c can spray the vapor phase organic matter more uniformly.

図4は、有機物を加熱して発生した気相有機物に運搬ガスを混合する過程を示す。
図4aは、るつぼ内で気相有機物と運搬ガスとを混合する状態を示す。
図4aに示すように、有機物加熱ヒーター(230)によって加熱されて気化された有機物(20)は、るつぼ(220)内で連結された運搬ガス引込管(240)を伝って引き込まれる運搬ガスとるつぼ(220)内で混合される。図4aに示す方法で気相有機物と運搬ガスとを混合すると、有機物が気化されるとともに、運搬ガスと混合されるため、混合が容易になり、2種の気体が均質に混合される長所がある。
FIG. 4 shows a process of mixing the carrier gas with the gas phase organic material generated by heating the organic material.
FIG. 4a shows a state in which the gas phase organic substance and the carrier gas are mixed in the crucible.
As shown in FIG. 4a, the organic matter (20) heated and vaporized by the organic heater (230) is transported through the transport gas inlet pipe (240) connected in the crucible (220) and the transport gas. Mixed in crucible (220). When the vapor phase organic substance and the carrier gas are mixed by the method shown in FIG. 4a, the organic substance is vaporized and mixed with the carrier gas. Therefore, the mixing is facilitated, and there is an advantage that the two gases are homogeneously mixed. is there.

図4bは、るつぼの外部で気相有機物と運搬ガスとを混合する状態を示す。
図4bに示す混合装置は、有機物チェンバー(200)の外部に位置する気相有機物の移送管(210)に運搬ガス引込管(240)を結合させた構造に形成されている。有機物加熱ヒーター(230)によって加熱されて気化された有機物(20)は気相有機物の移送管(210)を伝って移送される途中に、気相有機物の移送管(210)に結合された運搬ガス引込管(240)を通して引き込まれる運搬ガスと混合される。かかる混合装置は、るつぼ(220)及び有機物チェンバー(200)に運搬ガス引込管(240)を結合させることから、別途に構成する必要がないため、製作が容易になるとの長所がある。
FIG. 4 b shows a state in which the gas phase organic substance and the carrier gas are mixed outside the crucible.
The mixing apparatus shown in FIG. 4b is formed in a structure in which a transport gas inlet pipe (240) is coupled to a gas phase organic substance transfer pipe (210) located outside the organic substance chamber (200). The organic substance (20) heated and vaporized by the organic substance heater (230) is transported along the vapor phase organic substance transfer pipe (210) while being transferred along the vapor phase organic substance transfer pipe (210). Mixed with the carrier gas drawn through the gas inlet tube (240). Such a mixing apparatus has an advantage that it is easy to manufacture because it does not need to be separately configured because the carrier gas inlet pipe (240) is coupled to the crucible (220) and the organic substance chamber (200).

図5は、るつぼ及び気相有機物の引出ホールのさまざまな形状を示す。
図5aは、直方体形状に形成されており、上端部に1つの気相有機物の引出ホールを備えるるつぼの形状を示す。
FIG. 5 shows various shapes of crucibles and gas phase organic extraction holes.
FIG. 5a shows the shape of a crucible which is formed in a rectangular parallelepiped shape and has a single vapor phase organic substance extraction hole at its upper end.

図5aに示すように、直方体形状のるつぼ(220)は、るつぼ(220)内の有機物を加熱する有機物加熱ヒーター(230)で外部が囲繞されており、上端部には気相有機物が引き出される気相有機物の引出ホール(222)が備えられている。     As shown in FIG. 5a, the crucible (220) having a rectangular parallelepiped shape is surrounded by an organic heater (230) that heats organic matter in the crucible (220), and gas phase organic matter is drawn out from the upper end. A vapor organic hole (222) is provided.

図5bは、直方体形状に形成されており、上端部に複数の気相有機物の引出ホールを備えるるつぼの形状を示す。
母材に気相有機物を迅速に蒸着せしめる高速成膜のためには、より多い流量の気相有機物を引き出すべきであるが、図5aに示すように、るつぼ(220)の上端に1つの気相有機物の引出ホール(222)を備えていては、多い流量の気相有機物が引き出されないという問題点がある。かような問題点を解決するため、図5bに示すように、るつぼ(220)の上端部に複数の気相有機物の引出ホール(222)を備えていると、より多い流量の気相有機物が引き出されうることになる。
FIG. 5b shows the shape of a crucible which is formed in a rectangular parallelepiped shape and has a plurality of vapor phase organic substance extraction holes at its upper end.
For high-speed film formation in which vapor-phase organic material is rapidly deposited on the base material, a higher flow rate of vapor-phase organic material should be drawn, but as shown in FIG. 5a, one gas is formed at the upper end of the crucible (220). If the phase organic matter extraction hole (222) is provided, there is a problem that a large amount of gas phase organic matter cannot be extracted. In order to solve such a problem, as shown in FIG. 5b, when a plurality of gas phase organic substance extraction holes (222) are provided at the upper end of the crucible (220), a larger amount of the gas phase organic substance can be obtained. It can be pulled out.

図5cは、円筒形状に形成されており、上端部に1つの気相有機物の引出ホールを備えるるつぼの形状を示す。
るつぼ(220)内の有機物をより効果的に気化させるために、るつぼ(220)をさまざまな形状に製作することもできる。るつぼ(220)の形状が直方体に製作された場合は、るつぼ(220)を囲繞している有機物加熱ヒーター(230)から発生する熱がるつぼ(220)の外部面の全体に均一に伝達されないことによって、多量の熱損失が発生し、これによって、気相有機物の発生量を適確に調節できないという問題点がある。かかる問題点を解決するため、図5cに示すように、るつぼ(220)の形状を円筒形に製作して、有機物加熱ヒーター(230)から発生する熱がるつぼ(220)の外部面全体に均一に伝達されうるようにする。このように、るつぼ(220)の形状を変更することによって、有機物加熱ヒーター(230)から発生する熱をより効率的に使用できるし、気相有機物の発生量を容易に調節できることになる。さらに、るつぼ(220)の形状は図5に示す直方体及び円筒形状に限定されず、多面体及び球形の形状に変形が可能である。
FIG. 5c shows the shape of a crucible which is formed in a cylindrical shape and has one gas phase organic extraction hole at its upper end.
The crucible (220) can also be made in various shapes to more effectively vaporize the organic matter in the crucible (220). If the shape of the crucible (220) is a rectangular parallelepiped, heat generated from the organic heater (230) surrounding the crucible (220) is not uniformly transmitted to the entire outer surface of the crucible (220). As a result, a large amount of heat loss occurs, which causes a problem that the amount of gas phase organic matter generated cannot be adjusted accurately. In order to solve such a problem, as shown in FIG. 5c, the crucible (220) is formed in a cylindrical shape so that heat generated from the organic heater (230) is uniformly distributed over the entire outer surface of the crucible (220). To be communicated to. Thus, by changing the shape of the crucible (220), the heat generated from the organic material heater (230) can be used more efficiently, and the generation amount of the gas phase organic material can be easily adjusted. Furthermore, the shape of the crucible (220) is not limited to the rectangular parallelepiped and cylindrical shapes shown in FIG. 5, but can be deformed into a polyhedron and a spherical shape.

図5dは、円筒形形状に形成されており、上端部に複数の気相有機物の引出ホールを
備えるるつぼの形状を示す。
図5cに示す円筒形状のるつぼ(220)からより多い流量の気相有機物を引き出す必要がある場合は、図5bの場合と同様、るつぼ(220)の上端面に複数の気相有機物の引出ホールを備えることができる。
FIG. 5d shows the shape of a crucible which is formed in a cylindrical shape and has a plurality of gas phase organic extraction holes at its upper end.
When it is necessary to draw a larger amount of gas-phase organic substance from the cylindrical crucible (220) shown in FIG. 5c, a plurality of gas-phase organic substance extraction holes are formed on the upper end surface of the crucible (220) as in FIG. 5b. Can be provided.

図6は、気相有機物の移送管の外部に定温ヒーターを備えた状態を示す。
るつぼ(220)から発生された気相有機物が気相有機物の移送管(210)を通して移送される際、気相有機物の移送管(210)が外部空気と接触して冷却されると、気相有機物の移送管(210)内で流動する気相有機物も冷却されるが、かかる場合、気相有機物が蒸着に適切な温度以下に冷却されると、母材への蒸着が不良になるという問題点が生じることになる。かかる問題点を解決するために、図6に示すように、気相有機物の移送管(210)の外部には、熱を発生する熱線(262)と加熱温度を精密に保持及び調節する定温発熱素子システム(264)を含む定温ヒーター(260)とを備える。
FIG. 6 shows a state in which a constant temperature heater is provided outside the vapor phase organic substance transfer pipe.
When the vapor phase organic matter generated from the crucible (220) is transferred through the vapor phase organic matter transfer pipe (210), the vapor phase organic matter transfer pipe (210) is cooled by contact with external air and then cooled. The vapor phase organic substance flowing in the organic substance transfer pipe (210) is also cooled, but in such a case, if the vapor phase organic substance is cooled below the temperature suitable for vapor deposition, the vapor deposition on the base material becomes poor. A point will be created. In order to solve such a problem, as shown in FIG. 6, a heat generating line (262) for generating heat and a constant temperature exotherm for accurately maintaining and adjusting the heating temperature are provided outside the vapor phase organic substance transfer pipe (210). And a constant temperature heater (260) including an element system (264).

さらに、定温ヒーター(260)は有機物チェンバー(200)の温度を一定に保持するため、有機物チェンバー(200)にも備えることができる。     Furthermore, since the constant temperature heater (260) keeps the temperature of the organic material chamber (200) constant, it can be provided in the organic material chamber (200).

[実施例2]
次に、この発明の目的を達成するために、有機半導体の製作時に使用される広い面積基板を使用可能な実施例2の有機半導体装置の製造装置及びその製造方法を図7に沿って述べることにする。
[Example 2]
Next, in order to achieve the object of the present invention, an apparatus for manufacturing an organic semiconductor device of Example 2 and a method for manufacturing the same that can use a large-area substrate used in manufacturing an organic semiconductor will be described with reference to FIG. To.

図7の有機半導体システムにおいて、実施例2の広い面積基板の気相有機物蒸着装置(700)は、不活性ガスを保有したガスレザバー(701)と、該ガスレザバー(701)とMFC(702)を介在させて、不活性ガスを加熱するガスヒーター(703)と、ヒーターパイプ(706)内に連結管(707)が設置され、少なくとも1つの蒸着ソースタンク(714)と蒸着されるガス及び有機物質を内装した蒸着ソースタンク(714)と、蒸着ガスの移動を監視して調整する蒸着速度調整器(715)を備えたスキャンヘッド(709)と、バッファーチェンバー(711)と、前記蒸着ガスの移動をゲーティングまたは開放及び閉鎖するゲート弁(711))と、前記少なくとも1つの蒸着ソースタンク(714)から流入されたガスを広い面積基板(712)に蒸着する蒸着チェンバー(713)とを備える。     In the organic semiconductor system of FIG. 7, the vapor phase organic substance deposition apparatus (700) of the large area substrate of Example 2 includes a gas reservoir (701) holding an inert gas, and the gas reservoir (701) and the MFC (702). A gas heater (703) for heating the inert gas, and a connecting pipe (707) installed in the heater pipe (706), and at least one deposition source tank (714) is deposited with the gas and organic material to be deposited. An internal deposition source tank (714), a scan head (709) having a deposition rate adjuster (715) for monitoring and adjusting the movement of the deposition gas, a buffer chamber (711), and the movement of the deposition gas Gating or opening and closing gate valve (711)) and the at least one deposition source tank (714). And a deposition chamber (713) for depositing gas into a large area substrate (712).

図7を参照すると、ガスレザバー(701)には不活性気体(Ar、He、N、…)と酸素及び既存のCVDで使用される爆発性のないすべての種類のガスが使用されうるし、このガスがMFC(702)を通して熱蒸着ソースタンク(714)内でガス量が調整されつつ注入され、ガスヒーター(703)を使用して攝氏200〜600℃の高温でガスを加熱して熱源内に注入する。 Referring to FIG. 7, an inert gas (Ar, He, N 2 ,...), Oxygen, and all types of non-explosive gases used in existing CVD may be used for the gas reservoir (701). Gas is injected into the thermal evaporation source tank (714) through the MFC (702) while adjusting the gas amount, and the gas is heated at a high temperature of 200 to 600 ° C. using the gas heater (703) to enter the heat source. inject.

この発明においては、有機物粒子と高温ガスが共に存在する状態、つまり、固体と気体のばらつく状態をSolid Gas Heterogeneous Phase(以下、SGHPという)といい、希釈された状態の物質を不活性SGHPの物質と命名する。さらに、高温ガスは蒸着ソースタンク(714)内にある有機物、例えば、Alq3のような物質と共に希釈(dilution)されて、蒸着ソースタンク(714)内に存在することになる。不活性SGHPの物質は、蒸着ソースタンク(714)にある熱源によって加熱され、蒸着ソースタンク(714)内のSGHPは対流効果によって加熱されて多量の有機物気体相を発生させることのできる性質をもっている。さらに、有機半導体の蒸着チェンバー(713)の連結管(707)を通して蒸着チェンバー(713)と蒸着ソースタンク(714)との間の圧力差を利用して蒸着チェンバー(713)内に有機半導体であるSGHP物質が注入される。この過程において、連結管(707)内での気
相有機物が積るのを防止するために、連結管(707)が高温に加熱される。とりわけ、Alq3の使用時には320℃に加熱することが好ましい。この加熱過程での連結管(707)の熱損失を防止し、温度勾配(gradiant)を一定に保持するために二重に管を形成して、連結管(707)を真空状態に保持して連結管(707)の温度を保持する。さらに、多量の物質保管が可能な蒸着ソースタンクを採用して、下向式においてはマスクによるシャドウ効果が除去されうることから、厚さの厚いシャドウマスクga使用できる。つまり、シャドウマスクの整列部分の整列誤差を減少させて長時間の工程進行が可能となる。
In the present invention, a state where both organic particles and high-temperature gas exist, that is, a state where the solid and the gas are dispersed is referred to as Solid Gas Heterogeneous Phase (hereinafter referred to as SGHP), and a diluted substance is referred to as an inert SGHP substance. Named. Further, the hot gas is diluted with an organic substance in the deposition source tank (714), for example, a substance such as Alq3, and is present in the deposition source tank (714). The inert SGHP material is heated by a heat source in the deposition source tank (714), and the SGHP in the deposition source tank (714) is heated by a convection effect to generate a large amount of organic gas phase. . Further, an organic semiconductor is formed in the vapor deposition chamber (713) using a pressure difference between the vapor deposition chamber (713) and the vapor deposition source tank (714) through the connection pipe (707) of the vapor deposition chamber (713) of the organic semiconductor. SGHP material is injected. In this process, the connecting pipe (707) is heated to a high temperature in order to prevent the vapor phase organic matter from accumulating in the connecting pipe (707). In particular, it is preferable to heat to 320 ° C. when using Alq3. In order to prevent heat loss of the connecting pipe (707) during this heating process and to keep the temperature gradient constant, a double pipe is formed, and the connecting pipe (707) is kept in a vacuum state. The temperature of the connecting pipe (707) is maintained. Further, since a vapor deposition source tank capable of storing a large amount of material is employed and the shadow effect by the mask can be eliminated in the downward type, a thick shadow mask ga can be used. That is, the alignment error of the alignment portion of the shadow mask is reduced, and the process can be performed for a long time.

上述のように、連結管(707)を絶えず通してスキャンヘッド(709)に注入された気相有機物は、基板(712)上に蒸着されることになる。この際、スキャンヘッド(709)内には気相有機物の蒸着を防止するために、連結管(707)のような方式で抵抗性の熱源を使用して加熱されることになる。さらに、実際の基板上にスキャンヘッド(709)での蒸着工程が行われない場合は、バッファーチェンバー(710)にスキャンヘッド(709)を移動させて位置することになる。さらに、バッファーチェンバー(710)と蒸着チェンバー(713)はゲート弁(711)を利用して完全に分離されて、スキャンヘッド(709)の熱源の広い面積基板上と蒸着チェンバー(713)内の温度上昇を防止する。     As described above, the vapor phase organic matter that is continuously passed through the connecting pipe (707) and injected into the scan head (709) is deposited on the substrate (712). At this time, in order to prevent vapor phase organic matter from being deposited in the scan head (709), the scan head (709) is heated using a resistive heat source in the manner of the connecting pipe (707). Further, when the vapor deposition process using the scan head (709) is not performed on the actual substrate, the scan head (709) is moved to the buffer chamber (710) and positioned. Further, the buffer chamber (710) and the deposition chamber (713) are completely separated using the gate valve (711), and the temperature on the large area substrate of the heat source of the scan head (709) and the temperature in the deposition chamber (713). Prevent the rise.

バッファーチェンバー(710)にスキャンヘッド(709)が位置している場合、スキャンヘッド(709)から噴射される気相有機物の量をバッファーチェンバー(710)内にある速度モニタ−用のクリスタルセンサ(715)を使用して、ガスの流量を調整して安定化させる。実際の蒸着チェンバー内には、厚さ測定システムが存在せずに工程での厚さの調整は工程時間の調整を利用して行われる。     When the scan head (709) is located in the buffer chamber (710), the amount of vapor-phase organics ejected from the scan head (709) is measured by a crystal sensor (715) for speed monitoring in the buffer chamber (710). ) To adjust and stabilize the gas flow rate. In the actual deposition chamber, there is no thickness measurement system, and the thickness adjustment in the process is performed by adjusting the process time.

図8は、図7の内部のSGHP有機物質を効果的に処理できる複数個の蒸着ソースタンクとスキャンヘッドの設置を示す図である。
図8において、複数個、例えば、第1、2、3の蒸着ソースタンク(741、742、743)は、多量の有機物質を供給して、そのタンクのそれぞれに連結されている第1、2、3の連結管(771、772、773)を経て第1、2、3のスキャンヘッド(791、792、739)を通して有機物質を供給する。さらに、前記バッファーチェンバー内には、スキャンヘッドが移動するとともに、これに伴って分離された有機物質が収集されて再循環するよう補助るつぼ(745)を含む。
FIG. 8 is a diagram illustrating a plurality of vapor deposition source tanks and scan heads that can effectively process the SGHP organic material in FIG.
In FIG. 8, a plurality of, for example, first, second, and third vapor deposition source tanks (741, 742, 743) supply a large amount of organic material, and are connected to each of the tanks. The organic substance is supplied through the first, second, and third scan heads (791, 792, 739) through the three connection pipes (771, 772, 773). In addition, the buffer chamber includes a crucible (745) that moves the scan head and collects and recycles the separated organic material.

図9は、SGHP有機物質を移動させることのできる蒸着チェンバー内の図7のスキャンヘッドの動作方法について述べる図である。
図9の発明における図7のスキャンヘッド(709)を利用する蒸着方法は、HIVACポンプ(714)によって気相有機物自体がラミナフロー(laminar flow)ポンピング作動して矢印L、L’、L”、及びL’’’方向へ移動して、これにつれてゲート弁(711)の開閉動作下で蒸着が行われる。ポンピングポ−ト(732)は基板の下に配置させることによって、気相有機物自体のフローが安定的に行えるようにして、広い面積基板にける蒸着された有機物薄膜の厚さの均一度が一定に保持されるようにすることができる。したがって、矢印L、L’、L”、及びL’’’方向への蒸着損失がほとんどないため、材料の活用効率が極めて高められる長所がある。
FIG. 9 is a diagram for describing a method of operating the scan head of FIG. 7 in the vapor deposition chamber capable of moving the SGHP organic material.
In the vapor deposition method using the scan head (709) of FIG. 7 in the invention of FIG. 9, the gas phase organic substance itself is pumped by laminar flow by the HIVAC pump (714), and arrows L, L ′, L ″, and In this direction, deposition is performed under the opening and closing operation of the gate valve (711). By placing the pumping port (732) under the substrate, the flow of the vapor phase organic substance itself is reduced. It can be made stable so that the uniformity of the thickness of the deposited organic thin film on a large area substrate can be kept constant. Therefore, the arrows L, L ′, L ″, and L Since there is almost no deposition loss in the '''direction, there is an advantage that the utilization efficiency of the material can be extremely improved.

図10は、図8の内部のSGHP有機物質を移動させることのできるスキャンヘッドの移動方法を述べる図である。図10において、蒸着工程におけるスキャンヘッド(709)の長手方向への運動は、モータ(717)を利用してピストンロッド(718)が一定の速度で符号P〜P’の往復運動をしつつ行われる。基板の大きさに応じてスキャンヘッド(719)の長さとモータ(717)を使用するスキャンヘッド(709)の長手方
向への運動の長さが決定される。また、スキャンヘッドは気相有機物の発生量を流速調整器(716)によって別に調整する。
FIG. 10 is a diagram illustrating a method of moving the scan head that can move the SGHP organic material in FIG. In FIG. 10, the scanning head (709) is moved in the longitudinal direction in the vapor deposition process while the piston rod (718) reciprocates at the constant speed P to P 'using a motor (717). Is called. Depending on the size of the substrate, the length of the scan head (719) and the length of the scan head (709) using the motor (717) in the longitudinal direction are determined. Further, the scan head separately adjusts the amount of gas phase organic matter generated by the flow rate adjuster (716).

図11は、有機半導体装置の気相有機物の発生方法を述べる図である。図11において、気相有機物の発生は蒸着ソースタンク(714)と、外部熱源ヒーター(701)と、蒸着ソースタンク(714)内の有機物粒子(752)と、蒸着ソースタンク(714)内の高温ガス(753)と、蒸着ソースタンク(714)内の保管された有機物質(754)及びガス注入管(755)とからなる。次に、この発明の半導体装置の気相有機物の発生方法において気相有機物の発生時に有機半導体に使用される物質は熱伝導度が低いため、一般的なセル方式の熱源を使用することになると、有機物の気相化が難しく、特定部位に熱が集中されるため、蒸着ソースタンク(714)内の有機物質の変質が発生されやすい。     FIG. 11 is a diagram illustrating a method for generating a gas phase organic substance in an organic semiconductor device. In FIG. 11, the generation of vapor phase organic substances is caused by the deposition source tank (714), the external heat source heater (701), the organic particles (752) in the deposition source tank (714), and the high temperature in the deposition source tank (714). It consists of a gas (753), an organic substance (754) stored in a vapor deposition source tank (714), and a gas injection pipe (755). Next, in the method for generating a gas phase organic substance of the semiconductor device according to the present invention, since a material used for the organic semiconductor when the gas phase organic substance is generated has a low thermal conductivity, a general cell type heat source is used. The organic substance is difficult to vaporize and heat is concentrated on a specific part, so that the organic substance in the vapor deposition source tank (714) is easily deteriorated.

図11でのように、ガス注入管(755)を通して高温ガスを蒸着ソースタンク(714)内に噴射させて有機物自体が蒸着ソースタンク(714)内でガスと有機物が希釈されるようにする。これによって、蒸着ソースタンク(714)には、符号752、753番の有機物粒子と高温ガスが共存状態になる。さらに、蒸着ソースタンク(714)外部には、熱源ヒーター(751)を使用して蒸着ソースタンク(714)の温度を上昇させる。このヒ−ティング部分で共存状態の希釈部分は熱伝導が対流方式で行われるようにして、多量の気相有機物をつくることができる。さらに、既存の方法に比べて低い熱源の外部温度においても多量の気相有機物を発生させることができる。     As shown in FIG. 11, a high temperature gas is injected into the deposition source tank (714) through the gas injection pipe (755) so that the organic substance itself is diluted in the deposition source tank (714). As a result, organic particles 752 and 753 and hot gas coexist in the vapor deposition source tank (714). Further, the temperature of the vapor deposition source tank (714) is increased outside the vapor deposition source tank (714) using a heat source heater (751). In this heating portion, the diluted portion in the coexistence state can generate a large amount of gas phase organic matter by conducting heat conduction by a convection method. Furthermore, a large amount of vapor phase organic matter can be generated even at a low external temperature of the heat source compared to existing methods.

次に、図12は図11から発生された気相有機物の発生に従う蒸着チェンバー内での蒸着方法を述べる図である。図12の気相有機物の蒸着〜運送方法について述べると、上述のように、蒸着ソースタンク(714)内で多量の気相有機物を発生させうることから、蒸着チェンバー(713)内の真空圧力と蒸着ソースタンク(714)内の真空圧力差が100〜10000倍以上の差が生じるように具現する。例えば、システムの真空度が10Torrであれば、蒸着ソースタンク(714)の圧力は10〜1Torrになるよう圧力差を形成すると、その圧力差を利用して蒸着ソースタンク(714)内で蒸着チェンバーへの気相有機物が誘導できる。さらに、連結管は気相有機物が蒸着されないようにするために高温で加熱する。図12の蒸着チェンバーは、スキャンヘッド(761)と基板(762)を含むスキャニング方法を概略に述べる。図12のスキャニング方法で誘導される気相有機物は、実際的に基板上に蒸着すべきである。ところで、広い面積の基板上に一ぺんに気相有機物を蒸着せずに、図12でのように、スキャンヘッド(709)の移動は基板上の一定領域に蒸着が行われるようにして、スキャンヘッド(709)が一定速度で移動しつつ広い面積基板の基板上での蒸着工程を進ませる。 Next, FIG. 12 is a diagram illustrating a vapor deposition method in the vapor deposition chamber according to the generation of the vapor phase organic matter generated from FIG. The vapor deposition / transport method of the vapor phase organic substance of FIG. 12 will be described. Since a large amount of the vapor phase organic substance can be generated in the vapor deposition source tank (714) as described above, the vacuum pressure in the vapor deposition chamber (713) The vacuum pressure difference in the deposition source tank (714) is 100 to 10,000 times or more. For example, when the degree of vacuum of the system is 10 4 Torr, if the pressure difference is formed so that the pressure of the deposition source tank (714) is 10 to 1 Torr, the pressure difference is used in the deposition source tank (714). Vapor phase organics can be directed to the deposition chamber. In addition, the connecting tube is heated at a high temperature to prevent vapor phase organics from being deposited. The deposition chamber of FIG. 12 outlines a scanning method including a scan head (761) and a substrate (762). Vapor phase organics derived by the scanning method of FIG. 12 should actually be deposited on the substrate. By the way, as shown in FIG. 12, the scan head (709) is moved so that the vapor deposition is performed in a certain area on the substrate without vapor-phase organic material being vapor-deposited on the substrate having a large area. While the head (709) moves at a constant speed, a vapor deposition process is performed on a substrate having a large area.

次に、図13は、蒸着装置の運用へのフローについて述べる。蒸着装置内で基板(712)を蒸着チェンバー(710)内にローディング(s710)する。その後、蒸着ソースタンク(714)を予備的に加熱して、その蒸着ソースタンク(714)に高温ガスを200〜600℃の下で注入(s712)する。さらに、蒸着ソースタンク(714)内での高温ガスと有機物粒子とが混合体を形成して蒸着ソースタンク(714)の温度を加熱すると、SGHP物質が発生(s714)する。発生されたSGHP物質は蒸着ソースタンク(714)から連結管(707)を通して多量の気相有機物であるSGHP物質をバッファーチェンバー(710)に伝達(s716)する。この際、バッファーチェンバー(710)では気相有機物センサを使用して気相有機物の流量を測定して、その気相有機物の流量が事前に設定された量に到達すると、前記バッファーゲート弁を開放(s718)する。その後、スキャンヘッド(709)の動作によって気相有機物の蒸着工程が進行(s720)し、事前にセッティングされた蒸着時間の経過後、スキャンヘッド(709)が移動(s722)して、バッファーゲート弁(711)を閉鎖して基板をアンロ
ーディング(s724)する。
Next, FIG. 13 describes the flow to the operation of the vapor deposition apparatus. The substrate (712) is loaded (s710) into the deposition chamber (710) in the deposition apparatus. Thereafter, the deposition source tank (714) is preliminarily heated, and high temperature gas is injected into the deposition source tank (714) at 200 to 600 ° C. (s712). Further, when the high temperature gas and the organic particles in the vapor deposition source tank (714) form a mixture and the temperature of the vapor deposition source tank (714) is heated, an SGHP material is generated (s714). The generated SGHP material transmits a large amount of gas phase organic SGHP material from the deposition source tank (714) to the buffer chamber (710) through the connection pipe (707) (s716). At this time, the buffer chamber (710) uses a gas phase organic substance sensor to measure the flow rate of the gas phase organic substance. When the flow rate of the gas phase organic substance reaches a preset amount, the buffer gate valve is opened. (S718). Thereafter, the vapor phase organic material deposition process proceeds (s720) by the operation of the scan head (709), and after the evaporating time set in advance, the scan head (709) moves (s722), and the buffer gate valve (711) is closed and the substrate is unloaded (s724).

この発明に従う広い面積基板の気相有機物蒸着装置及び方法において、実験例を参照して詳細に述べることにする。     The apparatus and method for vapor deposition of a large area substrate according to the present invention will be described in detail with reference to experimental examples.

図13の装置を使用する実験例に従えば、使用物質:Alq3、基板サイズ:370X470mm、使用ガス:Ar(340℃)、蒸着ソースタンク(714)温度:300℃、蒸着ソースタンク(714)の均一性(uniformity):+−5%の条件の下で実験結果を図7、10、15、16のグラフを参考して述べることにする。     According to the experimental example using the apparatus of FIG. 13, the substance used: Alq3, substrate size: 370 × 470 mm, gas used: Ar (340 ° C.), vapor deposition source tank (714) temperature: 300 ° C., vapor deposition source tank (714). Uniformity: The experimental results will be described with reference to the graphs of FIGS. 7, 10, 15 and 16 under the condition of + -5%.

図14は、希釈されたガス温度と蒸着量との相関関係グラフであり、図15は希釈ガス量に対する気相有機物のグラフであり、図16は希釈ガスなしに蒸着ソースタンク自体のみを加熱した場合、蒸着ソースタンク温度対蒸着量を示すグラフである。     FIG. 14 is a correlation graph between the diluted gas temperature and the deposition amount, FIG. 15 is a graph of the gas phase organic matter with respect to the dilution gas amount, and FIG. 16 is a diagram in which only the deposition source tank itself is heated without the dilution gas. In the case, it is a graph which shows vapor deposition source tank temperature versus vapor deposition amount.

図14のグラフにおいて希釈ガスの温度には蒸着量に対して影響がないことが確認できるし、図15のグラフにおいて希釈ガス量が増加することにつれて、蒸着ソースタンク(714)内のSGHP量が増加して蒸着ソースタンク(714)の加熱による気体相の有機物量が増加してスキャンヘッド(709)を通して出される気相有機物の量が増加することが確認できる。さらに、図16のグラフで蒸着ソースタンク(714)自体のみを加熱した場合、気体相の有機物発生量がごく微細に増加することが見られる。     In the graph of FIG. 14, it can be confirmed that the temperature of the dilution gas has no influence on the deposition amount. As the dilution gas amount increases in the graph of FIG. 15, the SGHP amount in the deposition source tank (714) increases. It can be confirmed that the amount of the organic substance in the gas phase is increased by the heating of the vapor deposition source tank (714) and the amount of the gas phase organic substance discharged through the scan head (709) is increased. Furthermore, in the graph of FIG. 16, when only the vapor deposition source tank (714) itself is heated, it can be seen that the amount of the organic substance generated in the gas phase increases very finely.

換言すれば、図13、14、15、16のグラフは、希釈ガスがない場合、気相有機物の発生量が少ない既存の蒸着ソースタンク(714)方式に比べて、希釈ガスの注入によって蒸着ソースタンク(714)内のSGHP量が増加し、そのSGHPが対流原理によって蒸着ソースタンク(714)内で多量の気相有機物を発生させることが分かる。     In other words, the graphs of FIGS. 13, 14, 15, and 16 show that when there is no dilution gas, the vapor deposition source is injected by the dilution gas as compared with the existing vapor deposition source tank (714) system in which the generation amount of the vapor phase organic substance is small. It can be seen that the amount of SGHP in the tank (714) increases, and the SGHP generates a large amount of vapor phase organic matter in the deposition source tank (714) by the convection principle.

したがって、バッファーチェンバー(710)と蒸着チェンバー(713)は、ゲート弁(711)を利用して完全に分離されるため、スキャンヘッド(709)の熱源が広い面積基板上と蒸着チェンバー(713)内の温度の上昇を防止する。さらに、有機薄膜の基板に対する接着力を増加して、精密で、かつ安定的な厚さに調整が可能であり、蒸着ソースタンク(714)を使用して多量の物質保管が可能になる。     Therefore, since the buffer chamber (710) and the deposition chamber (713) are completely separated using the gate valve (711), the heat source of the scan head (709) is on the wide area substrate and in the deposition chamber (713). To prevent the temperature from rising. Further, the adhesion of the organic thin film to the substrate can be increased, and the thickness can be adjusted to a precise and stable thickness, and a large amount of material can be stored using the vapor deposition source tank (714).

以上、この発明の好ましき実施例によって詳細に述べてきたが、この発明の範囲は特定の実施例に限定されるのではなく、添付された特許請求の範囲によって解釈されるべきである。さらに、この技術分野における通常の知識を習得した者であれば、この発明の範囲から逸脱されることなしに、多くの修正と変形が可能となることが理解できることであろう。     Although the preferred embodiment of the present invention has been described in detail above, the scope of the present invention should not be limited to the specific embodiment but should be interpreted by the appended claims. Further, those skilled in the art will appreciate that many modifications and variations can be made without departing from the scope of the invention.

従来の真空蒸着装置の一例図、An example of a conventional vacuum deposition apparatus, この発明に従う気相有機物の蒸着装置の平面図、The top view of the vapor phase organic substance vapor deposition apparatus according to this invention, 図2aのA−A線矢視断面図、AA arrow sectional view of FIG. 図2aのB−B線矢視断面図、FIG. 2A is a cross-sectional view taken along line B-B in FIG. 図2bのC部である有機物チェンバーの詳細図、2B is a detailed view of the organic material chamber that is part C of FIG. 噴射部が移動して気相有機物を噴射する状態を示す断面図、Sectional drawing which shows the state which an injection part moves and injects gaseous-phase organic matter, 噴射部が気相有機物を噴射する際、母材を安着させた母材安着部が電磁石を利用した移送方法を通して水平方向へ移動する状態を示す断面図、Sectional drawing which shows the state which moves in the horizontal direction through the transfer method using the electromagnet when the injection part injects the vapor phase organic matter, the base material attachment part on which the base material is attached, 噴射チューブを利用して気相有機物を母材に蒸着せしめる状態を示す断面図、Sectional drawing which shows the state which vapor-deposits organic substance on a base material using an injection tube, 噴射チューブが回転及び上下移動をして母材に気相有機物を蒸着せしめる状態を示す断面図、Sectional drawing which shows the state which an injection tube rotates and moves up and down, and vapor-phase organic matter is vapor-deposited on a base material, るつぼ内で気相有機物と運搬ガスとを混合する状態を示す断面図、Sectional drawing which shows the state which mixes gaseous-phase organic substance and carrier gas in a crucible, るつぼの外部で気相有機物と運搬ガスとを混合する状態を示す断面図、Sectional drawing which shows the state which mixes gaseous-phase organic substance and carrier gas in the exterior of a crucible, 直方体形状に形成されており、上端部に1つの気相有機物の引出ホールを備えるるつぼの形状を示す断面図、Sectional drawing which shows the shape of the crucible which is formed in the shape of a rectangular parallelepiped, and has one extraction hole for vapor phase organic matter at the upper end, 直方体形状に形成されており、上端部に複数の気相有機物の引出ホールを備えるるつぼの形状を示す断面図、Sectional drawing which shows the shape of the crucible which is formed in the shape of a rectangular parallelepiped and has a plurality of vapor phase organic substance extraction holes on the upper end, 円筒形状に形成されており、上端部に1つの気相有機物の引出ホールを備えるるつぼの形状を示す断面図、Sectional drawing which shows the shape of the crucible which is formed in the cylindrical shape and is equipped with the extraction hole of one gaseous-phase organic substance in the upper end part, 円筒形状に形成されており、上端部に複数の気相有機物の引出ホールを備えるるつぼの形状を示す断面図、Sectional drawing which shows the shape of a crucible which is formed in a cylindrical shape and has a plurality of vapor phase organic substance extraction holes at the upper end, 気相有機物の移送管外部に定温ヒーターを備えた形状を示す断面図、Sectional drawing which shows the shape provided with the constant temperature heater outside the transfer pipe | tube of a gaseous-phase organic substance, この発明の広い面積基板の気相有機物蒸着装置の断面図、Sectional drawing of the vapor phase organic substance vapor deposition apparatus of the wide area substrate of this invention, 複数個の蒸着ソースタンクとスキャンヘッドを設置したことを示す断面図、A sectional view showing that a plurality of vapor deposition source tanks and scan heads are installed, SGHP有機物質を移動させることのできる蒸着チェンバー内のスキャンヘッドの動作方法について述べる図、The figure which describes the operation | movement method of the scan head in the vapor deposition chamber which can move SGHP organic substance, 図8の内部のSGHP有機物質を移動させることのできるスキャンヘッドの移動方法について述べる図、The figure explaining the moving method of the scan head which can move the SGHP organic substance inside FIG. 有機半導体装置の気相有機物発生方法について述べる図、A diagram describing a method for generating a gas phase organic substance in an organic semiconductor device, 図11から発生された気相有機物発生による蒸着チェンバー内での蒸着方法について述べる図、The figure explaining the vapor deposition method in the vapor deposition chamber by the gaseous-phase organic substance generation | occurrence | production generated from FIG. 蒸着装置の運用について述べるフロー、Flow describing the operation of the vapor deposition system, 希釈されたガスの温度と蒸着量の相関関係グラフ、Correlation graph between the temperature of the diluted gas and the deposition amount, 希釈ガス量に対する気相有機物のグラフ、Graph of gas phase organic matter against dilution gas amount, 希釈ガスなしに蒸着ソースタンク自体のみを加熱した場合、蒸着ソースタンク温度対蒸着量との関係を示すグラフである。When only the vapor deposition source tank itself is heated without a dilution gas, it is a graph which shows the relationship between vapor deposition source tank temperature and vapor deposition amount.

符号の説明Explanation of symbols

10...母材
20...有機物
100...蒸着チェンバー
110...噴射部
112...ガイド板
120...ガイドレール
122...ガイドレール支持板
130...保温ヒーター
140...母材安着部
150...真空ポンプ
200...有機物チェンバー
210...気相有機物の移送管
220...るつぼ
230...有機物加熱ヒーター
240...運搬ガス引込管
300...補助チェンバー
310...移動軸
312...移動ブロック
314...移送部
320...密封フランジ
322...ベローズ
700...蒸着チェンバー
701...ガスレザバー
702...MFC
703...ガスヒーター
706...ヒーターパイプ
707...連結管
709...スキャンヘッド
710...バッファーチェンバー
711...ゲート弁
712...基板
713...蒸着チェンバー
714...蒸着ソースタンク
715...蒸着速度調整器
10. . . Base material 20. . . Organic matter 100. . . Deposition chamber 110. . . Injection unit 112. . . Guide plate 120. . . Guide rail 122. . . Guide rail support plate 130. . . Insulating heater 140. . . Base material seat 150. . . Vacuum pump 200. . . Organic chamber 210. . . Gas phase organic matter transfer tube 220. . . Crucible 230. . . Organic heater 240. . . Carrier gas inlet tube 300. . . Auxiliary chamber 310. . . Movement axis 312. . . Moving block 314. . . Transfer unit 320. . . Sealing flange 322. . . Bellows 700. . . Deposition chamber 701. . . Gas reservoir 702. . . MFC
703. . . Gas heater 706. . . Heater pipe 707. . . Connecting pipe 709. . . Scan head 710. . . Buffer chamber 711. . . Gate valve 712. . . Substrate 713. . . Deposition chamber 714. . . Deposition source tank 715. . . Deposition rate adjuster

Claims (10)

外部と隔離される内部空間を備えており、該内部空間の床面に気相有機物を蒸着させる母材を安着せしめる母材安着部を備え、該母材安着部の上端に位置されて気相有機物を前記母材の安着部方向へ噴射する噴射部と、
上端壁面及び側壁面内に熱を発散する1つ以上の保温ヒーターを含んで構成される蒸着チェンバーと、
気相有機物を運搬する運搬ガスが引き込まれるよう穴形状に形成された1つ以上の運搬ガス引込ホールと、
有機物蒸気及び運搬ガスが引き出されうるよう穴形状に形成された1つ以上の気相有機物の引出ホールを備えており、耐熱材の材質で有機物を貯蔵できるよう、内部空間を備える形状に形成されたるつぼと、
該るつぼの外部を囲繞しており、有機物が蒸発される温度まで前記るつぼ内を加熱する有機物加熱ヒーターを内部に含む1つ以上の有機物チェンバーと、
前記運搬ガスの引込ホールに連結されて前記有機物チェンバー内に引き込まれる運搬ガス量と流速を制御する流量制御部と、
前記蒸着チェンバー及び有機物チェンバーを貫通するように形成されており、前記有機物チェンバー内の気相有機物が前記噴射部に移動できるよう管形状からなる気相有機物の移送管と、
前記蒸着チェンバーの内部圧力を低める真空ポンプと
を含んで構成されることを特徴とする気相有機物の蒸着装置。
It has an internal space that is isolated from the outside, and is provided with a base material seating part for seating a base material on which a vapor phase organic substance is deposited on the floor surface of the internal space, and is positioned at the upper end of the base material seating part. An injection unit for injecting the gas phase organic matter toward the seating part of the base material,
A deposition chamber including one or more heat retaining heaters that dissipate heat in the upper wall surface and the side wall surface;
One or more carrier gas inlet holes formed in a hole shape so that a carrier gas carrying the gas phase organic matter is drawn;
It has one or more gas phase organic substance extraction holes formed in a hole shape so that organic vapor and carrier gas can be extracted, and it is formed in a shape with an internal space so that the organic material can be stored with the material of the heat-resistant material. With a crucible,
One or more organic chambers surrounding the outside of the crucible and including therein an organic heater for heating the inside of the crucible to a temperature at which organic matter is evaporated;
A flow rate controller that controls the amount and flow rate of the carrier gas that is connected to the carrier gas inlet hole and is drawn into the organic material chamber;
A vapor phase organic substance transfer pipe having a tubular shape so that the vapor phase organic substance in the organic substance chamber can be moved to the injection unit, and is formed so as to penetrate the vapor deposition chamber and the organic substance chamber;
A vapor phase organic material vapor deposition apparatus comprising a vacuum pump for lowering the internal pressure of the vapor deposition chamber.
前記蒸着チェンバーは、前記噴射部が装着される位置に前記気相有機物の移送管の長手方向へ1つ以上のガイドレールを備え、
前記噴射部は前記ガイドレールに接触される部分に前記ガイドレールと摺動可能な構造で結合されるガイド板を備える
ことを特徴とする請求項1に記載の気相有機物の蒸着装置。
The vapor deposition chamber includes one or more guide rails in a longitudinal direction of the gas phase organic substance transfer pipe at a position where the injection unit is mounted,
2. The vapor phase organic material deposition apparatus according to claim 1, wherein the spray unit includes a guide plate coupled to the guide rail in a structure slidable at a portion in contact with the guide rail.
前記蒸着チェンバーは、前記噴射部を回転せしめる回転モータ、または前記噴射部を上下に移動せしめる移動モータを備える
ことを特徴とする請求項1または2に記載の気相有機物の蒸着装置。
The vapor deposition organic vapor deposition apparatus according to claim 1, wherein the vapor deposition chamber includes a rotation motor that rotates the spray unit or a movement motor that moves the spray unit up and down.
前記気相有機物の移送管は、熱を発生する熱線と加熱温度を精密に保持及び調節する定温発熱素子システムを含む定温ヒーターを外側面に備える
ことを特徴とする請求項1に記載の気相有機物の蒸着装置。
2. The gas phase according to claim 1, wherein the vapor phase organic substance transfer pipe is provided with a constant temperature heater including a constant temperature heating element system for accurately maintaining and adjusting a heating wire for generating heat and a heating temperature on an outer surface. Organic deposition equipment.
前記気相有機物の移送管は、2つ以上の気相有機物を混合するため、2つ以上の有機物チェンバーに連結されている混合タンクを備える
ことを特徴とする請求項1または4に記載の気相有機物の蒸着装置。
The gas phase organic substance transfer pipe comprises a mixing tank connected to two or more organic substance chambers for mixing two or more gas phase organic substances. Phase organic deposition equipment.
前記噴射部は、気相有機物を噴射する噴射口が小経で複数個が備えられたシャワーヘッドまたは噴射口が管形状に形成された噴射チューブ中のいずれか1つの構造からなる
ことを特徴とする請求項1に記載の気相有機物の蒸着装置。
The spray unit has a structure of any one of a shower head in which a plurality of spray ports for spraying a gas phase organic substance are provided, or a spray tube in which a spray port is formed in a tube shape. The vapor-phase organic substance deposition apparatus according to claim 1.
前記るつぼは、内外部が隔離される多面体、円筒形及び球形中のいずれか1つの形状に形成される
ことを特徴とする請求項1に記載の気相有機物の蒸着装置。
2. The vapor phase organic material deposition apparatus according to claim 1, wherein the crucible is formed in any one of a polyhedron, a cylindrical shape, and a spherical shape that are isolated from each other.
内部に有機物を含んでいる有機物チェンバーの外面に接触する加熱ヒーターは、熱を発散して前記有機物を蒸発温度以上に加熱する1段階と、
前記加熱ヒーターによって気化された気相有機物は、熱を発散する定温ヒーターに囲繞されている気相有機物の移送管を通して気相有機物を蒸着させる母材が位置している蒸着チェンバーの噴射部に移動する2段階と、
前記噴射部に移動された前記気相有機物は、母材安着部の上端に据置されている前記母材の上端から重力方向へ噴射されて前記母材の上端面に蒸着される3段階とからなる
ことを特徴とする気相有機物の蒸着方法。
A heater that contacts an outer surface of an organic material chamber that contains organic matter therein is a stage in which heat is dissipated to heat the organic matter to an evaporation temperature or higher.
The vapor phase organic material vaporized by the heater is moved to a spraying portion of a vapor deposition chamber where a base material for vapor phase organic material deposition is located through a vapor phase organic material transfer pipe surrounded by a constant temperature heater that radiates heat. Two stages to do,
The vapor phase organic substance moved to the spraying unit is sprayed in a gravitational direction from the upper end of the base material placed on the upper end of the base material attachment part, and is deposited on the upper end surface of the base material. A vapor phase organic material vapor deposition method comprising:
前記3段階の前記噴射部は、前記気相有機物の移送管の長手方向へ水平移動または回転運動をすることを特徴とする請求項8に記載の気相有機物の蒸着方法。   The vapor phase organic material deposition method according to claim 8, wherein the three-stage jetting unit horizontally or rotationally moves in a longitudinal direction of the vapor phase organic material transfer pipe. 前記3段階の前記母材安着部は、前記有機物チェンバーの床面上で水平移動をすることを特徴とする請求項8または9に記載の気相有機物の蒸着方法。   The vapor phase organic material deposition method according to claim 8 or 9, wherein the three-stage base material seating portion horizontally moves on a floor surface of the organic material chamber.
JP2006309862A 2002-04-01 2006-11-16 Vapor deposition method for vapor-phase organic matter, and vapor deposition system for vapor-phase organic matter utilizing the same Pending JP2007146292A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020020017755A KR100358727B1 (en) 2002-04-01 2002-04-01 Apparatus and method for depositing organic matter of vapor phase
KR10-2002-0061629A KR100375076B1 (en) 2002-10-10 2002-10-10 Apparatus and method for manufacturing the organic semiconductor device with a large size of substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003097183A Division JP3962349B2 (en) 2002-04-01 2003-03-31 Vapor phase organic material vapor deposition method and vapor phase organic material vapor deposition apparatus using the same

Publications (1)

Publication Number Publication Date
JP2007146292A true JP2007146292A (en) 2007-06-14

Family

ID=28677688

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2003097183A Expired - Fee Related JP3962349B2 (en) 2002-04-01 2003-03-31 Vapor phase organic material vapor deposition method and vapor phase organic material vapor deposition apparatus using the same
JP2006309862A Pending JP2007146292A (en) 2002-04-01 2006-11-16 Vapor deposition method for vapor-phase organic matter, and vapor deposition system for vapor-phase organic matter utilizing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2003097183A Expired - Fee Related JP3962349B2 (en) 2002-04-01 2003-03-31 Vapor phase organic material vapor deposition method and vapor phase organic material vapor deposition apparatus using the same

Country Status (5)

Country Link
JP (2) JP3962349B2 (en)
CN (1) CN1218372C (en)
AU (1) AU2003217530A1 (en)
TW (1) TW200304956A (en)
WO (1) WO2003083169A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5564573B2 (en) * 2010-09-03 2014-07-30 株式会社アルバック Protective film formation method, surface flattening method
JP2018500716A (en) * 2014-09-30 2018-01-11 オスラム オーエルイーディー ゲゼルシャフト ミット ベシュレンクテル ハフツングOSRAM OLED GmbH Organic electronic device manufacturing method and organic electronic device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7238389B2 (en) * 2004-03-22 2007-07-03 Eastman Kodak Company Vaporizing fluidized organic materials
US20060099344A1 (en) * 2004-11-09 2006-05-11 Eastman Kodak Company Controlling the vaporization of organic material
US7989021B2 (en) * 2005-07-27 2011-08-02 Global Oled Technology Llc Vaporizing material at a uniform rate
TWI386516B (en) * 2005-10-28 2013-02-21 Hon Hai Prec Ind Co Ltd Apparatus for fabrication of carbon nanotubes
DE102006023046B4 (en) * 2006-05-17 2009-02-05 Qimonda Ag Method and starting material for providing a gaseous precursor
KR101028044B1 (en) * 2007-09-04 2011-04-08 주식회사 테라세미콘 Apparatus For Supplying Source Gas
KR20120073272A (en) * 2009-10-05 2012-07-04 도쿄엘렉트론가부시키가이샤 Film-forming device, film-forming head, and film-forming method
JP5452178B2 (en) * 2009-11-12 2014-03-26 株式会社日立ハイテクノロジーズ Vacuum deposition apparatus, vacuum deposition method, and organic EL display device manufacturing method
JP5570939B2 (en) * 2010-10-21 2014-08-13 株式会社アルバック Thin film forming apparatus and thin film forming method
CN104911565B (en) * 2014-03-11 2017-12-22 中微半导体设备(上海)有限公司 A kind of chemical vapor deposition unit
WO2015188354A1 (en) * 2014-06-12 2015-12-17 深圳市大富精工有限公司 Vacuum coating device and vacuum coating method
CN107208252A (en) * 2014-11-07 2017-09-26 应用材料公司 For vacuum-deposited material source arrangement and nozzle
CN114016129B (en) * 2021-10-09 2023-03-24 山东有研国晶辉新材料有限公司 Novel zinc selenide growth method
CN114934265B (en) * 2022-05-26 2023-03-07 中国科学院长春光学精密机械与物理研究所 Film growth device and method and vanadium dioxide film growth method
CN114705789B (en) * 2022-06-06 2022-09-02 中科阿斯迈(江苏)检验检测有限公司 Gas chromatography device for laboratory detection

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291965A (en) * 1985-06-18 1986-12-22 Fujitsu Ltd Superhigh-vacuum chamber
JPH01165774A (en) * 1987-12-22 1989-06-29 Anelva Corp Surface treating device
JPH04236769A (en) * 1991-01-17 1992-08-25 Ulvac Japan Ltd Film forming device
JPH07321057A (en) * 1994-05-23 1995-12-08 Nippon Steel Corp Film-forming device for semiconductor device
JPH1197433A (en) * 1997-09-18 1999-04-09 Nec Yamagata Ltd Atmospheric-pressure cvd equipment
JPH11293461A (en) * 1998-04-16 1999-10-26 Matsushita Electric Ind Co Ltd Vapor deposition method of oxide and vapor-deposited thin film
JPH11335844A (en) * 1998-04-29 1999-12-07 Microcoating Technol Inc Chemical vapor deposition device
JP2000216095A (en) * 1999-01-20 2000-08-04 Tokyo Electron Ltd Single wafer processing type heat treating apparatus
JP2001077109A (en) * 1999-08-31 2001-03-23 Tokyo Electron Ltd Method and device for film-forming

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07243025A (en) * 1994-03-03 1995-09-19 Kobe Steel Ltd Surface treated material excellent in design characteristic and its production
WO1997008356A2 (en) * 1995-08-18 1997-03-06 The Regents Of The University Of California Modified metalorganic chemical vapor deposition of group iii-v thin layers
EP1167566B1 (en) * 2000-06-22 2011-01-26 Panasonic Electric Works Co., Ltd. Apparatus for and method of vacuum vapor deposition
JP4980204B2 (en) * 2007-11-29 2012-07-18 日揮触媒化成株式会社 Method for producing titanium oxide-based deodorant

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291965A (en) * 1985-06-18 1986-12-22 Fujitsu Ltd Superhigh-vacuum chamber
JPH01165774A (en) * 1987-12-22 1989-06-29 Anelva Corp Surface treating device
JPH04236769A (en) * 1991-01-17 1992-08-25 Ulvac Japan Ltd Film forming device
JPH07321057A (en) * 1994-05-23 1995-12-08 Nippon Steel Corp Film-forming device for semiconductor device
JPH1197433A (en) * 1997-09-18 1999-04-09 Nec Yamagata Ltd Atmospheric-pressure cvd equipment
JPH11293461A (en) * 1998-04-16 1999-10-26 Matsushita Electric Ind Co Ltd Vapor deposition method of oxide and vapor-deposited thin film
JPH11335844A (en) * 1998-04-29 1999-12-07 Microcoating Technol Inc Chemical vapor deposition device
JP2000216095A (en) * 1999-01-20 2000-08-04 Tokyo Electron Ltd Single wafer processing type heat treating apparatus
JP2001077109A (en) * 1999-08-31 2001-03-23 Tokyo Electron Ltd Method and device for film-forming

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5564573B2 (en) * 2010-09-03 2014-07-30 株式会社アルバック Protective film formation method, surface flattening method
JP2018500716A (en) * 2014-09-30 2018-01-11 オスラム オーエルイーディー ゲゼルシャフト ミット ベシュレンクテル ハフツングOSRAM OLED GmbH Organic electronic device manufacturing method and organic electronic device
US11040988B2 (en) 2014-09-30 2021-06-22 Novaled Gmbh Method for producing an organic electronic component, and organic electronic component
US11731988B2 (en) 2014-09-30 2023-08-22 Novaled Gmbh Method for producing an organic electronic component, and organic electronic component

Also Published As

Publication number Publication date
TW200304956A (en) 2003-10-16
JP3962349B2 (en) 2007-08-22
JP2003293140A (en) 2003-10-15
AU2003217530A1 (en) 2003-10-13
CN1218372C (en) 2005-09-07
CN1450610A (en) 2003-10-22
WO2003083169A1 (en) 2003-10-09

Similar Documents

Publication Publication Date Title
JP2007146292A (en) Vapor deposition method for vapor-phase organic matter, and vapor deposition system for vapor-phase organic matter utilizing the same
US9780223B2 (en) Gallium arsenide based materials used in thin film transistor applications
EP2187709B1 (en) Vapor emission device, organic thin-film vapor deposition apparatus and method of organic thin-film vapor deposition
US20090017638A1 (en) Substrate processing apparatus and method for manufacturing semiconductor device
US20100126417A1 (en) Deposition source unit, deposition apparatus and temperature controller of deposition source unit
CN112400222A (en) Apparatus and method for controlling flow of process material to a deposition chamber
KR20130055623A (en) Linear batch chemical vapor deposition system
US20210265605A1 (en) Film formation device, vapor-deposited film formation method, and organic el display device production method
JP2016540892A (en) Deposition arrangement, deposition apparatus, and method of operation thereof
KR100358727B1 (en) Apparatus and method for depositing organic matter of vapor phase
KR100952313B1 (en) Unit for supplying source and method for supplying source and apparatus for depositioning thin film
KR101306986B1 (en) Apparatus for forming thin films
KR101959417B1 (en) Material source arrangement and material distribution arrangement for vacuum deposition
KR100666571B1 (en) Apparatus for Deposition by use of Propeller-Type Injector
KR100685808B1 (en) Vapor deposition apparatus for organic material
KR101256986B1 (en) A metal organice chemical vapor deposition apparatus having a heater to adjust height
JP2005029885A (en) Thin film deposition method, thin film deposition system and semiconductor device
KR100375076B1 (en) Apparatus and method for manufacturing the organic semiconductor device with a large size of substrate
JP2004022400A (en) Apparatus and method for forming organic film
JP2005226154A (en) Method and apparatus for vapor deposition
JP6512543B2 (en) Vapor deposition cell, thin film production apparatus and thin film production method
KR101694750B1 (en) Nozzle for spray pyrolysis deposition and film forming apparatus having the same
KR20070071089A (en) Deposition equipment oled using of multi nozzle level type
JP2005203248A (en) Vapor deposition method and vapor deposition device
JP7129280B2 (en) Gas carrier vapor deposition system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100624