JP2007134381A - Composite magnetic material, dust core using the same, and magnetic element - Google Patents

Composite magnetic material, dust core using the same, and magnetic element Download PDF

Info

Publication number
JP2007134381A
JP2007134381A JP2005323339A JP2005323339A JP2007134381A JP 2007134381 A JP2007134381 A JP 2007134381A JP 2005323339 A JP2005323339 A JP 2005323339A JP 2005323339 A JP2005323339 A JP 2005323339A JP 2007134381 A JP2007134381 A JP 2007134381A
Authority
JP
Japan
Prior art keywords
powder
magnetic
magnetic material
alloy powder
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005323339A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Sugano
博芳 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2005323339A priority Critical patent/JP2007134381A/en
Publication of JP2007134381A publication Critical patent/JP2007134381A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dust core having high magnetic core density, less iron loss, high insulation performance and good corrosion resistance, and also to provide a composite magnetic material used therefor, and a magnetic element using the same. <P>SOLUTION: The composite magnetic material is made of a mixed magnetic material powder mixed with an amorphous magnetic alloy powder and a crystalline Fe-Cr based alloy powder, and an insulative binder. The mixing ratio of the amorphous magnetic alloy powder and the Fe-Cr alloy powder is set so that the weight ratio of the Fe-Cr alloy powder in the mixed magnetic material powder is 10-60 wt.%. Also, the composition of the Fe-Cr based alloy is made so that the weight ratio of a component consisting of at least any one of Si, Al, Ni and Mo is 0.1 wt.%-8 wt.%, and the weight ratio of Cr of the other component is 5 wt.%-18 wt.%, and the remaining part is Fe. The Fe-Cr based alloy powder has a composition having ductility and corrosion resistance. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はチョークコイル、インダクタなどに用いられる複合磁性材料とその複合磁性材料を用いた圧粉磁心および磁性素子に関するものである。   The present invention relates to a composite magnetic material used for a choke coil, an inductor, and the like, and a dust core and a magnetic element using the composite magnetic material.

電源電圧の低電圧化に伴い、近年、パワーインダクタは大電流対応が求められている。特に電子機器の小型化と電源の高周波化が進み、それらに対応可能な磁性材料と高性能な磁性素子が要求されている。従来より高周波数帯で使用されるインダクタなどの磁心にはフェライトが多く使用されている。フェライトは金属磁性材料粉末よりも安価なため、それまで主流だった金属磁性材料粉末に代わる磁性素子材料として多くのチョークコイルやノイズフィルタなどに用いられてきたが、フェライトは飽和磁束密度が低い欠点があり、近年の小型で大電流対応の要求には、再び飽和磁束密度の高い金属磁性材料粉末が磁性素子用磁心として利用されてきている。特に金属磁性材料粉末の圧粉磁心は高周波数帯でも特性が安定しているため、近年の電子部品の高周波化に対応する磁性素子として注目されている。   In recent years, power inductors are required to handle large currents as the power supply voltage decreases. In particular, electronic devices are becoming smaller and power supplies have higher frequencies, and magnetic materials and high-performance magnetic elements that can cope with them have been demanded. Conventionally, a ferrite is often used in a magnetic core such as an inductor used in a high frequency band. Since ferrite is cheaper than metal magnetic material powder, it has been used in many choke coils and noise filters as a magnetic element material to replace metal magnetic material powder, which has been the mainstream until now. In response to recent demands for small size and large current, metal magnetic material powder having a high saturation magnetic flux density has been used as a magnetic element magnetic core again. In particular, the powder magnetic core of the metal magnetic material powder has attracted attention as a magnetic element corresponding to higher frequency of electronic parts in recent years because the characteristics are stable even in a high frequency band.

磁性素子用の金属磁性材料粉末としては、Fe粉、Fe−Si合金粉末、Fe−Si−Al合金粉末などFe基合金の粉末が用いられているが、金属磁性材料粉末を用いた磁性素子は鉄損が大きい問題があり、鉄損が小さい非晶質合金粉末が注目されている。   As the metal magnetic material powder for the magnetic element, Fe-based alloy powder such as Fe powder, Fe-Si alloy powder, Fe-Si-Al alloy powder is used, but the magnetic element using the metal magnetic material powder is There is a problem that iron loss is large, and amorphous alloy powders with low iron loss are attracting attention.

金属磁性材料粉末による磁心は、磁心成形後に焼鈍を施すことや磁心の密度を上げることで磁心の実効透磁率の向上が図れるが、絶縁性結着剤を混合した複合磁性材料の場合、絶縁性結着剤の耐熱温度に限界があり、高温焼鈍が難しい。また磁心の実効透磁率と密度には相関性が見られ、磁心の実効透磁率は磁心の密度を高めることで向上が図れるが、粉末硬度が高い粉末、特に非晶質合金粉末の場合、磁心の密度の向上が図りにくい問題がある。   The magnetic core made of metal magnetic material powder can improve the effective magnetic permeability of the magnetic core by annealing or increasing the magnetic core density after forming the magnetic core. However, in the case of a composite magnetic material mixed with an insulating binder, The heat-resistant temperature of the binder is limited and high temperature annealing is difficult. In addition, there is a correlation between the effective permeability and density of the magnetic core, and the effective permeability of the magnetic core can be improved by increasing the density of the magnetic core. However, in the case of a powder with high powder hardness, especially an amorphous alloy powder, the magnetic core There is a problem that it is difficult to improve the density.

非晶質合金粉末による磁心の密度を上げるために、非晶質合金粉末間の空隙を埋めるように数μmからなるFe粉を混合する方法があるが、磁心の成形時に非晶質合金粉末の密度を高める際、電気伝導度が高いFe粉の接触が増加し、粉末間および磁心の絶縁性の低下が心配される。また、FeやFe−Siなどの粉末は酸化しやすいため、磁心の耐食性低下の問題がある。   In order to increase the density of the magnetic core by the amorphous alloy powder, there is a method of mixing Fe powder consisting of several μm so as to fill the gap between the amorphous alloy powders. When the density is increased, the contact of Fe powder having a high electrical conductivity increases, and there is a concern that the insulation between the powder and the magnetic core may be lowered. In addition, since powders such as Fe and Fe-Si are easily oxidized, there is a problem that the corrosion resistance of the magnetic core is lowered.

特許文献1には非晶質合金粉末に、Niを40〜60wt%(重量%)含むFe−Ni系合金粉末を、40〜70wt%混合するものが記載されている。Fe−Ni系合金は延性を有するため、非晶質合金粉末と混合することで磁心の密度を向上させる効果があるが、Ni−Fe系合金においてはNiが70wt%程度を超えると比較的良好な耐食性が得られるが、高価なNiを多量に含有するため、素材コストが高価になってしまう。他方、Niが60wt%以下になるとFe含有量が増す毎に酸化しやすくなる問題があり、粉末や磁性素子が酸化する問題がある。   Patent Document 1 describes that an amorphous alloy powder is mixed with an Fe-Ni alloy powder containing 40 to 60 wt% (wt%) of Ni in an amount of 40 to 70 wt%. Fe-Ni alloys have ductility, so there is an effect of improving the density of the magnetic core by mixing with amorphous alloy powder. However, in Ni-Fe alloys, it is relatively good when Ni exceeds about 70 wt%. Corrosion resistance can be obtained, but since the expensive Ni is contained in a large amount, the material cost becomes high. On the other hand, when the Ni content is 60 wt% or less, there is a problem that it is likely to be oxidized whenever the Fe content increases, and there is a problem that the powder and the magnetic element are oxidized.

特許文献2にはFe系の結晶質合金粉末を60〜90wt%、Fe系の非晶質合金粉末を10〜40wt%の配合比で混合した粉末による複合磁性材料の記載があるが、結晶質合金粉末の混合比率が増すほど磁心の透磁率は向上するものの、磁心の絶縁抵抗が低下してしまう問題がある。高温環境下での磁心の絶縁抵抗の低下を抑制するには常温での絶縁抵抗が高い方が望ましく、結晶質合金粉末の混合比率が高いと、よい効果は得られない。また、非晶質合金粉末の混合比率が40wt%以下と少ないと非晶質合金の特徴である低ヒステリシス損失を圧粉磁心にて効果的に得ることができない。   Patent Document 2 describes a composite magnetic material using a powder obtained by mixing an Fe-based crystalline alloy powder at a blending ratio of 60 to 90 wt% and an Fe-based amorphous alloy powder at 10 to 40 wt%. Although the magnetic permeability of the magnetic core improves as the mixing ratio of the alloy powder increases, there is a problem that the insulation resistance of the magnetic core decreases. In order to suppress a decrease in the insulation resistance of the magnetic core in a high temperature environment, it is desirable that the insulation resistance at room temperature is high. If the mixing ratio of the crystalline alloy powder is high, a good effect cannot be obtained. Further, if the mixing ratio of the amorphous alloy powder is as small as 40 wt% or less, the low hysteresis loss, which is a characteristic of the amorphous alloy, cannot be obtained effectively with the dust core.

特開2004−363466号公報JP 2004-363466 A 特開2004−197218号公報JP 2004-197218 A

複合磁性材料による磁性素子の場合、絶縁性結着剤の量が多いほうが、磁心の機械的強度が高く、また粉末間の絶縁性が良い。しかし絶縁性結着剤が多いほど磁心の粉末充填率が低下してしまうため、磁心の密度が低下し、磁性素子の実効透磁率が低下してしまう。   In the case of a magnetic element made of a composite magnetic material, the greater the amount of the insulating binder, the higher the mechanical strength of the magnetic core and the better the insulation between the powders. However, as the amount of the insulating binder increases, the powder filling rate of the magnetic core decreases, so that the density of the magnetic core decreases and the effective magnetic permeability of the magnetic element decreases.

非晶質磁性合金粉末(非晶質合金粉末と略記する)の場合、粉末硬度が高いため、成形性が良くなく、成形圧を上げて磁心の密度を向上させる必要があるが、一定の密度まで上昇すると粉末間の空隙が減少しなくなり、磁心の実効透磁率が向上しなくなる。この場合、粉末が微粉になるほど磁心に空隙が増え、実効透磁率が向上しない。また粉末が塑性変形しないため、粉末間の結着性がほとんどなく、絶縁性結着剤の結着力のみで成形されるため、磁心の強度が弱い。   In the case of amorphous magnetic alloy powder (abbreviated as amorphous alloy powder), since the powder hardness is high, the moldability is not good, and it is necessary to increase the molding pressure to increase the density of the magnetic core. When it rises to the upper limit, voids between the powders do not decrease, and the effective magnetic permeability of the magnetic core does not improve. In this case, as the powder becomes finer, voids increase in the magnetic core, and the effective permeability is not improved. Further, since the powder is not plastically deformed, there is almost no binding property between the powders, and since the molding is performed only with the binding force of the insulating binder, the strength of the magnetic core is weak.

結晶質合金粉末において、粉末硬度が低く延性を有する粉末の場合、圧粉磁心の密度は非晶質合金粉末よりも高く、磁心の実効透磁率が向上しやすいものの、ヒステリシス損失が大きくなってしまい、磁心の鉄損が増大してしまう問題がある。また、耐食性が良くない結晶質合金粉末からなる磁心においては、磁心表面に錆が発生する問題がある。   In the case of a crystalline alloy powder having a low powder hardness and ductility, the density of the dust core is higher than that of the amorphous alloy powder, and the effective permeability of the magnetic core is likely to improve, but the hysteresis loss increases. There is a problem that the iron loss of the magnetic core increases. Further, a magnetic core made of a crystalline alloy powder having poor corrosion resistance has a problem that rust is generated on the surface of the magnetic core.

ところで、複合磁性材料からなる磁性素子の実効透磁率と磁心の粉末充填率には相関性があり、磁心の充填率を高めることで実効透磁率を向上させることができる。磁心の粉末充填率の向上には、磁心成形圧の増大などにより可能であるが、磁心成形圧を増大させると成形工程の効率低下や磁心のヒステリシス損失増大などの問題がある。特に非晶質合金粉末の場合は鉄損が低いが粉末硬度が硬く、顕著にこれらの問題がある。他方、耐食性が良くない結晶質合金粉末の磁心では、磁心表面に錆が発生する問題がある。   Incidentally, there is a correlation between the effective magnetic permeability of the magnetic element made of the composite magnetic material and the powder filling rate of the magnetic core, and the effective magnetic permeability can be improved by increasing the filling rate of the magnetic core. Improvement of the powder filling rate of the magnetic core is possible by increasing the magnetic core molding pressure, but increasing the magnetic core molding pressure causes problems such as a decrease in efficiency of the molding process and an increase in hysteresis loss of the magnetic core. In particular, in the case of an amorphous alloy powder, the iron loss is low, but the powder hardness is high, and these problems are remarkable. On the other hand, a magnetic core of crystalline alloy powder having poor corrosion resistance has a problem that rust is generated on the surface of the magnetic core.

この状況にあって、本発明の課題は、磁心密度が高く、鉄損が少なく、絶縁性が高く、耐食性の良い圧粉磁心、それに用いる複合磁性材料、およびそれらを用いた磁性素子を提供することにある。   In this situation, an object of the present invention is to provide a dust core having high magnetic core density, low iron loss, high insulation and good corrosion resistance, a composite magnetic material used therefor, and a magnetic element using them. There is.

本発明は、硬度の高い非晶質合金粉末と硬度が低く延性を有するFe−Cr系合金粉末とを混合した粉末を磁性粉末とし、その粉末と絶縁性結着剤を混合した複合磁性材料とその複合磁性材料からなる圧粉磁心および磁性素子を提供する。   The present invention relates to a composite magnetic material in which a powder obtained by mixing an amorphous alloy powder having a high hardness and a Fe-Cr alloy powder having a low hardness and ductility is used as a magnetic powder, and the powder and an insulating binder are mixed. A dust core and a magnetic element comprising the composite magnetic material are provided.

また、本発明は、ヒステリシス損失の小さい非晶質合金粉末による圧粉磁心内の粉末間の空隙を延性を有する結晶質合金粉末で補填し、磁心の密度を向上させ、磁性素子の実効透磁率を向上させつつ、圧粉磁心のヒステリシス損失の抑制を図るものである。   In addition, the present invention compensates for the voids between the powders in the powder magnetic core by the amorphous alloy powder having a small hysteresis loss with the crystalline alloy powder having ductility, thereby improving the density of the magnetic core and increasing the effective magnetic permeability of the magnetic element. The hysteresis loss of the dust core is suppressed while improving the above.

詳しくは、粉末硬度の高い非晶質合金粉末に粉末硬度が低く延性を有する結晶質合金粉末を混合した混合磁性粉末と絶縁性結着剤を混合して複合磁性材料とすることで、磁心の密度を高め、かつ粉末間の絶縁性を有する、密度の高い磁性素子を作製する。このとき、FeやFe−Si合金などは酸化されやすく、水アトマイズなどの酸化環境にある粉末作製方法の場合、粉末表面が著しく酸化され、粉末嵩密度の低下、粉末の実効透磁率の低下などがある。しかし、本発明に用いる耐食性の良いFe−Cr系合金は酸化されにくいため、水アトマイズにて粉末を作製しても、表面が錆びにくく、また延性を有するため、圧粉磁心の密度が向上しやすく、実効透磁率が向上しやすい。   Specifically, by mixing a mixed magnetic powder in which an amorphous alloy powder having high powder hardness and a crystalline alloy powder having low ductility and ductility are mixed with an insulating binder, a composite magnetic material is obtained. A high-density magnetic element having high density and insulating properties between powders is produced. At this time, Fe and Fe-Si alloys are easily oxidized, and in the case of a powder preparation method in an oxidizing environment such as water atomization, the surface of the powder is remarkably oxidized, the powder bulk density is lowered, the effective magnetic permeability of the powder is lowered, etc. There is. However, the Fe-Cr alloy with good corrosion resistance used in the present invention is not easily oxidized, so even if the powder is prepared by water atomization, the surface is hardly rusted and has ductility, so the density of the dust core is improved. It is easy to improve the effective permeability.

すなわち、本発明の複合磁性材料は、非晶質磁性合金の粉末および結晶質のFe−Cr系合金粉末を混合した混合磁性材料粉末と、絶縁性結着剤とからなることを特徴とする。   That is, the composite magnetic material of the present invention is characterized by comprising a mixed magnetic material powder obtained by mixing an amorphous magnetic alloy powder and a crystalline Fe—Cr alloy powder, and an insulating binder.

前記非晶質磁性合金は、成分Xおよび成分Yを含むFe基合金であって、その成分XがSi,Cr,Ni,Nb,Ti,Mgのうち少なくとも1つからなり、その成分YがCo,Mo,B,Cのうち少なくとも1つからなるとよい。   The amorphous magnetic alloy is an Fe-based alloy containing a component X and a component Y, and the component X is composed of at least one of Si, Cr, Ni, Nb, Ti, and Mg, and the component Y is Co. , Mo, B, C may be at least one.

前記Fe−Cr系合金の組成は、Si,Al,Ni,Moのうち少なくとも1つからなる成分の重量比率が0.1wt%〜8wt%であり、他成分のCrの重量比率が5wt%〜18wt%であり、残部がFeであるとよい。   The composition of the Fe-Cr alloy is such that the weight ratio of at least one of Si, Al, Ni, and Mo is 0.1 wt% to 8 wt%, and the Cr ratio of other components is 5 wt% to 5 wt%. It is good that it is 18 wt% and the balance is Fe.

前記Fe−Cr系合金粉末は延性と耐食性を有するとよい。   The Fe—Cr alloy powder may have ductility and corrosion resistance.

前記Fe−Cr系合金の飽和磁束密度が1.0T以上であるとよい。   The saturation magnetic flux density of the Fe—Cr alloy is preferably 1.0 T or more.

前記非晶質磁性合金の粉末と前記Fe−Cr系合金粉末の平均粒径が1〜50μmであるとよい。   The average particle size of the amorphous magnetic alloy powder and the Fe—Cr alloy powder is preferably 1 to 50 μm.

前記非晶質磁性合金の粉末と前記Fe−Cr系合金粉末との混合比率は、前記非晶質磁性合金の粉末の、前記混合磁性材料粉末に占める重量比率が40〜90wt%であるとよい。   The mixing ratio of the amorphous magnetic alloy powder and the Fe—Cr alloy powder may be such that the weight ratio of the amorphous magnetic alloy powder to the mixed magnetic material powder is 40 to 90 wt%. .

前記混合磁性材料粉末と、その混合磁性材料粉末に対して1wt%〜10wt%の前記絶縁性結着剤とを混合してなる複合磁性材料とするとよい。   The mixed magnetic material powder may be a composite magnetic material obtained by mixing 1 wt% to 10 wt% of the insulating binder with respect to the mixed magnetic material powder.

また、本発明の圧粉磁心は、前記複合磁性材料からなることを特徴とする。   The dust core of the present invention is made of the composite magnetic material.

そして、本発明の磁性素子は、前記複合磁性材料と、表面が被覆された銅線からなる空芯コイルとを圧粉成形してなることを特徴とする。   The magnetic element according to the present invention is characterized in that the composite magnetic material and an air-core coil made of a copper wire coated on the surface are compacted.

以上述べた通り本発明の複合磁性材料は、非晶質合金粉末に対し、延性と耐食性を有する結晶質合金粉末を混合し、絶縁性結着剤を混合したものである。これまでは結晶質合金粉末からなる圧粉磁心は、磁心の高密度化で高い実効透磁率μ’が得られるが、鉄損が大きく、それに対して非晶質合金粉末からなる圧粉磁心は鉄損が低いが、磁心の密度が向上せず高いμ’が得られない問題があったが、この複合磁性材料を用いることでμ’が高く、鉄損が低い耐食性の良い圧粉磁心を得ることが可能になった。   As described above, the composite magnetic material of the present invention is obtained by mixing an amorphous alloy powder with a crystalline alloy powder having ductility and corrosion resistance and mixing an insulating binder. Until now, a powder magnetic core made of a crystalline alloy powder can obtain a high effective magnetic permeability μ 'by increasing the density of the magnetic core, but has a large iron loss. Although the iron loss is low, the density of the magnetic core does not improve, and there is a problem that a high μ ′ cannot be obtained. By using this composite magnetic material, a powder magnetic core having high corrosion resistance and low μ ′ is obtained. It became possible to get.

また、本発明の複合磁性材料からなる圧粉磁心を熱処理することで、さらに鉄損を低減することが可能となり、優れた特性の磁性素子を得ることが可能となった。これにより表面を被覆された銅線からなる空芯コイルと複合磁性材料を一体成形する磁性素子においてもコイル表面の被覆の耐熱温度や絶縁性結着剤の耐熱温度以下での熱処理を図ることでその磁性素子においても、さらなる優れた特性を得ることができる。   Moreover, by heat-treating the powder magnetic core made of the composite magnetic material of the present invention, iron loss can be further reduced, and a magnetic element having excellent characteristics can be obtained. As a result, even in a magnetic element that integrally molds an air core coil composed of a copper wire coated with a surface and a composite magnetic material, heat treatment can be performed at a temperature lower than the heat resistance temperature of the coil surface coating or the heat resistance temperature of the insulating binder. Even in the magnetic element, further excellent characteristics can be obtained.

次に、本発明の好ましい実施形態を説明する。まず、一般的な磁性素子とそれに用いる磁心について説明する。図1は圧粉磁心形状の例を示し、図1(a)はE型コアの斜視図、図1(b)は円筒型あるいはトロイダルコアの斜視図、図1(c)は鍔つきコアの斜視図である。図2は磁性素子の例を示し、図2(a)はEI型コアによるインダクタンス部品を示す斜視図、図2(b)は一体成形型インダクタンス部品を示す斜視図であり、21は磁心、22は巻線部、23は一体成形型磁心、24は巻線である   Next, a preferred embodiment of the present invention will be described. First, a general magnetic element and a magnetic core used therefor will be described. FIG. 1 shows an example of a dust core shape, FIG. 1 (a) is a perspective view of an E-type core, FIG. 1 (b) is a perspective view of a cylindrical or toroidal core, and FIG. It is a perspective view. FIG. 2 shows an example of a magnetic element, FIG. 2 (a) is a perspective view showing an inductance part by an EI type core, FIG. 2 (b) is a perspective view showing an integrally formed type inductance part, 21 is a magnetic core, 22 is a perspective view. Is a winding portion, 23 is an integrally formed core, and 24 is a winding.

そのとき用いる非晶質合金粉末はFe−Si−B系のアモルファス合金をはじめ、ヒステリシス損失が小さいアモルファス合金からなり、その合金の溶湯をガスアトマイズや水アトマイズなどにより噴霧し、球状化した粉末が好ましい。しかし非晶質合金粉末は粉末硬度が高いため、磁心のプレス成形性が悪く、プレス成形圧が低いと磁心の粉末密度が向上しないため、磁性素子の磁気特性が向上しない。成形圧を上げることで磁心の粉末密度は増すものの、粉末が塑性変形しないため、圧粉磁心においては空隙の残存は避けられない。   The amorphous alloy powder used at that time is made of an amorphous alloy having a small hysteresis loss including an Fe-Si-B amorphous alloy, and a molten powder of the alloy is sprayed by gas atomization, water atomization, or the like, and a spheroidized powder is preferable. . However, since the amorphous alloy powder has a high powder hardness, the press formability of the magnetic core is poor, and when the press molding pressure is low, the powder density of the magnetic core does not improve, so the magnetic characteristics of the magnetic element do not improve. Although the powder density of the magnetic core is increased by increasing the molding pressure, the powder is not plastically deformed. Therefore, the voids are unavoidable in the powder magnetic core.

上記の他に本発明で使用できる非晶質合金としては、Fe基合金であり、Si,Cr,Ni,Nb,Ti,Mgのうち少なくとも1つからなる成分と、Co,Mo,B,Cのうち少なくとも1つからなる成分とを含有してなる合金がある。   In addition to the above, the amorphous alloy that can be used in the present invention is an Fe-based alloy, a component comprising at least one of Si, Cr, Ni, Nb, Ti, and Mg, and Co, Mo, B, C. There is an alloy containing at least one of these components.

一方、延性を有する結晶質合金粉末は塑性変形するため、この磁心に残存する空隙を埋める効果があり、磁心の粉末密度の向上が図れる。ただし、結晶質合金粉末は飽和磁束密度が1.0T以上を有することが必要である。高飽和磁束密度を有する結晶質合金粉末を混合することにより、磁心の磁束密度の向上がさらに図れるため、磁性素子としての直流重畳特性、実効透磁率を向上させることが可能になる。さらに可能であれば、結晶質合金の固有抵抗は高い方が高周波での磁心の渦電流損失の抑制効果も期待できるので好ましい。   On the other hand, since the ductile crystalline alloy powder is plastically deformed, it has the effect of filling the voids remaining in the magnetic core, and the powder density of the magnetic core can be improved. However, the crystalline alloy powder needs to have a saturation magnetic flux density of 1.0 T or more. By mixing the crystalline alloy powder having a high saturation magnetic flux density, the magnetic flux density of the magnetic core can be further improved, so that it is possible to improve the DC superposition characteristics and the effective magnetic permeability as the magnetic element. Further, if possible, it is preferable that the specific resistance of the crystalline alloy is high because an effect of suppressing eddy current loss of the magnetic core at a high frequency can be expected.

非晶質合金は結晶質合金に比べ、金属表面に安定な不動態膜を形成し、また結晶粒界がないため、結晶質合金よりも耐食性が良い。ゆえに非晶質合金粉末による磁性素子は耐食性が良好である。この非晶質合金粉末に結晶質合金粉末を混合する場合、結晶質合金の耐食性が良くないと、その磁性素子の表面に錆が発生してしまう危険性がある。   Compared to crystalline alloys, amorphous alloys form a stable passive film on the metal surface and have no grain boundaries, and therefore have better corrosion resistance than crystalline alloys. Therefore, the magnetic element made of amorphous alloy powder has good corrosion resistance. When the amorphous alloy powder is mixed with the crystalline alloy powder, there is a risk that rust is generated on the surface of the magnetic element unless the corrosion resistance of the crystalline alloy is good.

飽和磁束密度が高く、延性を有する磁性材料としては、FeやFe−Si合金などがある。Feは飽和磁束密度が高いが、酸化しやすい。Fe−Si合金はFeよりも固有抵抗が高く、軟磁気特性が良い。しかし酸化しやすく、Si添加量の増加とともに延性が低下していく欠点がある。6.5wt%Si−Fe合金は、磁歪ゼロ近傍にあり良好な軟磁気特性を示すものの、その一方で錆び易く、脆く、延性が得られない。その他にAl,Ni,MoなどをSi同様に少量添加することでFe基合金の軟磁気特性の改善が見られるが、単独添加では延性、飽和磁束密度、耐食性などの全てを満足することが困難である。   Examples of magnetic materials having a high saturation magnetic flux density and ductility include Fe and Fe—Si alloys. Fe has a high saturation magnetic flux density, but is easily oxidized. Fe-Si alloys have higher specific resistance and better soft magnetic properties than Fe. However, it is easy to oxidize, and there is a drawback that ductility decreases with increasing Si addition amount. The 6.5 wt% Si—Fe alloy is in the vicinity of zero magnetostriction and exhibits good soft magnetic properties, but on the other hand, it tends to rust, is brittle, and does not provide ductility. In addition, the addition of a small amount of Al, Ni, Mo, etc., like Si, can improve the soft magnetic properties of Fe-based alloys. However, it is difficult to satisfy all of ductility, saturation magnetic flux density, corrosion resistance, etc. when added alone. It is.

以上のような問題を網羅して解決するには、FeもしくはそれらFe基合金にCrを添加するのが効果的である。特に耐食性については効果が大きい。これはFe基合金の表層に3酸化クロム(Cr)組成の不動態皮膜が生成されるためであるが、Crの添加量が少な過ぎると十分な耐食性の効果は発揮されない。Cr量が多い程、酸素を含有する大気中では不動態皮膜が安定するので、Cr量は5wt%以上、好ましくは10wt%以上添加することで安定した耐食性が得られる。また、Crの添加はFe基合金の固有抵抗を向上させる効果を持つ他、Fe基合金の延性向上の効果も持つ。しかし一方でCrの添加量が増加すると飽和磁束密度が低下するため、磁気特性的には18wt%を超えるCrの添加は、飽和磁束密度の低下が顕著につき、好ましくない。飽和磁束密度は大きいほど望ましく、磁性素子の小型化には、1T以上の飽和磁束密度が必要である。 In order to cover and solve the above problems, it is effective to add Cr to Fe or these Fe-based alloys. The effect is particularly great with respect to corrosion resistance. This is because a passive film having a chromium trioxide (Cr 2 O 3 ) composition is formed on the surface layer of the Fe-based alloy. However, if the amount of Cr added is too small, the effect of sufficient corrosion resistance is not exhibited. As the amount of Cr increases, the passive film becomes more stable in the atmosphere containing oxygen. Therefore, when the amount of Cr is 5 wt% or more, preferably 10 wt% or more, stable corrosion resistance can be obtained. Further, addition of Cr has the effect of improving the specific resistance of the Fe-based alloy and also has the effect of improving the ductility of the Fe-based alloy. On the other hand, however, the saturation magnetic flux density decreases as the amount of Cr added increases. Therefore, in terms of magnetic properties, the addition of Cr exceeding 18 wt% is not preferable because the saturation magnetic flux density is significantly reduced. A larger saturation magnetic flux density is desirable, and a saturation magnetic flux density of 1 T or more is required for downsizing of the magnetic element.

このような飽和磁束密度BsのCr成分依存性の一例について図面に基づいて説明する。図3はFeおよびFe−3Si合金におけるCr成分による飽和磁束密度の変化を示す図である。同図のように、FeにCrを添加した場合、Fe−3Si合金にCrを添加した場合のいずれも、Cr成分の増加とともに、飽和磁束密度Bsは減少する。   An example of the Cr component dependency of the saturation magnetic flux density Bs will be described with reference to the drawings. FIG. 3 is a diagram showing changes in saturation magnetic flux density due to Cr components in Fe and Fe-3Si alloys. As shown in the figure, when Cr is added to Fe and when Cr is added to the Fe-3Si alloy, the saturation magnetic flux density Bs decreases as the Cr component increases.

また、図5は、Fe−13Cr合金でのSi成分またはAl成分の添加による飽和磁束密度の変化を示す図である。同図からは、Si、Alは添加量1wt%までは飽和磁束密度Bsは増加するが、1wt%を超えると飽和磁束密度Bsは減少することが分かる。   FIG. 5 is a diagram showing a change in the saturation magnetic flux density due to the addition of the Si component or the Al component in the Fe-13Cr alloy. From this figure, it can be seen that the saturation magnetic flux density Bs increases up to 1 wt% of Si and Al, but the saturation magnetic flux density Bs decreases when it exceeds 1 wt%.

なお、Cr添加と固有抵抗ρの関係について、FeおよびFe−3Si合金におけるCr成分による固有抵抗ρの変化を図4に示す。Cr成分の増加とともに、固有抵抗ρは増加することが分かる。   In addition, about the relationship between Cr addition and specific resistance (rho), the change of specific resistance (rho) by the Cr component in Fe and Fe-3Si alloy is shown in FIG. It can be seen that the specific resistance ρ increases as the Cr component increases.

ところで、高周波での圧粉磁心の粒子内の渦電流損失を抑制するには、金属粉末の固有抵抗を大きくする他、金属粉末の粒径を小さくすることが効果的である。粉末粒径が50μmを超えると磁心の密度が高く、磁性素子の低周波の実効透磁率が向上するが、高周波では渦電流損失が増大し、磁心の実効透磁率が低下してしまう。また粉末粒径が1μm未満になると高周波の渦電流損失が低減化するものの、磁心の密度が低下し、磁性素子の実効透磁率が良くない。ゆえに非晶質合金粉末および結晶質合金粉末ともに粒径は1〜50μmが適当である。高周波での圧粉磁心の粒子間の渦電流損失の抑制には、粉末間の絶縁性維持が効果的である。非晶質合金粉末のみで圧粉磁心を高密度化すると粉末間の接触が増加し、粉末間の絶縁抵抗が低下してしまい、高周波における粉末間の渦電流損失が増大化してしまう可能性がある。しかし延性を有する結晶質合金粉末においては、絶縁性結着剤が粉末表面を覆ったまま塑性変形するため、粉末間の絶縁性が維持され、粉末間の渦電流損失の抑制効果がある。   By the way, in order to suppress the eddy current loss in the particles of the powder magnetic core at high frequency, it is effective to reduce the particle size of the metal powder in addition to increasing the specific resistance of the metal powder. When the powder particle size exceeds 50 μm, the density of the magnetic core is high and the effective magnetic permeability at low frequency of the magnetic element is improved. However, at high frequencies, the eddy current loss is increased and the effective magnetic permeability of the magnetic core is decreased. On the other hand, when the powder particle size is less than 1 μm, high-frequency eddy current loss is reduced, but the density of the magnetic core is lowered and the effective magnetic permeability of the magnetic element is not good. Therefore, the grain size of the amorphous alloy powder and the crystalline alloy powder is suitably 1 to 50 μm. In order to suppress the eddy current loss between the particles of the dust core at high frequency, it is effective to maintain the insulation between the powders. When the density of the powder magnetic core is increased only with the amorphous alloy powder, the contact between the powders increases, the insulation resistance between the powders decreases, and the eddy current loss between the powders at a high frequency may increase. is there. However, in the crystalline alloy powder having ductility, since the insulating binder plastically deforms while covering the powder surface, the insulation between the powders is maintained, and the eddy current loss between the powders is suppressed.

絶縁性結着剤としては、フェノール系、エポキシ系、シリコーン系などの熱硬化型樹脂材料であれば問題なく、他の樹脂であっても良いが、耐熱温度が比較的高いシリコーン系が望ましい。絶縁性結着剤の混合量は金属磁性材料粉末に対して1wt%未満では粉末間の結着力が弱く、10wt%超では磁心の粉末充填率が低下し、磁性素子の磁気特性が低下してしまうため、絶縁性結着剤の混合量は金属磁性材料粉末に対して1〜10wt%が好ましい。これら熱硬化性樹脂と非晶質合金粉末と結晶質合金粉末からなる複合磁性材料粉末は、圧粉磁心の加圧成形中または加圧成形後に不活性ガス中で絶縁性結着剤を加熱硬化させることで磁性素子を製造することが望ましい。さらには表面が被覆された銅線からなる空芯コイルと複合磁性材料を一体成形する磁性素子の場合、コイル表面の被覆と絶縁性結着剤が熱分解しない程度の温度または時間で熱処理することで磁心の内部に残留する応力が緩和し、ヒステリシス損失の低減化を図ることができる。   As the insulating binder, there is no problem as long as it is a thermosetting resin material such as phenol, epoxy, or silicone, and other resins may be used, but a silicone that has a relatively high heat resistant temperature is desirable. If the mixing amount of the insulating binder is less than 1 wt% with respect to the metal magnetic material powder, the binding force between the powders is weak, and if it exceeds 10 wt%, the powder filling rate of the magnetic core is lowered and the magnetic characteristics of the magnetic element are lowered. Therefore, the mixing amount of the insulating binder is preferably 1 to 10 wt% with respect to the metal magnetic material powder. These composite magnetic material powders consisting of thermosetting resin, amorphous alloy powder, and crystalline alloy powder heat cure the insulating binder in an inert gas during or after pressure molding of the powder magnetic core. Therefore, it is desirable to manufacture a magnetic element. Furthermore, in the case of a magnetic element that integrally molds an air-core coil composed of a copper wire with a coated surface and a composite magnetic material, heat treatment is performed at a temperature or time that does not cause thermal decomposition of the coil surface coating and the insulating binder. Thus, the stress remaining inside the magnetic core is relieved, and hysteresis loss can be reduced.

本発明の実施例を以下に説明する。始めに、代表的な軟磁性材料と代表的なFe−Cr系合金についての飽和磁束密度と延性、耐食性について比較した結果を表1に示す。   Examples of the present invention will be described below. First, Table 1 shows the results of comparison of saturation magnetic flux density, ductility, and corrosion resistance of a typical soft magnetic material and a typical Fe—Cr alloy.

Figure 2007134381
Figure 2007134381

延性については圧延の可否で判断した。耐食性については、各成分組成の金属板において、高温高湿試験(温度85℃、湿度85%、200時間)後の金属板表面の発錆状況を確認した。確認方法は目視確認にて行い、発錆のないものを○、著しく発錆したものを×、点で1ヶ以上発錆したものを△と判定とした。Crが添加されていないFe基合金のうち、Niが80wt%前後のFe基合金であるPCパーマロイ(試料No.6)以外は耐食性が良くないことがわかる。PCパーマロイは耐食性が良く、延性も良好だが、飽和磁束密度が1T未満と低く、また高価なNiを80wt%程度含有するため、成分組成的に高価である。Cr含有のFe基合金のうちCrが4wt%以下のものは、不動態化膜の形成が不十分なため、耐食性がやや劣ることがわかる。   The ductility was judged by whether or not rolling was possible. About corrosion resistance, the rusting condition of the metal plate surface after a high temperature, high humidity test (temperature 85 degreeC, humidity 85%, 200 hours) was confirmed in the metal plate of each component composition. The confirmation method was determined by visual confirmation, with no rusting judged as ◯, markedly rusted x, and one or more rusted as △. It can be seen that the corrosion resistance is not good except for PC permalloy (sample No. 6), which is an Fe-based alloy with Ni of about 80 wt% among the Fe-based alloys to which Cr is not added. PC permalloy has good corrosion resistance and good ductility, but has a low saturation magnetic flux density of less than 1 T and contains about 80 wt% of expensive Ni, and is therefore expensive in terms of component composition. It can be seen that a Cr-containing Fe-based alloy having a Cr content of 4 wt% or less is slightly inferior in corrosion resistance due to insufficient formation of a passivating film.

(実施例1)これらの結晶質合金の平均粒径約15μmの水アトマイズ粉末と、Fe−Si−B系成分組成からなる平均粒径約15μmの非晶質合金粉末とを重量比30:70で粉末を混合し、混合粉末の重量に対し、5wt%のエポキシ樹脂からなる絶縁性結着剤を添加して、複合磁性材料を作製した。その複合磁性粉末にステアリン酸亜鉛に0.5wt%混合後プレス金型に充填して約5トン/cmで加圧成形し、外径φ14mm、内径φ10mm、高さ5mm程度のリングコアを成形し、不活性ガス中150℃熱硬化させた。表2に各複合磁性材料のリングコアの100kHzでの実効透磁率μ’とコアの高温高湿試験(温度85℃、湿度85%、200時間)を示す。 (Example 1) A water atomized powder having an average particle size of about 15 μm and an amorphous alloy powder having an average particle size of about 15 μm composed of a Fe—Si—B-based component composition of these crystalline alloys are in a weight ratio of 30:70. The composite magnetic material was prepared by mixing the powder and adding an insulating binder made of 5 wt% epoxy resin based on the weight of the mixed powder. The composite magnetic powder is mixed with zinc stearate in an amount of 0.5 wt%, filled in a press die and pressed at a pressure of about 5 tons / cm 2 to form a ring core having an outer diameter of 14 mm, an inner diameter of 10 mm, and a height of about 5 mm. And thermosetting at 150 ° C. in an inert gas. Table 2 shows the effective permeability μ ′ at 100 kHz of the ring core of each composite magnetic material and the high temperature and high humidity test (temperature 85 ° C., humidity 85%, 200 hours) of the core.

Figure 2007134381
Figure 2007134381

Crが5wt%以上の成分組成となる結晶質合金を含むリングコアは耐食性が良く、また他の粉末のコアの実効透磁率μ’と遜色ないことがわかる。   It can be seen that the ring core containing a crystalline alloy having a component composition of Cr of 5 wt% or more has good corrosion resistance and is comparable to the effective permeability μ ′ of other powder cores.

次に表1の試料No.20の成分組成の粉末にて、非晶質合金粉末との混合量毎のリングコアを作製、評価した。その結果を図6〜図9に示す。   Next, a ring core was prepared and evaluated for each mixing amount with the amorphous alloy powder using the powder having the composition of sample No. 20 in Table 1. The results are shown in FIGS.

図6は非晶質合金粉末と結晶質合金粉末の混合率におけるコア密度の変化を示す図、図7は非晶質合金粉末と結晶質合金粉末の混合率における実効透磁率の変化を示す図、図8は非晶質合金粉末と結晶質合金粉末の混合率における圧粉磁心の上下面間の絶縁抵抗の変化を示す図、図9は非晶質合金粉末と結晶質合金粉末の混合率における鉄損の変化を示す図である。   FIG. 6 is a diagram showing a change in core density at the mixing ratio of amorphous alloy powder and crystalline alloy powder, and FIG. 7 is a diagram showing a change in effective permeability at the mixing ratio of amorphous alloy powder and crystalline alloy powder. FIG. 8 is a graph showing the change in insulation resistance between the upper and lower surfaces of the powder magnetic core in the mixing ratio of the amorphous alloy powder and the crystalline alloy powder, and FIG. 9 is the mixing ratio of the amorphous alloy powder and the crystalline alloy powder. It is a figure which shows the change of the iron loss in.

図6〜図9を見ると結晶質合金粉末が少ないほど、コアの密度が低く、μ’が低い。それとは逆にコアの密度が高いほど、絶縁抵抗は低く、結晶質合金粉末が60wt%超混合すると100MΩ未満に低下していく。また鉄損は結晶質合金粉末が20wt%の混合で最も低下し、60wt%超混合すると増大していることがわかる。結晶質合金粉末を60wt%超混合すると鉄損の低い非晶質合金を用いている長所がなく、有用な結晶質合金粉末の混合は60wt%までであることがわかる。また、結晶質合金粉末の混合が10wt%未満であると、コアの密度が低いだけでなく、鉄損が大きくなる点でも好ましくない。   6 to 9, the smaller the crystalline alloy powder, the lower the core density and the lower μ ′. On the contrary, the higher the core density, the lower the insulation resistance. When the crystalline alloy powder is mixed in excess of 60 wt%, it decreases to less than 100 MΩ. It can also be seen that the iron loss is the lowest when the crystalline alloy powder is mixed by 20 wt%, and increases when it exceeds 60 wt%. It can be seen that when the crystalline alloy powder is mixed in excess of 60 wt%, there is no advantage of using an amorphous alloy with low iron loss, and useful crystalline alloy powder is mixed up to 60 wt%. Further, if the mixing of the crystalline alloy powder is less than 10 wt%, it is not preferable not only because the core density is low but also the iron loss is increased.

(実施例2)表1の試料No.8の成分組成の結晶質合金の平均粒径約12μmの水アトマイズ粉末と、Fe−Si−B系成分組成からなる平均粒径約13μmの非晶質合金粉末とを重量比20:80で混合し、混合粉末の重量に対し、3wt%のシリコーン樹脂からなる絶縁性結着剤を添加して、複合磁性材料を作製した。その複合磁性粉末にステアリン酸亜鉛を0.5wt%混合後プレス金型に充填して約5トン/cmで加圧成形し、外径φ14mm、内径φ10mm、高さ5mm程度のリングコアを成形、熱硬化させた後、不活性ガス中で500℃の熱処理を施した。 (Example 2) A water atomized powder having an average particle size of about 12 μm and a amorphous alloy having an average particle size of about 13 μm composed of an Fe—Si—B-based component composition of a crystalline alloy having a component composition of sample No. 8 in Table 1 An alloy powder was mixed at a weight ratio of 20:80, and an insulating binder composed of 3 wt% silicone resin was added to the weight of the mixed powder to produce a composite magnetic material. The composite magnetic powder is mixed with 0.5 wt% of zinc stearate, filled into a press die and pressed at a pressure of about 5 tons / cm 2 to form a ring core having an outer diameter of 14 mm, an inner diameter of 10 mm, and a height of about 5 mm. After thermosetting, heat treatment at 500 ° C. was performed in an inert gas.

図10はその圧粉磁心の熱処理前後の鉄損の変化を示す図である。熱処理を施すことで内部応力の緩和が図られ、鉄損が低減していることが確認される。   FIG. 10 is a diagram showing changes in iron loss before and after heat treatment of the dust core. It is confirmed that the internal stress is reduced by performing the heat treatment, and the iron loss is reduced.

圧粉磁心形状の例を示し、図1(a)はE型コアの斜視図、図1(b)は円筒型あるいはトロイダルコアの斜視図、図1(c)は鍔つきコアの斜視図。FIG. 1A is a perspective view of an E-type core, FIG. 1B is a perspective view of a cylindrical or toroidal core, and FIG. 1C is a perspective view of a hooked core. 磁性素子の例を示し、図2(a)はEI型コアによるインダクタンス部品を示す斜視図、図2(b)は一体成形型インダクタンス部品を示す斜視図。FIG. 2A is a perspective view showing an inductance component using an EI type core, and FIG. 2B is a perspective view showing an integrally molded type inductance component. FeおよびFe−3Si合金におけるCr成分による飽和磁束密度の変化を示す図。The figure which shows the change of the saturation magnetic flux density by Cr component in Fe and Fe-3Si alloy. FeおよびFe−3Si合金におけるCr成分による固有抵抗ρの変化を示す図。The figure which shows the change of the specific resistance (rho) by Cr component in Fe and Fe-3Si alloy. Fe−13Cr合金におけるSi成分またはAl成分の添加による飽和磁束密度の変化を示す図。The figure which shows the change of the saturation magnetic flux density by addition of Si component or Al component in a Fe-13Cr alloy. 非晶質合金粉末と結晶質合金粉末の混合率におけるコア密度の変化を示す図。The figure which shows the change of the core density in the mixing rate of an amorphous alloy powder and a crystalline alloy powder. 非晶質合金粉末と結晶質合金粉末の混合率における実効透磁率の変化を示す図。The figure which shows the change of the effective magnetic permeability in the mixing rate of an amorphous alloy powder and a crystalline alloy powder. 非晶質合金粉末と結晶質合金粉末の混合率における圧粉磁心の上下面間の絶縁抵抗の変化を示す図。The figure which shows the change of the insulation resistance between the upper and lower surfaces of a powder magnetic core in the mixing rate of an amorphous alloy powder and a crystalline alloy powder. 非晶質合金粉末と結晶質合金粉末の混合率における鉄損の変化を示す図。The figure which shows the change of the iron loss in the mixing rate of an amorphous alloy powder and a crystalline alloy powder. 圧粉磁心の熱処理前後の鉄損の変化を示す図。The figure which shows the change of the iron loss before and behind heat processing of a powder magnetic core.

符号の説明Explanation of symbols

21 磁心
22 巻線部
23 一体成形型磁心
24 巻線
21 Magnetic core 22 Winding portion 23 Integrated molding magnetic core 24 Winding

Claims (10)

非晶質磁性合金の粉末および結晶質のFe−Cr系合金粉末を混合した混合磁性材料粉末と、絶縁性結着剤とからなることを特徴とする複合磁性材料。   A composite magnetic material comprising a mixed magnetic material powder obtained by mixing an amorphous magnetic alloy powder and a crystalline Fe-Cr alloy powder, and an insulating binder. 前記非晶質磁性合金は、成分Xおよび成分Yを含むFe基合金であって、その成分XがSi,Cr,Ni,Nb,Ti,Mgのうち少なくとも1つからなり、その成分YがCo,Mo,B,Cのうち少なくとも1つからなることを特徴とする請求項1記載の複合磁性材料。   The amorphous magnetic alloy is an Fe-based alloy containing a component X and a component Y, and the component X is composed of at least one of Si, Cr, Ni, Nb, Ti, and Mg, and the component Y is Co. 2. The composite magnetic material according to claim 1, wherein the composite magnetic material comprises at least one of Mo, B, C. 前記Fe−Cr系合金の組成は、Si,Al,Ni,Moのうち少なくとも1つからなる成分の重量比率が0.1wt%〜8wt%であり、他成分のCrの重量比率が5wt%〜18wt%であり、残部がFeであることを特徴とする請求項1または2記載の複合磁性材料。   The composition of the Fe-Cr alloy is such that the weight ratio of at least one of Si, Al, Ni, and Mo is 0.1 wt% to 8 wt%, and the Cr ratio of other components is 5 wt% to 5 wt%. 3. The composite magnetic material according to claim 1, wherein the composite magnetic material is 18 wt%, and the balance is Fe. 前記Fe−Cr系合金粉末は延性と耐食性を有することを特徴とする請求項3記載の複合磁性材料。   The composite magnetic material according to claim 3, wherein the Fe-Cr alloy powder has ductility and corrosion resistance. 前記Fe−Cr系合金の飽和磁束密度が1.0T以上であることを特徴とする請求項3記載の複合磁性材料。   The composite magnetic material according to claim 3, wherein a saturation magnetic flux density of the Fe—Cr alloy is 1.0 T or more. 前記非晶質磁性合金の粉末と前記Fe−Cr系合金粉末の平均粒径が1〜50μmであることを特徴とする請求項1から5のいずれか1項に記載の複合磁性材料。   6. The composite magnetic material according to claim 1, wherein an average particle size of the amorphous magnetic alloy powder and the Fe—Cr alloy powder is 1 to 50 μm. 前記非晶質磁性合金の粉末と前記Fe−Cr合金粉末との混合比率は、前記Fe−Cr系合金粉末の、前記混合磁性材料粉末に占める重量比率が10〜60wt%であることを特徴とする請求項1から6のいずれか1項に記載の複合磁性材料。   The mixing ratio between the amorphous magnetic alloy powder and the Fe—Cr alloy powder is such that the weight ratio of the Fe—Cr alloy powder to the mixed magnetic material powder is 10 to 60 wt%. The composite magnetic material according to any one of claims 1 to 6. 前記混合磁性材料粉末と、その混合磁性材料粉末に対して1wt%〜10wt%の前記絶縁性結着剤とを混合してなることを特徴とする請求項1から7のいずれか1項に記載の複合磁性材料。   The mixed magnetic material powder and 1 wt% to 10 wt% of the insulating binder are mixed with the mixed magnetic material powder. Composite magnetic material. 請求項8記載の複合磁性材料からなることを特徴とする圧粉磁心。   A dust core comprising the composite magnetic material according to claim 8. 請求項8記載の複合磁性材料と、表面が被覆された銅線からなる空芯コイルとを圧粉成形してなることを特徴とする磁性素子。   A magnetic element obtained by compacting the composite magnetic material according to claim 8 and an air-core coil made of a copper wire having a coated surface.
JP2005323339A 2005-11-08 2005-11-08 Composite magnetic material, dust core using the same, and magnetic element Pending JP2007134381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005323339A JP2007134381A (en) 2005-11-08 2005-11-08 Composite magnetic material, dust core using the same, and magnetic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005323339A JP2007134381A (en) 2005-11-08 2005-11-08 Composite magnetic material, dust core using the same, and magnetic element

Publications (1)

Publication Number Publication Date
JP2007134381A true JP2007134381A (en) 2007-05-31

Family

ID=38155821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005323339A Pending JP2007134381A (en) 2005-11-08 2005-11-08 Composite magnetic material, dust core using the same, and magnetic element

Country Status (1)

Country Link
JP (1) JP2007134381A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044068A (en) * 2007-08-10 2009-02-26 Nec Tokin Corp Coil component
JP2010118486A (en) * 2008-11-13 2010-05-27 Nec Tokin Corp Inductor and method of manufacturing the same
EP2482291A1 (en) 2011-01-28 2012-08-01 Sumida Corporation Magnetic powder material, low-loss composite magnetic material containing same, and magnetic element using same
JP2013197394A (en) * 2012-03-21 2013-09-30 Seiko Epson Corp Magnetic powder for magnetic fluid, magnetic fluid and damper
JP2016012715A (en) * 2014-06-06 2016-01-21 アルプス・グリーンデバイス株式会社 Powder compact core, manufacturing method thereof, electronic/electric part having powder compact core, and electronic/electric device with electronic/electric part mounted thereon
WO2016204008A1 (en) * 2015-06-19 2016-12-22 株式会社村田製作所 Magnetic-substance powder and production process therefor, magnetic core and production process therefor, and coil component
WO2017038295A1 (en) * 2015-08-31 2017-03-09 アルプス電気株式会社 Dust core, method for producing said dust core, electric/electronic component provided with said dust core, and electric/electronic device on which said electric/electronic component is mounted
JP2017108098A (en) * 2015-11-26 2017-06-15 アルプス電気株式会社 Dust core, method of producing dust core, inductor including dust core, and electronic/electrical apparatus mounting inductor
CN107403676A (en) * 2016-05-19 2017-11-28 阿尔卑斯电气株式会社 Compressed-core and its manufacture method, possess the inductor of the compressed-core and be equipped with the electronic/electrical gas equipment of the inductor
US10204730B2 (en) 2009-05-15 2019-02-12 Cyntec Co., Ltd. Electronic device and manufacturing method thereof
US10283266B2 (en) 2016-04-25 2019-05-07 Alps Alpine Co., Ltd. Powder core, manufacturing method of powder core, inductor including powder core, and electronic/electric device having inductor mounted therein
WO2020040250A1 (en) 2018-08-23 2020-02-27 日立金属株式会社 Magnetic core powder, magnetic core and coil parts using same, and method for manufacturing magnetic core powder
JP2020088379A (en) * 2018-11-26 2020-06-04 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003239050A (en) * 2002-02-20 2003-08-27 Mitsubishi Materials Corp Fe-Cr SOFT MAGNETIC SINTERED ALLOY WITH HIGH ELECTRIC RESISTANCE
JP2004363466A (en) * 2003-06-06 2004-12-24 Toko Inc Complex magnetic material and method for manufacturing inductor using the same
JP2005294458A (en) * 2004-03-31 2005-10-20 Nec Tokin Corp High-frequency composite magnetic powder material, high-frequency dust core and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003239050A (en) * 2002-02-20 2003-08-27 Mitsubishi Materials Corp Fe-Cr SOFT MAGNETIC SINTERED ALLOY WITH HIGH ELECTRIC RESISTANCE
JP2004363466A (en) * 2003-06-06 2004-12-24 Toko Inc Complex magnetic material and method for manufacturing inductor using the same
JP2005294458A (en) * 2004-03-31 2005-10-20 Nec Tokin Corp High-frequency composite magnetic powder material, high-frequency dust core and method for manufacturing the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044068A (en) * 2007-08-10 2009-02-26 Nec Tokin Corp Coil component
JP2010118486A (en) * 2008-11-13 2010-05-27 Nec Tokin Corp Inductor and method of manufacturing the same
US10204730B2 (en) 2009-05-15 2019-02-12 Cyntec Co., Ltd. Electronic device and manufacturing method thereof
EP2482291A1 (en) 2011-01-28 2012-08-01 Sumida Corporation Magnetic powder material, low-loss composite magnetic material containing same, and magnetic element using same
CN102623120A (en) * 2011-01-28 2012-08-01 胜美达集团株式会社 Magnetic powder material, low-loss composite magnetic material containing same, and magnetic element using same
JP2013197394A (en) * 2012-03-21 2013-09-30 Seiko Epson Corp Magnetic powder for magnetic fluid, magnetic fluid and damper
JP2016012715A (en) * 2014-06-06 2016-01-21 アルプス・グリーンデバイス株式会社 Powder compact core, manufacturing method thereof, electronic/electric part having powder compact core, and electronic/electric device with electronic/electric part mounted thereon
JPWO2016204008A1 (en) * 2015-06-19 2018-05-24 株式会社村田製作所 Magnetic powder and manufacturing method thereof, magnetic core and manufacturing method thereof, and coil component
CN107683512A (en) * 2015-06-19 2018-02-09 株式会社村田制作所 Magnetic powder and its manufacture method, magnetic core and its manufacture method and coil component
WO2016204008A1 (en) * 2015-06-19 2016-12-22 株式会社村田製作所 Magnetic-substance powder and production process therefor, magnetic core and production process therefor, and coil component
CN107683512B (en) * 2015-06-19 2019-11-26 株式会社村田制作所 Magnetic substance powder and its manufacturing method, magnetic core and its manufacturing method and coil component
WO2017038295A1 (en) * 2015-08-31 2017-03-09 アルプス電気株式会社 Dust core, method for producing said dust core, electric/electronic component provided with said dust core, and electric/electronic device on which said electric/electronic component is mounted
JP2017108098A (en) * 2015-11-26 2017-06-15 アルプス電気株式会社 Dust core, method of producing dust core, inductor including dust core, and electronic/electrical apparatus mounting inductor
US10283266B2 (en) 2016-04-25 2019-05-07 Alps Alpine Co., Ltd. Powder core, manufacturing method of powder core, inductor including powder core, and electronic/electric device having inductor mounted therein
CN107403676A (en) * 2016-05-19 2017-11-28 阿尔卑斯电气株式会社 Compressed-core and its manufacture method, possess the inductor of the compressed-core and be equipped with the electronic/electrical gas equipment of the inductor
KR20170131209A (en) 2016-05-19 2017-11-29 알프스 덴키 가부시키가이샤 Compressed powder core, method of manufacturing the compressed powder core, inductor comprising the compressed powder core and electronic-electric device mounted with the inductor
WO2020040250A1 (en) 2018-08-23 2020-02-27 日立金属株式会社 Magnetic core powder, magnetic core and coil parts using same, and method for manufacturing magnetic core powder
JP2020088379A (en) * 2018-11-26 2020-06-04 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component
JP7359368B2 (en) 2018-11-26 2023-10-11 サムソン エレクトロ-メカニックス カンパニーリミテッド. coil parts

Similar Documents

Publication Publication Date Title
JP2007134381A (en) Composite magnetic material, dust core using the same, and magnetic element
TW492020B (en) Composite magnetic body, and magnetic element and method of manufacturing the same
JP5626672B1 (en) Dust core manufacturing method, dust core and coil component
JP5288405B2 (en) Inductor and method of manufacturing inductor
JP4308864B2 (en) Soft magnetic alloy powder, green compact and inductance element
JP6358491B2 (en) Dust core, coil component using the same, and method for manufacturing dust core
JP6365670B2 (en) Magnetic core, magnetic core manufacturing method, and coil component
KR102195949B1 (en) Magnetic core, coil component and magnetic core manufacturing method
JP5974803B2 (en) Soft magnetic alloy powder, green compact, dust core and magnetic element
JP4748397B2 (en) Soft magnetic composite materials for reactors and reactors
JP2010272604A (en) Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
JP2007035826A (en) Composite magnetic material, and dust core and magnetic element using the same
JP6471881B2 (en) Magnetic core and coil parts
JP6460505B2 (en) Manufacturing method of dust core
JP6191855B2 (en) Soft magnetic metal powder and high frequency powder magnetic core
JP6471882B2 (en) Magnetic core and coil parts
JP2003160847A (en) Composite magnetic material, magnetic element using the same, and manufacture method therefor
JP2021163855A (en) Material for powder-compact magnetic core, powder-compact magnetic core, and inductor
JP2008195970A (en) Composite magnetic material, powder magnetic core and magnetic element
JP2006319020A (en) Inductance component
JP2007254814A (en) Fe-Ni-BASED SOFT MAGNETIC ALLOY POWDER, GREEN COMPACT, AND COIL-SEALED DUST CORE
JPWO2018174268A1 (en) Powder core with terminal and method for manufacturing the same
JP7430041B2 (en) Powder core and inductor
JP6742674B2 (en) Metal powder
JP2021093405A (en) Method of manufacturing dust core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100602