JP2007144415A - Composite filter medium and its manufacturing method - Google Patents

Composite filter medium and its manufacturing method Download PDF

Info

Publication number
JP2007144415A
JP2007144415A JP2006298866A JP2006298866A JP2007144415A JP 2007144415 A JP2007144415 A JP 2007144415A JP 2006298866 A JP2006298866 A JP 2006298866A JP 2006298866 A JP2006298866 A JP 2006298866A JP 2007144415 A JP2007144415 A JP 2007144415A
Authority
JP
Japan
Prior art keywords
filter medium
heat
medium layer
composite filter
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006298866A
Other languages
Japanese (ja)
Other versions
JP5096726B2 (en
Inventor
Kunihiro Tanabe
邦弘 田辺
Mitsuo Yoshida
光男 吉田
Hitoshi Fujiki
均 藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2006298866A priority Critical patent/JP5096726B2/en
Publication of JP2007144415A publication Critical patent/JP2007144415A/en
Application granted granted Critical
Publication of JP5096726B2 publication Critical patent/JP5096726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite filter medium for an air filter which can realize a volume reduction upon incineration. <P>SOLUTION: This composite filter medium has a two-layer structure of an upstream-side filter medium layer and a downstream-side filter medium layer. Both the upstream-side filter medium layer and the downstream-side filter medium layer contain heat-fusible fibers having a melting point of 50 to 170°C as measured by differential scanning calorimetry (DSC). At least the downstream-side filter medium layer contains heat-fusible fibers and microglass fibers having an average fiber diameter of 0.1 to 1 μm. The heat-fusible fibers are heat-fused to the microglass fibers. Alternatively, the heat-fusible fibers are partly heat-fused to each other. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、空気中の粉塵を捕集するエアフィルタ濾材に関する。特に、中性能・高性能エアフィルタ用途に関するものである。   The present invention relates to an air filter medium that collects dust in the air. In particular, it relates to medium and high performance air filter applications.

エアフィルタ濾材としては、静電気力によりメルトブロー不織布の捕集効率を高めたエレクトレット濾材が知られている。しかし、水分付着によって、著しく捕集効率が低下してしまうため、信頼性の点から、物理的に粒子を捕捉する濾材が必要とされている。物理的に粒子を捕捉する濾材として、ガラス繊維を主体とした濾材が多く用いられている。   As an air filter medium, an electret filter medium in which the collection efficiency of the melt blown nonwoven fabric is enhanced by electrostatic force is known. However, since the collection efficiency is significantly reduced due to the adhesion of moisture, a filter medium that physically captures particles is required from the viewpoint of reliability. As a filter medium that physically captures particles, a filter medium mainly composed of glass fibers is used.

ガラス繊維を主体としたエアフィルタ濾材は、チョップドストランドガラス繊維及び/又はマイクロガラス繊維を混合して湿式抄紙法で抄造した後、バインダーを付与して強度を強くする方法で作られている。しかし、濾材に弾性がなく、フィルタユニットに加工する際の折り曲げ時に折り部が破損したり、衝撃が加わった際にガラス繊維が折れて脱落するという欠点がある。また、フィルタを洗浄して再使用する場合、洗浄時の衝撃で濾材が破損したり、バインダーが洗剤等が原因で溶出してしまい、濾材の強度が低下するのが現状である。さらに、使用済みの濾材を廃棄する場合、焼却しても、ガラス繊維が燃えないために、ほとんど減容しないことから、不燃ゴミ問題も深刻となっている。   An air filter medium mainly composed of glass fibers is made by a method in which chopped strand glass fibers and / or micro glass fibers are mixed and made by a wet papermaking method, and then a binder is added to increase the strength. However, there is a drawback that the filter medium has no elasticity, and the folded portion is broken when the filter medium is bent, or the glass fiber is broken and dropped when an impact is applied. In addition, when the filter is washed and reused, the filter medium is damaged by the impact during the cleaning, or the binder is eluted due to a detergent or the like, so that the strength of the filter medium is reduced. Furthermore, when discarding used filter media, the glass fiber does not burn even if it is incinerated.

これらの問題を解決するために、捕集効率を向上させる平均繊維径0.1〜1μmのマイクロガラス繊維と剛直鎖合成高分子からなる濾水値が30〜800秒のフィブリル化有機繊維とを含有する濾材が提案されている(例えば、特許文献1参照)。マイクロガラス繊維とフィブリル化有機繊維とを濾材中に混在させて、両繊維の絡み合い効果を引き出すことにより、マイクロガラス繊維単独の場合に問題となる抄紙ワイヤーからの繊維離脱の問題、フィルタ加工時の破損の問題を解決している。また、焼却減容可能な濾材となっている。しかし、近年では、フィルタ寿命を延ばすために、従来よりもさらに圧力損失の低い濾材が望まれてきているが、マイクロガラス繊維とフィブリル化有機繊維とを混在させている濾材は、密度が高くなりすぎる場合があり、圧力損失が充分に低いとは言えない。   In order to solve these problems, a microglass fiber having an average fiber diameter of 0.1 to 1 μm for improving the collection efficiency and a fibrillated organic fiber having a drainage value of 30 to 800 seconds comprising a rigid linear synthetic polymer The filter medium to contain is proposed (for example, refer patent document 1). By mixing micro glass fiber and fibrillated organic fiber in the filter medium and drawing out the entanglement effect of both fibers, the problem of fiber detachment from papermaking wire, which is a problem in the case of micro glass fiber alone, at the time of filter processing Resolves corruption issues. In addition, the filter medium can be reduced in volume by incineration. However, in recent years, in order to extend the filter life, a filter medium with lower pressure loss than before has been desired. However, a filter medium in which micro glass fibers and fibrillated organic fibers are mixed has a higher density. In some cases, the pressure loss is not sufficiently low.

別途、フィルタ寿命を延ばすために、捕集効率の異なる濾材を密接して重ねて、同時に折り加工を施して、フィルタを作製する方法が提案されている。しかし、濾材の厚みが厚いために、フィルタユニットに折り込める濾材面積が少なくなってしまい、結果として寿命をのばすことが困難となっている(例えば、特許文献2参照)。   Separately, in order to prolong the filter life, a method has been proposed in which filter media having different collection efficiencies are closely stacked and simultaneously folded to produce a filter. However, since the thickness of the filter medium is large, the area of the filter medium that can be folded into the filter unit is reduced, and as a result, it is difficult to extend the life (see, for example, Patent Document 2).

高性能エアフィルタ濾材として、ポリエステル繊維にガラス繊維を混成させた不織布であって、捕集効率の異なる不織布を一体成形してなる積層濾材を用い、該積層濾材をミニプリーツ形状とした集塵フィルタが提案されている。この混成積層濾材では、ポリエステル繊維によって柔軟になることから、折り加工部の破損は減少するものの、強度向上が図られていないことから、ミニプリーツ形状に加工する際に折り部が破損したり、フィルタ洗浄で破損するという問題が残っていた(例えば、特許文献3参照)。   As a high-performance air filter medium, a non-woven fabric in which glass fibers are mixed with polyester fibers, and a multi-layer filter medium formed by integrally molding non-woven fabrics having different collection efficiencies is used. Has been proposed. In this hybrid laminated filter medium, because the polyester fiber becomes flexible, the breakage of the folded portion is reduced, but since the strength is not improved, the folded portion is broken when processed into a mini-pleated shape, The problem of being damaged by filter cleaning remained (for example, see Patent Document 3).

ところで、ビルや工場の空調及び発電所などに設置されるタービン吸気部用フィルタなど、外気を吸気するエアフィルタ濾材には、必要に応じ、撥水性が付与される。濾材に撥水性を付与する目的としては、濾材をフィルタユニットに加工する際に使用するシール剤やホットメルト等のしみ込みを防ぐことや、濾材面に水がかかったり、温度変化により結露した場合でも、そのまま濾材を利用できるようにすること等があげられる。また、海が近い場所など、塩分を多く含む粒子が存在する環境下では、捕集された塩分の潮解を防ぐために、高撥水性を有する濾材が必要とされている。   By the way, water repellency is imparted to an air filter medium that takes in outside air, such as a filter for a turbine intake section installed in an air conditioner of a building or factory, a power plant, or the like. The purpose of imparting water repellency to the filter media is to prevent penetration of the sealant and hot melt used when processing the filter media into the filter unit, or when water is applied to the filter media surface or condensation occurs due to temperature changes. However, it is possible to use the filter medium as it is. In addition, in an environment where particles containing a large amount of salt exist, such as a place close to the sea, a filter medium having high water repellency is required to prevent deliquescence of collected salt.

従来、ガラス繊維を主体繊維とするエアフィルタ濾材への撥水性を付与する方法としては、シリコン樹脂の使用、又は、フッ素樹脂とシリコン樹脂の併用などの方法が提案されている。しかし、この方法ではシリコン樹脂やフッ素樹脂がガラス繊維を結合させるために使用されているバインダーの接着性を阻害してしまうため、濾材の強度が低下するといった問題がある(例えば、特許文献4〜5参照)。   Conventionally, as a method for imparting water repellency to an air filter medium mainly composed of glass fiber, a method using a silicon resin or a combination of a fluororesin and a silicon resin has been proposed. However, this method has a problem that the strength of the filter medium is reduced because the adhesiveness of the binder used for bonding the glass fibers to the silicon resin or the fluororesin is impaired (for example, Patent Documents 4 to 4). 5).

また、撥水性を付与する方法として、ガラス繊維を主体繊維とするエアフィルタ濾材において、ガラス繊維表面上に、一般的な紙の製造に用いられる抄紙用サイズ剤であるアルキルケテンダイマーを付着させることにより、撥水性を付与する方法が提案されている。しかし、撥水性は満足しているものの、濾材の空隙であるミクロポアを過剰に塞いでしまうことがあり、捕集効率が低下する可能性がある。また、ガラス繊維を主体としていることから、フィルタ加工する際の折り部破損、フィルタ洗浄時の衝撃による濾材破損、バインダー溶出による濾材強度低下、不燃ゴミ問題といった課題は解決できていない。(例えば、特許文献6〜7参照)。   In addition, as a method for imparting water repellency, in an air filter medium mainly composed of glass fiber, an alkyl ketene dimer, which is a sizing agent for paper making used in general paper production, is attached on the glass fiber surface. Thus, a method for imparting water repellency has been proposed. However, although the water repellency is satisfactory, the micropores that are the voids of the filter medium may be excessively blocked, and the collection efficiency may be reduced. Further, since glass fiber is mainly used, problems such as breakage at the time of filter processing, filter medium damage due to impact during filter cleaning, filter medium strength reduction due to binder elution, and incombustible dust problem cannot be solved. (For example, refer to Patent Documents 6 to 7).

以上のように、現在のところ、空気中の粉塵の捕集効率が良好であり、濾材からのガラス繊維の脱落がなく、フィルタ加工やフィルタ洗浄に破損しにくく、不燃ゴミ減量にも配慮した濾材は未だ得られていない。また、捕集効率や濾材の強度を維持しつつ、撥水性をもたせた濾材も得られていない。
特開平8−323121号公報 特開2001−263089号公報 国際公開第WO03/043717号パンフレット 特開平2−41499号公報 特開平2−175997号公報 国際公開第WO02/016005号パンフレット 特開2004−154672号公報
As described above, at present, the filter medium has good dust collection efficiency in the air, does not drop glass fibers from the filter medium, is not easily damaged by filter processing and filter cleaning, and is designed to reduce incombustible waste. Has not been obtained yet. Moreover, a filter medium having water repellency while maintaining the collection efficiency and the strength of the filter medium has not been obtained.
JP-A-8-323121 JP 2001-263089 A International Publication No. WO03 / 043717 Pamphlet JP-A-2-41499 JP-A-2-175997 International Publication No. WO02 / 016005 Pamphlet JP 2004-154672 A

本発明の課題は、高捕集効率で圧力損失が低く、ガラス繊維の脱落がなく、折り加工や洗浄時にも破損しにくく、焼却による減容が可能であるフィルタ用の複合濾材及び複合濾材の製造方法を提供することである。また、水分の付着や海塩粒子の潮解による濾材の性能低下を防止する高い撥水性を示す複合濾材及び複合濾材の製造方法を提供することである。   An object of the present invention is to provide a composite filter medium for a filter and a composite filter medium for filters that have high collection efficiency, low pressure loss, do not drop glass fibers, are not easily damaged during folding and washing, and can be reduced in volume by incineration. It is to provide a manufacturing method. Another object of the present invention is to provide a composite filter medium exhibiting high water repellency that prevents deterioration of the performance of the filter medium due to adhesion of water and deliquescence of sea salt particles, and a method for producing the composite filter medium.

本発明者らは、上記課題を解決するために鋭意検討した結果、複合濾材(1)〜(5)及び複合濾材の製造方法(6)〜(8)を見出した。   As a result of intensive studies in order to solve the above problems, the present inventors have found composite filter media (1) to (5) and composite filter media manufacturing methods (6) to (8).

(1)上流側濾材層と下流側濾材層の2層で構成された複合濾材であって、上流側濾材層と下流側濾材層の両層に示差走査熱量分析(DSC)で測定した融点が50〜170℃である熱融着性繊維を含み、少なくとも下流側濾材層が熱融着性繊維と平均繊維径0.1〜1μmのマイクロガラス繊維とを含有し、熱融着性繊維とマイクロガラス繊維または、該熱融着性繊維同士の少なくとも一部が熱融着されている複合濾材、
(2)下流側濾材層が、熱融着性繊維を5〜80質量%、平均繊維径0.1〜1μmのマイクロガラス繊維を10〜50質量%、非熱融着性繊維を5〜80質量%を含有してなる上記(1)記載の複合濾材、
(3)上流側濾材層が、熱融着性繊維を5〜80質量%、平均繊維径0.3〜1μmのマイクロガラス繊維を10〜50質量%、非熱融着性繊維を5〜80質量%を含有してなる上記(1)又は(2)記載の複合濾材、
(4)JIS B9927に規定される撥水性が1kPa以上である上記(1)〜(3)のいずれかに記載の複合濾材、
(5)少なくとも上流側濾材層が撥水性化合物を含有している上記(4)記載の複合濾材。
(1) A composite filter medium composed of two layers of an upstream filter medium layer and a downstream filter medium layer, and the melting point measured by differential scanning calorimetry (DSC) in both the upstream filter medium layer and the downstream filter medium layer Including a heat-fusible fiber having a temperature of 50 to 170 ° C., wherein at least the downstream filter medium layer contains a heat-fusible fiber and a micro glass fiber having an average fiber diameter of 0.1 to 1 μm. Glass fiber or a composite filter medium in which at least a part of the heat-fusible fibers are heat-sealed,
(2) The downstream filter medium layer is 5 to 80% by mass of heat-fusible fiber, 10 to 50% by mass of micro glass fiber having an average fiber diameter of 0.1 to 1 μm, and 5 to 80 of non-heat-fusible fiber. The composite filter medium according to the above (1), comprising:
(3) The upstream filter medium layer is 5 to 80% by mass of the heat-fusible fiber, 10 to 50% by mass of the micro glass fiber having an average fiber diameter of 0.3 to 1 μm, and 5 to 80 of the non-heat-fusible fiber. The composite filter medium according to (1) or (2), wherein the composite filter medium comprises:
(4) The composite filter medium according to any one of (1) to (3), wherein the water repellency specified in JIS B9927 is 1 kPa or more,
(5) The composite filter medium according to (4), wherein at least the upstream filter medium layer contains a water-repellent compound.

(6)上記(1)〜(4)のいずれか記載の複合濾材を製造する方法であって、複数の抄紙ヘッドを有するコンビネーション湿式抄紙機を用いて、上流側濾材層の湿紙ウェブと下流側濾材層の湿紙ウェブとからなる積層ウェブを形成した後に、該積層ウェブを加圧しながら、熱融着性繊維の融点より10℃以上高い表面温度の熱ロールに密着させて上流側濾材層と下流側濾材層を一体化させた後に、乾燥させてなる複合濾材の製造方法、
(7)上記(5)記載の複合濾材を製造する方法であって、複数の抄紙ヘッドを有するコンビネーション湿式抄紙機において、2層の湿紙ウェブを形成した後に、該ウェブを加圧しながら熱融着性繊維の融点よりも10℃以上高い表面温度に設定した熱ロールに密着させて一体化させ乾燥した後に、少なくとも上流側濾材層に撥水性化合物を付与する複合濾材の製造方法、
(8)上記(5)記載の複合濾材を製造する方法であって、複数の抄紙ヘッドを有するコンビネーション湿式抄紙機を用いて、少なくとも上流側濾材層の原料スラリー中に撥水性化合物を内添し、上流側濾材層の湿紙ウェブと下流側濾材層の湿紙ウェブとからなる積層湿紙ウェブを形成した後に、該積層湿紙ウェブを加圧しながら、熱融着性繊維の融点より10℃以上高い表面温度の熱ロールに密着させて上流層と下流層を一体化させた後に、乾燥させてなる複合濾材の製造方法。
(6) A method for producing a composite filter medium according to any one of (1) to (4) above, wherein a wet paper web and a downstream filter medium layer are formed using a combination wet paper machine having a plurality of papermaking heads. After forming the laminated web composed of the wet filter web of the side filter medium layer, the upstream filter medium layer is brought into close contact with a hot roll having a surface temperature higher than the melting point of the heat-fusible fiber by 10 ° C. or higher while pressing the laminated web. And a method for producing a composite filter medium obtained by integrating the downstream filter medium layer and then drying,
(7) A method for producing a composite filter medium as described in (5) above, wherein in a combination wet paper machine having a plurality of papermaking heads, a two-layer wet paper web is formed, and then heat fusion is performed while pressing the web. A method for producing a composite filter medium, wherein the water-repellent compound is imparted to at least the upstream filter medium layer, after being adhered to and integrated with a heat roll set to a surface temperature higher by 10 ° C. or higher than the melting point of the adhesive fiber, and drying.
(8) A method for producing a composite filter medium as described in (5) above, wherein a water-repellent compound is internally added to at least the raw material slurry of the upstream filter medium layer using a combination wet paper machine having a plurality of papermaking heads. After forming the laminated wet paper web composed of the wet filter web of the upstream filter medium layer and the wet filter web of the downstream filter medium layer, the pressure is applied to the laminated wet paper web by 10 ° C. from the melting point of the heat-fusible fiber. A method for producing a composite filter medium, wherein the upstream layer and the downstream layer are integrated by being brought into close contact with a hot roll having a high surface temperature and then dried.

本発明の複合濾材は、上流側濾材層と下流側濾材層とが一体化された複合濾材である。少なくとも、下流側濾材層に平均繊維径0.1〜1μmのマイクロガラス繊維を含有させて、上流側濾材層で主に大粒径粉塵を、下流側濾材層で主に小粒径粉塵を、順次捕捉することにより、粉塵保持容量が多くなり、圧力損失も低くすることができる。   The composite filter medium of the present invention is a composite filter medium in which an upstream filter medium layer and a downstream filter medium layer are integrated. At least, the downstream filter medium layer contains micro glass fibers having an average fiber diameter of 0.1 to 1 μm, the upstream filter medium layer mainly contains large particle size dust, and the downstream filter medium layer mainly contains small particle size dust. By sequentially capturing, the dust holding capacity increases and the pressure loss can be reduced.

本発明の複合濾材は、両層に熱融着性繊維を含むことによって、耐折強さに富み、折り加工時や洗浄時にもガラス繊維の脱落が無く、破れたりすることがない。折り部の大きさが小さいミニプリーツ加工にも対応可能である。また、熱融着性繊維と他の繊維または、該熱融着性繊維同士の少なくとも一部が熱融着されているため、フィルタの洗浄時に使用される洗剤に熱融着部分が冒されることがなく、強度と繊維が形成したネットワーク構造を保持することができる。さらに、本発明の複合濾材は、焼却可能な熱融着性繊維を含有しており、場合によって焼却可能な非熱融着性繊維を含有していることから、使用後のフィルタは焼却によって減容することが可能であり、廃棄物の量を低減できる。   Since the composite filter medium of the present invention contains heat-fusible fibers in both layers, the composite filter medium has a high folding resistance, and the glass fibers do not fall off and are not torn during folding and washing. It can also be used for mini-pleating with small folds. Further, since at least a part of the heat-fusible fiber and other fibers or the heat-fusible fibers are heat-sealed, the heat-sealed part is affected by the detergent used for cleaning the filter. The network structure formed by the strength and the fibers can be maintained. Furthermore, since the composite filter medium of the present invention contains heat-fusible fibers that can be incinerated and contains non-heat-fusible fibers that can be incinerated in some cases, the filter after use is reduced by incineration. Can reduce the amount of waste.

本発明の複合濾材を製造する方法では、上流側濾材層の湿紙ウェブと下流側濾材層の湿紙ウェブをコンビネーション抄紙機で製造し、2層の湿紙ウェブを積層し、積層湿紙ウェブを加圧しながら、熱融着性繊維の融点より10℃以上高い表面温度の熱ロールに密着させて上流層と下流層を一体化させる。この製造方法によれば、熱融着性繊維の融着効果によって、各層内において繊維のネットワークが形成されると共に、両層間も融着させることができ、折り加工時に層間はく離等が起こりにくい、強度の高い複合濾材を得ることができる。   In the method for producing the composite filter medium of the present invention, the wet filter web of the upstream filter medium layer and the wet filter web of the downstream filter medium layer are manufactured by a combination paper machine, and the two layers of wet filter web are laminated, The upstream layer and the downstream layer are integrated by being in close contact with a hot roll having a surface temperature higher by 10 ° C. or more than the melting point of the heat-fusible fiber. According to this manufacturing method, due to the fusion effect of the heat-fusible fiber, a fiber network is formed in each layer, and both layers can be fused, and delamination or the like hardly occurs during folding. A composite filter medium having high strength can be obtained.

本発明の複合濾材において、JIS B9927に規定される撥水性を1kPa以上とした複合濾材では、水分や塩分による濾材の性能低下を防止することができる。特に、少なくとも上流側濾材層に撥水性化合物を含有させることによって、上流側濾材層で水や塩分のフィルタへの侵入を効率的に抑制することができ、上流側濾材層と下流側濾材層の捕集効率の低下を防ぐことができる。また、濾材全体の空隙を塞ぐことなく、特に、平均繊維径0.1〜1μmのマイクロガラス繊維を含有させてなる下流側濾材層のミクロポアを塞ぐことがないため、高い捕集効率を維持することができる。   In the composite filter medium of the present invention, the composite filter medium having a water repellency specified in JIS B9927 of 1 kPa or more can prevent performance deterioration of the filter medium due to moisture and salt content. In particular, by including a water-repellent compound in at least the upstream filter medium layer, the upstream filter medium layer can effectively prevent water and salt from entering the filter, and the upstream filter medium layer and the downstream filter medium layer A decrease in collection efficiency can be prevented. In addition, it does not block the pores of the entire filter medium, and in particular, does not block the micropores in the downstream filter medium layer containing microglass fibers having an average fiber diameter of 0.1 to 1 μm, so that high collection efficiency is maintained. be able to.

本発明の複合濾材を製造する方法において、複合濾材の抄造時の上流側濾材層の原料スラリーに撥水性化合物を内添することで、特別な後加工処理やその製造装置を必要とせずに、高い撥水性を付与することが可能となる。   In the method for producing the composite filter medium of the present invention, by adding a water-repellent compound to the raw material slurry of the upstream filter medium layer at the time of making the composite filter medium, without requiring a special post-processing treatment or a production apparatus thereof, High water repellency can be imparted.

本発明の複合濾材は、上流側濾材層と下流側濾材層の両層に示差走査熱量分析(以下、DSCともいう)で測定した融点が50〜170℃である熱融着性繊維を含有させる。熱融着性繊維の融点は、好ましくは60〜140℃である。融点は、JIS K7121に準じて測定することができる。融点が50℃未満の場合、複合濾材が高温にさらされた場合に軟化して強度低下を招くことがあり、好ましくない。一方、170℃を超えた場合、熱融着機能を発現させるために、高温で加熱や乾燥をさせることが必要となり、多くのエネルギーが必要となることから好ましくない。   The composite filter medium of the present invention contains heat-fusible fibers whose melting point measured by differential scanning calorimetry (hereinafter also referred to as DSC) is 50 to 170 ° C. in both the upstream filter medium layer and the downstream filter medium layer. . The melting point of the heat-fusible fiber is preferably 60 to 140 ° C. The melting point can be measured according to JIS K7121. When the melting point is less than 50 ° C., the composite filter medium may be softened when exposed to high temperatures, leading to a decrease in strength, which is not preferable. On the other hand, when the temperature exceeds 170 ° C., it is necessary to heat or dry at a high temperature in order to develop the heat fusion function, which is not preferable because much energy is required.

本発明に係わる熱融着性繊維としては、単繊維のほか、芯鞘繊維(コアシェルタイプ)、並列繊維(サイドバイサイドタイプ)、放射状分割繊維などの複合繊維が挙げられる。複合繊維は、皮膜を形成しにくいので、複合濾材の空間を保持したまま、機械的強度を向上させることができる。熱融着性繊維としては、例えば、ポリプロピレン繊維、ポリプロピレン(芯)とポリエチレン(鞘)の組み合わせ、ポリプロピレン(芯)とエチレンビニルアルコール(鞘)の組み合わせ、ポリプロピレン(芯)と酢酸ビニルアルコール(鞘)の組み合わせ、ポリプロピレン(芯)とポリエチレン(鞘)の組み合わせ、高融点ポリエステル(芯)と低融点ポリエステル(鞘)の組み合わせ等が挙げられる。また、ポリエチレン等の低融点樹脂のみで構成される単繊維(全融タイプ)や、ポリビニルアルコール系のような熱水可溶性バインダーは、複合濾材の乾燥工程で皮膜を形成し易いが、特性を阻害しない範囲で使用することができる。   Examples of the heat-fusible fiber according to the present invention include single fibers, and composite fibers such as core-sheath fibers (core-shell type), parallel fibers (side-by-side type), and radially divided fibers. Since the composite fiber hardly forms a film, the mechanical strength can be improved while maintaining the space of the composite filter medium. Examples of heat-fusible fibers include polypropylene fiber, a combination of polypropylene (core) and polyethylene (sheath), a combination of polypropylene (core) and ethylene vinyl alcohol (sheath), polypropylene (core) and vinyl acetate alcohol (sheath). , A combination of polypropylene (core) and polyethylene (sheath), a combination of high-melting polyester (core) and low-melting polyester (sheath), and the like. In addition, single fibers (fully fused type) composed only of low melting point resins such as polyethylene and hot water-soluble binders such as polyvinyl alcohols tend to form a film in the drying process of composite filter media, but they impede properties. Can be used in the range not to.

熱融着性繊維を含有させて、該熱融着性繊維の溶融温度以上に温度を上げる工程を組み入れることで、複合濾材がフィルタ加工される際の折り曲げに対する機械的強度が向上する。また、熱融着性繊維がネットワークを形成することにより、折り曲げに対する強度を発現するばかりでなく、複合濾材を構成する他の繊維とも均一なネットワークを構成することができ、強度を有しながら捕集効率が高い複合濾材となる。   By incorporating a heat-fusible fiber and incorporating a step of raising the temperature to a temperature higher than the melting temperature of the heat-fusible fiber, the mechanical strength against bending when the composite filter medium is filtered is improved. In addition, since the heat-fusible fiber forms a network, it not only exhibits strength against bending, but can also form a uniform network with other fibers constituting the composite filter medium, and has strength while capturing. It becomes a composite filter medium with high collection efficiency.

熱融着性繊維の含有量は、両層共に5〜80質量%が好ましく、より好ましくは10〜70質量%、さらに好ましくは20〜60質量%である。熱融着性繊維の含有量が5質量%より少ないと、複合濾材のはく離強さ、耐折強さが不足し、折り加工時に層間はく離が生じたり、折り部に膨れが生じて、構造圧損を高めてしまったり、亀裂が生じたりすることがある。また、80質量%を超えてしまうと、複合濾材が緻密になって圧力損失が高まり、フィルタ寿命が短くなる場合がある。   The content of the heat-fusible fiber is preferably 5 to 80% by mass in both layers, more preferably 10 to 70% by mass, and still more preferably 20 to 60% by mass. If the content of the heat-fusible fiber is less than 5% by mass, the peel strength and folding resistance of the composite filter medium will be insufficient, causing delamination at the time of folding, and swelling at the folded portion, resulting in structural pressure loss. May increase or cracks may occur. Moreover, when it exceeds 80 mass%, a composite filter medium will become dense, pressure loss will increase, and a filter lifetime may become short.

熱融着性繊維の繊維径は特に限定されないが、3〜25μmであることが好ましく、より好ましくは5〜20μmである。繊維径が3μm未満では複合濾材の圧力損失が高くなり、フィルタの寿命が短くなる傾向がある。また、繊維径が25μmを超えると、複合濾材の圧力損失は低くなるものの、ネットワークの空隙が大きくなるために、抄造時に抄紙ワイヤーから複合濾材を構成する他の繊維(例えば、マイクロガラス繊維)の抜けが多くなり、捕集効率が低下してしまうことがある。また、融着する比表面積が少なくなり、複合濾材の耐折強さやはく離強さ等の強度が向上しにくくなることがある。   Although the fiber diameter of a heat-fusible fiber is not specifically limited, It is preferable that it is 3-25 micrometers, More preferably, it is 5-20 micrometers. When the fiber diameter is less than 3 μm, the pressure loss of the composite filter medium increases, and the filter life tends to be shortened. Also, when the fiber diameter exceeds 25 μm, the pressure loss of the composite filter medium is reduced, but the voids of the network increase, so that other fibers (for example, micro glass fibers) constituting the composite filter medium from the papermaking wire at the time of papermaking There are cases where the number of omissions increases and the collection efficiency decreases. In addition, the specific surface area to be fused is reduced, and it may be difficult to improve the strength of the composite filter medium such as folding strength and peel strength.

耐折強さを高めるためには、熱融着性繊維の繊維長を2〜15mmにすることが好ましく、より好ましくは3〜10mmである。繊維長が2mm未満の場合、熱融着性繊維の単独繊維に交差する繊維の本数が少ないことから、フィルタユニット製造時のプリーツ加工等の折り加工における衝撃で、融着している繊維交点が外れたり、繊維が脱落したりする可能性がある。一方、15mmを超えた場合、抄造前の繊維分散性が悪く、結果として地合の悪い濾材となり、マイクロガラス繊維の歩留まりを悪化させてしまう場合がある。   In order to increase the bending resistance, the fiber length of the heat-fusible fiber is preferably 2 to 15 mm, more preferably 3 to 10 mm. When the fiber length is less than 2 mm, since the number of fibers intersecting with the single fiber of the heat-fusible fiber is small, the fiber intersection that is fused by the impact in the folding process such as pleating at the time of manufacturing the filter unit is It may come off or the fibers may fall off. On the other hand, when it exceeds 15 mm, the fiber dispersibility before papermaking is poor, and as a result, the filter medium is poorly formed, and the yield of micro glass fibers may be deteriorated.

本発明に係わるマイクロガラス繊維は、捕集効率を決定づける繊維の一つである。下流側濾材層では、平均繊維径0.1〜1μmのマイクロガラス繊維を使用することが必須である。平均繊維径が1μmを超える場合、捕集効率を向上させる効果が少なくなる。また、平均繊維径が0.1μm未満の場合、湿式抄紙の際、ワイヤーからのマイクロガラス繊維の流出が多く、非常に歩留まりが悪くなる。   The micro glass fiber according to the present invention is one of fibers that determine the collection efficiency. In the downstream filter medium layer, it is essential to use micro glass fibers having an average fiber diameter of 0.1 to 1 μm. When the average fiber diameter exceeds 1 μm, the effect of improving the collection efficiency is reduced. On the other hand, when the average fiber diameter is less than 0.1 μm, the micro glass fiber flows out from the wire during wet papermaking, resulting in a very poor yield.

平均繊維径0.1〜1μmのマイクロガラス繊維の下流側濾材層に対する配合比率は、目的とする捕集効率になるように、配合率を変更できる。その配合率は10〜50質量%であり、好ましくは15〜40質量%である。   The mixing ratio can be changed so that the mixing ratio of the micro glass fibers having an average fiber diameter of 0.1 to 1 μm with respect to the downstream filter medium layer becomes the target collection efficiency. The blending ratio is 10 to 50% by mass, preferably 15 to 40% by mass.

上流側濾材層では、高性能エアフィルタ濾材として用いる場合、平均繊維径0.3〜1μmのマイクロガラス繊維を使用するのが好ましい。平均繊維径が1μmを超える場合、捕集効率を向上させる効果が少なくなることがある。また、平均繊維径が0.3μm未満の場合、濾材層の空隙が小さくなり、表面濾過機構となり、フィルタ寿命が短くなってしまうことがある。高性能エアフィルタ濾材の場合、上流側濾材層では、平均繊維径0.3〜1μmのマイクロガラス繊維を10〜50質量%、より好ましくは、10〜40質量%配合していることが好ましい。   In the upstream filter medium layer, when used as a high-performance air filter medium, it is preferable to use micro glass fibers having an average fiber diameter of 0.3 to 1 μm. When the average fiber diameter exceeds 1 μm, the effect of improving the collection efficiency may be reduced. In addition, when the average fiber diameter is less than 0.3 μm, the gap of the filter medium layer becomes small, and a surface filtration mechanism is formed, which may shorten the filter life. In the case of a high-performance air filter medium, the upstream filter medium layer preferably contains 10 to 50% by mass, more preferably 10 to 40% by mass of microglass fibers having an average fiber diameter of 0.3 to 1 μm.

今後ますます問題視されつつある環境問題に対して不燃ゴミを減量するために、複合濾材の上流側濾材層及び下流側濾材層中に配合するマイクロガラス繊維の配合比率は50質量%以下が好ましく、より好ましくは40質量%以下である。50質量%を超えた場合、ガラス繊維は不燃性であるため、焼却減容の効果が少ない。   In order to reduce the amount of incombustible waste in response to environmental problems that are becoming increasingly problematic in the future, the mixing ratio of the micro glass fibers to be mixed in the upstream filter medium layer and the downstream filter medium layer of the composite filter medium is preferably 50% by mass or less. More preferably, it is 40 mass% or less. When it exceeds 50 mass%, since the glass fiber is nonflammable, the effect of volume reduction by incineration is small.

マイクロガラス繊維の素材は、一般的なボロシリケート系の他に、よりシリカの純度の高い石英ガラスも使用できる。一般的なボロシリケート系の場合、半導体産業などで使用された場合、微量の酸やアルカリとの接触によって、ガラス繊維表面が侵食され、微量の金属(B-、Na+など)が発生することが問題視されている。酸化硼素含有量が極めて少ないマイクロガラス繊維を使用した場合には、半導体製造工程での酸やアルカリによる劣化の問題もないことから、クリーンルーム用フィルタにも適用することができる。 As a material of the micro glass fiber, quartz glass having higher silica purity can be used in addition to a general borosilicate system. For a typical borosilicate based, when used in a semiconductor industry, by contact with traces of acid and alkali, eroded glass fiber surface, traces of metal (B -, Na +, etc.) that occur Is regarded as a problem. When micro glass fiber having an extremely low boron oxide content is used, there is no problem of deterioration due to acid or alkali in the semiconductor manufacturing process, and therefore, it can be applied to a clean room filter.

熱融着性繊維とマイクロガラス繊維のみで構成しても本発明の複合濾材は得られるが、熱融着性を持たない非熱融着性繊維を、上流側濾材層及び/又は下流側濾材層に配合することにより、マイクロガラス繊維と熱融着性繊維のネットワークをさらに均一にすることができる。抄紙機の繊維分散工程において、全繊維がパルパーの攪拌装置で水に分散されることにより、各繊維がランダムに配置され、その後の抄紙ワイヤー部で脱水されてウェブを形成する。ウェブを形成する段階で非熱融着性繊維が熱融着性繊維同士又は熱融着性繊維とマイクロガラス繊維との間に配置されることにより、これらの繊維と空隙を形成しつつ、程良く絡み合い、良好な三次元ネットワークを形成する。ゆえに、均一な地合となり、捕集性能を保持しつつ、適当な空間保持によって通気性を確保することができ、適正な圧力損失を得ることができる。上流側濾材層に非熱融着性繊維を配合する場合、その配合量は5〜80質量%が好ましい。下流側濾材層に非熱融着性繊維を配合する場合、その配合量は5〜80質量%が好ましい。   The composite filter medium of the present invention can be obtained even if it is composed of only the heat-fusible fiber and the micro glass fiber, but the non-heat-fusible fiber having no heat-fusible property is used as the upstream filter medium layer and / or the downstream filter medium. By mix | blending in a layer, the network of a micro glass fiber and a heat-fusible fiber can be made further uniform. In the fiber dispersion process of the paper machine, all the fibers are dispersed in water by a pulper stirring device, whereby each fiber is randomly arranged and dehydrated in the subsequent paper making wire portion to form a web. In the step of forming the web, the non-heat-bondable fibers are arranged between the heat-bondable fibers or between the heat-bondable fibers and the micro glass fibers, thereby forming gaps with these fibers. Tangle well and form a good 3D network. Therefore, it becomes uniform formation, air permeability can be ensured by maintaining appropriate space while maintaining the collection performance, and appropriate pressure loss can be obtained. When mix | blending non-heat-fusion fiber with an upstream filter medium layer, the compounding quantity has preferable 5-80 mass%. When mix | blending a non-heat-fusion fiber with a downstream filter medium layer, 5-80 mass% of the compounding quantity is preferable.

本発明において、非熱融着性繊維としては、繊維径1〜20μmの有機繊維を好適に用いることができる。具体的には、皮膜の少ない麻パルプ、コットンリンター、リント、また、再生繊維としては、リヨセル繊維、レーヨン、キュプラが、半合成繊維としては、アセテート、トリアセテート、プロミックスが、合成繊維としては、ポリオレフィン系、ポリアミド系、ポリアクリル系、ビニロン系、ビニリデン、ポリ塩化ビニル、ポリエステル系、ナイロン系、ポリオレフィン系、ベンゾエート、ポリクラール、フェノール系などの繊維が挙げられる。上記の繊維の他に、植物繊維として、針葉樹パルプ、広葉樹パルプなどの木材パルプや藁パルプ、竹パルプ、ケナフパルプなどの木本類、草本類を使用することもできる。これらの繊維は、通液性、通気性を阻害しない範囲であれば、フィブリル化されていてもなんら差し支えない。さらに、古紙、損紙などから得られるパルプ繊維等も使用することができる。また、断面形状がT型、Y型、三角等の異形断面を有する繊維も通気性、通液性確保のために含有できる。また、本発明の複合濾材に含有される非熱融着性繊維には、複合濾材へ新たな機能を付加するといった側面もある。例えば、高強度ポリビニルアルコール繊維などの剛性の高い繊維を非熱融着性繊維の一部として使用することにより、複合濾材全体の剛性が増し、よりプリーツ加工性に優れた複合濾材となる。また、難燃性繊維を使用することにより、難燃剤の付与といった後加工をすることなく、難燃性を持った複合濾材となる。   In the present invention, an organic fiber having a fiber diameter of 1 to 20 μm can be suitably used as the non-heat-bondable fiber. Specifically, hemp pulp, cotton linter, lint with less film, lyocell fiber, rayon, cupra as regenerated fiber, acetate, triacetate, promix as synthetic fiber, as synthetic fiber, Examples thereof include polyolefin-based, polyamide-based, polyacrylic-based, vinylon-based, vinylidene, polyvinyl chloride, polyester-based, nylon-based, polyolefin-based, benzoate, polyclar, and phenol-based fibers. In addition to the above-mentioned fibers, wood fibers such as conifer pulp and hardwood pulp, woods such as bamboo pulp, bamboo pulp, kenaf pulp, and herbs can be used as plant fibers. These fibers may be fibrillated as long as they do not impair liquid permeability and air permeability. Furthermore, pulp fibers obtained from waste paper, waste paper, and the like can also be used. Further, fibers having an irregular cross section such as a T-shape, Y-shape, or triangle can be included for ensuring air permeability and liquid permeability. Further, the non-heat-fusible fiber contained in the composite filter medium of the present invention also has an aspect of adding a new function to the composite filter medium. For example, by using a highly rigid fiber such as a high-strength polyvinyl alcohol fiber as a part of the non-heat-fusible fiber, the rigidity of the entire composite filter medium is increased, and a composite filter medium with more excellent pleatability is obtained. Moreover, by using a flame-retardant fiber, a composite filter medium having flame retardancy can be obtained without post-processing such as application of a flame retardant.

本発明の複合濾材の厚みは特に限定しないが、100〜800μmであることが好ましく、より好ましくは200〜500μmである。100μm未満では複合濾材の堅さが不足し、良好なプリーツ加工が出来ない場合がある。一方、800μmを超えると、プリーツ加工は可能ではあるが、フィルタユニット内の折られた複合濾材同士の空隙が少なくなり、構造圧力損失が高まり、結果として寿命が短いフィルタとなることがある。本発明の複合濾材の坪量は特に限定しないが、フィルタに加工する際の強度や必要な濾材面積を考慮すると、20〜150g/m2が好ましく、より好ましくは、50〜120g/m2である。 Although the thickness of the composite filter medium of this invention is not specifically limited, It is preferable that it is 100-800 micrometers, More preferably, it is 200-500 micrometers. If it is less than 100 μm, the composite filter medium may not be sufficiently firm, and good pleating may not be possible. On the other hand, if the thickness exceeds 800 μm, pleating is possible, but the gap between the folded composite filter media in the filter unit is reduced, the structural pressure loss is increased, and as a result, the filter may have a short life. Although the basic weight of the composite filter medium of the present invention is not particularly limited, it is preferably 20 to 150 g / m 2 , more preferably 50 to 120 g / m 2 in consideration of strength when processing into a filter and a necessary filter medium area. is there.

上流側濾材層の坪量は10〜120g/m2が好ましく、より好ましくは、20〜100g/m2である。また、下流側濾材層の坪量は5〜80g/m2が好ましく、より好ましくは、10〜50g/m2である。また、上流側濾材層の厚みは100〜600μmが好ましく、より好ましくは100〜400μmである。また、下流側濾材層の厚みは20〜300μmが好ましく、より好ましくは、30〜200g/m2である。 The basis weight of the upstream filter medium layer is preferably 10 to 120 g / m 2 , more preferably 20 to 100 g / m 2 . Moreover, 5-80 g / m < 2 > is preferable and, as for the basic weight of a downstream filter medium layer, More preferably, it is 10-50 g / m < 2 >. Further, the thickness of the upstream filter medium layer is preferably 100 to 600 μm, more preferably 100 to 400 μm. Moreover, 20-300 micrometers is preferable and, as for the thickness of a downstream filter medium layer, More preferably, it is 30-200 g / m < 2 >.

本発明の複合濾材は、JIS P8115のMIT試験機による耐折強さが1.0以上であることが好ましい。本発明の複合濾材は、折り加工(プリーツ加工)する際に、濾材に折り機の刃を押しつけて折り目を付けたり、凹凸のロール間を通過させて折り目を付けた後に、機械又は手で折りたたみ加工される。耐折強さが1.0未満の場合、濾材に亀裂が発生したり、フィルタ完成後の風圧により破れることがある。また、フィルタを洗浄して再使用する場合、洗浄時の衝撃で濾材が破損する場合がある。   The composite filter medium of the present invention preferably has a bending strength of 1.0 or more according to JIS P8115 MIT testing machine. When the composite filter medium of the present invention is folded (pleated), the blade of the folding machine is pressed against the filter medium to make a crease, or the fold is made by passing between uneven rolls and then folded by a machine or by hand. Processed. If the folding strength is less than 1.0, the filter medium may crack or be broken by the wind pressure after the filter is completed. In addition, when the filter is washed and reused, the filter medium may be damaged by the impact during washing.

本発明の複合濾材は、一般紙や湿式不織布を製造するための抄紙機、例えば、長網抄紙機、円網抄紙機、傾斜ワイヤー式抄紙機等、これらの抄紙機が同種または異種の2機以上がオンラインで設置されているコンビネーション抄紙機などにより製造される。その際、積層方法は各々の抄紙機で抄きあげた湿紙ウェブを積層する抄き合わせや、一方の湿紙ウェブを形成したあとに、この湿紙ウェブの上に繊維を分散した原料スラリーを流して複合濾材を形成する方法でも良い。また、乾燥したウェブの上に、繊維を分散した原料スラリーを流して複合濾材を形成する方法でも良い。   The composite filter medium of the present invention is a paper machine for producing general paper or wet nonwoven fabric, for example, a long net paper machine, a circular net paper machine, an inclined wire type paper machine, etc. The above is manufactured by a combination paper machine installed online. At that time, the laminating method is a raw material slurry in which fibers are dispersed on the wet paper web after the wet paper web formed by each paper machine is laminated or after forming one wet paper web. May be used to form a composite filter medium. Moreover, the method of flowing the raw material slurry which disperse | distributed the fiber on the dry web and forming a composite filter medium may be used.

これらの抄紙機で抄造された湿紙ウェブは、加熱乾燥され、湿紙ウェブに含有される熱融着性繊維により、複合濾材が形成される。加熱乾燥の手段としては、シリンダードライヤー、エアドライヤー、サクションドラム式ドライヤー、赤外方式ドライヤーなどの方式を用いることができるが、熱融着性繊維を効率よく融着させ、より高い強度が得られる方式として、シリンダードライヤーによる加熱方式が好ましい。本発明の製造方法としては、上流側濾材層、下流側濾材層、それぞれを湿式抄造して湿紙ウェブを得た後、未乾燥状態において、該湿紙ウェブを加圧しながら、熱融着性繊維の融点+10℃以上の熱ロールに密着させ、熱融着性繊維の溶融成分を溶融させた後、自然冷却により固化することにより、一体化する。シリンダードライヤーによる加熱方法としては、熱ロールにタッチロールで加圧しながら、片面のみ接触させても良いし、フェルトに抱かれたシリンダードライヤー群の間に複合濾材を通過させて表裏を順次、熱ロールに接触させても良い。   The wet paper web produced by these paper machines is dried by heating, and a composite filter medium is formed by the heat-fusible fibers contained in the wet paper web. As a means for drying by heating, methods such as a cylinder dryer, an air dryer, a suction drum dryer, an infrared dryer, etc. can be used, but a heat-sealable fiber can be fused efficiently to obtain higher strength. As a method, a heating method using a cylinder dryer is preferable. As the production method of the present invention, the upstream filter media layer and the downstream filter media layer are wet-made to obtain a wet paper web, and then in the undried state, the wet paper web is pressurized and heat-fusible. It is made to unite by making it adhere to the hot roll of melting | fusing point of fiber +10 degreeC or more, fuse | melting the fusion | melting component of a heat-fusible fiber, and solidifying by natural cooling. As a heating method using a cylinder dryer, only one side may be brought into contact with a hot roll while being pressed with a touch roll, or a composite filter medium is passed between cylinder dryers held in a felt, and the front and back are sequentially heated. You may make it contact.

本発明の複合濾材は、JIS B9927に規定される撥水性が1kPa以上であることが好ましく、より好ましくは5kPa以上である。MIL−STD−282に規定されるHEPA濾材の撥水性は508mmH2O(4.98kPa)以上とされているが、全てのHEPA濾材が準拠しているわけではない。しかしながら、必要十分な値として、MIL規格を参考にしたJIS B9927に規定される方法で撥水性を測定した場合、5kPa以上の値があれば十分な撥水性を持った濾材と言える。 The composite filter medium of the present invention preferably has a water repellency specified in JIS B9927 of 1 kPa or more, more preferably 5 kPa or more. The water repellency of the HEPA filter medium defined in MIL-STD-282 is 508 mmH 2 O (4.98 kPa) or more, but not all HEPA filter media comply. However, as a necessary and sufficient value, when the water repellency is measured by a method defined in JIS B9927 with reference to the MIL standard, a value of 5 kPa or more can be said to be a filter medium having sufficient water repellency.

本発明の複合濾材において、撥水性を1kPa以上とするには、少なくとも上流側濾材層に撥水性化合物を含有させる。撥水性化合物の含有量は、上流側濾材層を構成する繊維に対して、0.01〜10質量%が好ましく、より好ましくは0.1〜5質量%である。撥水性化合物の含有量が0.01質量%未満であると、撥水性が1kPa以上得られない場合があり、10質量%以上であると、撥水効果が過剰であり経済的に好ましくないばかりでなく、濾材のミクロポアを過剰に塞いでしまう事により捕集効率が低下する可能性がある。本発明の複合濾材において、複合濾材を使用する環境(温度・湿度等)があまり厳しくなかったり、通風する空気が高湿になる可能性が低い場合などは、上流側濾材層のみに撥水性化合物を含有させれば良いが、下流層側濾材層にも撥水性化合物を含有させることも可能である。   In the composite filter medium of the present invention, in order to make the water repellency 1 kPa or more, at least the upstream filter medium layer contains a water repellency compound. The content of the water repellent compound is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass with respect to the fibers constituting the upstream filter medium layer. When the content of the water-repellent compound is less than 0.01% by mass, the water repellency may not be obtained at 1 kPa or more. When the content is 10% by mass or more, the water-repellent effect is excessive and economically undesirable. In addition, there is a possibility that the collection efficiency is lowered by excessively blocking the micropores of the filter medium. In the composite filter medium of the present invention, when the environment (temperature, humidity, etc.) in which the composite filter medium is used is not so severe or the possibility that the air to be ventilated becomes high humidity is low, the water repellent compound only in the upstream filter medium layer However, it is also possible to contain a water-repellent compound in the downstream filter medium layer.

本発明の複合濾材において、撥水性化合物としては、例えば、シリコン系、フッ素系が用いられ、内添法で付与する場合は、ロジン系、強化ロジン系、アルキルケテンダイマー系、アルケニル無水コハク酸系などの製紙用サイズ剤を好適に用いることができる。   In the composite filter medium of the present invention, as the water-repellent compound, for example, silicon-based and fluorine-based compounds are used, and when imparted by an internal addition method, rosin-based, reinforced rosin-based, alkyl ketene dimer-based, alkenyl succinic anhydride-based A paper sizing agent such as can be suitably used.

本発明の複合濾材の製造方法において、撥水性の付与方法としては、濾材を抄造する前の原料スラリー中に撥水性化合物を添加する内添法と、抄紙後湿紙の状態又は乾燥後に含浸又は塗工によって撥水性化合物を付与し、乾燥させる外添法が挙げられる。本発明の複合濾材は、どちらの方法でも用いることができる。外添法において、含浸又は塗工方式は特に限定はしないが、サイズプレス方式、タブサイズプレス方式、スプレー方式、内添方式、グラビア塗工方式などの方法が挙げられる。   In the method for producing a composite filter medium of the present invention, as a method for imparting water repellency, an internal addition method in which a water-repellent compound is added to a raw material slurry before paper making of a filter medium, and a wet paper state after paper making or impregnation after drying or An external addition method in which a water-repellent compound is applied by coating and dried is exemplified. The composite filter medium of the present invention can be used by either method. In the external addition method, the impregnation or coating method is not particularly limited, and examples thereof include a size press method, a tab size press method, a spray method, an internal addition method, and a gravure coating method.

撥水性化合物の付与方法において、外添法は、含浸又は塗工から乾燥までの工程及びそれに伴う製造設備が必要であること、場合によっては抄紙乾燥して得られた濾材の性能を低下させる可能性がある。したがって、内添法が好ましい。また、フィルタの使用環境があまり厳しくなかったり、通風する空気が高湿になる可能性が低い場合などは、上流側濾材層のみに撥水性を付与すれば良く、2層から構成される本発明の複合濾材においては内添法が適している。また、外添法において、上流側濾材層のみに撥水性を付与するには、塗工工程において、上流側濾材層面側から撥水性化合物を供給すればよく、スプレー方式やグラビア塗工方式を用いることが好ましい。   In the method of applying a water repellent compound, the external addition method requires a process from impregnation or coating to drying and the accompanying production equipment, and in some cases, can reduce the performance of the filter medium obtained by papermaking. There is sex. Therefore, the internal addition method is preferable. In addition, when the use environment of the filter is not very severe or the possibility that the air to be ventilated is high in humidity is low, it is sufficient to provide water repellency only to the upstream filter medium layer. The internal addition method is suitable for these composite filter media. In addition, in the external addition method, in order to impart water repellency only to the upstream filter medium layer, the water repellent compound may be supplied from the upstream filter medium layer surface side in the coating process, and a spray method or a gravure coating method is used. It is preferable.

本発明の複合濾材には、必要に応じて複合濾材の特性を阻害しない範囲で、架橋剤、分散剤、歩留り向上剤、紙力剤、難燃剤、染料、樹脂などの添加剤を適宜配合することができる。これらの添加剤を付与する方法としては、撥水性化合物を付与するのと同様に、内添法や外添法を適宜選択して用いることができる。例えば、難燃剤を付与することによって、難燃性を持った複合濾材となる。本発明に用いられる難燃剤としては、安全面、環境面からノンハロゲン系難燃剤が好ましく、無機リン系、有機リン系、金属水酸化物などが挙げられる。   In the composite filter medium of the present invention, additives such as a cross-linking agent, a dispersant, a yield improver, a paper strength agent, a flame retardant, a dye, and a resin are appropriately blended as necessary, as long as the characteristics of the composite filter medium are not impaired. be able to. As a method for applying these additives, an internal addition method and an external addition method can be appropriately selected and used in the same manner as in the case of applying the water repellent compound. For example, by adding a flame retardant, a composite filter medium having flame retardancy is obtained. The flame retardant used in the present invention is preferably a halogen-free flame retardant from the viewpoint of safety and environment, and examples thereof include inorganic phosphorus, organic phosphorus, and metal hydroxides.

また、機械的強度、耐水性を付与するために熱可塑性樹脂、熱硬化性樹脂を含有させることができる。このような樹脂としては、例えば、アクリル系、酢酸ビニル系、エポキシ系、合成ゴム系、ウレタン系、ポリエステル系、塩化ビニリデン系などのラテックス、ポリビニルアルコール、澱粉、フェノール樹脂などが挙げられ、これらは単独または2種類以上を併用することができる。複合濾材に含有せしめる熱可塑性樹脂の量としては、複合濾材に対して0.01〜10質量%が適当である。10質量%を超えると複合濾材の圧力損失が大きくなる。また、0.01質量%未満では、熱可塑性樹脂を含有しない複合濾材と比較して、機械的強度や耐水性が向上しない場合がある。   Moreover, in order to provide mechanical strength and water resistance, a thermoplastic resin and a thermosetting resin can be contained. Examples of such resins include latexes such as acrylic, vinyl acetate, epoxy, synthetic rubber, urethane, polyester, and vinylidene chloride, polyvinyl alcohol, starch, and phenol resin. These can be used alone or in combination of two or more. The amount of the thermoplastic resin to be contained in the composite filter medium is suitably 0.01 to 10% by mass with respect to the composite filter medium. If it exceeds 10% by mass, the pressure loss of the composite filter medium increases. Moreover, if it is less than 0.01 mass%, compared with the composite filter medium which does not contain a thermoplastic resin, mechanical strength and water resistance may not improve.

また、さらにフィルタ寿命を延ばすために、必要に応じて3層構造以上の複合濾材にするために、スパンボンド、ケミカルボンド、メルトブロー等の乾式法で製造した不織布と抄紙機で製造した本発明の二層構造の複合濾材とを、抄紙機で積層しても良いし、別途加工機を用いて積層しても良い。その場合、本発明の複合濾材の上流側濾材層面に、乾式法で製造した不織布を積層することが好ましい。   Further, in order to further extend the filter life, in order to obtain a composite filter medium having a three-layer structure or more as necessary, the nonwoven fabric manufactured by a dry method such as spunbond, chemical bond, melt blow, etc. and the paper machine manufactured according to the present invention. The composite filter medium having a two-layer structure may be laminated with a paper machine, or may be laminated with a separate processing machine. In that case, it is preferable to laminate the nonwoven fabric manufactured by the dry method on the upstream filter medium layer surface of the composite filter medium of the present invention.

以下、本発明を実施例を挙げて本発明を具体的に説明するが、本発明は本実施例に限定されるものではない。まず、熱融着性繊維の融点の測定方法と濾材の評価方法を示す。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the examples. First, a method for measuring the melting point of the heat-fusible fiber and a method for evaluating the filter medium will be described.

熱融着性繊維の融点の測定方法
<熱融着性繊維の融点(単位:℃)>
熱融着性繊維の融点は、PERKIN ELMER社製示差走査熱分析装置DSC7を用いて測定した。測定は、25〜300℃まで、毎分10℃の昇温条件で測定した。
Measuring method of melting point of heat-fusible fiber < Melting point of heat-fusible fiber (unit: ° C.)>
The melting point of the heat-fusible fiber was measured using a differential scanning calorimeter DSC7 manufactured by PERKIN ELMER. The measurement was performed under a temperature rising condition of 10 ° C./min up to 25 to 300 ° C.

濾材の評価方法
<圧力損失(単位:Pa)>
JIS B9908に準じて、面風速5.3cm/秒の条件で測定した。
Evaluation method of filter medium <pressure loss (unit: Pa)>
According to JIS B9908, it measured on the conditions of the surface wind speed of 5.3 cm / sec.

<粒子捕集効率(単位:%)>
JIS B9908に準じて面風速5.3cm/秒の条件で測定した。測定対象粒子は、大気塵を使用して、粒子径0.3〜0.5μmの粒子についての捕集効率をパーティクルカウンター(商品名「KC−11」、リオン社製)を使用して測定した。
<Particle collection efficiency (unit:%)>
The surface wind speed was measured at 5.3 cm / sec in accordance with JIS B9908. The particles to be measured were measured using a particle counter (trade name “KC-11”, manufactured by Rion Co., Ltd.) for the collection efficiency of particles having a particle diameter of 0.3 to 0.5 μm using atmospheric dust. .

<耐折強さ>
濾材から幅15mm、長さ110mmの試験片を各10枚採取した。各試験片について、JISのP8115に規定される方法にて、MIT試験機を使用し、500g荷重で耐折回数を測定した。下記数式1より、得られた耐折回数の値から耐折強さを算出し、それぞれの濾材について、試験片10枚の平均値を比較した。
<Folding resistance>
Ten test pieces each having a width of 15 mm and a length of 110 mm were collected from the filter medium. For each test piece, the number of foldings was measured at a load of 500 g using a MIT tester by the method defined in JIS P8115. The folding strength was calculated from the obtained folding resistance value from the following mathematical formula 1, and the average value of 10 test pieces was compared for each filter medium.

(数1)
FE=log10N (1)
FE:耐折強さ
N:耐折回数
(Equation 1)
FE = log 10 N (1)
FE: Folding strength N: Folding resistance

<撥水性>
濾材から約100×100mm角の試験片3枚を採取し、JIS B9927に準じて、撥水性測定装置を用い、撥水性を測定し、その最小値を比較した。
<Water repellency>
Three test pieces of about 100 × 100 mm square were collected from the filter medium, measured for water repellency using a water repellency measuring device according to JIS B9927, and compared with the minimum values.

<粉塵保持量A(単位:g/m2)>
濾材を用いて濾材面積(30m2)になるようにフィルタを作製した。粉塵保持量測定器にて、粉塵:JIS15種、風量:56m3/分、粉塵濃度:70mg/m3の条件でフィルタ圧力損失が300Paになるまでの粉塵投入量を測定し、濾材の1m2あたりの粉塵保持量を算出した。
<Dust retention amount A (unit: g / m 2 )>
A filter was prepared using a filter medium so as to have a filter medium area (30 m 2 ). Using a dust retention meter, measure the dust input until the filter pressure loss reaches 300 Pa under the conditions of dust: JIS 15 types, air volume: 56 m 3 / min, dust concentration: 70 mg / m 3 , and 1 m 2 of filter medium The dust holding amount per unit was calculated.

<粉塵保持量B(単位:g/m2)>
濾材を用いて濾材面積(30m2)になるようにフィルタを作製した。粉塵保持量測定器にて、粉塵:JIS15種、風量:70m3/分、粉塵濃度:70mg/m3の条件でフィルタ圧力損失が1000Paになるまでの粉塵投入量を測定し、濾材の1m2あたりの粉塵保持量を算出した。
<Dust retention amount B (unit: g / m 2 )>
A filter was prepared using a filter medium so as to have a filter medium area (30 m 2 ). Using a dust retention meter, measure the dust input until the filter pressure loss reaches 1000 Pa under the conditions of dust: JIS 15 types, air volume: 70 m 3 / min, dust concentration: 70 mg / m 3 , and 1 m 2 of filter medium The dust holding amount per unit was calculated.

<焼却後の灰分>
焼却後の灰分(%)は、濾材を900℃の電気炉で2時間加熱焼却させる前後の重量から下記式より算出した。
灰分=(焼却後の濾材の重量/焼却前の濾材の重量)×100
<Ashes after incineration>
The ash content (%) after incineration was calculated from the following formula from the weight before and after the filter medium was incinerated by heating in a 900 ° C. electric furnace for 2 hours.
Ash content = (weight of filter medium after incineration / weight of filter medium before incineration) × 100

<繊維>
実施例及び比較例で使用した繊維を表1に示した。
<Fiber>
The fibers used in Examples and Comparative Examples are shown in Table 1.

Figure 2007144415
Figure 2007144415

実施例1
2m3の分散タンクに水を投入後、繊維M1、繊維N1を各々50:50の比率で配合し、分散濃度0.2%で5分間分散して上流側濾材層用繊維分散液を調製した。
Example 1
After pouring water into a 2 m 3 dispersion tank, fiber M1 and fiber N1 were blended in a ratio of 50:50, respectively, and dispersed for 5 minutes at a dispersion concentration of 0.2% to prepare a fiber dispersion for upstream filter media layer. .

次いで別の2m3の分散タンクに水を投入後、繊維M1、繊維N1、繊維G1を各々50:20:30の比率で配合し、分散濃度0.2%で5分間分散して下流側濾材層用繊維分散液を調製した。 Next, after adding water to another 2 m 3 dispersion tank, fibers M1, fibers N1, and fibers G1 are blended at a ratio of 50:20:30, and dispersed at a dispersion concentration of 0.2% for 5 minutes to be downstream filter media. A layer fiber dispersion was prepared.

長網抄紙機と円網抄紙機がオンラインで設置されているコンビネーション抄紙機を用いて、上流側濾材層を長網抄紙機で乾燥重量40g/m2になるようにウェブを形成し、下流側濾材層を円網抄紙機で乾燥重量20g/m2になるようにウェブを形成して両ウェブを乾燥させる前に抄き合わせた後に、表面温度130℃のシリンダードライヤーでタッチロールを400N/cm2の圧力で加圧しながら乾燥及び一体化し、複合濾材1を得た。 Using a combination paper machine in which a long net paper machine and a circular net paper machine are installed online, a web is formed with a long net paper machine so that the upstream filter media layer has a dry weight of 40 g / m 2 , and the downstream side After forming the web so that the filter medium layer has a dry weight of 20 g / m 2 with a circular paper machine and drying both webs, the touch roll is set to 400 N / cm with a cylinder dryer having a surface temperature of 130 ° C. Drying and integration were performed while applying pressure of 2 to obtain a composite filter medium 1.

実施例2
上流側濾材層と下流側濾材層の繊維配合を表2に示した配合に変更した以外は、実施例1と同様の方法で、上流側濾材層用繊維分散液及び下流側濾材層繊維分散液を得た。
Example 2
Except for changing the fiber composition of the upstream filter medium layer and the downstream filter medium layer to the composition shown in Table 2, the fiber dispersion for the upstream filter medium layer and the downstream filter medium layer fiber dispersion were the same as in Example 1. Got.

長網抄紙機と円網抄紙機がオンラインで設置されているコンビネーション抄紙機を用いて、上流側濾材層を長網抄紙機で乾燥重量40g/m2になるようにウェブを形成し、下流側濾材層を円網抄紙機で乾燥重量40g/m2になるようにウェブを形成して両ウェブを乾燥させる前に抄き合わせた後に、表面温度130℃のシリンダードライヤーでタッチロールを400N/cm2の圧力で加圧しながら乾燥及び一体化し、複合濾材2を得た。 Using a combination paper machine in which a long net paper machine and a circular net paper machine are installed online, a web is formed with a long net paper machine so that the upstream filter media layer has a dry weight of 40 g / m 2 , and the downstream side After forming the web so that the filter medium layer has a dry weight of 40 g / m 2 with a circular paper machine and combining both before drying, the touch roll is 400 N / cm with a cylinder dryer having a surface temperature of 130 ° C. While being pressurized at a pressure of 2 , drying and integration were performed to obtain a composite filter medium 2.

実施例3〜14
上流側濾材層と下流側濾材層の繊維配合を表2に示した配合に変更した以外は、実施例2と同様の方法で、複合濾材3〜14を得た。
Examples 3-14
Composite filter media 3 to 14 were obtained in the same manner as in Example 2 except that the fiber composition of the upstream filter medium layer and the downstream filter medium layer was changed to the composition shown in Table 2.

実施例15
上流側濾材層と下流側濾材層の繊維配合を表2に示した配合に変更した以外は、実施例2と同様の方法で、複合濾材15を得た。
Example 15
A composite filter medium 15 was obtained in the same manner as in Example 2, except that the fiber composition of the upstream filter medium layer and the downstream filter medium layer was changed to the composition shown in Table 2.

実施例16
上流側濾材層と下流側濾材層の繊維配合を表2に示した配合に変更した以外は、実施例1と同様の方法で、上流側濾材層用繊維分散液及び下流側濾材層繊維分散液を得た。
Example 16
Except for changing the fiber composition of the upstream filter medium layer and the downstream filter medium layer to the composition shown in Table 2, the fiber dispersion for the upstream filter medium layer and the downstream filter medium layer fiber dispersion were the same as in Example 1. Got.

長網抄紙機と円網抄紙機がオンラインで設置されているコンビネーション抄紙機を用いて、上流側濾材層を長網抄紙機で乾燥重量40g/m2になるようにウェブを形成し、下流側濾材層を円網抄紙機で乾燥重量40g/m2になるようにウェブを形成して両ウェブを乾燥させる前に抄き合わせた後に、表面温度160℃のシリンダードライヤーでタッチロールを400N/cm2の圧力で加圧しながら乾燥及び一体化し、複合濾材16を得た。 Using a combination paper machine in which a long net paper machine and a circular net paper machine are installed online, the upstream filter media layer is formed on the long net paper machine to a dry weight of 40 g / m 2 , and the downstream side After forming the web so that the filter medium layer has a dry weight of 40 g / m 2 with a circular paper machine and drying both webs, the touch roll is set to 400 N / cm with a cylinder dryer having a surface temperature of 160 ° C. While being pressurized at a pressure of 2 , it was dried and integrated to obtain a composite filter medium 16.

実施例17
上流側濾材層と下流側濾材層の繊維配合を表2に示した配合に変更した以外は、実施例1と同様の方法で、上流側濾材層用繊維分散液及び下流側濾材層繊維分散液を得た。
Example 17
Except for changing the fiber composition of the upstream filter medium layer and the downstream filter medium layer to the composition shown in Table 2, the fiber dispersion for the upstream filter medium layer and the downstream filter medium layer fiber dispersion were the same as in Example 1. Got.

長網抄紙機と円網抄紙機がオンラインで設置されているコンビネーション抄紙機を用いて、上流側濾材層を長網抄紙機で乾燥重量30g/m2になるようにウェブを形成し、下流側濾材層を円網抄紙機で乾燥重量70g/m2になるようにウェブを形成して両ウェブを乾燥させる前に抄き合わせた後に、表面温度130℃のシリンダードライヤーでタッチロールを400N/cm2の圧力で加圧しながら乾燥及び一体化し、複合濾材17を得た。 Using a combination paper machine in which a long net paper machine and a circular net paper machine are installed online, the upstream filter media layer is formed on the long net paper machine to a dry weight of 30 g / m 2 , and the downstream side After forming the web so that the filter medium layer has a dry weight of 70 g / m 2 with a circular paper machine and making the two webs dry together, the touch roll is 400 N / cm with a cylinder dryer having a surface temperature of 130 ° C. While being pressurized at a pressure of 2 , drying and integration were performed to obtain a composite filter medium 17.

実施例18〜20
上流側濾材層と下流側濾材層の繊維配合を表2に示した配合に変更した以外は、実施例1と同様の方法で、上流側濾材層用繊維分散液及び下流側濾材層繊維分散液を得た。
Examples 18-20
Except for changing the fiber composition of the upstream filter medium layer and the downstream filter medium layer to the composition shown in Table 2, the fiber dispersion for the upstream filter medium layer and the downstream filter medium layer fiber dispersion were the same as in Example 1. Got.

長網抄紙機と円網抄紙機がオンラインで設置されているコンビネーション抄紙機を用いて、上流側濾材層を長網抄紙機で乾燥重量30g/m2になるようにウェブを形成し、下流側濾材層を円網抄紙機で乾燥重量70g/m2になるようにウェブを形成して両ウェブを乾燥させる前に抄き合わせた後に、表面温度130℃のシリンダードライヤーでタッチロールを400N/cm2の圧力で加圧しながら乾燥及び一体化し、複合濾材18〜20を得た。 Using a combination paper machine in which a long net paper machine and a circular net paper machine are installed online, the upstream filter media layer is formed on the long net paper machine so that the dry weight is 30 g / m 2 , and the downstream side After forming the web so that the filter medium layer has a dry weight of 70 g / m 2 with a circular paper machine and making the two webs dry together, the touch roll is 400 N / cm with a cylinder dryer having a surface temperature of 130 ° C. The mixture was dried and integrated while applying pressure of 2 to obtain composite filter media 18-20.

Figure 2007144415
Figure 2007144415

(比較例1)
2m3の分散タンクに水を投入後、繊維G1、繊維G6を各々20:80の比率で配合し、分散濃度0.2%で5分間分散して濾材用繊維分散液を調製した。長網抄紙機で乾燥重量65g/m2になるように湿紙ウェブを形成した。この湿紙ウェブを乾燥させる前に、アクリル系ラテックス(商品名:ボンコートSFC54、大日本インキ化学工業社製)を固形で5g/m2付与し、熱風温度130℃のエアドライヤーで乾燥し、乾燥質量70g/m2の比較濾材1を得た。
(Comparative Example 1)
After pouring water into a 2 m 3 dispersion tank, fibers G1 and G6 were blended in a ratio of 20:80, respectively, and dispersed at a dispersion concentration of 0.2% for 5 minutes to prepare a fiber dispersion for filter media. A wet paper web was formed on a long paper machine to a dry weight of 65 g / m 2 . Before drying the wet paper web, 5 g / m 2 of an acrylic latex (trade name: Boncoat SFC54, manufactured by Dainippon Ink & Chemicals, Inc.) is applied in a solid form, dried with an air dryer having a hot air temperature of 130 ° C., and dried. A comparative filter medium 1 having a mass of 70 g / m 2 was obtained.

(比較例2)
2m3の分散タンクに水を投入後、繊維G1、繊維G2、繊維G6を各々20:20:60の比率で配合し、分散濃度0.2%で5分間分散して濾材用繊維分散液を調製した。長網抄紙機で乾燥重量70g/m2になるように湿紙ウェブを形成した。この湿紙ウェブを乾燥させる前に、アクリル系ラテックス(商品名:ボンコートSFC54、大日本インキ化学工業社製)を固形で5g/m2付与し、熱風温度130℃のエアドライヤーで乾燥し、乾燥質量75g/m2の比較濾材2を得た。
(Comparative Example 2)
After pouring water into a 2 m 3 dispersion tank, fiber G1, fiber G2, and fiber G6 are blended at a ratio of 20:20:60, and dispersed at a dispersion concentration of 0.2% for 5 minutes to obtain a fiber dispersion for filter media. Prepared. A wet paper web was formed on a long paper machine to a dry weight of 70 g / m 2 . Before drying the wet paper web, 5 g / m 2 of an acrylic latex (trade name: Boncoat SFC54, manufactured by Dainippon Ink & Chemicals, Inc.) is applied in a solid form, dried with an air dryer having a hot air temperature of 130 ° C., and dried. A comparative filter medium 2 having a mass of 75 g / m 2 was obtained.

(比較例3)
上流側濾材層と下流側濾材層の繊維配合を表3に示した配合に変更した以外は、実施例2と同様の方法で、比較複合濾材3を得た。比較複合濾材3は、上流側濾材層と下流側濾材層の両方が熱融着性繊維を含まない。
(Comparative Example 3)
Comparative composite filter medium 3 was obtained in the same manner as in Example 2 except that the fiber composition of the upstream filter medium layer and the downstream filter medium layer was changed to the composition shown in Table 3. In the comparative composite filter medium 3, both the upstream filter medium layer and the downstream filter medium layer do not contain heat-fusible fibers.

(比較例4)
上流側濾材層と下流側濾材層の繊維配合を表3に示した配合に変更した以外は、実施例2と同様の方法で、比較複合濾材4を得た。比較複合濾材4は、下流側濾材層のガラス繊維の平均繊維径が3μmである。
(Comparative Example 4)
A comparative composite filter medium 4 was obtained in the same manner as in Example 2, except that the fiber composition of the upstream filter medium layer and the downstream filter medium layer was changed to the composition shown in Table 3. In the comparative composite filter medium 4, the average fiber diameter of the glass fibers of the downstream filter medium layer is 3 μm.

Figure 2007144415
Figure 2007144415

複合濾材1〜20、比較濾材1〜2、及び比較複合濾材3〜4の評価結果を表4に示す。   Table 4 shows the evaluation results of the composite filter media 1-20, the comparative filter media 1-2, and the comparative composite filter media 3-4.

Figure 2007144415
Figure 2007144415

本発明の複合濾材1は、中性能エアフィルタに使用できるレベルの二層構造の複合濾材である。単層構造である比較濾材1と比べて、粉塵保持量Aが多く、フィルタの長寿命化に適していることがわかる。複合濾材1は、熱融着性繊維を配合していることから、耐折強さが高く、フィルタ加工時や加工後の風圧でも破れ等の問題がなかった。   The composite filter medium 1 of the present invention is a double-layer composite filter medium that can be used for a medium-performance air filter. Compared with the comparative filter medium 1 having a single-layer structure, the dust holding amount A is large, and it can be seen that it is suitable for extending the life of the filter. Since the composite filter medium 1 is blended with heat-fusible fibers, it has high folding strength, and there is no problem such as tearing at the time of filter processing or even after processing.

本発明の複合濾材2〜20は、高性能エアフィルタやHEPAフィルタに使用できるレベルの二層構造の複合濾材である。単層構造である比較濾材2と比べて、圧力損失が低く、粉塵保持量Bが多く、フィルタの長寿命化に適していることがわかる。また、下流層側濾材層に平均繊維径0.1〜1μmのマイクロガラス繊維を含有していない比較複合濾材4と比べて、本発明の複合濾材2〜20は、捕集効率が高かった。比較複合濾材4はHEPAフィルタとして使用できるレベルの捕集効率を達成していなかった。   The composite filter media 2 to 20 of the present invention are double-layer composite filter media that can be used for high-performance air filters and HEPA filters. Compared with the comparative filter medium 2 having a single-layer structure, the pressure loss is low, the amount of dust retained B is large, and it can be seen that it is suitable for extending the life of the filter. Moreover, compared with the comparative composite filter medium 4 which does not contain the micro glass fiber with an average fiber diameter of 0.1-1 micrometer in the downstream layer side filter medium layer, the composite filter media 2-20 of this invention had high collection efficiency. Comparative composite filter medium 4 did not achieve a level of collection efficiency that could be used as a HEPA filter.

本発明の複合濾材2〜20は、熱融着性繊維を配合していることから、耐折強さが高く、フィルタ加工時や加工後の風圧でも破れ等の問題がなかった。これに対し、比較複合濾材3は、二層構造であるが、上流側濾材層と下流側濾材層の両方に熱融着性繊維を含まないため、強度が足りず、フィルタユニットに加工することができなかった。   Since the composite filter media 2 to 20 of the present invention are blended with heat-fusible fibers, they have high bending resistance, and there are no problems such as tearing even during filter processing or even after processing. On the other hand, although the comparative composite filter medium 3 has a two-layer structure, both the upstream filter medium layer and the downstream filter medium layer do not contain heat-fusible fibers, so that the strength is insufficient and the filter medium is processed into a filter unit. I could not.

複合濾材5は、上流側濾材層の熱融着性繊維の含有量が5質量%未満である。また、複合濾材10は、下流側濾材層の熱融着性繊維の含有量が5質量%未満である。複合濾材5と複合濾材10は、フィルタ作製時のプリーツ加工において、膨れが発生している箇所があった。   In the composite filter medium 5, the content of the heat-fusible fiber in the upstream filter medium layer is less than 5% by mass. Moreover, as for the composite filter medium 10, content of the heat-fusible fiber of a downstream filter medium layer is less than 5 mass%. In the composite filter medium 5 and the composite filter medium 10, there was a portion where swelling occurred during pleating during filter production.

複合濾材15及び16は、複合濾材2とは異なった熱融着性繊維を使用している。比較濾材2と比較して、粉塵保持量も多く、フィルタの長寿命化に適していることがわかる。また、耐折強さも1.0以上であり、プリーツ加工時や加工後の風圧でも破れ等の問題がなかった。   The composite filter media 15 and 16 use heat-fusible fibers different from the composite filter media 2. Compared with the comparative filter medium 2, it can be seen that the amount of dust retained is large and is suitable for extending the life of the filter. Moreover, the bending strength was 1.0 or more, and there were no problems such as tearing even during pleating or after wind pressure after processing.

複合濾材4は、上流層側濾材層及び下流側濾材層の両方において、熱融着性繊維の含有量が5質量%であるため、複合濾材2及び複合濾材3よりも耐折強さが低くなったが、耐折強さは1.0以上を確保しており、プリーツ加工時や加工後の風圧でも破れ等の問題がなかった。   The composite filter medium 4 has a lower folding resistance than the composite filter medium 2 and the composite filter medium 3 because the content of the heat-fusible fiber is 5% by mass in both the upstream filter medium layer and the downstream filter medium layer. However, the folding strength was 1.0 or more, and there was no problem such as tearing even during pleating or after wind pressure after processing.

実施例21〜27
複合濾材1、2、3、4、15、16、20に、それぞれフッ素系撥水剤を固形で0.2g/m2サイズプレス装置で付与して乾燥させ、複合濾材21〜27を得た。
Examples 21-27
Each of the composite filter media 1, 2, 3, 4, 15, 16, and 20 was applied with a solid fluorine-based water repellent agent in a 0.2 g / m 2 size press and dried to obtain composite filter media 21 to 27. .

実施例28
複合濾材2の上流側濾材層から、スプレー塗工方式で、フッ素系撥水剤を固形で0.2g/m2付与して乾燥させ、複合濾材28を得た。
Example 28
From the upstream filter medium layer of the composite filter medium 2, 0.2 g / m 2 of a fluorinated water repellent was applied in a solid state by a spray coating method and dried to obtain a composite filter medium 28.

実施例29
上流側濾材層繊維分散液の調製時に、アルキルケテンダイマー系サイズ剤(商品名:AD1602、星光PMC社製)を対繊維1質量%添加したこと以外は、実施例1と同様にして、複合濾材29を得た。
Example 29
A composite filter medium was prepared in the same manner as in Example 1 except that 1% by mass of an alkyl ketene dimer sizing agent (trade name: AD1602, manufactured by Seiko PMC) was added at the time of preparation of the upstream filter medium layer fiber dispersion. 29 was obtained.

実施例30
上流側濾材層繊維分散液の調製時に、アルキルケテンダイマー系サイズ剤(商品名:AD1602、星光PMC社製)を対繊維1質量%添加し、下流側濾材層繊維分散液の調製時に、アルキルケテンダイマー系サイズ剤(商品名:AD1602、星光PMC社製)を対繊維1質量%添加した以外は、実施例1と同様にして、複合濾材30を得た。
Example 30
At the time of preparing the upstream filter medium layer fiber dispersion, 1% by mass of an alkyl ketene dimer sizing agent (trade name: AD1602, manufactured by Seiko PMC) was added to the fiber, and at the time of preparing the downstream filter medium layer fiber dispersion, A composite filter medium 30 was obtained in the same manner as in Example 1, except that 1% by mass of a dimer-based sizing agent (trade name: AD1602, manufactured by Seiko PMC) was added.

実施例31
上流側濾材層繊維分散液の調製時に、アルキルケテンダイマー系サイズ剤(商品名:AD1602、星光PMC社製)を対繊維1質量%添加したこと以外は、実施例2と同様にして、複合濾材31を得た。
Example 31
A composite filter medium was prepared in the same manner as in Example 2 except that 1% by mass of an alkyl ketene dimer sizing agent (trade name: AD1602, manufactured by Seiko PMC Co.) was added to the fiber at the time of preparation of the upstream filter medium layer fiber dispersion. 31 was obtained.

実施例32
上流層用繊維分散液のアルキルケテンダイマー系サイズ剤(商品名:AD1602、星光PMC社製)の添加量を対繊維0.2質量%に変えた以外は、実施例31と同様にして、複合濾材32を得た。
Example 32
The composite was carried out in the same manner as in Example 31 except that the addition amount of the alkyl ketene dimer sizing agent (trade name: AD1602, manufactured by Seiko PMC) of the fiber dispersion for the upstream layer was changed to 0.2% by mass with respect to the fiber. A filter medium 32 was obtained.

実施例33
上流層用繊維分散液のアルキルケテンダイマー系サイズ剤(商品名:AD1602、星光PMC社製)の添加量を対繊維10質量%に変えた以外は、実施例31と同様にして、複合濾材33を得た。
Example 33
A composite filter medium 33 was obtained in the same manner as in Example 31 except that the addition amount of the alkyl ketene dimer sizing agent (trade name: AD1602, manufactured by Seiko PMC) in the fiber dispersion for the upstream layer was changed to 10% by mass with respect to the fiber. Got.

(比較例5)
市販のガラス繊維製中性能エアフィルタ(単層濾材使用品、濾材面積:30m2)を比較濾材5として用いた。
(Comparative Example 5)
A commercially available glass fiber medium-performance air filter (a product using a single-layer filter medium, filter medium area: 30 m 2 ) was used as the comparative filter medium 5.

(比較例6)
ガラス繊維からなる濾材を使用した市販のガスタービン吸気用高性能エアフィルタ(濾材面積:30m2)を比較濾材6として用いた。
(Comparative Example 6)
A commercially available high performance air filter for gas turbine intake (filter medium area: 30 m 2 ) using a filter medium made of glass fiber was used as the comparative filter medium 6.

複合濾材21〜33、比較濾材5〜6の評価結果を表5に示す。   Table 5 shows the evaluation results of the composite filter media 21 to 33 and the comparative filter media 5 to 6.

Figure 2007144415
Figure 2007144415

撥水性化合物を付与した本発明の複合濾材21〜33は、付与していない複合濾材と比較して、高い撥水性を示し、撥水性を要求される用途に適していることが確認された。複合濾材21、29、30と比較濾材5を比べると、捕集効率、粉塵保持容A量ともに、本発明の複合濾材21、29、30の方が高く、中性能フィルタとして十分な値であった。複合濾材22〜28、31〜33と比較濾材6を比べると、捕集効率、粉塵保持容量Bともに、本発明の複合濾材22〜28、31〜33の方が高く、高性能フィルタとして十分な値であった。   It was confirmed that the composite filter media 21 to 33 of the present invention to which the water-repellent compound was added showed higher water repellency than the composite filter media to which the water-repellent compound was not applied and were suitable for applications requiring water repellency. Comparing the composite filter media 21, 29, and 30 with the comparative filter media 5, both the collection efficiency and the dust holding capacity A amount of the composite filter media 21, 29, and 30 of the present invention are higher, which is a sufficient value as a medium performance filter. It was. Comparing the composite filter media 22-28, 31-33 and the comparative filter media 6, both the collection efficiency and the dust holding capacity B are higher in the composite filter media 22-28, 31-33 of the present invention, which is sufficient as a high-performance filter. Value.

複合濾材1、2、3、4、15、16、20に対して、撥水性化合物を付与した複合濾材21〜27は、撥水性が向上した。複合濾材2に対してサイズプレスで撥水性化合物を付与した複合濾材22は、複合濾材2よりも捕集効率が若干低下しているが、複合濾材2に対してスプレー塗工方式で上流側濾材層に撥水性化合物を付与した複合濾材28は、複合濾材2と比較して、捕集効率が低下していないことが確認された。   With respect to the composite filter media 1, 2, 3, 4, 15, 16, and 20, the composite filter media 21 to 27 to which the water-repellent compound was added improved in water repellency. The composite filter medium 22 provided with a water-repellent compound by a size press with respect to the composite filter medium 2 has a slightly lower collection efficiency than the composite filter medium 2, but the upstream filter medium is applied to the composite filter medium 2 by a spray coating method. It was confirmed that the composite filter medium 28 provided with a water-repellent compound in the layer did not have a lower collection efficiency than the composite filter medium 2.

複合濾材29は、複合濾材1の上流側濾材層に内添法で撥水性化合物を付与している。サイズプレスで撥水性化合物を付与した複合濾材21と比較すると、余分なプレス工程を経ていないために、圧力損失が低く、捕集効率が高かった。複合濾材30は、複合濾材1において、上流側濾材層と下流側濾材層の両方に撥水性化合物を内添法で付与しているため、非常に高い撥水性を示している。また、複合濾材1と比較すると、捕集効率はやや低いものの、比較例1の市販の中性能フィルタと比較すると、捕集効率、粉塵保持容量Aとも十分な値であり、高い撥水性を要求される用途には非常に適している。   In the composite filter medium 29, a water repellent compound is imparted to the upstream filter medium layer of the composite filter medium 1 by an internal addition method. Compared with the composite filter medium 21 to which a water repellent compound was added by a size press, the pressure loss was low and the collection efficiency was high because an extra pressing process was not performed. The composite filter medium 30 exhibits a very high water repellency in the composite filter medium 1 because the water repellent compound is applied to both the upstream filter medium layer and the downstream filter medium layer by the internal addition method. Moreover, compared with the composite filter medium 1, the collection efficiency is slightly low, but compared with the commercially available medium performance filter of Comparative Example 1, both the collection efficiency and the dust holding capacity A are sufficient values, and high water repellency is required. Very suitable for the intended use.

複合濾材31は、複合濾材2の上流側濾材層に内添法で撥水性化合物を付与している。複合濾材32及び33も同様に複合濾材2の上流側濾材層に内添法で撥水性化合物を付与しているが、その量が複合濾材31と異なっている。複合濾材2にサイズプレスで撥水性化合物を付与した複合濾材22と比較すると、余分なプレス工程を経ていないために、複合濾材31〜33の圧力損失はわずかに低かった。複合濾材32は、複合濾材31と比較して、撥水性化合物の含有量が少ないため、撥水性が若干低下した。複合濾材33は、複合濾材31と比較して、撥水性化合物の含有量が多いため、撥水性が非常に高く、捕集効率の低下が確認された。   In the composite filter medium 31, a water repellent compound is imparted to the upstream filter medium layer of the composite filter medium 2 by an internal addition method. Similarly, the composite filter media 32 and 33 also apply a water-repellent compound to the upstream filter media layer of the composite filter media 2 by the internal addition method, but the amount is different from that of the composite filter media 31. Compared with the composite filter medium 22 in which the water-repellent compound was added to the composite filter medium 2 by a size press, the pressure loss of the composite filter medium 31 to 33 was slightly lower because an extra pressing process was not performed. Compared with the composite filter medium 31, the composite filter medium 32 has a low water repellency because the water-repellent compound content is small. Compared to the composite filter medium 31, the composite filter medium 33 has a high water repellency, and therefore has a very high water repellency, and a decrease in collection efficiency was confirmed.

本発明の複合濾材は、半導体、液晶、バイオ、医薬、食品工業のクリーンルームやクリーンベンチ等用のエアフィルタ、空調用エアフィルタ、空気清浄機用エアフィルタ、ガスタービンや蒸気タービンの吸気側に使用される空気又は気体中の粒子捕集に適した産業用エアフィルタ等に用いることができる。また、液体濾過用フィルタとしても使用可能である。   The composite filter medium of the present invention is used for air filters for semiconductor, liquid crystal, bio, pharmaceutical, food industry clean rooms and clean benches, air filters for air conditioning, air filters for air cleaners, gas turbines and steam turbines on the intake side It can be used for industrial air filters suitable for collecting particles in air or gas. It can also be used as a liquid filtration filter.

Claims (8)

上流側濾材層と下流側濾材層の2層で構成された複合濾材であって、上流側濾材層と下流側濾材層の両層に示差走査熱量分析(DSC)で測定した融点が50〜170℃である熱融着性繊維を含み、少なくとも下流側濾材層が熱融着性繊維と平均繊維径0.1〜1μmのマイクロガラス繊維とを含有し、熱融着性繊維とマイクロガラス繊維または、該熱融着性繊維同士の少なくとも一部が熱融着されている複合濾材。   A composite filter medium composed of two layers, an upstream filter medium layer and a downstream filter medium layer, having a melting point of 50 to 170 measured by differential scanning calorimetry (DSC) in both the upstream filter medium layer and the downstream filter medium layer. At least the downstream filter medium layer contains heat-fusible fibers and microglass fibers having an average fiber diameter of 0.1 to 1 μm, and heat-fusible fibers and microglass fibers or A composite filter medium in which at least a part of the heat-fusible fibers are heat-sealed. 下流側濾材層が、熱融着性繊維を5〜80質量%、平均繊維径0.1〜1μmのマイクロガラス繊維を10〜50質量%、非熱融着性繊維を5〜80質量%を含有してなる請求項1記載の複合濾材。   The downstream filter medium layer comprises 5 to 80% by mass of heat-fusible fiber, 10 to 50% by mass of micro glass fiber having an average fiber diameter of 0.1 to 1 μm, and 5 to 80% by mass of non-heat-sealable fiber. The composite filter medium according to claim 1, which is contained. 上流側濾材層が、熱融着性繊維を5〜80質量%、平均繊維径0.3〜1μmのマイクロガラス繊維を10〜50質量%、非熱融着性繊維を5〜80質量%を含有してなる請求項1又は2項記載の複合濾材。   The upstream filter medium layer contains 5 to 80% by mass of heat-fusible fibers, 10 to 50% by mass of microglass fibers having an average fiber diameter of 0.3 to 1 μm, and 5 to 80% by mass of non-heat-sealable fibers. The composite filter medium according to claim 1 or 2, which is contained. JIS B9927に規定される撥水性が1kPa以上である請求項1〜3のいずれか1項記載の複合濾材。   The composite filter medium according to any one of claims 1 to 3, wherein the water repellency specified in JIS B9927 is 1 kPa or more. 少なくとも上流側濾材層が撥水性化合物を含有している請求項4記載の複合濾材。   The composite filter medium according to claim 4, wherein at least the upstream filter medium layer contains a water repellent compound. 請求項1〜4のいずれか1項記載の複合濾材を製造する方法であって、複数の抄紙ヘッドを有するコンビネーション湿式抄紙機を用いて、上流側濾材層の湿紙ウェブと下流側濾材層の湿紙ウェブとからなる積層ウェブを形成した後に、該積層ウェブを加圧しながら、熱融着性繊維の融点より10℃以上高い表面温度の熱ロールに密着させて上流側濾材層と下流側濾材層を一体化させた後に、乾燥させてなる複合濾材の製造方法。   A method for producing a composite filter medium according to any one of claims 1 to 4, wherein a wet paper web of an upstream filter medium layer and a downstream filter medium layer are formed using a combination wet paper machine having a plurality of paper making heads. After forming the laminated web composed of the wet paper web, the upstream filter medium layer and the downstream filter medium are adhered to a hot roll having a surface temperature higher by 10 ° C. or more than the melting point of the heat-fusible fiber while pressing the laminated web. A method for producing a composite filter medium, wherein the layers are integrated and then dried. 請求項5記載の複合濾材を製造する方法であって、複数の抄紙ヘッドを有するコンビネーション湿式抄紙機において、2層の湿紙ウェブを形成した後に、該ウェブを加圧しながら熱融着性繊維の融点よりも10℃以上高い表面温度に設定した熱ロールに密着させて一体化させ乾燥した後に、少なくとも上流側濾材層に撥水性化合物を付与する複合濾材の製造方法。   6. A method for producing a composite filter medium according to claim 5, wherein, in a combination wet paper machine having a plurality of paper making heads, after forming a two-layer wet paper web, the heat-fusible fiber is pressed while the web is pressed. A method for producing a composite filter medium, wherein a water-repellent compound is imparted to at least the upstream filter medium layer after being brought into close contact with a hot roll set at a surface temperature higher than the melting point by 10 ° C. or more and integrated and dried. 請求項5記載の複合濾材を製造する方法であって、複数の抄紙ヘッドを有するコンビネーション湿式抄紙機を用いて、少なくとも上流側濾材層の原料スラリー中に撥水性化合物を内添し、上流側濾材層の湿紙ウェブと下流側濾材層の湿紙ウェブとからなる積層湿紙ウェブを形成した後に、該積層湿紙ウェブを加圧しながら、熱融着性繊維の融点より10℃以上高い表面温度の熱ロールに密着させて上流側濾材層と下流側濾材層を一体化させた後に、乾燥させてなる複合濾材の製造方法。   6. A method for producing a composite filter medium according to claim 5, wherein a water-repellent compound is internally added to at least the raw material slurry of the upstream filter medium layer by using a combination wet paper machine having a plurality of paper making heads. After forming a laminated wet paper web consisting of a wet web of layers and a wet web of downstream filter media layers, the surface temperature is 10 ° C. or more higher than the melting point of the heat-fusible fiber while pressing the laminated wet paper web A method for producing a composite filter medium, wherein the upstream filter medium layer and the downstream filter medium layer are integrated with each other and then dried, and then dried.
JP2006298866A 2005-11-07 2006-11-02 Composite filter media Active JP5096726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006298866A JP5096726B2 (en) 2005-11-07 2006-11-02 Composite filter media

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005322214 2005-11-07
JP2005322214 2005-11-07
JP2006298866A JP5096726B2 (en) 2005-11-07 2006-11-02 Composite filter media

Publications (2)

Publication Number Publication Date
JP2007144415A true JP2007144415A (en) 2007-06-14
JP5096726B2 JP5096726B2 (en) 2012-12-12

Family

ID=38206447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006298866A Active JP5096726B2 (en) 2005-11-07 2006-11-02 Composite filter media

Country Status (1)

Country Link
JP (1) JP5096726B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049333A (en) * 2006-07-27 2008-03-06 Mitsubishi Paper Mills Ltd Composite filter medium and its manufacturing method
WO2009119054A1 (en) * 2008-03-25 2009-10-01 北越製紙株式会社 Filter material for air filters
JP2009233645A (en) * 2008-03-28 2009-10-15 Kuraray Kuraflex Co Ltd Filter and its manufacturing method
JP2013052324A (en) * 2011-09-01 2013-03-21 Mitsubishi Paper Mills Ltd Composite filter medium and method for manufacturing the same
JP2014023999A (en) * 2012-07-26 2014-02-06 Nippon Muki Co Ltd Bag-like filter, streamer-type filter, and method of making filter medium for bag-like filter
KR20160001433A (en) * 2014-06-27 2016-01-06 주식회사 엔바이오니아 air filter media of multi layered enhancing water repellency and manufacturing method therefor
JP2017150095A (en) * 2016-02-22 2017-08-31 三菱製紙株式会社 Manufacturing method of unwoven fabric containing polyphenylene sulfide fiber
JP2018111077A (en) * 2017-01-12 2018-07-19 ダイキン工業株式会社 Filter medium for air filter
JP2019188377A (en) * 2018-04-27 2019-10-31 北越コーポレーション株式会社 Method for manufacturing filtering material for filter
CN112982011A (en) * 2021-04-06 2021-06-18 重庆再升科技股份有限公司 Preparation method and application of glass fiber cotton filter layer and air filter paper
JP2021521001A (en) * 2018-04-16 2021-08-26 アールストローム − ムンクショー オーワイジェイ Wet non-woven filtration medium with high burst strength and method for producing it
CN114673031A (en) * 2022-04-08 2022-06-28 山东仁丰特种材料股份有限公司 Preparation method of high-performance air filter paper for heavy-duty vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218210A (en) * 1992-12-03 1994-08-09 Mitsubishi Paper Mills Ltd Filter material for dust collecting bag of electric vacuum cleaner
JPH07148406A (en) * 1993-11-30 1995-06-13 Kanai Hiroyuki Sea salt particle removing filter
JPH08196829A (en) * 1995-01-27 1996-08-06 Mitsubishi Paper Mills Ltd Air cleaning filter medium and its production
JPH08323121A (en) * 1995-05-31 1996-12-10 Mitsubishi Paper Mills Ltd Filter medium and air filter
JPH09155127A (en) * 1995-12-12 1997-06-17 Mitsubishi Paper Mills Ltd Filter medium
JPH10237793A (en) * 1997-02-21 1998-09-08 Hokuetsu Paper Mills Ltd Separator paper for air-conditioning filter
WO2002016005A1 (en) * 2000-08-21 2002-02-28 Hokuetsu Paper Mills,Ltd. Filter medium for air filter and method for its production
JP2004017041A (en) * 2002-06-19 2004-01-22 Oshidari Kenkyusho:Kk Filter medium for high performance air filter and high performance air filter using filter medium

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218210A (en) * 1992-12-03 1994-08-09 Mitsubishi Paper Mills Ltd Filter material for dust collecting bag of electric vacuum cleaner
JPH07148406A (en) * 1993-11-30 1995-06-13 Kanai Hiroyuki Sea salt particle removing filter
JPH08196829A (en) * 1995-01-27 1996-08-06 Mitsubishi Paper Mills Ltd Air cleaning filter medium and its production
JPH08323121A (en) * 1995-05-31 1996-12-10 Mitsubishi Paper Mills Ltd Filter medium and air filter
JPH09155127A (en) * 1995-12-12 1997-06-17 Mitsubishi Paper Mills Ltd Filter medium
JPH10237793A (en) * 1997-02-21 1998-09-08 Hokuetsu Paper Mills Ltd Separator paper for air-conditioning filter
WO2002016005A1 (en) * 2000-08-21 2002-02-28 Hokuetsu Paper Mills,Ltd. Filter medium for air filter and method for its production
JP2004017041A (en) * 2002-06-19 2004-01-22 Oshidari Kenkyusho:Kk Filter medium for high performance air filter and high performance air filter using filter medium

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049333A (en) * 2006-07-27 2008-03-06 Mitsubishi Paper Mills Ltd Composite filter medium and its manufacturing method
WO2009119054A1 (en) * 2008-03-25 2009-10-01 北越製紙株式会社 Filter material for air filters
JPWO2009119054A1 (en) * 2008-03-25 2011-07-21 北越紀州製紙株式会社 Air filter media
JP5579055B2 (en) * 2008-03-25 2014-08-27 北越紀州製紙株式会社 Air filter media
JP2009233645A (en) * 2008-03-28 2009-10-15 Kuraray Kuraflex Co Ltd Filter and its manufacturing method
JP2013052324A (en) * 2011-09-01 2013-03-21 Mitsubishi Paper Mills Ltd Composite filter medium and method for manufacturing the same
JP2014023999A (en) * 2012-07-26 2014-02-06 Nippon Muki Co Ltd Bag-like filter, streamer-type filter, and method of making filter medium for bag-like filter
KR101627250B1 (en) * 2014-06-27 2016-06-03 주식회사 엔바이오니아 air filter media of multi layered enhancing water repellency and manufacturing method therefor
KR20160001433A (en) * 2014-06-27 2016-01-06 주식회사 엔바이오니아 air filter media of multi layered enhancing water repellency and manufacturing method therefor
JP2017150095A (en) * 2016-02-22 2017-08-31 三菱製紙株式会社 Manufacturing method of unwoven fabric containing polyphenylene sulfide fiber
JP2018111077A (en) * 2017-01-12 2018-07-19 ダイキン工業株式会社 Filter medium for air filter
WO2018131573A1 (en) * 2017-01-12 2018-07-19 ダイキン工業株式会社 Air filter medium
US11426690B2 (en) 2017-01-12 2022-08-30 Daikin Industries, Ltd. Air filter medium
JP2021521001A (en) * 2018-04-16 2021-08-26 アールストローム − ムンクショー オーワイジェイ Wet non-woven filtration medium with high burst strength and method for producing it
JP7389051B2 (en) 2018-04-16 2023-11-29 アールストローム オーワイジェイ High burst strength wet nonwoven filtration media and methods for producing same
JP2019188377A (en) * 2018-04-27 2019-10-31 北越コーポレーション株式会社 Method for manufacturing filtering material for filter
JP7015614B2 (en) 2018-04-27 2022-02-03 北越コーポレーション株式会社 Manufacturing method of filter media for filters
CN112982011A (en) * 2021-04-06 2021-06-18 重庆再升科技股份有限公司 Preparation method and application of glass fiber cotton filter layer and air filter paper
CN114673031A (en) * 2022-04-08 2022-06-28 山东仁丰特种材料股份有限公司 Preparation method of high-performance air filter paper for heavy-duty vehicle

Also Published As

Publication number Publication date
JP5096726B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5096726B2 (en) Composite filter media
JP6158958B2 (en) Multilayer filter medium, filter manufacturing method and air filter
JP5319380B2 (en) Low basis weight air filter media
KR20070041364A (en) Filter, filter media, and methods for making same
JP6668203B2 (en) Manufacturing method of filter medium for air filter
KR20160046797A (en) Filter Medium
JP2013052324A (en) Composite filter medium and method for manufacturing the same
JP2015140495A (en) Wet nonwoven fabric and filter medium for air filter
JP2008049333A (en) Composite filter medium and its manufacturing method
JP5797175B2 (en) Air filter media
JP2006061789A (en) Filter medium for liquid filtering
JP6152332B2 (en) Non-woven fabric for preventing fold contact
JP7081911B2 (en) Filter material for laminated filter
JP7215871B2 (en) AIR FILTER MEDIUM AND MANUFACTURING METHOD THEREOF
JP2016137459A (en) Nonwoven fabric for filter, and filter medium for filter
JP6571563B2 (en) Air filter media
JP2023128277A (en) Filter medium for liquid filter
JP2023132659A (en) Filter medium for liquid filter
JP2023148945A (en) Filter medium for liquid filter
JP7281419B2 (en) Filter material for filter and manufacturing method thereof
JP2024033026A (en) Base material for filters
JP2023149891A (en) Filter medium for liquid filter and manufacturing method thereof
JP2023120047A (en) Filter medium for liquid filter
JP2023082521A (en) Filter medium for liquid filter
JP6900649B2 (en) Filter media, as well as filters and filter units

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120921

R150 Certificate of patent or registration of utility model

Ref document number: 5096726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250