JP2005294458A - High-frequency composite magnetic powder material, high-frequency dust core and method for manufacturing the same - Google Patents

High-frequency composite magnetic powder material, high-frequency dust core and method for manufacturing the same Download PDF

Info

Publication number
JP2005294458A
JP2005294458A JP2004106072A JP2004106072A JP2005294458A JP 2005294458 A JP2005294458 A JP 2005294458A JP 2004106072 A JP2004106072 A JP 2004106072A JP 2004106072 A JP2004106072 A JP 2004106072A JP 2005294458 A JP2005294458 A JP 2005294458A
Authority
JP
Japan
Prior art keywords
powder
frequency
magnetic
composite magnetic
dust core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004106072A
Other languages
Japanese (ja)
Inventor
Toshihiro Nakamura
俊浩 中村
Eikichi Yoshida
栄吉 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2004106072A priority Critical patent/JP2005294458A/en
Publication of JP2005294458A publication Critical patent/JP2005294458A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a high-frequency composite magnetic powder material, a high-frequency dust core and a method for manufacturing the high-frequency dust core, wherein a frequency characteristic of effective permeability is flat and excellent in both a low-frequency area and a high-frequency area. <P>SOLUTION: In a composite magnetic powder material, Fe-Si-B alloy powder has Si 5 wt% to 10 wt%, B of 1 wt% to 5 wt% and Fe of a remaining portion in composition ratio, and the Fe-Si-B alloy powder is uniformly mixed and dispersed in Fe powder. For the composite magnetic powder material, an organic polymer resin, a silicon series resin, a phenol series resin, an epoxy series resin and water glass are used as an insulating material, and also these resins and an inorganic material are mixed and used to manufacture the high-frequency dust core. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、スイッチング電源用DC/DCコンバータに用いられるインダクタ、またはDCインダクタなど、高い電流もしくは高周波帯域で用いられる線輪部品に使用するのに好適な、高周波用複合磁性粉末材料および高周波用圧粉磁芯ならびに高周波用圧粉磁芯の製造方法に関する。   The present invention relates to a high-frequency composite magnetic powder material and a high-frequency pressure suitable for use in high-current or high-frequency band components such as inductors used in DC / DC converters for switching power supplies or DC inductors. The present invention relates to a method for manufacturing a powder magnetic core and a high-frequency powder magnetic core.

近年の電子部品は、電気回路等に用いられる部品においても、益々、動作環境で高電流化、動作周波数の高周波化、小型化の要求によって、使用する環境などが移り変わってきている。これに伴い、センダストまたはフェライトなどの材料により高周波化の要求に対処している。   In recent years, electronic components used in electric circuits and the like are increasingly used due to demands for higher currents, higher operating frequencies, and smaller sizes in the operating environment. Along with this, the demand for higher frequency is addressed by materials such as sendust or ferrite.

1種類の粉末、あるいは粒子の大きさが粗大なものを使用した電源などに使用される従来の電気部品は、低い周波数領域では良好な磁気および電気的特性を有していたが、低い周波数領域では良好な磁気および電気的特性を有している材料も、高い周波数領域ほど特性が伸びず使用される粉末材料もほぼ特定されていた。ここで、Si5wt%、残りFeのFe−Si合金粉末を使用したトロイダルコアを例にとると、周波数100kHz付近より透磁率が低下している。   Conventional electric parts used for power supplies using one type of powder or coarse particles have good magnetic and electrical characteristics in the low frequency range, but the low frequency range Therefore, materials having good magnetic and electrical characteristics and powder materials to be used whose characteristics do not extend in the higher frequency range have been almost specified. Here, when a toroidal core using Fe—Si alloy powder of Si 5 wt% and the remaining Fe is taken as an example, the magnetic permeability is reduced from around a frequency of 100 kHz.

図2は、本発明と、従来の高周波用圧粉磁芯の製造方法の説明図であり、図2(a)は、本発明の実施例による高周波用圧粉磁芯の製造工程の説明図、図2(b)は、従来の高周波用圧粉磁芯の製造工程の説明図である。図2(b)の従来の高周波用圧粉磁芯の製造工程は、原料粉末を、高温熱処理し、前記高温熱処理された原料粉末を秤量し、これにバインダを加えて、バインダ混合し、ついで乾燥・分級し、金型で成型し、最後にキュアを行う。   FIG. 2 is an explanatory diagram of the present invention and a conventional method for manufacturing a high-frequency dust core, and FIG. 2 (a) is an explanatory diagram of a process for manufacturing a high-frequency dust core according to an embodiment of the present invention. FIG.2 (b) is explanatory drawing of the manufacturing process of the conventional dust core for high frequency. The manufacturing process of the conventional high-frequency powder magnetic core shown in FIG. 2B is performed by subjecting the raw material powder to high-temperature heat treatment, weighing the high-temperature heat-treated raw material powder, adding a binder thereto, mixing the binder, Dry and classify, mold with mold, and finally cure.

特許文献1には、磁性粉末とバインダを混合し、熱処理工程を行って、磁気特性を得る圧粉磁芯について記載されている。   Patent Document 1 describes a dust core in which magnetic powder and a binder are mixed and a heat treatment process is performed to obtain magnetic properties.

特開2001−23811号公報JP 2001-23811 A

従来の高周波用圧粉磁芯は、透磁率の周波数特性において、1MHzを超えると透磁率が低下するという問題点があった。従って、本発明の課題は、上記各問題に鑑み、実効透磁率の周波数特性が平坦であり、同時に高周波領域での実効透磁率が優れた高周波用複合磁性粉末材料および高周波用圧粉磁芯ならびに高周波用圧粉磁芯の製造方法を得ることである。   Conventional high frequency powder magnetic cores have a problem in that the magnetic permeability decreases when the frequency characteristics of the magnetic permeability exceed 1 MHz. Therefore, in view of the above-mentioned problems, the problem of the present invention is that the frequency characteristics of the effective permeability are flat, and at the same time, the high-frequency composite magnetic powder material and the high-frequency dust core that have excellent effective permeability in the high-frequency region, and It is to obtain a method for producing a high-frequency dust core.

本発明においては、上記課題を解決すべく、種々の検討を重ねた結果、結晶質磁性材料と、非晶質磁性材料とを均一に混合し、分散させた複合磁性材料粉末について、前記結晶質材料をFe粉末とし、前記非結晶質材料をFe−Si−B合金粉末とし、前記複合磁性粉末材料に、絶縁材として、シリコーン系樹脂、フェノール系樹脂、エポキシ系樹脂等の有機高分子樹脂、または水ガラス、もしくは組み合わせたものを使用し、作製した高周波用圧粉磁芯とする。   In the present invention, as a result of various studies to solve the above-described problems, the crystalline magnetic material and the amorphous magnetic material are uniformly mixed and dispersed in the composite magnetic material powder. The material is Fe powder, the amorphous material is Fe-Si-B alloy powder, the composite magnetic powder material, the insulating material, organic polymer resin such as silicone resin, phenol resin, epoxy resin, Alternatively, water glass or a combination thereof is used to form the produced high-frequency powder magnetic core.

また、本発明の複合磁性粉末材料を使用して作製した圧粉磁芯並びに電気部品は高い周波数領域で平坦な磁気および電気的特性を有する。   Further, the dust core and electrical parts produced using the composite magnetic powder material of the present invention have flat magnetic and electrical characteristics in a high frequency range.

即ち、本発明は、結晶質磁性材料と、非晶質磁性材料とを均一に混合し、分散させた複合磁性材料粉末に、絶縁材として、シリコーン系樹脂、フェノール系樹脂、エポキシ系樹脂等の有機高分子樹脂、または水ガラス、もしくは組み合わせたものを使用し、作製された高周波用圧粉磁芯である。   That is, the present invention provides a composite magnetic material powder in which a crystalline magnetic material and an amorphous magnetic material are uniformly mixed and dispersed, and an insulating material such as a silicone resin, a phenol resin, or an epoxy resin. A high-frequency powder magnetic core produced by using an organic polymer resin, water glass, or a combination thereof.

また、本発明は、前記非晶質磁性材料のビッカース硬度は、800以上から1400以下の範囲であり、前記の結晶質磁性材料のビッカース硬度は、100〜300以下の範囲の高周波用圧粉磁芯である。   In the present invention, the amorphous magnetic material has a Vickers hardness in the range of 800 to 1400, and the crystalline magnetic material has a Vickers hardness in the range of 100 to 300 or less. The core.

また、本発明は、Fe粉末に、組成比をSiが5wt%〜10wt%、Bが1wt%〜5w%、残りFeとしたFe−Si−B合金粉末を均一に混合し、分散させた複合磁性材料粉末について、前記複合磁性粉末材料に、絶縁材として有機高分子樹脂、シリコーン系樹脂、フェノール系樹脂、エポキシ系樹脂、水ガラス等を絶縁材として使用し、また、これらの樹脂と無機物を組み合わせて使用して作製された高周波用圧粉磁芯である。   Further, the present invention is a composite in which Fe-Si-B alloy powder in which the composition ratio is 5 wt% to 10 wt%, B is 1 wt% to 5 w%, and the remaining Fe is uniformly mixed and dispersed in Fe powder. As for magnetic material powder, organic polymer resin, silicone resin, phenolic resin, epoxy resin, water glass, etc. are used as insulating materials in the composite magnetic powder material, and these resins and inorganic substances are used as insulating materials. It is a dust core for high frequency produced by using in combination.

また、本発明は、前記Fe−Si−B合金粉末の、全体に対する比率は、20wt% 以上から80wt%以下の範囲とする高周波用圧粉磁芯である。   Further, the present invention is the high-frequency dust core in which the ratio of the Fe—Si—B alloy powder to the whole is in the range of 20 wt% to 80 wt%.

また、本発明は、前記複合磁性粉末材料の透磁率が38以上の高周波用圧粉磁芯である。   Further, the present invention is a high-frequency powder magnetic core in which the magnetic permeability of the composite magnetic powder material is 38 or more.

また、本発明は、前記高周波用圧粉磁芯は、周波数1MHz〜5MHzにおいて平坦な周波数特性を有する高周波用圧粉磁芯である。   In the present invention, the high-frequency dust core is a high-frequency dust core having a flat frequency characteristic at a frequency of 1 MHz to 5 MHz.

また、本発明は、前記複合磁性粉末材料は、磁気特性に応じた組成比を選択し、また、粒子の形状は球状、ティアドロップ等の非球形状の粉末であり、粒径の大きさは平均粒径(D50)で45μmとする高周波用圧粉磁芯である。   In the present invention, the composite magnetic powder material has a composition ratio selected according to the magnetic characteristics, and the particle shape is aspherical powder such as spherical or teardrop, and the particle size is This is a high-frequency dust core with an average particle size (D50) of 45 μm.

また、本発明は、前記Fe粉末の粒径は、1μm以上から10μm以下の範囲であり、前記Fe−Si−B合金粉末の粒径は、5μm以上から20μm以下の範囲の高周波用圧粉磁芯である。   Further, in the present invention, the particle size of the Fe powder is in the range of 1 μm to 10 μm, and the particle size of the Fe—Si—B alloy powder is in the range of 5 μm to 20 μm. The core.

また、本発明は、結晶質磁性材料と、非晶質磁性材料とを均一に混合し、分散させた高周波用複合磁性粉末材料である。   Further, the present invention is a high-frequency composite magnetic powder material in which a crystalline magnetic material and an amorphous magnetic material are uniformly mixed and dispersed.

また、本発明は、前記非晶質磁性材料のビッカース硬度は、800以上から1400以下の範囲であり、前記の結晶質磁性材料のビッカース硬度は、100以上から300以下の範囲の高周波用複合磁性粉末材料である。   In the present invention, the amorphous magnetic material has a Vickers hardness in the range of 800 to 1400, and the crystalline magnetic material has a Vickers hardness in the range of 100 to 300 inclusive. It is a powder material.

また、本発明は、Fe粉末に、組成比をSiが5wt%〜10wt%、Bが1wt%〜5w%、残りFeとしたFe−Si−B合金粉末を均一に混合し、分散させた高周波用複合磁性粉末材料である。   In the present invention, the Fe-Si-B alloy powder in which the composition ratio is 5 wt% to 10 wt%, B is 1 wt% to 5 w%, and the remaining Fe is uniformly mixed and dispersed in the Fe powder. Composite magnetic powder material.

また、本発明は、前記Fe−Si−B合金粉末の、全体に対する比率は、20wt% 以上から80wt%以下の範囲とする高周波用複合磁性粉末材料である。   In addition, the present invention is the high-frequency composite magnetic powder material in which the ratio of the Fe—Si—B alloy powder to the whole is in the range of 20 wt% to 80 wt%.

また、本発明は、前記複合磁性粉末材料は、透磁率が38以上の高周波用複合磁性粉末材料である。   In the present invention, the composite magnetic powder material is a high-frequency composite magnetic powder material having a magnetic permeability of 38 or more.

また、本発明は、前記複合磁性粉末材料は、磁気特性に応じた組成比を選択し、また、粒子の形状は球状、ティアドロップ等の非球形状の粉末であり、粒径の大きさは平均粒径(D50)で45μmとする高周波用複合磁性粉末材料である。   In the present invention, the composite magnetic powder material has a composition ratio selected according to the magnetic characteristics, and the particle shape is aspherical powder such as spherical or teardrop, and the particle size is It is a high frequency composite magnetic powder material having an average particle size (D50) of 45 μm.

また、本発明は、前記Fe粉末の粒径は、1μm以上から10μm以下の範囲であり、前記Fe−Si−B合金粉末の粒径は、5μm以上から20μm以下の範囲の高周波用複合磁性粉末材料である。   In the present invention, the Fe powder has a particle size in the range of 1 μm to 10 μm, and the Fe—Si—B alloy powder has a particle size in the range of 5 μm to 20 μm. Material.

また、本発明は、結晶質磁性材料と、非晶質磁性材料とを均一に混合し、分散させたことを特徴とする高周波用複合磁性粉末材料について、秤量を行い、前記秤量された複合磁性粉末材料に、絶縁材として各種有機高分子樹脂、シリコーン系樹脂、フェノール系樹脂、エポキシ系樹脂、水ガラス等を絶縁材として使用し、また、これらの樹脂と無機物を組み合わせて、混合し、その後、乾燥・分級し、成型し、キュアして作製する高周波用圧粉磁芯の製造方法である。   The present invention also provides a high-frequency composite magnetic powder material characterized by uniformly mixing and dispersing a crystalline magnetic material and an amorphous magnetic material, and weighing the composite magnetic powder material. Use various organic polymer resins, silicone resins, phenolic resins, epoxy resins, water glass, etc. as insulating materials in the powder material, and also combine and mix these resins and inorganic materials, and then This is a method for producing a high-frequency powder magnetic core produced by drying, classifying, molding and curing.

また、本発明は、Fe粉末に、組成比をSiが5wt%〜10wt%、Bが1wt%〜5w%、残りFeとしたFe−Si−B合金粉末、または、組成比をSiが8〜10wt%、Alが5〜8wt%、残りFeとしたFe−Si−Al合金粉末の中より少なくとも前記合金粉末を1種類以上均一に混合し、分散させた複合磁性材料粉末について、前記Fe−Si−B合金粉末を、全体に対する比率を、20wt% 以上から80wt%以下の範囲として秤量し、前記秤量された複合磁性粉末材料に、絶縁材として各種有機高分子樹脂、シリコーン系樹脂、フェノール系樹脂、エポキシ系樹脂、水ガラス等を絶縁材として使用し、また、これらの樹脂と無機物を組み合わせて、混合し、その後、乾燥・分級し、成型し、キュアして作製する高周波用圧粉磁芯の製造方法である。   Further, in the present invention, the Fe-Si-B alloy powder in which the composition ratio is 5 wt% to 10 wt%, B is 1 wt% to 5 w%, and the remaining Fe is the Fe powder, or the composition ratio is 8 to Si. About the composite magnetic material powder in which at least one kind of the alloy powder is uniformly mixed and dispersed from the Fe-Si-Al alloy powder in which 10 wt%, Al is 5 to 8 wt%, and the remaining Fe is used, the Fe-Si -B alloy powder is weighed in a ratio of 20 wt% to 80 wt% with respect to the whole, and various organic polymer resins, silicone resins, phenol resins are used as insulating materials in the weighed composite magnetic powder material. Epoxy resin, water glass, etc. are used as insulating materials. Also, these resins and inorganic materials are combined and mixed, then dried, classified, molded, cured, and manufactured at a high frequency. It is a manufacturing method of the dust core for waves.

本発明によれば、実効透磁率の周波数特性が平坦であり、同時に高周波領域での実効透磁率の優れた高周波用圧粉磁芯ならびに高周波用圧粉磁芯の製造方法が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the frequency characteristic of an effective magnetic permeability is flat, and the manufacturing method of the dust core for high frequencies and the high frequency powder magnetic core which were excellent in the effective permeability in a high frequency area simultaneously is obtained.

この複合磁性粉末材料は、従来品には無い高周波領域における、優れた磁気および電気的特性を有する圧粉磁芯並びに電気部品を提供することができる。また、粉末製造工程においても大変短くすることができ、粉末熱処理を必要としない材料であるため特にランニングコストを削減することができ、製造コスト面でも大変有利な材料である。   This composite magnetic powder material can provide a dust core and an electrical component having excellent magnetic and electrical characteristics in a high frequency region not found in conventional products. In addition, it can be made very short in the powder manufacturing process, and since it is a material that does not require powder heat treatment, the running cost can be reduced, and it is a material that is very advantageous in terms of manufacturing cost.

本発明の実施の形態による高周波用複合磁性粉末材料および高周波用圧粉磁芯ならびに高周波用圧粉磁芯の製造方法について、以下に説明する。   The high-frequency composite magnetic powder material, the high-frequency powder magnetic core, and the method for manufacturing the high-frequency powder magnetic core according to the embodiment of the present invention will be described below.

本発明の高周波用複合磁性粉末材料および高周波用圧粉磁芯は、結晶質磁性材料に、非晶質磁性材料とを均一に混合し、分散させた複合磁性材料粉末であって、前記複合磁性粉末材料に、絶縁材として、シリコーン系樹脂、フェノール系樹脂、エポキシ系樹脂等の有機高分子樹脂、または水ガラス、もしくは組み合わせたものを使用し、作製された高周波用圧粉磁芯である。   The high-frequency composite magnetic powder material and high-frequency powder magnetic core of the present invention are composite magnetic material powders obtained by uniformly mixing and dispersing a crystalline magnetic material and an amorphous magnetic material, A high-frequency powder magnetic core produced by using an organic polymer resin such as a silicone resin, a phenol resin, or an epoxy resin, or water glass, or a combination thereof as the insulating material for the powder material.

ここで、前記結晶質磁性材料には、例えばFe粉末が用いられ、また、非晶質磁性材料には、例えばFe−Si−B合金粉末が用いられる。前記Fe−Si−B合金粉末は、組成比をSiが5wt%〜10wt%、Bが1wt%〜5w%、残りFeとし、前記Fe−Si−B合金粉末は、全体に対して、20wt% 以上から80wt%以下の範囲で混合する。   Here, for example, Fe powder is used for the crystalline magnetic material, and for example, Fe—Si—B alloy powder is used for the amorphous magnetic material. The Fe—Si—B alloy powder has a composition ratio of 5 wt% to 10 wt% Si, 1 wt% to 5 w% B, and the remaining Fe, and the Fe—Si—B alloy powder is 20 wt% based on the whole. Mix in the range of 80 wt% or less.

ここで、Fe粉末のビッカース硬度は、100以上から300以下の範囲にあり、前記Fe−Si−B合金粉末は、800以上から1400以下の範囲である。ここで、100以下の場合は柔らかすぎ、300以上では硬すぎ、成型が困難となる。粒径は、Fe粉末の粒径が1μm以上から10μm以下の範囲で、Fe−Si−B合金粉末の粒径が5μm以上から20μm以下の範囲とすると良い。1μm以下ではハンドリングが悪く、20μm以上では粒径に依存する渦電流損失により周波数特性が悪い。混合するので上記程度とすると、成型性が良い。更に、前記高周波用圧粉磁芯は、高温熱処理を行わず、混合、分散させるだけで透磁率が38以上の磁気特性が得られる。   Here, the Vickers hardness of the Fe powder is in the range of 100 to 300, and the Fe—Si—B alloy powder is in the range of 800 to 1400. Here, when it is 100 or less, it is too soft, and when it is 300 or more, it is too hard, and molding becomes difficult. The particle size of the Fe powder is preferably in the range of 1 μm to 10 μm, and the particle size of the Fe—Si—B alloy powder is preferably in the range of 5 μm to 20 μm. If it is 1 μm or less, handling is bad, and if it is 20 μm or more, the frequency characteristics are bad due to eddy current loss depending on the particle size. Since it mixes, when it is the above grade, moldability is good. Furthermore, the magnetic powder core for high frequency can obtain magnetic characteristics having a magnetic permeability of 38 or more only by mixing and dispersing without high-temperature heat treatment.

図2は、本発明と、従来の高周波用圧粉磁芯の製造方法の説明図であり、図2(a)は、本発明の高周波用圧粉磁芯の製造工程の説明図である。図2(a)より、本発明の高周波用圧粉磁芯の製造工程は、原料粉末を、高温熱処理しない状態で、秤量し、これにバインダを加えて、バインダ混合し、 ついで乾燥・分級し、金型で成型し、最後にキュアを行う。このように、従来の図2(b)の製造工程にあった、高温熱処理の工程が、削除される。   FIG. 2 is an explanatory view of the present invention and a conventional method for producing a high-frequency dust core, and FIG. 2 (a) is an explanatory view of the production process of the high-frequency dust core of the present invention. From FIG. 2 (a), in the manufacturing process of the high-frequency powder magnetic core of the present invention, the raw material powder is weighed without being subjected to high-temperature heat treatment, added with a binder, mixed with the binder, then dried and classified. Mold with a mold, and finally cure. In this way, the high-temperature heat treatment process that was in the conventional manufacturing process of FIG. 2B is eliminated.

以下に、本発明の実施例による高周波用複合磁性粉末材料および高周波用圧粉磁芯ならびに高周波用圧粉磁芯の製造方法について説明する。   Hereinafter, a high-frequency composite magnetic powder material, a high-frequency powder magnetic core, and a method for producing a high-frequency powder magnetic core according to an embodiment of the present invention will be described.

全体としてFe粉末(使用している粉末は水アトマイズ製法にて作製された粉末)、Fe−10wt%Si−5wt%B合金粉末(使用している粉末は水アトマイズ製法にて作製された粉末)を、それぞれ80wt%対20wt%、および60wt%対40wt%、および50wt%対50wt%、および40wt%対60wt%、および20wt%対80wt%となるように秤量し、秤量後の粉末全体の6.5wt%バインダを添加し、粉末混合設備によって40分間混合し、この複合磁性粉末材料を乾燥し、加圧成型を行い、順番に、発明品1、発明品2、発明品3、発明品4、発明品5を作製した。   Fe powder as a whole (powder used is powder prepared by water atomizing method), Fe-10wt% Si-5wt% B alloy powder (powder used is powder prepared by water atomizing method) Of 80 wt% vs. 20 wt%, and 60 wt% vs. 40 wt%, and 50 wt% vs. 50 wt%, and 40 wt% vs. 60 wt%, and 20 wt% vs. 80 wt%, respectively. .5 wt% binder is added and mixed for 40 minutes with a powder mixing facility. This composite magnetic powder material is dried and pressure-molded. In order, Invention 1, Invention 2, Invention 3, and Invention 4 Inventive product 5 was produced.

この場合、使用した粉末成型用金型は、外径24mm×内径14mm、環状抜き型(トロイダル形状)を有するもので、5Ton/cmの圧力にて成型した。この際に作製される成型品の高さ寸法が10mmとなるように、使用する複合磁性粉末材料を設定した。作製された圧粉体を使用した樹脂の推奨硬化温度条件にて適切な熱処理を行い、Fe粉末とFe−10wt%Si−5wt%B合金粉末を用いた複合磁性粉末材料を得た。 In this case, the powder molding die used had an outer diameter of 24 mm × an inner diameter of 14 mm and an annular punching die (toroidal shape), and was molded at a pressure of 5 Ton / cm 2 . The composite magnetic powder material to be used was set so that the height of the molded product produced at this time was 10 mm. Appropriate heat treatment was performed under the recommended curing temperature condition of the resin using the produced green compact to obtain a composite magnetic powder material using Fe powder and Fe-10 wt% Si-5 wt% B alloy powder.

ここで、前記Fe粉末のビッカース硬度は、120であり、前記Fe−Si−B合金粉末のビッカース硬度は、910であった。   Here, the Vickers hardness of the Fe powder was 120, and the Vickers hardness of the Fe—Si—B alloy powder was 910.

図2(a)は、本発明の高周波用圧粉磁芯の製造工程の説明図である。図2(a)より、本発明の高周波用圧粉磁芯の製造工程は、原料粉末を、高温熱処理しない状態で、秤量し、これにバインダを加えて、バインダ混合し、ついで乾燥・分級し、金型で成型し、最後にキュアを行う。このように、従来の製造工程にあった、高温熱処理の工程が、削除される。   Fig.2 (a) is explanatory drawing of the manufacturing process of the dust core for high frequencies of this invention. From FIG. 2 (a), in the manufacturing process of the high-frequency powder magnetic core of the present invention, the raw material powder is weighed without being subjected to high-temperature heat treatment, added with a binder, mixed with the binder, then dried and classified. Mold with a mold, and finally cure. Thus, the high-temperature heat treatment process that was in the conventional manufacturing process is eliminated.

また、以下のごとく、比較品1と、比較品2とを作製した。
(比較品1)Fe粉末に、6.5wt%バインダを添加し、本発明の実施例の製造方法と同じようにトロイダル形状の圧粉磁芯を作製した。
(比較品2)Fe−10wt%Si−5wt%B合金粉末に、6.5wt%バインダを添加し、本発明の実施例1の製造方法と同じようにトロイダル形状の圧粉磁芯を作製した。
Moreover, the comparative product 1 and the comparative product 2 were produced as follows.
(Comparative product 1) A 6.5 wt% binder was added to the Fe powder, and a toroidal dust core was produced in the same manner as in the production method of the example of the present invention.
(Comparative product 2) To a Fe-10 wt% Si-5 wt% B alloy powder, a 6.5 wt% binder was added to produce a toroidal dust core as in the manufacturing method of Example 1 of the present invention. .

次に、上記トロイダル形状の圧粉磁芯を、HP製4284A並びに4285Aにプレジションメータによって測定し、10kHz〜20MHzにおける実効透磁率を得た。また、上記トロイダル形状の圧粉磁芯について、密度を測定した。測定結果を表1に示す。   Next, the toroidal powder magnetic core was measured by HP 4284A and 4285A using a precision meter to obtain an effective magnetic permeability at 10 kHz to 20 MHz. Moreover, the density was measured about the said toroidal-shaped powder magnetic core. The measurement results are shown in Table 1.

Figure 2005294458
Figure 2005294458

表1より、FeーSi−B粉末が、20wt%以上から80wt%以下の範囲にて透磁率が38以上が得られ、また密度も、4.90g/cm以上得られている。FeーSi−B粉末が、50wt%の条件にて、透磁率が56と、最大値を示し、またこの条件の時、密度が、5.95g/cmと、最大の密度が得られている。 From Table 1, the Fe-Si-B powder has a permeability of 38 or more and a density of 4.90 g / cm 3 or more in the range of 20 wt% to 80 wt%. The Fe—Si—B powder shows a maximum value of 56, with a magnetic permeability of 56, under the condition of 50 wt%. Under this condition, the maximum density of 5.95 g / cm 3 is obtained. Yes.

これは、前記Fe粉末のビッカース硬度が、120であり、また前記Fe−Si−B合金粉末のビッカース硬度が、910であり、前記粉末配合率にて、最も、充填の効率が良いことを示している。また、比較品2は、Fe−Si−B合金粉末が100wt%であり、ビッカース硬度が高いので、磁芯とした場合、変形が困難で、密度が低いという問題点がある。   This indicates that the Vickers hardness of the Fe powder is 120, and the Vickers hardness of the Fe-Si-B alloy powder is 910, and the filling efficiency is the highest at the powder blending ratio. ing. Further, the comparative product 2 has a problem that the Fe—Si—B alloy powder is 100 wt% and the Vickers hardness is high, so that when the magnetic core is used, the deformation is difficult and the density is low.

図1は、本発明の実施例による高周波用圧粉磁芯と、従来の高周波用圧粉磁芯での透磁率対周波数対特性の比較図である。図1の中で、本発明品は、FeーSi−B粉末が、50wt%の条件の最良のデータである。   FIG. 1 is a comparison diagram of magnetic permeability vs. frequency characteristics of a high frequency dust core according to an embodiment of the present invention and a conventional high frequency dust core. In FIG. 1, the product of the present invention is the best data under the condition that the Fe—Si—B powder is 50 wt%.

図1の比較図から分かる通り、本発明品は、実効透磁率は低いものの、低周波領域から高周波領域までほとんど平坦な、実効透磁率の周波数特性が実現されている。   As can be seen from the comparison diagram of FIG. 1, the product of the present invention realizes frequency characteristics of effective permeability that are almost flat from a low frequency region to a high frequency region, although the effective permeability is low.

本発明の実施例による高周波用圧粉磁芯と、従来との透磁率対周波数対特性の比較の説明図。Explanatory drawing of the comparison of the magnetic permeability versus frequency vs. characteristic with the dust core for high frequency by the Example of this invention, and the past. 本発明と、従来の高周波用圧粉磁芯の製造方法の説明図。図2(a)は、本発明の実施例による高周波用圧粉磁芯の製造工程の説明図、図2(b)は、従来の高周波用圧粉磁芯の製造工程の説明図。Explanatory drawing of this invention and the manufacturing method of the conventional dust core for high frequency. FIG. 2A is an explanatory diagram of a manufacturing process of a high-frequency dust core according to an embodiment of the present invention, and FIG. 2B is an explanatory diagram of a conventional manufacturing process of a high-frequency dust core.

Claims (17)

結晶質磁性材料と、非晶質磁性材料とを均一に混合し、分散させた複合磁性材料粉末に、絶縁材として、シリコーン系樹脂、フェノール系樹脂、エポキシ系樹脂等の有機高分子樹脂、または水ガラス、もしくは組み合わせたものを使用し、作製されたことを特徴とする高周波用圧粉磁芯。   An organic polymer resin such as a silicone resin, a phenol resin, an epoxy resin, or the like as an insulating material in a composite magnetic material powder in which a crystalline magnetic material and an amorphous magnetic material are uniformly mixed and dispersed. A high-frequency dust core made of water glass or a combination thereof. 前記非晶質磁性材料のビッカース硬度は、800以上から1400以下の範囲であり、前記の結晶質磁性材料のビッカース硬度は、100以上から300以下の範囲であることを特徴とする請求項1に記載の高周波用圧粉磁芯。   The Vickers hardness of the amorphous magnetic material is in the range of 800 to 1400, and the Vickers hardness of the crystalline magnetic material is in the range of 100 to 300. The dust core for high frequency described. Fe粉末に、組成比をSiが5wt%〜10wt%、Bが1wt%〜5w%、残りFeとしたFe−Si−B合金粉末を均一に混合し、分散させた複合磁性材料粉末に、絶縁材として、シリコーン系樹脂、フェノール系樹脂、エポキシ系樹脂等の有機高分子樹脂、または水ガラス、もしくは組み合わせたものを使用し、作製されたことを特徴とする高周波用圧粉磁芯。   An Fe-Si-B alloy powder having a composition ratio of 5 wt% to 10 wt% Si, 1 wt% to 5 wt% B, and the remaining Fe in the Fe powder is uniformly mixed and dispersed. A high-frequency powder magnetic core produced by using, as a material, an organic polymer resin such as a silicone resin, a phenol resin, or an epoxy resin, water glass, or a combination thereof. 前記Fe−Si−B合金粉末の、全体に対する比率は、20wt% 〜80wt%の範囲とすることを特徴とする請求項3に記載の高周波用圧粉磁芯。   The high-frequency powder magnetic core according to claim 3, wherein a ratio of the Fe-Si-B alloy powder to the whole is in a range of 20 wt% to 80 wt%. 前記複合磁性粉末材料は、透磁率が38以上であることを特徴とする請求項1ないし4のいずれかに記載の高周波用圧粉磁芯。   5. The dust core according to claim 1, wherein the composite magnetic powder material has a magnetic permeability of 38 or more. 前記高周波用圧粉磁芯は、周波数1MHz〜5MHzにおいて平坦な周波数特性を有することを特徴とする請求項1ないし5のいずれかに記載の高周波用圧粉磁芯。   6. The dust core for high frequency according to claim 1, wherein the dust core for high frequency has a flat frequency characteristic at a frequency of 1 MHz to 5 MHz. 前記複合磁性粉末材料粉末は、平均粒径(D50)で45μm以下であることを特徴とする請求項1ないし6のいずれかに記載の高周波用圧粉磁芯。   The powder magnetic core for high frequency according to any one of claims 1 to 6, wherein the composite magnetic powder material powder has an average particle size (D50) of 45 µm or less. 前記Fe粉末の粒径は、1μm以上から10μm以下の範囲であり、前記Fe−Si−B合金粉末の粒径は、5μm以上から20μm以下の範囲であることを特徴とする請求項2に記載の高周波用圧粉磁芯。   3. The particle size of the Fe powder ranges from 1 μm to 10 μm, and the particle size of the Fe—Si—B alloy powder ranges from 5 μm to 20 μm. Powder core for high frequency. 結晶質磁性材料と、非晶質磁性材料とを均一に混合し、分散させたことを特徴とする高周波用複合磁性粉末材料。   A high-frequency composite magnetic powder material characterized in that a crystalline magnetic material and an amorphous magnetic material are uniformly mixed and dispersed. 前記非晶質磁性材料のビッカース硬度は、800以上から1400以下の範囲であり、前記の結晶質磁性材料のビッカース硬度は、100以上から300以下の範囲であることを特徴とする請求項9に記載の高周波用複合磁性粉末材料。   The Vickers hardness of the amorphous magnetic material is in a range of 800 to 1400, and the Vickers hardness of the crystalline magnetic material is in a range of 100 to 300. The composite magnetic powder material for high frequency described. Fe粉末に、組成比をSiが5wt%〜10wt%、Bが1wt%〜5w%、残りFeとしたFe−Si−B合金粉末を均一に混合し、分散させたことを特徴とする高周波用複合磁性粉末材料。   Fe-Si-B alloy powder with a composition ratio of 5 wt% to 10 wt% Si, 1 wt% to 5 wt% B, and the remaining Fe in Fe powder is uniformly mixed and dispersed. Composite magnetic powder material. 前記Fe−Si−B合金粉末の、全体に対する比率は、20wt% 〜80wt%の範囲とする請求項11に記載の高周波用複合磁性粉末材料。   The high-frequency composite magnetic powder material according to claim 11, wherein a ratio of the Fe-Si-B alloy powder to the whole is in a range of 20 wt% to 80 wt%. 前記複合磁性粉末材料は透磁率が38以上であることを特徴とする請求項9ないし12のいずれかに記載の高周波用複合磁性粉末材料。   The high frequency composite magnetic powder material according to any one of claims 9 to 12, wherein the composite magnetic powder material has a magnetic permeability of 38 or more. 平均粒径(D50)が45μm以下であることを特徴とする請求項9ないし13のいずれかに記載の高周波用複合磁性粉末材料。   The composite magnetic powder material for high frequency according to any one of claims 9 to 13, wherein an average particle size (D50) is 45 µm or less. 前記Fe粉末の粒径は、1μm〜10μmの範囲であり、前記Fe−Si−B合金粉末の粒径は、5μm〜20μmの範囲であることを特徴とする請求項11に記載の高周波用複合磁性粉末材料。   12. The high frequency composite according to claim 11, wherein the particle size of the Fe powder is in the range of 1 μm to 10 μm, and the particle size of the Fe—Si—B alloy powder is in the range of 5 μm to 20 μm. Magnetic powder material. 結晶質磁性材料と、非晶質磁性材料とを均一に混合し、分散させた複合磁性粉末材料に、絶縁材として、シリコーン系樹脂、フェノール系樹脂、エポキシ系樹脂等の有機高分子樹脂、または水ガラス、もしくは組み合わせたものを混合し、乾燥後、分級し、成型し、キュアして作製することを特徴とする高周波用圧粉磁芯の製造方法。   An organic polymer resin such as a silicone resin, a phenol resin, an epoxy resin, or the like as an insulating material in a composite magnetic powder material in which a crystalline magnetic material and an amorphous magnetic material are uniformly mixed and dispersed. A method for producing a dust core for high frequency, comprising mixing water glass or a combination thereof, drying, classifying, molding and curing. Fe粉末に、組成比をSiが5wt%〜10wt%、Bが1wt%〜5w%、残りFeとしたFe−Si−B合金粉末、または、組成比をSiが8〜10wt%、Alが5〜8wt%、残りFeとしたFe−Si−Al合金粉末の少なくとも一方とを、前記Fe−Si−B合金粉末とFe−Si−Al合金粉末の合計の全体に対する比率を20wt%〜80w%の範囲となるように均一に混合し、分散させた複合磁性材料粉末に、絶縁材として、シリコーン系樹脂、フェノール系樹脂、エポキシ系樹脂等の有機高分子樹脂、または水ガラス、もしくは組み合わせたものを混合し、乾燥後、分級し、成型し、キュアして作製することを特徴とする高周波用圧粉磁芯の製造方法。   Fe-Fe-Si-B alloy powder in which the composition ratio is 5 wt% to 10 wt%, B is 1 wt% to 5 w%, and the remaining Fe is Fe powder, or the composition ratio is 8 to 10 wt% Si and 5 is Al. ~ 8 wt%, at least one of the Fe-Si-Al alloy powder as the remaining Fe, the ratio of the total of the Fe-Si-B alloy powder and the Fe-Si-Al alloy powder is 20 wt% ~ 80w% To the composite magnetic material powder that is uniformly mixed and dispersed so as to be in the range, as an insulating material, an organic polymer resin such as silicone resin, phenol resin, epoxy resin, or water glass, or a combination thereof A method for producing a dust core for high frequency, comprising mixing, drying, classifying, molding, and curing.
JP2004106072A 2004-03-31 2004-03-31 High-frequency composite magnetic powder material, high-frequency dust core and method for manufacturing the same Pending JP2005294458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004106072A JP2005294458A (en) 2004-03-31 2004-03-31 High-frequency composite magnetic powder material, high-frequency dust core and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004106072A JP2005294458A (en) 2004-03-31 2004-03-31 High-frequency composite magnetic powder material, high-frequency dust core and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2005294458A true JP2005294458A (en) 2005-10-20

Family

ID=35327070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004106072A Pending JP2005294458A (en) 2004-03-31 2004-03-31 High-frequency composite magnetic powder material, high-frequency dust core and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2005294458A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134381A (en) * 2005-11-08 2007-05-31 Nec Tokin Corp Composite magnetic material, dust core using the same, and magnetic element
JP2007250978A (en) * 2006-03-17 2007-09-27 Nec Tokin Corp Low-profile choke coil
JP2008141011A (en) * 2006-12-01 2008-06-19 Hitachi Powdered Metals Co Ltd Amorphous dust core
JP2008192896A (en) * 2007-02-06 2008-08-21 Hitachi Metals Ltd Dust core
JP2009059848A (en) * 2007-08-31 2009-03-19 Tamura Seisakusho Co Ltd Core material, core using the same, and choke coil using the core
JP2009118553A (en) * 2007-11-01 2009-05-28 Seiko Epson Corp Battery system
JP2009118552A (en) * 2007-11-01 2009-05-28 Seiko Epson Corp Voltage booster circuit and power supply system
JP2009290024A (en) * 2008-05-29 2009-12-10 Denso Corp Method for manufacturing pressed powder magnetic core
JP2010118486A (en) * 2008-11-13 2010-05-27 Nec Tokin Corp Inductor and method of manufacturing the same
GB2481936A (en) * 2006-07-12 2012-01-11 Vacuumschmelze Gmbh & Co Kg Powder composite magnetic core
EP2482291A1 (en) * 2011-01-28 2012-08-01 Sumida Corporation Magnetic powder material, low-loss composite magnetic material containing same, and magnetic element using same
US20130286703A1 (en) * 2011-03-24 2013-10-31 Sumitomo Electric Industries, Ltd. Composite material, reactor-use core, reactor, converter, and power converter apparatus
JP2014103266A (en) * 2012-11-20 2014-06-05 Seiko Epson Corp Composite particle, production method of composite particle, powder magnetic core, magnetic element and portable electronic apparatus
JP2014103265A (en) * 2012-11-20 2014-06-05 Seiko Epson Corp Composite particle, powder magnetic core, magnetic element and portable electronic apparatus
TWI509644B (en) * 2014-01-15 2015-11-21 Soft magnetic alloy powders composition, magnetic core and inductance component
KR20150140567A (en) * 2014-06-06 2015-12-16 알프스 그린 디바이스 가부시키가이샤 Compressed powder core, method of manufacturing the compressed powder core, electronic-electric component comprising the compressed powder core and electronic-electric device mounted with the electronic-electric component
WO2017038295A1 (en) * 2015-08-31 2017-03-09 アルプス電気株式会社 Dust core, method for producing said dust core, electric/electronic component provided with said dust core, and electric/electronic device on which said electric/electronic component is mounted
CN107240471A (en) * 2017-05-18 2017-10-10 安泰科技股份有限公司 The composite magnetic powder of high saturated magnetic induction, magnetic core and preparation method thereof
US9847156B2 (en) 2011-03-24 2017-12-19 Sumitomo Electric Industries, Ltd. Composite material, reactor-use core, reactor, converter, and power converter apparatus
CN107958762A (en) * 2017-10-17 2018-04-24 华南理工大学 A kind of Fe/FeSiB composite magnetic powder cores and preparation method thereof
US10204730B2 (en) 2009-05-15 2019-02-12 Cyntec Co., Ltd. Electronic device and manufacturing method thereof
JP2020505758A (en) * 2017-01-10 2020-02-20 エルジー イノテック カンパニー リミテッド Magnetic core and coil component including the same
WO2020195842A1 (en) 2019-03-22 2020-10-01 日本特殊陶業株式会社 Compressed powder magnetic core
CN112687447A (en) * 2019-10-18 2021-04-20 株式会社村田制作所 Inductor and method for manufacturing the same
US11529679B2 (en) 2015-05-19 2022-12-20 Alps Alpine Co., Ltd. Dust core, method for manufacturing dust core, inductor including dust core, and electronic/electric device including inductor

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134381A (en) * 2005-11-08 2007-05-31 Nec Tokin Corp Composite magnetic material, dust core using the same, and magnetic element
JP2007250978A (en) * 2006-03-17 2007-09-27 Nec Tokin Corp Low-profile choke coil
GB2481936A (en) * 2006-07-12 2012-01-11 Vacuumschmelze Gmbh & Co Kg Powder composite magnetic core
GB2481936B (en) * 2006-07-12 2012-03-14 Vacuumschmelze Gmbh & Co Kg Powder magnetic composite core
JP2008141011A (en) * 2006-12-01 2008-06-19 Hitachi Powdered Metals Co Ltd Amorphous dust core
JP2008192896A (en) * 2007-02-06 2008-08-21 Hitachi Metals Ltd Dust core
JP2009059848A (en) * 2007-08-31 2009-03-19 Tamura Seisakusho Co Ltd Core material, core using the same, and choke coil using the core
JP2009118553A (en) * 2007-11-01 2009-05-28 Seiko Epson Corp Battery system
JP2009118552A (en) * 2007-11-01 2009-05-28 Seiko Epson Corp Voltage booster circuit and power supply system
JP2009290024A (en) * 2008-05-29 2009-12-10 Denso Corp Method for manufacturing pressed powder magnetic core
JP2010118486A (en) * 2008-11-13 2010-05-27 Nec Tokin Corp Inductor and method of manufacturing the same
US10204730B2 (en) 2009-05-15 2019-02-12 Cyntec Co., Ltd. Electronic device and manufacturing method thereof
CN102623120A (en) * 2011-01-28 2012-08-01 胜美达集团株式会社 Magnetic powder material, low-loss composite magnetic material containing same, and magnetic element using same
JP2012160726A (en) * 2011-01-28 2012-08-23 Sumida Corporation Magnetic powder material, low-loss composite magnetic material containing magnetic powder material, and magnetic element containing low-loss composite magnetic material
US9117582B2 (en) 2011-01-28 2015-08-25 Sumida Corporation Magnetic powder material, low-loss composite magnetic material containing same, and magnetic element using same
EP2482291A1 (en) * 2011-01-28 2012-08-01 Sumida Corporation Magnetic powder material, low-loss composite magnetic material containing same, and magnetic element using same
US20130286703A1 (en) * 2011-03-24 2013-10-31 Sumitomo Electric Industries, Ltd. Composite material, reactor-use core, reactor, converter, and power converter apparatus
US9847156B2 (en) 2011-03-24 2017-12-19 Sumitomo Electric Industries, Ltd. Composite material, reactor-use core, reactor, converter, and power converter apparatus
US9349511B2 (en) * 2011-03-24 2016-05-24 Sumitomo Electric Industries, Ltd. Composite material, reactor-use core, reactor, converter, and power converter apparatus
JP2014103266A (en) * 2012-11-20 2014-06-05 Seiko Epson Corp Composite particle, production method of composite particle, powder magnetic core, magnetic element and portable electronic apparatus
JP2014103265A (en) * 2012-11-20 2014-06-05 Seiko Epson Corp Composite particle, powder magnetic core, magnetic element and portable electronic apparatus
TWI632566B (en) * 2012-11-20 2018-08-11 精工愛普生股份有限公司 Composite particle, method for producing composite particle, powder magnetic core, magnetic element, and portable electronic device
TWI607459B (en) * 2012-11-20 2017-12-01 精工愛普生股份有限公司 Composite particle, powder magnetic core, magnetic element, and portable electronic device
US9767956B2 (en) 2012-11-20 2017-09-19 Seiko Epson Corporation Composite particle of soft-magnetic metallic material, method for producing composite particle, powder core, magnetic element, and portable electronic device
TWI509644B (en) * 2014-01-15 2015-11-21 Soft magnetic alloy powders composition, magnetic core and inductance component
KR20150140567A (en) * 2014-06-06 2015-12-16 알프스 그린 디바이스 가부시키가이샤 Compressed powder core, method of manufacturing the compressed powder core, electronic-electric component comprising the compressed powder core and electronic-electric device mounted with the electronic-electric component
JP2016012715A (en) * 2014-06-06 2016-01-21 アルプス・グリーンデバイス株式会社 Powder compact core, manufacturing method thereof, electronic/electric part having powder compact core, and electronic/electric device with electronic/electric part mounted thereon
KR101688318B1 (en) * 2014-06-06 2016-12-20 알프스 덴키 가부시키가이샤 Compressed powder core, method of manufacturing the compressed powder core, electronic-electric component comprising the compressed powder core and electronic-electric device mounted with the electronic-electric component
US11529679B2 (en) 2015-05-19 2022-12-20 Alps Alpine Co., Ltd. Dust core, method for manufacturing dust core, inductor including dust core, and electronic/electric device including inductor
WO2017038295A1 (en) * 2015-08-31 2017-03-09 アルプス電気株式会社 Dust core, method for producing said dust core, electric/electronic component provided with said dust core, and electric/electronic device on which said electric/electronic component is mounted
JP2020505758A (en) * 2017-01-10 2020-02-20 エルジー イノテック カンパニー リミテッド Magnetic core and coil component including the same
US11610719B2 (en) 2017-01-10 2023-03-21 Lg Innotek Co., Ltd. Magnetic core and coil component comprising same
CN107240471B (en) * 2017-05-18 2019-09-10 安泰科技股份有限公司 The composite magnetic powder of high saturated magnetic induction, magnetic core and preparation method thereof
CN107240471A (en) * 2017-05-18 2017-10-10 安泰科技股份有限公司 The composite magnetic powder of high saturated magnetic induction, magnetic core and preparation method thereof
CN107958762A (en) * 2017-10-17 2018-04-24 华南理工大学 A kind of Fe/FeSiB composite magnetic powder cores and preparation method thereof
WO2020195842A1 (en) 2019-03-22 2020-10-01 日本特殊陶業株式会社 Compressed powder magnetic core
KR20210068552A (en) 2019-03-22 2021-06-09 니뽄 도쿠슈 도교 가부시키가이샤 compacted magnetic core
CN113543908A (en) * 2019-03-22 2021-10-22 日本特殊陶业株式会社 Dust core
CN112687447A (en) * 2019-10-18 2021-04-20 株式会社村田制作所 Inductor and method for manufacturing the same
CN112687447B (en) * 2019-10-18 2022-11-15 株式会社村田制作所 Inductor and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2005294458A (en) High-frequency composite magnetic powder material, high-frequency dust core and method for manufacturing the same
WO2010103709A1 (en) Powder magnetic core and magnetic element using the same
JP5374537B2 (en) Soft magnetic powder, granulated powder, dust core, electromagnetic component, and method for manufacturing dust core
JP5924480B2 (en) Magnetic powder material, low-loss composite magnetic material including the magnetic powder material, and magnetic element including the low-loss composite magnetic material
JP3964213B2 (en) Manufacturing method of dust core and high frequency reactor
JPWO2009128425A1 (en) Composite magnetic material and method for producing the same
JP5974803B2 (en) Soft magnetic alloy powder, green compact, dust core and magnetic element
JP2014143286A (en) Soft magnetic material composition, method for producing the same, magnetic core, and coil type electronic component
CN1700369A (en) High-frequency core and inductance component using the same
JP2010272604A (en) Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
JP2008135674A (en) Soft magnetic alloy powder, compact, and inductance element
KR20010042585A (en) Composite magnetic material
JP2010245216A (en) Magnetic powder material, granulating powder, compact, baked object for magnetic core, and method of manufacturing electromagnetic component and baked object for magnetic core
JP2020095988A (en) Dust core
JP7128439B2 (en) Dust core and inductor element
JP2007214425A (en) Powder magnetic core and inductor using it
JP2008192897A (en) Dust core and reactor
JPH11176680A (en) Manufacture of core
JP4166460B2 (en) Composite magnetic material, magnetic element using the same, and method of manufacturing the same
CN1295715C (en) Powder magnetic core and HF reactor therewith
JP2017054910A (en) Soft magnetic metal powder compact core
JP2011049568A (en) Dust core, and magnetic element
CN110942882A (en) Composite magnetic material, reactor, and metal composite core and method for manufacturing same
JP6314020B2 (en) Powder magnetic core using nanocrystalline soft magnetic alloy powder and manufacturing method thereof
JPH1174140A (en) Manufacture of dust core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091014