JP6900649B2 - Filter media, as well as filters and filter units - Google Patents

Filter media, as well as filters and filter units Download PDF

Info

Publication number
JP6900649B2
JP6900649B2 JP2016199706A JP2016199706A JP6900649B2 JP 6900649 B2 JP6900649 B2 JP 6900649B2 JP 2016199706 A JP2016199706 A JP 2016199706A JP 2016199706 A JP2016199706 A JP 2016199706A JP 6900649 B2 JP6900649 B2 JP 6900649B2
Authority
JP
Japan
Prior art keywords
filter
filter medium
component
resin
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016199706A
Other languages
Japanese (ja)
Other versions
JP2018061918A (en
Inventor
恵子 坂口
恵子 坂口
北川 義幸
義幸 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2016199706A priority Critical patent/JP6900649B2/en
Publication of JP2018061918A publication Critical patent/JP2018061918A/en
Application granted granted Critical
Publication of JP6900649B2 publication Critical patent/JP6900649B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Filtering Materials (AREA)

Description

本発明は、プリーツ形状を有するフィルターおよび濾材に関する。 The present invention relates to filters and filter media having a pleated shape.

従来、気体中の粒子状物質や気体状物質を除去する用途として気体浄化フィルターが用いられている。これらの気体浄化フィルターには、不織布などの繊維状物、活性炭などの吸着剤を単独でもしくは組み合わせてシート状とした濾材が広く用いられている。 Conventionally, a gas purification filter has been used for removing particulate matter and gaseous substances in a gas. As these gas purification filters, a filter medium in which a fibrous material such as a non-woven fabric and an adsorbent such as activated carbon are used alone or in combination to form a sheet is widely used.

前述の濾材は平面形状で用いられるのみならず、通風時の圧力損失を低減し、フィルター機能を高効率長寿命とするためにプリーツ(ひだおり)形状として用いられるものもある。かかるプリーツ形状の濾材(プリーツ濾材)に対して、通風時の変形や密着を防止し、また山間隔を一定にするための各種方法が知られている。 The above-mentioned filter medium is not only used in a flat shape, but also in a pleated shape in order to reduce the pressure loss during ventilation and to make the filter function highly efficient and have a long life. Various methods are known for preventing deformation and adhesion during ventilation of such a pleated filter medium (pleated filter medium) and for keeping the mountain spacing constant.

例えば、プリーツ濾材の頂点のみを溶融樹脂で橋架けする方法(例えば、特許文献1)、山谷形状に沿って櫛状の樹脂成形体を挿入する方法(例えば、特許文献2)、山谷形状に沿って溶融樹脂を流し込む方法(例えば、特許文献3)、などである。 For example, a method of bridging only the apex of the pleated filter medium with molten resin (for example, Patent Document 1), a method of inserting a comb-shaped resin molded body along the mountain valley shape (for example, Patent Document 2), and a method along the mountain valley shape. (For example, Patent Document 3), and the like.

その他手法としては、プリーツの頂点部分に筋付けし(例えば、特許文献4)、また一旦プリーツ形状とした後に濾材を平面状とし特定のパターンで線状の溶融樹脂を塗布する方法(例えば、特許文献5)、などが知られている。 As another method, a method of streaking the apex portion of the pleats (for example, Patent Document 4), and once forming the pleats shape, then making the filter medium flat and applying a linear molten resin in a specific pattern (for example, patent). Document 5), etc. are known.

特開2000−107526号公報Japanese Unexamined Patent Publication No. 2000-107526 特開2007−50342号公報JP-A-2007-50342 国際公開第2007/138733International Publication No. 2007/138733 特開2009−090263号公報JP-A-2009-090263 特開平9−294910号公報Japanese Unexamined Patent Publication No. 9-294910

UL 94: Standard for Safety Tests for Flammability of Plastic Materials for Parts in Devices and Appliances.UL 94: Standard for Safety Tests for Flammability of Plastic Materials for Parts in Devices and Appliances.

しかしながら、頂点のみを橋架けする方法や溶融樹脂を流し込む方法は、濾材側面の固定や山間隔保持が不十分である。櫛状成形物を挿入する方法は山間隔の非常に小さなフィルターにおいては加工に手間がかかるとともに、濾材を傷つけることによるピンホールの原因となる。 However, the method of bridging only the vertices and the method of pouring the molten resin are insufficient in fixing the side surface of the filter medium and maintaining the mountain spacing. The method of inserting the comb-shaped molded product is troublesome to process in a filter having a very small mountain spacing, and causes pinholes due to damage to the filter medium.

また、筋付け後に折りたたむ方法においては、ガラス濾紙を濾材として用いた場合には折れ癖が保持されやすいものの破砕繊維が発生する問題がある。合成樹脂製繊維からなる補強材を用いた場合には、折れ癖が付き難く、また、レジンボンド不織布においてはバインダー樹脂の飛散防止と適切な剛性とを両立できないという問題がある。 Further, in the method of folding after scoring, when the glass filter paper is used as the filter material, there is a problem that crushed fibers are generated although the folding habit is easily maintained. When a reinforcing material made of synthetic resin fibers is used, there is a problem that it is difficult to have a bending habit, and in the resin-bonded non-woven fabric, it is not possible to achieve both prevention of scattering of the binder resin and appropriate rigidity.

そこで、本発明は、上記課題に鑑みなされ、プリーツ形状を固定したフィルターの作成に必要な加工性と剛性とを両立した濾材を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a filter medium having both workability and rigidity necessary for producing a filter having a fixed pleated shape.

本発明に係る濾材は、少なくとも一つの繊維層に、重量分率50%以上を占めるガラス転移温度または融点が40℃未満の第一成分と、重量分率で50%未満のガラス転移温度または融点が40度以上の第二成分と、の混合物がコーティングされている濾材であって、前記第二成分は、炭素繊維、もしくは、繊維径が500nm以下でアスペクト比(繊維長/繊維径)が20以上2000以下のセルロース繊維であることを特徴とする。 In the filter medium according to the present invention, at least one fiber layer contains a first component having a glass transition temperature or melting point of less than 40 ° C., which accounts for 50% or more by weight, and a glass transition temperature or melting point of less than 50% by weight. The filter medium is coated with a mixture of a second component having a melting point of 40 degrees or more, and the second component is a carbon fiber or a fiber diameter of 500 nm or less and an aspect ratio (fiber length / fiber diameter) of 20. It is characterized by having a cellulose fiber of 2000 or more and 2000 or less.

また、本発明に係る濾材は、上記構成に加え、前記第一成分が樹脂であるのが好ましい。 Further, in the filter medium according to the present invention, in addition to the above constitution, it is preferable that the first component is a resin.

また、本発明に係るフィルターまたはフィルターユニットは、上記いずれか1つの濾材を備え、当該濾材に線状に塗布された樹脂にてプリーツ形状に固定されていることを特徴とする。 Further, the filter or the filter unit according to the present invention is characterized in that it includes any one of the above filter media and is fixed in a pleated shape with a resin linearly applied to the filter media.

本発明の上記構成によれば、第一成分は、常温で粘性および柔軟性を有するため、繊維同士を固定し溝付けやプリーツ加工時の加圧部分での形状安定性を与える。かつ第二成分は、常温で剛性を有するため、濾材全体にフィルターに適した平滑性や耐風速性などの効果を与える。よって、濾材に、プリーツ形状を固定したフィルターの作成に必要な加工性と剛性とを与えることができる。 According to the above configuration of the present invention, since the first component has viscosity and flexibility at room temperature, the fibers are fixed to each other to provide shape stability in a pressurized portion during grooving or pleating. Moreover, since the second component has rigidity at room temperature, it gives effects such as smoothness and wind speed resistance suitable for the filter to the entire filter medium. Therefore, the filter medium can be provided with the workability and rigidity required for producing a filter having a fixed pleated shape.

本実施形態の濾材は、少なくとも一つの繊維層に、重量分率50%以上を占める第一成分と、重量分率で50%未満の第二成分と、の混合物がコーティングされているものである。 In the filter medium of the present embodiment, at least one fiber layer is coated with a mixture of a first component having a weight fraction of 50% or more and a second component having a weight fraction of less than 50%. ..

本実施形態の濾材に用いられる繊維層は、長繊維または短繊維からなる織物または編物、不織布、綿状物等の繊維状物や、延伸フィルムから得られる繊維状物を含み、用途に応じて適当な形状および厚みに成形したものを使用することができる。フィルター用途の場合は、不織布であることが好ましい。 The fiber layer used for the filter medium of the present embodiment includes a fibrous material such as a woven fabric or knitted fabric made of long fibers or short fibers, a non-woven fabric, a cotton-like material, and a fibrous material obtained from a stretched film, depending on the application. Those molded into an appropriate shape and thickness can be used. For filter applications, it is preferably a non-woven fabric.

不織布を得る方法としては、単成分繊維、芯鞘繊維やサイドバイサイド繊維といった複合繊維、分割繊維等の短繊維をカーディング、エアレイド、湿式抄紙法などによりシート化する方法、連続繊維よりなるスパンボンド法、メルトブローン法、エレクトロスピニング法、フォーススピニング法などにより得る方法など、従来公知の方法を用い1層もしくは2層以上の複合シートとして用いることができる。 As a method for obtaining a non-woven fabric, a method of sheeting short fibers such as single component fibers, composite fibers such as core-sheath fibers and side-by-side fibers, and split fibers by carding, airlaid, wet papermaking method, etc., and a spunbond method consisting of continuous fibers. , A conventionally known method such as a method obtained by a melt blown method, an electrospinning method, a force spinning method, or the like, can be used as a composite sheet having one layer or two or more layers.

2層以上の複合シートとする場合には、濾過性能などを向上させるために緻密で細繊度を容易に得られるメルトブローン法、エレクトロスピニング法やフォーススピニング法で得られる不織布を積層し、更には電荷を与えることでエレクトレットフィルターとして用いることが好ましい。 In the case of a composite sheet with two or more layers, in order to improve the filtration performance, the non-woven fabrics obtained by the melt blown method, electrospinning method and force spinning method, which can easily obtain fineness and fineness, are laminated, and further, the electric charge is obtained. It is preferable to use it as an electret filter by giving.

積層方法としては従来公知の加工法を用いることが可能であり、別途添加する各種熱可塑性樹脂やコーティング成分の粘着性を利用する方法、超音波や熱によるエンボス加工などを好ましく用いることができる。 As the laminating method, a conventionally known processing method can be used, and a method utilizing the adhesiveness of various thermoplastic resins and coating components to be added separately, embossing by ultrasonic waves or heat, and the like can be preferably used.

本実施形態において、混合物の重量分率50%以上を占める第一成分としては、プリーツや筋付け時に繊維層を成す繊維状物同士を圧着固定する効果を有するものであれば特に制限されない。ただし、常温加工時の粉塵発生を抑制し、かつ繊維状物同士の圧着効果を与えるために、ガラス転移温度または融点が40℃未満の材料、例えば樹脂であることが好ましい。 In the present embodiment, the first component occupying a weight fraction of 50% or more of the mixture is not particularly limited as long as it has the effect of crimping and fixing the fibrous materials forming the fiber layer at the time of pleating or streaking. However, in order to suppress the generation of dust during normal temperature processing and to give a pressure bonding effect between fibrous materials, a material having a glass transition temperature or a melting point of less than 40 ° C., for example, a resin is preferable.

上記特性を有するものであればいずれも好ましく用いられるが、タック剤として用いられるテルペン樹脂、石油樹脂ならびにポリ酢酸ビニル樹脂、エチレン酢酸ビニル樹脂、アクリル酸エステル共重合樹脂、各種ゴムなどを例示することができる。 Any of those having the above characteristics is preferably used, and examples thereof include terpen resin, petroleum resin, polyvinyl acetate resin, ethylene vinyl acetate resin, acrylic acid ester copolymer resin, and various rubbers used as tacking agents. Can be done.

重量分率で50%未満の第二成分は、ガラス転移温度または融点が40℃未満のものであれば特に制限されないが、無機鉱物や、高強度繊維を例示することができる。無機鉱物としては、例えば二酸化ケイ素ゾルや珪酸マグネシウムが挙げられる。また、第二成分は、各種炭素繊維、ナノファイバーなどであってもよい。 The second component having a weight fraction of less than 50% is not particularly limited as long as it has a glass transition temperature or a melting point of less than 40 ° C., and inorganic minerals and high-strength fibers can be exemplified. Examples of the inorganic mineral include silicon dioxide sol and magnesium silicate. Further, the second component may be various carbon fibers, nanofibers and the like.

第二成分の形状としては、担体となる繊維層を成す繊維状物の直径ならびにコーティングする混合物層の厚みに応じて選択することが可能である。第二成分がアスペクト比を有する場合には、短寸側(第二成分が繊維の場合、繊維径)のサイズとして、1nm以上500nm以下が好ましく、より好ましくは1nm〜200nmが好ましく、最も好ましくは4nm以上100nm以下である。上記の寸法であれば、コーティング成分として優れた均一性を与え、かつ、固着時に剛性を与えることができる。 The shape of the second component can be selected according to the diameter of the fibrous material forming the fiber layer serving as a carrier and the thickness of the mixture layer to be coated. When the second component has an aspect ratio, the size on the short side (fiber diameter when the second component is a fiber) is preferably 1 nm or more and 500 nm or less, more preferably 1 nm to 200 nm, and most preferably. It is 4 nm or more and 100 nm or less. With the above dimensions, it is possible to provide excellent uniformity as a coating component and to provide rigidity at the time of fixing.

また、第二成分がアスペクト比を有する場合、アスペクト比(繊維の場合、繊維長/繊維径)が20以上2000以下が好ましい。アスペクト比が2000よりも大きい場合は取り扱い、添着などで不具合が起こる可能性がある。反対にアスペクト比が20よりも小さい場合は、粒子に近くなり、粒子が大きい場合は、繊維層への剛性の付与が難しくなると考えられる。粒子が小さい場合、そのもの自体に剛性がなければ、付与した後も剛性が出にくいと考えられる。 When the second component has an aspect ratio, the aspect ratio (in the case of fibers, fiber length / fiber diameter) is preferably 20 or more and 2000 or less. If the aspect ratio is larger than 2000, there is a possibility that problems may occur in handling, attachment, etc. On the contrary, when the aspect ratio is smaller than 20, it becomes close to the particles, and when the particles are large, it is considered that it is difficult to impart rigidity to the fiber layer. When the particles are small, if the particles themselves are not rigid, it is considered that the rigidity is difficult to be obtained even after the particles are applied.

第一成分および第二成分を繊維層へ担持(付着)させる方法としては、従来公知の方法を用いることができる。粒子もしくは粉末とした成分を加熱により浸透担持させる方法、少なくとも一方を溶媒に溶解させ浸透担持させる方法、エマルジョンやサスペンションとして浸透担持させる方法(ディッピング)などを用いることができる。この場合、予め両者を混合しておいてもよいし、担持時に混合することもできる。 As a method for supporting (adhering) the first component and the second component to the fiber layer, a conventionally known method can be used. A method of permeating and supporting particles or powdered components by heating, a method of dissolving at least one of them in a solvent and permeating and supporting them, and a method of permeating and supporting as an emulsion or suspension (dipping) can be used. In this case, both may be mixed in advance, or may be mixed at the time of carrying.

本実施形態の濾材としては、プリーツ形状を保持し、かつ耐風速性を与えるため、JIS L−1096 ガーレ法による剛軟度が、MD(Machine Direction、機械方向)で200mg以上、CD(Cross Machine Direction、機械方向と直交する方向)で50mg以上であることが好ましい。 In order to maintain the pleated shape and provide wind speed resistance, the filter medium of the present embodiment has a rigidity of 200 mg or more in MD (Machine Direction) and CD (Cross Machine) according to the JIS L-1096 Galle method. It is preferable that the amount is 50 mg or more in the direction (direction orthogonal to the machine direction).

本実施形態の濾材を備えたフィルターまたはフィルターユニットは、プリーツ形状を有しており、更には濾材に線状に塗布された樹脂により固定されている。
フィルターの製造において、濾材に樹脂を線状に塗布する工程は、プリーツ加工の前後いずれでもよい。プリーツ加工は、レシプロ方式もしくはロータリー方式と称されるプリーツ加工機と、頂点部分の圧縮ならびに筋付け加工装置、必要に応じてヒートセット機とを組み合わせて用いることができる。
The filter or filter unit provided with the filter medium of the present embodiment has a pleated shape, and is further fixed by a resin linearly applied to the filter medium.
In the manufacture of the filter, the step of linearly applying the resin to the filter medium may be before or after the pleating process. For pleating, a pleating machine called a reciprocating method or a rotary method, a compression and streaking processing device for apex portions, and a heat setting machine if necessary can be used in combination.

このようにプリーツ形状が固定されて得られた濾材は、必要な寸法とした後に、単体もしくは枠材等と組み合わせてフィルターまたはフィルターユニットとして用いることができる。 The filter medium obtained by fixing the pleated shape in this way can be used as a filter or a filter unit by itself or in combination with a frame material or the like after having the required dimensions.

以下、実施例を挙げて本発明を具体的に説明する。しかし本発明は、下記の実施例に限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更することも可能である。そして、それら適宜変更したものも本発明の技術的範囲に含まれる。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples, and can be appropriately modified to the extent that it can be adapted to the gist of the above and the following. The technical scope of the present invention also includes those appropriately modified.

まず、実施例および比較例中で測定した特性値およびその測定方法を以下に示す。
[測定方法]
First, the characteristic values measured in Examples and Comparative Examples and their measurement methods are shown below.
[Measuring method]

(1)ガラス転移温度
ガラス転移温度は、JIS K 7121に準拠して測定した。具体的には、試料10mgを測定用密閉パンに入れ、昇温速度20℃/minの条件で、示差走査熱量計(TAインスツルメント社製)を用いて測定した中間点ガラス転移温度を、ガラス転移温度とした。
(1) Glass transition temperature The glass transition temperature was measured according to JIS K 7121. Specifically, 10 mg of the sample was placed in a closed pan for measurement, and the intermediate point glass transition temperature measured using a differential scanning calorimeter (manufactured by TA Instruments) under the condition of a temperature rise rate of 20 ° C./min was determined. The glass transition temperature was used.

(2)融点
融点は、JIS K 7121に準拠して測定した。具体的には、試料5mgを測定用密閉パンに入れ、昇温速度10℃/minの条件で、示差走査熱量計(TAインスツルメント社製)を用い測定したピーク温度を、再結晶ピークの存在確認により融点とした。
(2) Melting point The melting point was measured according to JIS K 7121. Specifically, 5 mg of the sample was placed in a closed pan for measurement, and the peak temperature measured using a differential scanning calorimeter (manufactured by TA Instruments) under the condition of a heating rate of 10 ° C./min was used as the recrystallization peak. The melting point was determined by confirming the existence.

(3)剛軟度
濾材から幅1インチ×長さ3インチのサンプルを採取し、ガーレ式試験機を用いてMD方向4点、TD方向4点の試験片の計測を行い、各々の平均値を剛軟度とした。
(3) Rigidity and softness A sample of 1 inch wide x 3 inch long was taken from the filter medium, and the test pieces were measured at 4 points in the MD direction and 4 points in the TD direction using a Gale type testing machine, and the average value of each was measured. Was defined as stiffness and softness.

(4)濾材の圧力損失
濾材から72mmΦのサンプルを採取し、通気径50mmΦのサンプルフォルダーにセットし、微差圧計で計測した風速10cm/s時の差圧を濾材の圧力損失として用いた。
(4) Pressure loss of filter medium A 72 mmΦ sample was taken from the filter medium, set in a sample folder with a ventilation diameter of 50 mmΦ, and the differential pressure at a wind speed of 10 cm / s measured by a micro differential pressure gauge was used as the pressure loss of the filter medium.

(5)フィルターの圧力損失
JIS B 9908(2001)形式3試験法に準じた評価機器にフィルターをセットし、面風速50cm/sで空気を流し、フィルターの圧力損失を求めた。
(5) Filter pressure loss The filter was set in an evaluation device according to the JIS B 9908 (2001) type 3 test method, and air was flowed at a surface wind speed of 50 cm / s to determine the pressure loss of the filter.

(6)フィルターの難燃性 非特許文献1に記載されている水平燃焼試験により評価を実施した。
この水平燃焼試験では、所定の高さに試験片を配置できる支持用金網を用い、この金網の下方に175±25mmの距離で脱脂綿(標識綿)を配置した。この金網に、長さ150±1mm、幅50±1mmの短冊状に裁断され、しかも長さ方向の一方の端部から、60mm、125mmの各位置に合計2つの標線を予め書き込んだ試験片を設置した。燃焼試験では、試験片を水平に載置した状態で上述した端部に金網の下方から炎を60±1秒間当てたのち、炎を試験片から離した。この時点から計時し、
[a]炎が消えた(残炎)時間
[b]炎と赤熱が消えた(残じん)時間
[c]炎又は赤熱の前線が125mm標線に達した時間、もしくは試験片が125mm標線の手前で燃焼又は赤熱が止まった時間
の3種類の時間を記録した。この評価試験を5回実施し、下記の表1に示す「94HF−1」又は「94HF−2」、「HBF」に応じて評価する。
(6) Flame Retardant of Filter The evaluation was carried out by the horizontal combustion test described in Non-Patent Document 1.
In this horizontal combustion test, a supporting wire mesh capable of arranging the test piece at a predetermined height was used, and absorbent cotton (labeled cotton) was placed below the wire mesh at a distance of 175 ± 25 mm. A test piece cut into a strip shape having a length of 150 ± 1 mm and a width of 50 ± 1 mm on this wire mesh, and a total of two marked lines are pre-written at each position of 60 mm and 125 mm from one end in the length direction. Was installed. In the combustion test, the test piece was placed horizontally, and the flame was applied to the above-mentioned end portion from below the wire mesh for 60 ± 1 seconds, and then the flame was separated from the test piece. Time from this point,
[A] Time when the flame is extinguished (residual flame) [b] Time when the flame and red heat are extinguished (residual dust) [c] Time when the front of the flame or red heat reaches the 125 mm mark, or the test piece is the 125 mm mark Three types of time were recorded before the burning or red heat stopped. This evaluation test is carried out 5 times and evaluated according to "94HF-1", "94HF-2" and "HBF" shown in Table 1 below.

Figure 0006900649
Figure 0006900649

試料の破損した長さが60mm以上の場合、かつ、125mmの標線表示に達するまでに燃焼が終わり100mmまでの区間の燃焼速度が40mm/分を超えない場合、HBFとなる。 If the damaged length of the sample is 60 mm or more, and if the combustion is completed by the time the marked line display of 125 mm is reached and the combustion speed in the section up to 100 mm does not exceed 40 mm / min, the HBF is obtained.

[実施例1]
2.5dtex−55mm長さのレーヨン短繊維をカードマシン用いて目付40g/mのウエッブ状に加工し、以下の第一成分と第二成分との混合物をウエッブ状に加工した繊維全体の25質量%付着し(コーティングし)、目付50g/mの樹脂加工不織布を得た。第一成分:アクリル酸エステル系エマルジョン樹脂(ガラス転移温度20℃)、混合物中の重量分率60%
第二成分:セルロースナノファイバー(繊維径4〜100nm、長さ5μm(アスペクト比50〜1250))、混合物中の重量分率20%
[Example 1]
A 2.5 dtex-55 mm long rayon short fiber is processed into a web shape with a mesh size of 40 g / m 2 using a card machine, and a mixture of the following first component and second component is processed into a web shape. A resin-processed non-woven fabric having a grain size of 50 g / m 2 was obtained by adhering (coating) by mass%. First component: acrylic acid ester emulsion resin (glass transition temperature 20 ° C), weight fraction 60% in the mixture
Second component: Cellulose nanofibers (fiber diameter 4 to 100 nm, length 5 μm (aspect ratio 50 to 1250)), weight fraction in the mixture 20%

得られた樹脂加工不織布に、平均繊維径1.7μm、目付20g/mのPP製メルトブローン不織布と、目付10g/mのクモの巣状不織布(ポリアミド系、融点110℃)とを積層し、加熱することで貼り合わせて実施例1の濾材を得た。実施例1の濾材の通気抵抗は74Paであり、剛軟度は330mgであった。 To the resulting resin processed nonwoven, the average fiber diameter of 1.7 [mu] m, are laminated with a PP meltblown nonwoven having a basis weight of 20 g / m 2, webbed nonwoven (polyamide, melting point 110 ° C.) of basis weight 10 g / m 2 and heating The filter medium of Example 1 was obtained by laminating the mixture. The aeration resistance of the filter medium of Example 1 was 74 Pa, and the rigidity and softness was 330 mg.

次に、濾材に対して、レシプロ機のみを用い、山高さ35mmにプリーツ加工を施した。その後、再度濾材を伸ばし、幅2インチ毎に溶融樹脂(ポリオレフィン系ホットメルト樹脂 軟化点130℃)をプリーツの折れ線に対して垂直方向に塗布した。そして、山間隔3mmで再度折り込み、実施例1のフィルターを形成した。 Next, the filter medium was pleated to a mountain height of 35 mm using only a reciprocating engine. Then, the filter medium was stretched again, and a molten resin (polyolefin hot melt resin softening point 130 ° C.) was applied every 2 inches in the direction perpendicular to the pleated line. Then, it was folded again at a mountain spacing of 3 mm to form the filter of Example 1.

得られた実施例1のフィルターの通気抵抗は52Paであり、通風時に濾材の密着は見られなかった。濾材の燃焼性は、Underwriters Laboratoriesが規定する規格番号94(UL94)の難燃基準(以下の実施例2及び比較例1〜3も同じ)において、HBFであった。 The ventilation resistance of the obtained filter of Example 1 was 52 Pa, and no adhesion of the filter medium was observed during ventilation. The flammability of the filter medium was HBF in the flame retardancy standard of the standard number 94 (UL94) defined by Underwriters Laboratories (the same applies to Example 2 and Comparative Examples 1 to 3 below).

[実施例2]
2.5dtex−55mm長さのレーヨン短繊維をカードマシン用いて目付40g/mのウエッブ状に加工し、以下の第一成分と第二成分と難燃剤との混合物を、ウエッブ状に加工した繊維全体の25質量%付着し、目付50g/mの樹脂加工不織布を得た。第一成分:スチレン−アクリル酸エステル系エマルジョン樹脂(ガラス転移温度35℃)、混合物中の重量分率50%
第二成分:セルロースナノファイバー(繊維幅4〜100nm、長さ5μm)、混合物中の重量分率20%
難燃剤:リン酸アンモニウム、混合物中の重量分率10%
[Example 2]
A 2.5 dtex-55 mm long rayon short fiber was processed into a web shape with a mesh size of 40 g / m 2 using a card machine, and a mixture of the following first component, second component and flame retardant was processed into a web shape. A resin-processed non-woven fabric having a grain size of 50 g / m 2 was obtained by adhering 25% by mass of the entire fiber. First component: Styrene-acrylic acid ester emulsion resin (glass transition temperature 35 ° C), weight fraction 50% in the mixture
Second component: Cellulose nanofibers (fiber width 4-100 nm, length 5 μm), weight fraction 20% in the mixture
Flame Retardant: Ammonium Phosphate, 10% by Weight in Mixture

得られた樹脂加工不織布に、平均繊維径1.7μm、目付20g/mのPP製メルトブローン不織布と、目付10g/mのクモの巣状不織布(ポリアミド系、融点110℃)とを積層し、加熱することで貼り合わせて実施例2の濾材を得た。実施例2の濾材の通気抵抗は75Paであり、剛軟度は380mgであった。 To the resulting resin processed nonwoven, the average fiber diameter of 1.7 [mu] m, are laminated with a PP meltblown nonwoven having a basis weight of 20 g / m 2, webbed nonwoven (polyamide, melting point 110 ° C.) of basis weight 10 g / m 2 and heating The filter medium of Example 2 was obtained by laminating the mixture. The aeration resistance of the filter medium of Example 2 was 75 Pa, and the rigidity and softness was 380 mg.

次に、濾材に対して、レシプロ機のみを用い、山高さ35mmにプリーツ加工を施した。その後、再度濾材を伸ばし、幅2インチ毎に溶融樹脂(ポリオレフィン系ホットメルト樹脂、軟化点130℃)をプリーツの折れ線に対して垂直方向に塗布した。そして、山間隔3mmで再度折り込み、実施例2のフィルターを形成した。 Next, the filter medium was pleated to a mountain height of 35 mm using only a reciprocating engine. Then, the filter medium was stretched again, and a molten resin (polyolefin-based hot melt resin, softening point 130 ° C.) was applied in the direction perpendicular to the broken line of the pleats every 2 inches in width. Then, it was folded again at a mountain spacing of 3 mm to form the filter of Example 2.

得られた実施例2のフィルターの通気抵抗は53Paであり、通風時に濾材の密着は見られなかった。濾材の難燃性は、上記難燃基準において、HF−1であった。 The ventilation resistance of the obtained filter of Example 2 was 53 Pa, and no adhesion of the filter medium was observed during ventilation. The flame retardancy of the filter medium was HF-1 in the above flame retardancy standard.

[比較例1]
2.5dtex−55mm長さのレーヨン短繊維をカードマシン用いて目付40g/mのウエッブ状に加工し、以下の第一成分をウエッブ状に加工した繊維全体の25質量%付着し、目付50g/m2の樹脂加工不織布を得た。
第一成分:アクリル酸エステル系エマルジョン樹脂(ガラス転移温度20℃)、重量分率100%
第二成分:なし
[Comparative Example 1]
A 2.5 dtex-55 mm long rayon short fiber is processed into a web shape with a basis weight of 40 g / m 2 using a card machine, and the following first component is attached to 25% by mass of the entire fiber processed into a web shape, and the basis weight is 50 g. A resin-processed non-woven fabric of / m2 was obtained.
First component: acrylic acid ester emulsion resin (glass transition temperature 20 ° C), weight fraction 100%
Second ingredient: None

得られた樹脂加工不織布に、平均繊維径1.7μm、目付20g/mのPP製メルトブローン不織布と、目付10g/mのクモの巣状不織布(ポリアミド系、融点110℃)とを積層し、加熱することで貼り合わせて比較例1の濾材を得た。比較例1の濾材の通気抵抗は72Paであり、剛軟度は110mgであった。 To the resulting resin processed nonwoven, the average fiber diameter of 1.7 [mu] m, are laminated with a PP meltblown nonwoven having a basis weight of 20 g / m 2, webbed nonwoven (polyamide, melting point 110 ° C.) of basis weight 10 g / m 2 and heating By doing so, the filter media of Comparative Example 1 was obtained. The aeration resistance of the filter medium of Comparative Example 1 was 72 Pa, and the rigidity and softness was 110 mg.

次に、濾材に対して、レシプロ機のみを用い、山高さ35mmにプリーツ加工を施した。その後、再度濾材を伸ばし、幅2インチ毎に溶融樹脂(ポリオレフィン系ホットメルト樹脂、軟化点130℃)をプリーツの折れ線に対して垂直方向に塗布した。そして、山間隔3mmで再度折り込み、比較例1のフィルターを形成した。 Next, the filter medium was pleated to a mountain height of 35 mm using only a reciprocating engine. Then, the filter medium was stretched again, and a molten resin (polyolefin-based hot melt resin, softening point 130 ° C.) was applied in the direction perpendicular to the broken line of the pleats every 2 inches in width. Then, it was folded again at a mountain spacing of 3 mm to form the filter of Comparative Example 1.

得られた比較例1のフィルターの通気抵抗は68Paであり、通風時に濾材の密着が見られた。濾材の難燃性は、上記難燃基準において、規格外であった。 The ventilation resistance of the obtained filter of Comparative Example 1 was 68 Pa, and adhesion of the filter medium was observed during ventilation. The flame retardancy of the filter medium was out of the standard in the above flame retardancy standard.

[比較例2]
2.5dtex−55mm長さのレーヨン短繊維をカードマシン用いて目付40g/mのウエッブ状に加工し、以下の第一成分をウエッブ状に加工した繊維全体の25質量%付着し、目付50g/mの樹脂加工不織布を得た。
第一成分:アクリル酸エステル系エマルジョン樹脂(ガラス転移温度90℃)、重量分率100%
第二成分:なし
[Comparative Example 2]
A 2.5 dtex-55 mm long rayon short fiber is processed into a web shape with a basis weight of 40 g / m 2 using a card machine, and the following first component is attached to 25% by mass of the entire fiber processed into a web shape, and the basis weight is 50 g. A resin-processed non-woven fabric of / m 2 was obtained.
First component: acrylic acid ester emulsion resin (glass transition temperature 90 ° C), weight fraction 100%
Second ingredient: None

得られた樹脂加工不織布に、平均繊維径1.7μm、目付20g/mのPP製メルトブローン不織布と、目付10g/m2のクモの巣状不織布(ポリアミド系、融点110℃)とを積層し、加熱することで貼り合わせて比較例2の濾材を得た。比較例2の濾材の通気抵抗は70Paであり、剛軟度は270mgであった。 On the obtained resin-processed non-woven fabric, a PP melt-blown non-woven fabric having an average fiber diameter of 1.7 μm and a grain of 20 g / m 2 and a spider web-like non-woven fabric having a grain of 10 g / m 2 (polyamide-based, melting point 110 ° C.) are laminated and heated. As a result, the filter media of Comparative Example 2 was obtained. The aeration resistance of the filter medium of Comparative Example 2 was 70 Pa, and the rigidity and softness was 270 mg.

次に、濾材に対して、レシプロ機のみを用い、山高さ35mmにプリーツ加工を施した。その後、再度濾材を伸ばし、幅2インチ毎に溶融樹脂(ポリオレフィン系ホットメルト樹脂、軟化点130℃)をリーツの折れ線に対して垂直方向に塗布した。そして、山間隔3mmで再度折り込み、比較例2のフィルターを形成した。 Next, the filter medium was pleated to a mountain height of 35 mm using only a reciprocating engine. Then, the filter medium was stretched again, and a molten resin (polyolefin-based hot melt resin, softening point 130 ° C.) was applied every 2 inches in the direction perpendicular to the line of the reach. Then, it was folded again at a mountain spacing of 3 mm to form the filter of Comparative Example 2.

得られた比較例2のフィルターでは、プリーツの頂点は丸みを有しており、筋付け部から粉落ちが見られた。比較例2のフィルターの通気抵抗は61Paであり、通風時に濾材の密着は見られなかった。濾材の難燃性は、上記難燃基準において、規格外であった。 In the obtained filter of Comparative Example 2, the apex of the pleats had a rounded shape, and powder falling off from the streaked portion was observed. The ventilation resistance of the filter of Comparative Example 2 was 61 Pa, and no adhesion of the filter medium was observed during ventilation. The flame retardancy of the filter medium was out of the standard in the above flame retardancy standard.

[比較例3]
2.5dtex−55mm長さのレーヨン短繊維をカードマシン用いて目付40g/mのウエッブ状に加工し、以下の第一成分と難燃剤との混合物をウエッブ状に加工した繊維全体の20質量%付着し、目付50g/mの樹脂加工不織布を得た。
第一成分:ガラス転移温度90℃のアクリル酸エステル系エマルジョン樹脂、混合物中の重量分率95%
第二成分:なし
難燃材:リン酸アンモニウム、混合物中の重量分率5%
[Comparative Example 3]
A 2.5 dtex-55 mm long rayon short fiber is processed into a web shape with a mesh size of 40 g / m 2 using a card machine, and a mixture of the following first component and a flame retardant is processed into a web shape. A resin-processed non-woven fabric having a grain size of 50 g / m 2 was obtained.
First component: Acrylic ester-based emulsion resin with a glass transition temperature of 90 ° C., 95% weight fraction in the mixture
Second component: None Flame retardant: Ammonium phosphate, 5% by weight in the mixture

得られた樹脂加工不織布に、平均繊維径1.7μm、目付20g/mのPP製メルトブローン不織布と、目付10g/mのクモの巣状不織布(ポリアミド系、融点110℃)とを積層し、加熱することで貼り合わせて比較例3の濾材を得た。比較例3の濾材の通気抵抗は75Paであり、剛軟度は160mgであった。 To the resulting resin processed nonwoven, the average fiber diameter of 1.7 [mu] m, are laminated with a PP meltblown nonwoven having a basis weight of 20 g / m 2, webbed nonwoven (polyamide, melting point 110 ° C.) of basis weight 10 g / m 2 and heating By doing so, the filter media of Comparative Example 3 was obtained. The aeration resistance of the filter medium of Comparative Example 3 was 75 Pa, and the rigidity and softness was 160 mg.

次に、濾材に対して、レシプロ機のみを用い、山高さ35mmにプリーツ加工を施した。その後、再度濾材を伸ばし、幅2インチ毎に溶融樹脂(ポリオレフィン系ホットメルト樹脂、軟化点130℃)をプリーツの折れ線に対して垂直方向に塗布した。そして、再度折り込み、比較例3のフィルターを形成した。 Next, the filter medium was pleated to a mountain height of 35 mm using only a reciprocating engine. Then, the filter medium was stretched again, and a molten resin (polyolefin-based hot melt resin, softening point 130 ° C.) was applied in the direction perpendicular to the broken line of the pleats every 2 inches in width. Then, it was folded again to form the filter of Comparative Example 3.

得られた比較例3のフィルターでは、プリーツの頂点は鋭角であった。比較例3のフィルターの通気抵抗は65Paであり、通風時に濾材の密着が見られた。濾材の難燃性は、上記難燃基準において、HF−1であった。 In the obtained filter of Comparative Example 3, the apex of the pleats was an acute angle. The ventilation resistance of the filter of Comparative Example 3 was 65 Pa, and adhesion of the filter medium was observed during ventilation. The flame retardancy of the filter medium was HF-1 in the above flame retardancy standard.

実施例1および2と比較例1との結果を比較することにより、ガラス転移温度20℃の第一成分のみをコーティングに用いた場合には、濾材に適切な剛性が得られず、フィルター(またはフィルターユニット)としての通気抵抗が高くなることがわかった。 By comparing the results of Examples 1 and 2 with Comparative Example 1, when only the first component having a glass transition temperature of 20 ° C. was used for coating, the filter medium did not have appropriate rigidity, and the filter (or filter) (or It was found that the ventilation resistance as a filter unit) increases.

実施例1および2と比較例2との結果を比較することにより、ガラス転移温度90℃の第一成分のみをコーティングに用いた場合には、濾材の剛性は高くなるが、プリーツ加工が困難であり、フィルターとしての通気抵抗が高くなることがわかった。また、比較例2では、粉塵の脱落が見られた。 By comparing the results of Examples 1 and 2 with Comparative Example 2, when only the first component having a glass transition temperature of 90 ° C. was used for coating, the rigidity of the filter medium was increased, but pleating was difficult. It was found that the ventilation resistance as a filter was high. Further, in Comparative Example 2, dust was seen to fall off.

実施例1および2と比較例3との結果を比較することにより、ガラス転移温度90℃の第一成分に難燃材を混合した場合(第二成分は無し)には、濾材の剛性が低下し、フィルターユニットとしての通気抵抗が高くなることがわかった。 By comparing the results of Examples 1 and 2 with Comparative Example 3, when the flame-retardant material is mixed with the first component having a glass transition temperature of 90 ° C. (there is no second component), the rigidity of the filter medium is reduced. However, it was found that the ventilation resistance as a filter unit increases.

以上の結果から、不織布に、重量分率50%以上を占めるガラス転移温度または融点が40℃未満の第一成分と、重量分率で50%未満のガラス転移温度または融点が40度以上の第二成分と、の混合物がコーティングされていることで、濾材の剛性は高くなり、プリーツ加工も容易に行えることがわかった。つまり、実施例1および2では、フィルターの作成に必要な剛性と加工性とを兼ね備えていることがわかった。 From the above results, the first component having a glass transition temperature or melting point of less than 40 ° C. accounting for 50% or more by weight and the glass transition temperature or melting point of 40 ° C. or more having a weight fraction of less than 50% are added to the non-woven fabric. It was found that the coating of the mixture of the two components increased the rigidity of the filter medium and facilitated pleating. That is, it was found that Examples 1 and 2 have both the rigidity and workability required for producing the filter.

本発明によると、フィルターの作成に必要な剛性と加工性とを両立した濾材、フィルター、フィルターユニットを得ることが可能であり、自動車用キャビンフィルター、空気清浄機、エアコン等のフィルター用に利用可能である。また、本発明によると、特に線状に樹脂を塗布してプリーツ間隔を固定した濾材、フィルター、フィルターエレメントなどの低通気抵抗化を実現できる。そのため、産業に大きく貢献できる。 According to the present invention, it is possible to obtain a filter medium, a filter, and a filter unit having both rigidity and workability required for producing a filter, and can be used for a filter for an automobile cabin filter, an air purifier, an air conditioner, etc. Is. Further, according to the present invention, it is possible to realize low aeration resistance of a filter medium, a filter, a filter element, etc., in which a resin is applied linearly to fix a pleated interval. Therefore, it can greatly contribute to the industry.

Claims (3)

少なくとも一つの繊維層に、重量分率50%以上を占めるガラス転移温度または融点が40℃未満の第一成分と、重量分率で50%未満のガラス転移温度または融点が40度以上の第二成分と、の混合物がコーティングされている濾材であって、
前記第二成分は、炭素繊維、もしくは、繊維径が500nm以下でアスペクト比(繊維長/繊維径)が20以上2000以下のセルロース繊維であることを特徴とする濾材。
At least one fiber layer has a first component having a glass transition temperature or melting point of less than 40 ° C. having a weight fraction of 50% or more and a second component having a glass transition temperature or melting point of less than 50% by weight and having a melting point of 40 ° C. or more. A filter medium coated with a mixture of ingredients and
The second component is a filter medium characterized by being a carbon fiber or a cellulose fiber having a fiber diameter of 500 nm or less and an aspect ratio (fiber length / fiber diameter) of 20 or more and 2000 or less.
前記第一成分が樹脂であることを特徴とする請求項1に記載の濾材。 The filter medium according to claim 1, wherein the first component is a resin. 請求項1または2に記載の濾材を備え、当該濾材に線状に塗布された樹脂にてプリーツ形状に固定されていることを特徴とするフィルターまたはフィルターユニット。 A filter or filter unit comprising the filter medium according to claim 1 or 2, characterized in that the filter medium is fixed in a pleated shape with a resin linearly applied to the filter medium.
JP2016199706A 2016-10-11 2016-10-11 Filter media, as well as filters and filter units Active JP6900649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016199706A JP6900649B2 (en) 2016-10-11 2016-10-11 Filter media, as well as filters and filter units

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016199706A JP6900649B2 (en) 2016-10-11 2016-10-11 Filter media, as well as filters and filter units

Publications (2)

Publication Number Publication Date
JP2018061918A JP2018061918A (en) 2018-04-19
JP6900649B2 true JP6900649B2 (en) 2021-07-07

Family

ID=61967296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016199706A Active JP6900649B2 (en) 2016-10-11 2016-10-11 Filter media, as well as filters and filter units

Country Status (1)

Country Link
JP (1) JP6900649B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041257A1 (en) * 2007-09-28 2009-04-02 Toray Industries, Inc. Filter element and filter unit
JP2013230453A (en) * 2012-05-01 2013-11-14 Shinwa Corp Nanofilter filter material and method of manufacturing the same

Also Published As

Publication number Publication date
JP2018061918A (en) 2018-04-19

Similar Documents

Publication Publication Date Title
JP5346301B2 (en) Wave filter material and filter element
CA2550466C (en) Polyester fiber scrim and method for making same
KR20100015854A (en) Filter medium and filter unit
JP2007531617A (en) Pleated aligned web filter
CN106048899A (en) Fiber web having a high stiffness
BR112018073436B1 (en) GAS FILTER MEDIUM, ELEMENT COMPRISING SAID GAS FILTER MEDIUM AND METHODS FOR FILTRATING A GAS
JP6109334B2 (en) Non-woven electret fiber web and method for producing the same
JP2007144415A (en) Composite filter medium and its manufacturing method
WO2021000974A1 (en) Air filtration filter material
JP2016538112A (en) Filter comprising a microporous film and method of use
JP2015183327A (en) Melt-blown nonwoven fabric and composite filter medium
JPH08120552A (en) Conjugated fiber nonwoven fabric
WO2016017484A1 (en) Filtration material, filter element using same, and manufacturing method of filtration material
JP2014151299A (en) Filter material for filter and air filter
JP2017113670A (en) Filter medium for air filter and air filter
KR101659820B1 (en) Filter material for deordorization and filter complex for deodorization and dustproofing using the same
JP6900649B2 (en) Filter media, as well as filters and filter units
JP6578673B2 (en) Flame retardant support
JP2014226629A (en) Electret filter material
JP2014184360A (en) Filter medium for pleat type air filter and pleat type air filter unit
JP6699150B2 (en) Filter media, filters and filter units
JP2014064969A (en) Electret filter medium
JP2016112493A (en) Air cleaning filter
JP2007077522A (en) Laminated nonwoven fabric and filtration material produced by using the same
JPH04161209A (en) Cabin filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210531

R151 Written notification of patent or utility model registration

Ref document number: 6900649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250