JP2007115497A - Nickel-coated copper fine particle, manufacturing method of the same, conductive paste, and manufacturing method of conductive film - Google Patents

Nickel-coated copper fine particle, manufacturing method of the same, conductive paste, and manufacturing method of conductive film Download PDF

Info

Publication number
JP2007115497A
JP2007115497A JP2005305184A JP2005305184A JP2007115497A JP 2007115497 A JP2007115497 A JP 2007115497A JP 2005305184 A JP2005305184 A JP 2005305184A JP 2005305184 A JP2005305184 A JP 2005305184A JP 2007115497 A JP2007115497 A JP 2007115497A
Authority
JP
Japan
Prior art keywords
nickel
fine particles
copper
copper fine
coated copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005305184A
Other languages
Japanese (ja)
Inventor
Kanji Hisayoshi
完治 久芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005305184A priority Critical patent/JP2007115497A/en
Publication of JP2007115497A publication Critical patent/JP2007115497A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of stably manufacturing nickel-coated copper fine particles, used suitably for conductive paste and a filler of a conductive film or the like, having a small particle diameter and a uniform diameter distribution. <P>SOLUTION: The nickel-coated copper fine particle formed by coating nickel on a surface of metallic copper, having a small average particle diameter of 10 to 100 nm and a uniform particle diameter distribution, of which 90%-accumulated particle diameter D<SB>90</SB>confirmed by SEM is not more than two times the 50%-accumulated particle diameter D<SB>50</SB>, is manufactured by a mixing alkaline solution like NaOH in aqueous solution prepared, by adding a complexing agent, dispersant, defoaming agent such as ethanol in mixed aqueous solution of copper salt and nickel salt, while stirring, and afterwards, deoxidizing copper ion and nickel ion in the above solution by a deoxidant such as hydrazine. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、導電ペーストや導電膜などのような電子材料の配線形成材料等に用いられるニッケル被覆銅微粒子とその製造方法に関するもので、特に、粒径が小さく粒度分布の良好なニッケル被覆銅微粒子を湿式にて製造する方法に関する。   TECHNICAL FIELD The present invention relates to nickel-coated copper fine particles used in electronic material wiring forming materials such as conductive pastes and conductive films, and a method for producing the same, and in particular, nickel-coated copper fine particles having a small particle size and a good particle size distribution The present invention relates to a method for producing the material wet.

従来、スクリーン印刷やスルーホール形成等に利用される導電ペーストとしては、金や銀などの微粒子を導電フィラーとし、これを樹脂などの有機バインダーに分散して作製される。また、セラミックコンデンサなどの電子部品の外部端子を作製する際には、上記の導電ペーストを電子部品の外表面に塗布して焼き付けて導電膜を形成し、これを外部端子の電極とする方法が行われている。
しかしながら、上記金や銀などの微粒子は高価であり、また、銀粉を用いた導電ペーストは高温多湿の雰囲気中でマイグレーションを生じ易いという問題点があることから、導電フィラーとして、粉末表面の酸化による電気抵抗の劣化はあるものの耐マイグレーションに優れた銅と、粉末表面の酸化が少なく、かつ、良好な導電性を有する銀との合金粉体を用いる方法や、銅粉の表面にニッケルをコーティングして、上記銅粉の耐酸化性を向上させたニッケル被覆銅微粒子を用いる方法などが提案されている(例えば、特許文献1〜3参照)。
Conventionally, conductive pastes used for screen printing, through-hole formation, and the like are produced by using fine particles such as gold and silver as conductive fillers and dispersing them in an organic binder such as a resin. Also, when producing external terminals for electronic components such as ceramic capacitors, there is a method in which the conductive paste is applied to the outer surface of the electronic component and baked to form a conductive film, which is used as an electrode for the external terminals. Has been done.
However, the above-mentioned fine particles such as gold and silver are expensive, and the conductive paste using silver powder is liable to cause migration in a high-temperature and high-humidity atmosphere. Although there is a deterioration in electrical resistance, a method using an alloy powder of copper excellent in migration resistance and silver with little oxidation on the powder surface and good conductivity, or coating the surface of the copper powder with nickel Thus, a method using nickel-coated copper fine particles with improved oxidation resistance of the copper powder has been proposed (see, for example, Patent Documents 1 to 3).

上記ニッケル被覆銅微粒子を湿式により製造する方法としては、溶液中の水酸化銅を還元剤を用いて金属銅微粒子に還元し、この還元された銅微粒子と還元剤が存在する液中にニッケルの錯塩水溶液を添加して、上記銅微粒子の表面に金属ニッケルを被着させる方法が提案されている。
具体的には、硫酸銅などの銅塩の水溶液にNaOHなどのアルカリを添加して水酸化銅のスラリーとし、これにヒドラジンなどの還元剤を添加して銅微粒子を析出させる。このとき、上記添加する還元剤の量を還元に要する理論必要量よりも多くしておき、上記銅微粒子と還元剤が存在する液にニッケルの錯塩水溶液を添加して、上記ニッケルを上記還元剤により還元することにより、上記銅微粒子の表面に金属ニッケルを被着させる。これにより、酸化温度が100℃よりも高いニッケル被覆銅微粒子を得ることができる(例えば、特許文献4参照)。
特開2000−100247号公報 特開2003−197032号公報 特開昭53−19561号公報 特開2004−217991号公報
As a method for producing the nickel-coated copper fine particles by a wet method, copper hydroxide in a solution is reduced to metal copper fine particles using a reducing agent, and nickel is contained in a liquid containing the reduced copper fine particles and the reducing agent. A method has been proposed in which an aqueous complex salt solution is added to deposit metallic nickel on the surface of the copper fine particles.
Specifically, an alkali such as NaOH is added to an aqueous solution of a copper salt such as copper sulfate to form a copper hydroxide slurry, and a reducing agent such as hydrazine is added thereto to precipitate copper fine particles. At this time, the amount of the reducing agent to be added is made larger than the theoretically required amount required for the reduction, an aqueous nickel complex salt solution is added to the liquid containing the copper fine particles and the reducing agent, and the nickel is added to the reducing agent. In this way, metallic nickel is deposited on the surface of the copper fine particles. Thereby, nickel-coated copper fine particles having an oxidation temperature higher than 100 ° C. can be obtained (for example, see Patent Document 4).
Japanese Patent Laid-Open No. 2000-100347 Japanese Patent Laid-Open No. 2003-197032 Japanese Patent Laid-Open No. 53-19561 JP 2004-217991 A

ところで、上記ニッケル被覆銅微粒子の粉末を導電フィラーとして使用する場合には、上記粉末の平均粒径が100nm以下であり、かつ、粒径が均一であることが要求されている。
しかしながら、上記のように、最初に水酸化銅を還元して金属銅の微粒子を生成した後に、銅微粒子の表面にニッケルを被着させる方法では、得られたニッケル被覆銅微粒子の粒径分布の均一性が良好とはいえないという欠点があった。これは、第1には、還元が銅イオンの還元によるものではなく、先に水酸化銅を析出させた後、この水酸化銅のスラリーに過剰な還元剤を添加して、1分以内、好ましくは30秒以内という短時間で還元するために、得られる銅微粒子の粒径の制御が困難であること、第2には、ニッケルの錯塩水溶液を過剰な還元剤が存在する溶液中に後から添加するために、溶液の注入場所の近傍ではニッケルが大量に還元されて粒径が大きくなり、逆に、注入場所から離れたところではニッケル濃度が低くなるため粒径が小さくなってしまうことによるものである。
そこで、還元剤の添加量や還元反応時間を調整したり、還元反応の前または後もしくは途中に分散剤を添加するなどして、還元された銅微粒子の粒径分布をできるだけ均一にするようにしたり、溶液を攪拌しながらニッケルの錯塩水溶液を添加してニッケルの錯イオンをできるだけ拡散させるようにしているが、現状では、均一な粒径分布を有するニッケル被覆銅微粒子を安定して製造することは困難であった。
By the way, when the powder of the nickel-coated copper fine particles is used as a conductive filler, it is required that the powder has an average particle size of 100 nm or less and a uniform particle size.
However, as described above, after the copper hydroxide is first reduced to form metal copper fine particles, the method of depositing nickel on the surface of the copper fine particles results in the particle size distribution of the obtained nickel-coated copper fine particles. There was a drawback that the uniformity was not good. This is because, firstly, the reduction is not due to reduction of copper ions, and after first precipitating copper hydroxide, an excess reducing agent is added to the slurry of copper hydroxide within 1 minute, Since the reduction is preferably performed within a short time of 30 seconds or less, it is difficult to control the particle diameter of the obtained copper fine particles. Second, the aqueous solution of nickel complex salt is put into a solution containing an excessive reducing agent. Therefore, a large amount of nickel is reduced in the vicinity of the injection site of the solution, resulting in a large particle size, and conversely, the nickel concentration is reduced at a location far from the injection site, resulting in a decrease in the particle size. Is due to.
Therefore, the particle size distribution of the reduced copper fine particles is made as uniform as possible by adjusting the amount of the reducing agent added and the reduction reaction time, or adding a dispersant before, after or during the reduction reaction. In addition, the nickel complex salt aqueous solution is added while stirring the solution to diffuse the nickel complex ions as much as possible, but at present, the nickel-coated copper fine particles having a uniform particle size distribution can be stably produced. Was difficult.

本発明は、従来の問題点に鑑みてなされたもので、例えば、導電ペーストや導電膜のフィラーとして好適に用いられる、粒径が小さく、かつ、粒径分布が均一なニッケル被覆銅微粒子を安定して製造する方法を提供することを目的とする。   The present invention has been made in view of conventional problems. For example, nickel-coated copper fine particles having a small particle size and a uniform particle size distribution, which are suitably used as a conductive paste or a conductive film filler, can be stabilized. An object of the present invention is to provide a method for manufacturing the same.

本発明者は、鋭意検討の結果、銅イオンとニッケルイオンとが存在する水溶液に錯化剤を添加して銅及びニッケルの錯イオンを形成することにより、溶液中に銅イオンとニッケルイオンとを均一かつ安定に分散させておき、この溶液に還元剤を添加するようにすれば、ニッケルが銅よりも卑である(イオン化傾向が大きい)ことから、まず銅イオンが還元されて金属銅となり、次に、ニッケルイオンが還元されて上記金属銅の表面に被着するので、粒径が小さく、かつ、粒度分布の良好なニッケル被覆銅微粒子を安定して製造することができることを見出し本発明に想到したものである。
本願の請求項1に記載の発明は、銅微粒子の表面にニッケルを被覆して成るニッケル被覆銅微粒子であって、平均粒径が10〜100nmであり、SEMで確認される90%積算粒径D90が50%積算粒径D50の2倍以下であることを特徴とするものである。
請求項2に記載の発明は、請求項1に記載のニッケル被覆銅微粒子であって、ニッケルと銅の重量比が1:100〜2:1であることを特徴とするものである。
As a result of intensive studies, the inventor has added a complexing agent to an aqueous solution in which copper ions and nickel ions are present to form copper and nickel complex ions, thereby forming copper ions and nickel ions in the solution. If it is uniformly and stably dispersed and a reducing agent is added to this solution, since nickel is baser than copper (the ionization tendency is large), first, copper ions are reduced to metallic copper, Next, since nickel ions are reduced and deposited on the surface of the metal copper, it has been found that nickel-coated copper fine particles having a small particle size and a good particle size distribution can be stably produced. It has been conceived.
The invention according to claim 1 of the present application is nickel-coated copper fine particles formed by coating nickel on the surface of copper fine particles, the average particle size is 10 to 100 nm, and 90% cumulative particle size confirmed by SEM D 90 is not more than twice the 50% cumulative particle diameter D 50 .
The invention according to claim 2 is the nickel-coated copper fine particles according to claim 1, wherein the weight ratio of nickel to copper is 1: 100 to 2: 1.

また、請求項3に記載の発明は、ニッケル被覆銅微粒子を湿式にて製造する方法であって、銅塩、ニッケル塩、銅及びニッケルの錯化剤を含む水溶液に還元剤を加えて銅及びニッケルの錯イオンを還元し、ニッケルが被覆された銅微粒子を製造することを特徴とするものである。
請求項4に記載の発明は、請求項3に記載のニッケル被覆銅微粒子の製造方法において、上記還元剤を加える前の水溶液に更に分散剤を添加して、還元される金属粒子の集合凝集による粒子径の粗大化を防ぐようにしたものである。
請求項5に記載の発明は、請求項3または請求項4に記載のニッケル被覆銅微粒子の製造方法において、上記還元反応を安定して持続させるために、上記水溶液にアルカリを添加して銅及びニッケルの錯イオンの還元を行うようにしたものである。
The invention according to claim 3 is a method for producing nickel-coated copper fine particles in a wet process, wherein a reducing agent is added to an aqueous solution containing a copper salt, a nickel salt, copper and a nickel complexing agent to add copper and This is characterized in that the nickel complex ions are reduced to produce copper fine particles coated with nickel.
The invention according to claim 4 is the method for producing nickel-coated copper fine particles according to claim 3, wherein a dispersing agent is further added to the aqueous solution before the reducing agent is added, and aggregated aggregation of the metal particles to be reduced. It is intended to prevent coarsening of the particle diameter.
According to a fifth aspect of the present invention, in the method for producing nickel-coated copper fine particles according to the third or fourth aspect, in order to stably maintain the reduction reaction, an alkali is added to the aqueous solution to add copper and The reduction of the complex ion of nickel is performed.

請求項6に記載の発明は、請求項3〜請求項5のいずれかに記載のニッケル被覆銅微粒子の製造方法において、上記銅塩と上記ニッケル塩とを、それぞれ硫酸塩、硝酸塩、塩化物のいずれかから選ばれる化合物としたものである。
請求項7に記載の発明は、請求項3〜請求項6のいずれかに記載のニッケル被覆銅微粒子の製造方法において、上記銅の錯化剤を酒石酸カリウムナトリウム(ロシェル塩)、EDTA−Na(エチレンジアミン四酢酸ナトリウム)、NTA−Na(ニトリロ三酢酸ナトリウム)meso−エリトリトール、D−マンニトール、D−ソルビトール、トリエタノールアミン、トリイソプロパノールアミン、エチレンジアミンから選ばれる1種または数種としたことを特徴とするものである。
請求項8に記載の発明は、請求項3〜請求項6のいずれかに記載のニッケル被覆銅微粒子の製造方法において、上記ニッケルの錯化剤をコハク酸ナトリウム、マロン酸ナトリウム、酢酸ナトリウム、クエン酸ナトリウム、酒石酸カリウムナトリウム(ロシェル塩)、EDTA−Na(エチレンジアミン四酢酸ナトリウム)、トリエタノールアミンから選ばれる1種または数種としたことを特徴とするものである。
請求項9に記載の発明は、請求項3〜請求項8のいずれかに記載のニッケル被覆銅微粒子の製造方法において、上記錯化剤の添加当量を還元する金属当量の1.5〜10倍としたことを特徴とする。
The invention according to claim 6 is the method for producing nickel-coated copper fine particles according to any one of claims 3 to 5, wherein the copper salt and the nickel salt are made of sulfate, nitrate, and chloride, respectively. It is a compound selected from either.
The invention according to claim 7 is the method for producing nickel-coated copper fine particles according to any of claims 3 to 6, wherein the copper complexing agent is potassium sodium tartrate (Rochelle salt), EDTA-Na ( Ethylenediaminetetraacetate), NTA-Na (sodium nitrilotriacetate) meso-erythritol, D-mannitol, D-sorbitol, triethanolamine, triisopropanolamine, characterized in that it is one or several selected from ethylenediamine To do.
The invention according to claim 8 is the method for producing nickel-coated copper fine particles according to any one of claims 3 to 6, wherein the nickel complexing agent is sodium succinate, sodium malonate, sodium acetate, citric acid. One type or several types selected from sodium acid, potassium sodium tartrate (Rochelle salt), EDTA-Na (ethylenediaminetetraacetate sodium), and triethanolamine are used.
The invention according to claim 9 is the method for producing nickel-coated copper fine particles according to any one of claims 3 to 8, wherein the metal equivalent for reducing the addition equivalent of the complexing agent is 1.5 to 10 times the equivalent. It is characterized by that.

請求項10に記載の発明は、請求項4〜請求項9のいずれかに記載のニッケル被覆銅微粒子の製造方法において、上記分散剤をPVP(ポリビニルピロリドン)、PEG(ポリエチレングリコール)、PVA(ポリビニルアルコール)から選ばれる1種としたことを特徴とするものである。
請求項11に記載の発明は、請求項4〜請求項10のいずれかに記載のニッケル被覆銅微粒子の製造方法において、上記分散剤の添加量を0.1mM/L(ミリモル/リットル)〜10mM/Lとしたことを特徴とするものである。
The invention according to claim 10 is the method for producing nickel-coated copper fine particles according to any one of claims 4 to 9, wherein the dispersant is PVP (polyvinyl pyrrolidone), PEG (polyethylene glycol), PVA (polyvinyl chloride). It is one type selected from alcohol).
The invention according to claim 11 is the method for producing nickel-coated copper fine particles according to any one of claims 4 to 10, wherein the amount of the dispersant added is 0.1 mM / L (mmol / liter) to 10 mM. / L.

請求項12に記載の発明は、請求項3〜請求項11のいずれかに記載のニッケル被覆銅微粒子の製造方法において、上記還元剤をヒドラジン、ヒドラジン化合物、水素化硼素ナトリウム、ジメチルアミンボランから選ばれる1種としたことを特徴とするものである。
請求項13に記載の発明は、請求項3〜請求項11のいずれかに記載のニッケル被覆銅微粒子の製造方法において、上記還元剤を、銅についてはホルマリンとし、ニッケルについては次亜リン酸ナトリウムとしたことを特徴とするものである。
請求項14に記載の発明は、請求項3〜請求項13のいずれかに記載のニッケル被覆銅微粒子の製造方法において、上記還元剤の添加当量を還元する金属に対する理論反応当量の1.5〜3.0としたことを特徴とするものである。
The invention according to claim 12 is the method for producing nickel-coated copper fine particles according to any one of claims 3 to 11, wherein the reducing agent is selected from hydrazine, a hydrazine compound, sodium borohydride, and dimethylamine borane. It is characterized by being one kind.
The invention according to claim 13 is the method for producing nickel-coated copper fine particles according to any one of claims 3 to 11, wherein the reducing agent is formalin for copper and sodium hypophosphite for nickel. It is characterized by that.
The invention according to claim 14 is the method for producing nickel-coated copper fine particles according to any one of claims 3 to 13, wherein a theoretical reaction equivalent of 1.5 to a metal for reducing the addition equivalent of the reducing agent is 1.5 to It is characterized by being 3.0.

請求項15に記載の発明は、金属微粒子を樹脂に分散して成る導電ペーストであって、上記金属微粒子として、請求項1または請求項2に記載のニッケル被覆銅微粒子を用いたことを特徴とするものである。
請求項16に記載の発明は、導電膜の製造方法であって、請求項1または請求項2に記載のニッケル被覆銅微粒子を焼結して製造することを特徴とするものである。
The invention according to claim 15 is a conductive paste comprising metal fine particles dispersed in a resin, wherein the nickel-coated copper fine particles according to claim 1 or 2 are used as the metal fine particles. To do.
The invention according to claim 16 is a method for producing a conductive film, wherein the nickel-coated copper fine particles according to claim 1 or 2 are sintered and produced.

本発明によれば、ニッケルが被覆された銅微粒子を製造する際に、銅塩、ニッケル塩、銅の錯化剤、ニッケルの錯化剤を含む水溶液に還元剤を加えて、ニッケルが被覆された銅微粒子を製造するようにしたので、銅イオンとニッケルイオンとが均一に分散した状態で銅及びニッケルの還元を行うことができる。したがって、導電ペーストや導電膜のフィラーとして好適に用いられる、平均粒径が10〜100nmと小さく、かつ、SEMで確認される90%積算粒径D90が50%積算粒径D50の2倍以下である粒径分布が均一なニッケル被覆銅微粒子を安定して製造することができる。
このとき、上記還元剤を加える前の水溶液に分散剤を添加すれば、還元される金属粒子の集合凝集による粒子径の粗大化を防ぐことができるので、平均粒径を確実に小さくすることができるとともに、粒径分布を更に均一にすることができる。
また、上記水溶液にアルカリを添加して銅及びニッケルの錯イオンの還元を行うようにすれば、還元によるOHイオンの不足を補うことができるので、上記還元反応を安定して持続させることができる。
According to the present invention, when producing nickel fine particles coated with nickel, a reducing agent is added to an aqueous solution containing a copper salt, a nickel salt, a copper complexing agent, and a nickel complexing agent to coat the nickel. Since copper fine particles are produced, copper and nickel can be reduced in a state where copper ions and nickel ions are uniformly dispersed. Therefore, the average particle diameter is preferably as small as 10 to 100 nm and is preferably used as a conductive paste or a conductive film filler, and the 90% cumulative particle diameter D 90 confirmed by SEM is twice the 50% cumulative particle diameter D 50 . The following nickel-coated copper fine particles having a uniform particle size distribution can be stably produced.
At this time, if a dispersing agent is added to the aqueous solution before adding the reducing agent, it is possible to prevent coarsening of the particle diameter due to aggregate aggregation of the metal particles to be reduced, so that the average particle diameter can be reliably reduced. In addition, the particle size distribution can be made more uniform.
In addition, if the alkali is added to the aqueous solution to reduce the complex ions of copper and nickel, the shortage of OH ions due to the reduction can be compensated, so that the reduction reaction can be stably maintained. .

また、上記製造されたニッケル被覆銅微粒子を樹脂に分散して製造された導電ペーストは、導電体の粒径が小さくかつ粒径が揃っているので、数μm以下の薄い導電層に適用した場合でも十分に導電性を確保することができる。
更に、上記ニッケル被覆銅微粒子を焼結して導電膜を製造すれば、グレーンサイズの揃った電気抵抗が均一な導電膜を製造することができるので、電子材料の配線形成用に好適に用いられる導電膜を提供することができる。
In addition, the conductive paste produced by dispersing the nickel-coated copper fine particles produced in the resin is applied to a thin conductive layer of several μm or less because the conductor has a small particle size and a uniform particle size. However, sufficient conductivity can be ensured.
Furthermore, if a conductive film is manufactured by sintering the nickel-coated copper fine particles, a conductive film having a uniform grain size and a uniform electric resistance can be manufactured. Therefore, it is preferably used for forming a wiring of an electronic material. A conductive film can be provided.

以下、本発明の最良の形態について説明する。
まず、硫酸銅、硫酸ニッケルなどの銅塩とニッケル塩とを混合した水溶液にロシェル塩(酒石酸カリウムナトリウム)などの錯化剤、PVP(ポリビニルピロリドン)などの分散剤、エチルアルコールなどの消泡材を添加した溶液を準備し、この水溶液にNaOHなどのアルカリを添加して攪拌しながら混合する。
すなわち、銅塩とニッケル塩とを混合した水溶液に錯化剤を添加することにより、水溶液中には、銅の錯イオンとニッケルの錯イオンとが形成される。この錯イオンは錯化剤が金属イオンの周りを囲むように配位したもので、これにより、アルカリを添加しても、従来のように、水酸化銅や水酸化ニッケルの沈殿物は形成されず、上記アルカリとの混合液中には、銅の錯イオンとニッケルの錯イオンとが均一に分散している。
次に、この溶液を60℃に保持した後、ヒドラジンなどの還元剤を第1の所定量(上記銅イオンを十分に還元できる量)だけ添加する。これにより、まず、銅イオンが還元されて、溶液は褐色になる。本例では、上記還元剤を加える前の水溶液に予め分散剤を添加しているので、上記還元された金属銅の粒子が集合凝集して粗大化することなく、上記溶液中には、上記還元された金属銅の粒子とニッケルの錯イオンとが均一に分散している状態が保持される。
Hereinafter, the best mode of the present invention will be described.
First, a complexing agent such as Rochelle salt (potassium sodium tartrate), a dispersing agent such as PVP (polyvinylpyrrolidone), an antifoaming agent such as ethyl alcohol, etc. in an aqueous solution in which copper salt such as copper sulfate and nickel sulfate is mixed A solution to which is added is prepared, and an alkali such as NaOH is added to this aqueous solution and mixed with stirring.
That is, by adding a complexing agent to an aqueous solution in which a copper salt and a nickel salt are mixed, a copper complex ion and a nickel complex ion are formed in the aqueous solution. This complex ion is coordinated so that the complexing agent surrounds the metal ion, so that even if alkali is added, a precipitate of copper hydroxide or nickel hydroxide is formed as before. In the mixed solution with the alkali, copper complex ions and nickel complex ions are uniformly dispersed.
Next, after this solution is kept at 60 ° C., a reducing agent such as hydrazine is added in a first predetermined amount (an amount capable of sufficiently reducing the copper ions). Thereby, first, copper ions are reduced, and the solution becomes brown. In this example, since the dispersant is added in advance to the aqueous solution before adding the reducing agent, the reduced metal copper particles do not aggregate and agglomerate, and the solution contains the reducing agent. The state in which the dispersed metal copper particles and the nickel complex ions are uniformly dispersed is maintained.

次に、所定時間(例えば、1分)後に、この溶液に上記還元剤を第2の所定量(上記ニッケルイオンを十分に還元できる量)だけ添加してニッケルイオンを還元する。これにより、溶液は褐色から黒色に変化する。上記還元された金属ニッケルは、上記金属ニッケルの周囲に均一に分散されている金属銅の表面に被着し、これにより、その表面がニッケルで被覆されたニッケル被覆銅微粒子を含んだスラリーを得る。最後に、上記スラリーを固液分離して真空乾燥すれば、平均粒径が10〜100nmと小さく、かつ、SEMで確認される90%積算粒径D90が50%積算粒径D50の2倍以下である粒径分布が均一なニッケル被覆銅微粒子の粉末を得ることができる。
なお、上記アルカリの機能は、従来例のように、水酸化銅を生成するためのものではなく、還元によるOHイオンの不足を補うためのもので、これにより、上記還元反応を安定して持続させることができる。また、還元反応時には泡(H2)が発生して上記還元反応を阻害することがあるが、本例では、エチルアルコールなどの消泡材を添加しているので上記のような問題はない。
Next, after a predetermined time (for example, 1 minute), the reducing agent is added to the solution by a second predetermined amount (an amount capable of sufficiently reducing the nickel ions) to reduce the nickel ions. This changes the solution from brown to black. The reduced metallic nickel is deposited on the surface of metallic copper uniformly dispersed around the metallic nickel, thereby obtaining a slurry containing nickel-coated copper fine particles whose surface is coated with nickel. . Finally, if the slurry is separated into solid and liquid and vacuum-dried, the average particle size is as small as 10 to 100 nm, and the 90% cumulative particle size D 90 confirmed by SEM is 2 of 50% cumulative particle size D 50 . A powder of nickel-coated copper fine particles having a particle size distribution that is equal to or less than double can be obtained.
The function of the alkali is not to produce copper hydroxide as in the conventional example, but to make up for the shortage of OH ions due to reduction, thereby stably maintaining the reduction reaction. Can be made. In addition, bubbles (H 2 ) may be generated during the reduction reaction to inhibit the reduction reaction. However, in this example, there is no such problem because an antifoaming material such as ethyl alcohol is added.

本発明に用いられる銅塩とニッケル塩は、上記硫酸塩に限らず、硝酸塩、塩化物であってもよい。また、上記ニッケル塩と銅塩の割合は、製造されるニッケル被覆銅微粒子におけるニッケルと銅との設定重量比により適宜決定されるもので、上記ニッケル塩中のニッケルの重量と銅塩中の銅の重量との比が、ニッケル被覆銅微粒子における設定重量比とほぼ等しくなる。本例では、電気抵抗や耐酸化性など、導電ペーストや導電膜の様々な要求特性にそれぞれ対応できるように、上記ニッケルと銅の重量比が1:100〜2:1であるようなニッケル被覆銅微粒子を製造する。
錯化剤は、溶液中の銅イオン及びニッケルイオンの周りに配位して銅及びニッケルの錯イオンを形成するもので、上記ロシェル塩やNTA−Na、トリエタノールアミンのように、銅とニッケルの両方を錯化する錯化剤であってもよいし、銅のみを錯化する錯化剤とニッケルのみを錯化する錯化剤とを同時に添加してもよい。主として銅を効果的に錯化する錯化剤としては、EDTA−Na、meso−エリトリトール、D−マンニトール、D−ソルビトール、トリイソプロパノールアミン、エチレンジアミンなどが好適に用いられる。また、ニッケルを効果的に錯化する錯化剤としては、コハク酸ナトリウム、マロン酸ナトリウム、酢酸ナトリウム、クエン酸ナトリウムなどが好適に用いられる。
また、上記の錯化剤は、単独で用いてもよいし、複数種同時に添加してもよい。
上記錯化剤の添加量としては、その添加当量が還元する金属である銅及びニッケルの当量の1.5〜10倍となるようにすることが好ましい。上記添加当量が銅及びニッケルの当量の1.5倍に満たない場合には、錯イオンを形成しない銅イオン、ニッケルイオンがでてくるため、水酸化物の沈殿物が生じてしまい、このため、粒径が大きい粒子ができてしまい分布が悪くなってしまう。なお、上記添加当量が銅及びニッケルの当量の10倍を超えても特に問題が生じることはないが、錯イオンの形成に寄与しない錯化剤を大量に使用するのは実用的ではないので、添加当量は銅及びニッケルの当量の1.5〜10倍とするのがよい。
The copper salt and nickel salt used in the present invention are not limited to the above sulfates, but may be nitrates and chlorides. Further, the ratio of the nickel salt and the copper salt is appropriately determined by the set weight ratio of nickel and copper in the nickel-coated copper fine particles to be produced. The weight of nickel in the nickel salt and the copper in the copper salt The weight ratio is approximately equal to the set weight ratio in the nickel-coated copper fine particles. In this example, the nickel coating has a nickel to copper weight ratio of 1: 100 to 2: 1 so as to correspond to various required characteristics of the conductive paste and conductive film, such as electrical resistance and oxidation resistance. Copper fine particles are produced.
The complexing agent coordinates around copper ions and nickel ions in the solution to form copper and nickel complex ions. Like the Rochelle salt, NTA-Na, and triethanolamine, copper and nickel are used. A complexing agent for complexing both of them may be used, or a complexing agent for complexing only copper and a complexing agent for complexing only nickel may be added simultaneously. EDTA-Na, meso-erythritol, D-mannitol, D-sorbitol, triisopropanolamine, ethylenediamine and the like are preferably used as complexing agents that effectively complex copper mainly. As complexing agents that effectively complex nickel, sodium succinate, sodium malonate, sodium acetate, sodium citrate and the like are preferably used.
Moreover, said complexing agent may be used independently and may add multiple types simultaneously.
It is preferable that the addition amount of the complexing agent is 1.5 to 10 times the equivalent of copper and nickel as metals to be reduced. When the addition equivalent is less than 1.5 times the equivalent of copper and nickel, copper ions and nickel ions that do not form complex ions appear, resulting in the formation of hydroxide precipitates. , A particle having a large particle size is formed, resulting in a poor distribution. In addition, even if the addition equivalent exceeds 10 times the equivalent of copper and nickel, no particular problem occurs, but since it is not practical to use a large amount of complexing agent that does not contribute to the formation of complex ions, The addition equivalent is preferably 1.5 to 10 times the equivalent of copper and nickel.

分散剤としては、上記PVPの他に、PEG(ポリエチレングリコール)やPVA(ポリビニルアルコール)などが好適に用いられる。
また、上記分散剤の添加量としては、上記銅塩とニッケル塩の水溶液1L(リットル)に対して、0.1mM(ミリモル)〜10mMの範囲とすることが好ましく、添加量0.1mM/Lに満たない場合には、銅の錯イオンとニッケルの錯イオンの分散、及び、金属銅とニッケルの錯イオンの分散が十分でないため、粒子径が大きくなってしまい、逆に、上記添加量が10mM/Lを超えると溶液の粘度が高くなるため、得られたニッケル被覆銅微粒子の粉末の回収が困難になるので、0.1mM(ミリモル)〜10mMの範囲とするのがよい。
As the dispersant, PEG (polyethylene glycol), PVA (polyvinyl alcohol), and the like are suitably used in addition to the PVP.
Further, the addition amount of the dispersant is preferably in the range of 0.1 mM (mmol) to 10 mM with respect to 1 L (liter) of the aqueous solution of the copper salt and the nickel salt, and the addition amount is 0.1 mM / L. If not, the dispersion of copper complex ions and nickel complex ions and the dispersion of metal copper and nickel complex ions are not sufficient, resulting in a large particle size. If it exceeds 10 mM / L, the viscosity of the solution becomes high, and it becomes difficult to recover the powder of the obtained nickel-coated copper fine particles. Therefore, the range of 0.1 mM (mmol) to 10 mM is preferable.

また、本発明に好適に用いられる還元剤としては、上記ヒドラジンに限るものではなく、ヒドラジン化合物、水素化硼素ナトリウム、ジメチルアミンボランを用いてもよい。
また、上記還元剤の添加量としては、その添加当量が還元する金属である銅及びニッケルに対する理論反応当量の1.5〜3.0倍となるようにすることが好ましい。上記添加当量が理論反応当量の1.5倍に満たない場合には、イオンが100%還元されないので、ニッケル被覆銅微粒子粉末の回収効率が低下してしまう。なお、上記添加当量が理論反応当量の3倍を超えても特に問題が生じることはないが、還元反応に寄与しない還元剤を大量に使用するのは実用的ではないので、添加当量は銅及びニッケルに対する理論反応当量の1.5〜3.0倍とするのがよい。
Further, the reducing agent suitably used in the present invention is not limited to the above hydrazine, and a hydrazine compound, sodium borohydride, dimethylamine borane may be used.
Moreover, it is preferable to make it the addition amount of the said reducing agent be 1.5 to 3.0 times the theoretical reaction equivalent with respect to copper and nickel which are the metals to reduce. When the added equivalent is less than 1.5 times the theoretical reaction equivalent, the ions are not reduced 100%, so that the recovery efficiency of the nickel-coated copper fine particle powder is lowered. In addition, even if the addition equivalent exceeds 3 times the theoretical reaction equivalent, no particular problem occurs. However, it is impractical to use a large amount of a reducing agent that does not contribute to the reduction reaction. The theoretical reaction equivalent to nickel is preferably 1.5 to 3.0 times.

図1(a)は、本発明の製造方法によるニッケル被覆銅微粒子粉末の電子顕微鏡写真(SEM像)で、本発明のニッケル被覆銅微粒子粉末は、その形状がほぼ球形であり、かつ、図1(b)に示す従来の製造方法によるニッケル被覆銅微粒子粉末に比べて、粒径の差が少ない、均一な粒度分布を有していることが分かる。
本発明のニッケル被覆銅微粒子の粉末は、平均粒径が10〜100nmと小さく、かつ、SEMで確認される90%積算粒径D90が50%積算粒径D50の2倍以下と粒度分布も良好なので、このニッケル被覆銅微粒子の粉末をガラスフリット、ターピネオールなどの有機溶剤、及び、樹脂とともに混合して導電ペーストを作製すれば、微細な配線を必要とするプリント基板のスクリーン印刷やスルーホール形成等に好適に用いられる均質な導電ペーストを得ることができる。
また、この導電ペーストを基板上に印刷塗布した後焼成を行って導電膜を作製すれば、良好な導電性を有する微細な電極・回路を形成することができる。
FIG. 1A is an electron micrograph (SEM image) of a nickel-coated copper fine particle powder produced by the production method of the present invention. The nickel-coated copper fine particle powder of the present invention has a substantially spherical shape, and FIG. Compared to the nickel-coated copper fine particle powder produced by the conventional production method shown in FIG.
The powder of the nickel-coated copper fine particles of the present invention has an average particle size as small as 10 to 100 nm, and a 90% cumulative particle size D 90 confirmed by SEM is not more than twice the 50% cumulative particle size D 50. Therefore, if this nickel-coated copper fine particle powder is mixed with organic solvents such as glass frit, terpineol, and resin to produce a conductive paste, screen printing and through-holes on printed circuit boards that require fine wiring A homogeneous conductive paste that is suitably used for formation and the like can be obtained.
Moreover, if this conductive paste is printed on a substrate and then fired to produce a conductive film, fine electrodes / circuits with good conductivity can be formed.

このように、本最良の形態によれば、銅塩とニッケル塩とを混合した水溶液に錯化剤、分散剤、エチルアルコールなどの消泡材を添加した水溶液にNaOHなどのアルカリを添加して攪拌しながら混合した後、ヒドラジンなどの還元剤を添加し、上記水溶液中の銅イオンとニッケルイオンとを還元して、金属銅の表面にニッケルが被着されたニッケル被覆銅微粒子粉末を製造するようにしたので、導電ペーストや導電膜のフィラーとして好適に用いられる、平均粒径が10〜100nmと小さく、かつ、SEMで確認される90%積算粒径D90が50%積算粒径D50の2倍以下である粒径分布が均一なニッケル被覆銅微粒子を安定して製造することができる。
また、上記ニッケル被覆銅微粒子の粉末を用いて電子材料配線用の導電ペーストを作製したので、均質な導電ペーストを得ることができる。
また、この導電ペーストを基板上に印刷塗布した後焼成して導電膜を作製すれば、良好な導電性を有する微細な電極・回路を形成することができる。
Thus, according to this best mode, an alkali such as NaOH is added to an aqueous solution obtained by adding a complexing agent, a dispersant, and an antifoaming material such as ethyl alcohol to an aqueous solution in which a copper salt and a nickel salt are mixed. After mixing with stirring, a reducing agent such as hydrazine is added to reduce the copper ions and nickel ions in the aqueous solution, thereby producing a nickel-coated copper fine particle powder in which nickel is deposited on the surface of metallic copper. since manner the suitably used as a filler for conductive paste or conductive film, the average particle size as small as 10 to 100 nm, and a 90% cumulative particle diameter D 90 which is confirmed by SEM 50% cumulative particle diameter D 50 Thus, nickel-coated copper fine particles having a uniform particle size distribution that is 2 times or less of the above can be stably produced.
Moreover, since the conductive paste for electronic material wiring was produced using the said powder of nickel covering copper fine particles, a homogeneous conductive paste can be obtained.
Moreover, if this conductive paste is printed on a substrate and then baked to produce a conductive film, fine electrodes / circuits having good conductivity can be formed.

なお、上記最良の形態では、ヒドラジンなどの還元剤を2回に分けて添加したが、1度に所定量全てを添加してもよい。すなわち、ニッケルは銅よりも卑であることから、1度に添加しても銅イオンが先に還元されるので、金属銅の表面にニッケルを被着することは可能である。
また、上記例では、還元剤としては銅及びニッケルに共通の還元剤を用いたが、還元剤として、銅についてはホルマリンを用い、ニッケルについては次亜リン酸ナトリウムを用いるなど、銅とニッケルとで別種の還元剤を用いてもよい。
また、銅塩、ニッケル塩の種類によって分散剤、還元剤を選択する必要はなく、銅塩、ニッケル塩と分散剤、還元剤との組み合わせを変えても、粒径分布が均一なニッケル被覆銅微粒子を安定して製造することができる。
In the above-described best mode, the reducing agent such as hydrazine is added in two portions. However, a predetermined amount may be added all at once. That is, since nickel is baser than copper, even if it is added once, the copper ions are reduced first, so that it is possible to deposit nickel on the surface of metallic copper.
In the above example, a reducing agent common to copper and nickel was used as the reducing agent, but as the reducing agent, formalin was used for copper, sodium hypophosphite was used for nickel, etc. Another type of reducing agent may be used.
In addition, there is no need to select a dispersant or a reducing agent depending on the type of copper salt or nickel salt. Even if the combination of copper salt, nickel salt, dispersing agent and reducing agent is changed, nickel-coated copper with a uniform particle size distribution Fine particles can be produced stably.

以下に、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記に限定されるものではない。
[実施例1]
硫酸銅五水和物12.5g、硫酸ニッケル六水和物13.1g、トリエタノールアミン15g、ロシェル塩10g、PVP10g、エタノール20ccを水180ccに溶解したものを溶液Aとし、50%NaOH溶液20gを溶液Bとする。また、ヒドラジン1水和物15gを水100ccに溶解したものを溶液Cとする。
溶液Aと溶液Bとを攪拌しながら混合し、60℃とした後、溶液Cを20cc添加して銅の錯イオンのみが還元された褐色溶液を得る。1分後に、この溶液に溶液Cの残りの80cc添加して金属銅の表面にニッケルが被着されたニッケル被覆銅微粒子を含む黒色溶液を得る。この溶液を固液分離して真空乾燥し、ニッケルと銅の重量比がほぼ1:1であるニッケル被覆銅微粒子の粉末を得た。
[実施例2]
上記実施例1に用いた溶液Aに代えて、塩化銅二水和物17g、塩化ニッケル六水和物0.23g、EDTA−Na20g、コハク酸ナトリウム0.2g、クエン酸ナトリウム0.15g、PEG15g、エタノール20ccを水180ccに溶解した溶液A1を用いたことと、実施例1に用いた溶液Cの添加量を最初に40ccとし、その後60ccとしたこと、以外については上記実施例1と同様にして、ニッケルと銅の重量比がほぼ1:100であるニッケル被覆銅微粒子の粉末を作製した。
[実施例3]
上記実施例1に用いた溶液Aに代えて、硝酸銅三水和物24g、硝酸ニッケル六水和物0.58g、NTA−Na30g、酢酸ナトリウム2g、アンモニア5g、PVA15g、エタノール20ccを水180ccに溶解した溶液A2を用いたことと、溶液Cの添加量を最初に40ccとし、その後60ccとしたこと以外については上記実施例1と同様にして、ニッケルと銅の重量比がほぼ1:50であるニッケル被覆銅微粒子の粉末を得た。
それ以外については上記実施例1と同様にして、ニッケルと銅の重量比がほぼ1:100であるニッケル被覆銅微粒子の粉末を作製した。
[実施例4]
硫酸銅五水和物12.5g、硫酸ニッケル六水和物13.1g、トリエタノールアミン15g、ロシェル塩10g、PVP8g、エタノール20ccを水180ccに溶解したものを溶液A3とし、50%NaOH溶液20gを溶液Bとする。また、ホルマリン30%溶液30ccを水50ccに溶解したものを溶液Dとし、次亜リン酸ナトリウム15gを水50ccに溶解したものを溶液Eとする。
溶液Eと溶液Bとを攪拌しながら混合し、60℃とした後、溶液Fを50cc添加して銅の錯イオンのみが還元された褐色溶液を得る。1分後に、この溶液に溶液Gを50cc添加して金属銅の表面にニッケルが被着されたニッケル被覆銅微粒子を含む黒色溶液を得る。この溶液を固液分離して真空乾燥し、ニッケルと銅の重量比がほぼ1:1であるニッケル被覆銅微粒子の粉末を得た。
[比較例1]
上記実施例1に用いた溶液Aに代えて、錯化剤であるトリエタノールアミン及びロシェル塩と分散剤であるPVPを添加しない溶液A1を用いたこと以外については上記実施例1と同様にして、ニッケルと銅の重量比がほぼ1:1であるニッケル被覆銅微粒子の粉末を作製した。
[比較例2]
上記実施例1に用いた溶液Aに代えて、錯化剤として銅のみを錯化するNTA−Na20gを添加し、かつ、分散剤であるPVPを添加しない液A2を用いたこと以外については上記実施例1と同様にして、ニッケルと銅の重量比がほぼ1:1であるニッケル被覆銅微粒子の粉末を作製した。
[比較例3]
上記実施例1に用いた溶液Aに代えて、錯化剤としてニッケルのみを錯化するコハク酸ナトリウムとクエン酸ナトリウムとをそれぞれ10g添加し、かつ、分散剤であるPVPを添加しない液A3を用いたこと以外については上記実施例1と同様にして、ニッケルと銅の重量比がほぼ1:1であるニッケル被覆銅微粒子の粉末を作製した。
[従来例]
硫酸銅五水和物25g、PVP10g、エタノール20ccを水180ccに溶解したものを溶液Fとし、50%NaOH溶液20gを溶液Bとする。また、硫酸ニッケル六水和物2.6g、コハク酸ナトリウム2g、クエン酸ナトリウム1.5gを水50ccに溶解したものを溶液Gとし、ヒドラジン1水和物15gを水100ccに溶解したものを溶液Hとする。
溶液Fと溶液Bとを攪拌しながら混合し、60℃とした後、溶液Gを添加して褐色溶液を得る。1分後に、この溶液に溶液Hを添加して黒色溶液を得る。この溶液を固液分離して真空乾燥して、ニッケルと銅の重量比がほぼ1:10であるニッケル被覆銅微粒子の粉末を得た。
[参考例]
上記従来例1に用いた溶液Fに、錯化剤であるトリエタノールアミンを30g添加した溶液F1を使用したこと以外については上記従来例1と同様にして、ニッケルと銅の重量比がほぼ1:10であるニッケル被覆銅微粒子の粉末を作製した。
Examples The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to the following.
[Example 1]
12.5 g of copper sulfate pentahydrate, 13.1 g of nickel sulfate hexahydrate, 15 g of triethanolamine, 10 g of Rochelle salt, 10 g of PVP, 20 cc of ethanol dissolved in 180 cc of water are used as solution A, and 20 g of 50% NaOH solution. To solution B. A solution C is prepared by dissolving 15 g of hydrazine monohydrate in 100 cc of water.
The solution A and the solution B are mixed with stirring to 60 ° C., and then 20 cc of the solution C is added to obtain a brown solution in which only the copper complex ions are reduced. After 1 minute, the remaining 80 cc of solution C was added to this solution to obtain a black solution containing nickel-coated copper fine particles in which nickel was deposited on the surface of metallic copper. This solution was solid-liquid separated and vacuum-dried to obtain nickel-coated copper fine particles having a weight ratio of nickel to copper of approximately 1: 1.
[Example 2]
Instead of solution A used in Example 1 above, 17 g of copper chloride dihydrate, 0.23 g of nickel chloride hexahydrate, 20 g of EDTA-Na, 0.2 g of sodium succinate, 0.15 g of sodium citrate, 15 g of PEG In the same manner as in Example 1 except that the solution A1 in which 20 cc of ethanol was dissolved in 180 cc of water was used, and the amount of the solution C used in Example 1 was first set to 40 cc and then 60 cc. Thus, a powder of nickel-coated copper fine particles having a weight ratio of nickel to copper of approximately 1: 100 was prepared.
[Example 3]
Instead of the solution A used in Example 1, 24 g of copper nitrate trihydrate, 0.58 g of nickel nitrate hexahydrate, 30 g of NTA-Na, 2 g of sodium acetate, 5 g of ammonia, 15 g of PVA, and 20 cc of ethanol were added to 180 cc of water. The weight ratio of nickel to copper was approximately 1:50 as in Example 1 except that the dissolved solution A2 was used and the amount of solution C added was 40 cc first and then 60 cc. A nickel-coated copper particulate powder was obtained.
Otherwise, in the same manner as in Example 1 above, a powder of nickel-coated copper fine particles having a weight ratio of nickel to copper of approximately 1: 100 was prepared.
[Example 4]
12.5 g of copper sulfate pentahydrate, 13.1 g of nickel sulfate hexahydrate, 15 g of triethanolamine, 10 g of Rochelle salt, 8 g of PVP, and 20 cc of ethanol in 180 cc of water are used as solution A3, and 20 g of 50% NaOH solution. To solution B. A solution D is obtained by dissolving 30 cc of a formalin 30% solution in 50 cc of water, and a solution E is obtained by dissolving 15 g of sodium hypophosphite in 50 cc of water.
The solution E and the solution B are mixed with stirring to 60 ° C., and then 50 cc of the solution F is added to obtain a brown solution in which only the copper complex ions are reduced. After 1 minute, 50 cc of solution G was added to this solution to obtain a black solution containing nickel-coated copper fine particles in which nickel was deposited on the surface of metallic copper. This solution was solid-liquid separated and vacuum-dried to obtain nickel-coated copper fine particles having a weight ratio of nickel to copper of approximately 1: 1.
[Comparative Example 1]
Instead of the solution A used in Example 1 above, the same procedure as in Example 1 above was used, except that the solution A1 to which triethanolamine and Rochelle salt as a complexing agent and PVP as a dispersant were not added was used. A powder of nickel-coated copper fine particles having a weight ratio of nickel to copper of approximately 1: 1 was prepared.
[Comparative Example 2]
In place of the solution A used in Example 1 above, NTA-Na 20 g complexing only copper was added as a complexing agent, and the liquid A2 without adding PVP as a dispersant was used. In the same manner as in Example 1, nickel-coated copper fine particles having a weight ratio of nickel to copper of approximately 1: 1 were prepared.
[Comparative Example 3]
Instead of the solution A used in Example 1 above, 10 g each of sodium succinate and sodium citrate complexing only nickel as a complexing agent were added, and a liquid A3 without adding PVP as a dispersant was added. A nickel-coated copper fine particle powder having a nickel to copper weight ratio of approximately 1: 1 was prepared in the same manner as in Example 1 except that it was used.
[Conventional example]
A solution prepared by dissolving 25 g of copper sulfate pentahydrate, 10 g of PVP, and 20 cc of ethanol in 180 cc of water is used as Solution F, and 20 g of 50% NaOH solution is used as Solution B. Also, 2.6 g of nickel sulfate hexahydrate, 2 g of sodium succinate and 1.5 g of sodium citrate dissolved in 50 cc of water are used as solution G, and 15 g of hydrazine monohydrate dissolved in 100 cc of water are used as solutions. Let H be.
The solution F and the solution B are mixed with stirring to 60 ° C., and then the solution G is added to obtain a brown solution. After 1 minute, solution H is added to this solution to obtain a black solution. This solution was solid-liquid separated and vacuum-dried to obtain nickel-coated copper fine particles having a weight ratio of nickel to copper of approximately 1:10.
[Reference example]
The weight ratio of nickel to copper is approximately 1 in the same manner as in Conventional Example 1 except that Solution F1 in which 30 g of triethanolamine as a complexing agent is added to Solution F used in Conventional Example 1 above. : The powder of the nickel covering copper fine particle which is 10 was produced.

このようにして作製された実施例,比較例,従来例及び参考例のそれぞれのニッケル被覆銅微粒子の粉末について、ニッケルと銅の重量比と、SEMで確認した50%積算粒径D50及び90%積算粒径D90とを測定するとともに、粒度分布評価値(D90/D50)を算出した結果を以下の表1に示す。

Figure 2007115497
表1に示すように、先に水酸化銅を還元して銅粒子とし、これにニッケルを被着させた従来例によるニッケル被覆銅微粒子は、50%積算粒径D50は小さいものの、90%積算粒径D90が大きく、そのため、粒度分布評価値(D90/D50)が4.17と粒径の差が極めて大きくなってしまった。
これに対して、実施例1〜4のニッケル被覆銅微粒子は、50%積算粒径D50及び90%積算粒径D90が小さく、粒度分布評価値(D90/D50)も全て2以下であることから、本発明による製造方法を用いれば、銅塩、ニッケル塩、分散剤、錯化剤、及び、還元剤を種々変えても、ニッケルと銅の重量比が1:1〜1:100の広い範囲で、粒径が小さく、かつ、粒径の揃ったニッケル被覆銅微粒子を得ることができることが確認された。
また、錯化剤と分散剤とを添加しなかった比較例1では、実施例1〜4のニッケル被覆銅微粒子と比較すると、50%積算粒径D50が約2倍、90%積算粒径D90が約3倍と、ともに大きくなっただけでなく、粒度分布評価値(D90/D50)は2.28と、粒径の差が大きくなってしまった。
また、一方の錯化剤しか添加しなかった比較例2,3は、粒径及び粒度分布が比較例1よりも改善されてはいるものの、粒度分布評価値(D90/D50)がともに2を超えているので、実用上問題がある。
このように、粒径が小さく、かつ、粒径の揃ったニッケル被覆銅微粒子を得るためには、銅の錯化剤とニッケルの錯化剤の両方を添加する必要があることが確認された。
また、上記従来例1に対して銅の錯化剤を添加した参考例1でも、粒径及び粒度分布が改善されていることから、水酸化銅を還元して金属銅とし、この金属銅にニッケルを被着させるよりは、銅イオンを直接還元する方が粒径も小さくなり、粒径の差も少なくなることが確認された。
また、上記実施例1〜4のニッケル被覆銅微粒子の粉末50重量部と、ガラスフリット10重量部と、樹脂10重量部をターピネオール90重量部に溶解させたビヒクル40重量部とを、三本ロールミルに投入して混合し、導電ペーストを作製した。上記ニッケル被覆銅微粒子は粒度分布がよいため、均質な導電ペーストが得られた。
更に、この導電ペーストを基板上に印刷塗布した後、900℃〜1100℃にて焼成を行った。作製された電極・回路は良好な導電性を有していた。 With respect to the powders of the nickel-coated copper fine particles of each of the Examples, Comparative Examples, Conventional Examples, and Reference Examples thus prepared, the weight ratio of nickel and copper and the 50% cumulative particle diameters D 50 and 90 confirmed by SEM. Table 1 below shows the results of measuring the% integrated particle size D 90 and calculating the particle size distribution evaluation value (D 90 / D 50 ).
Figure 2007115497
As shown in Table 1, the copper particles by reduction of copper hydroxide earlier, nickel-coated copper particles according to the conventional example in which deposited nickel thereto, although 50% cumulative particle diameter D 50 is less than 90% The accumulated particle size D 90 is large, and therefore the particle size distribution evaluation value (D 90 / D 50 ) is 4.17, and the difference in particle size is extremely large.
In contrast, nickel-coated copper particles of Examples 1 to 4 has a smaller 50% cumulative particle diameter D 50 and the 90% cumulative particle diameter D 90, the particle size distribution evaluation value (D 90 / D 50) also all 2 below Therefore, if the production method according to the present invention is used, the weight ratio of nickel to copper is 1: 1 to 1: 1, even if the copper salt, nickel salt, dispersant, complexing agent, and reducing agent are variously changed. It was confirmed that nickel-coated copper fine particles having a small particle size and a uniform particle size can be obtained in a wide range of 100.
In Comparative Example 1 was not added to the complexing agent and dispersant, as compared with the nickel-coated copper particles of Examples 1 to 4, 50% cumulative particle diameter D 50 of about 2-fold, the 90% cumulative particle diameter Not only did D 90 increase by about 3 times, but the particle size distribution evaluation value (D 90 / D 50 ) was 2.28, indicating a large difference in particle size.
In Comparative Examples 2 and 3 in which only one complexing agent was added, the particle size distribution evaluation value (D 90 / D 50 ) was both improved, although the particle size and particle size distribution were improved as compared with Comparative Example 1. Since it exceeds 2, there is a problem in practical use.
Thus, it was confirmed that it is necessary to add both a copper complexing agent and a nickel complexing agent in order to obtain nickel-coated copper fine particles having a small particle size and a uniform particle size. .
Further, in Reference Example 1 in which a copper complexing agent is added to Conventional Example 1, since the particle size and the particle size distribution are improved, copper hydroxide is reduced to metallic copper. It was confirmed that the direct reduction of copper ions has a smaller particle size and the difference in particle size is smaller than the deposition of nickel.
Also, a three-roll mill comprising 50 parts by weight of the nickel-coated copper fine particles of Examples 1 to 4, 10 parts by weight of glass frit, and 40 parts by weight of a vehicle in which 10 parts by weight of resin was dissolved in 90 parts by weight of terpineol And mixed to prepare a conductive paste. Since the nickel-coated copper fine particles had a good particle size distribution, a homogeneous conductive paste was obtained.
Furthermore, this conductive paste was printed on the substrate and then baked at 900 ° C. to 1100 ° C. The produced electrode / circuit had good conductivity.

このように、本発明によれば、平均粒径が小さく、かつ、粒径分布が均一なニッケル被覆銅微粒子を安定して製造することができるので、電子材料の配線等に好適に用いられる均質な導電ペーストや、導電性に優れた導電膜を容易に製造することができる。   As described above, according to the present invention, nickel-coated copper fine particles having a small average particle size and a uniform particle size distribution can be stably produced. Thus, it is possible to easily produce a conductive paste and a conductive film excellent in conductivity.

本発明の製造方法によるニッケル被覆銅微粒子と従来の製造方法によるニッケル被覆銅微粒子の電子顕微鏡写真(SEM像)である。It is an electron micrograph (SEM image) of the nickel covering copper fine particle by the manufacturing method of this invention, and the nickel covering copper fine particle by the conventional manufacturing method.

Claims (16)

銅微粒子の表面にニッケルを被覆して成るニッケル被覆銅微粒子であって、平均粒径が10〜100nmであり、SEMで確認される90%積算粒径D90が50%積算粒径D50の2倍以下であることを特徴とするニッケル被覆銅微粒子。 Nickel-coated copper fine particles obtained by coating the surface of copper fine particles with nickel, the average particle diameter is 10 to 100 nm, and 90% cumulative particle diameter D 90 confirmed by SEM is 50% cumulative particle diameter D 50 . Nickel-coated copper fine particles characterized by being 2 times or less. ニッケルと銅の重量比が1:100〜2:1であることを特徴とする請求項1に記載のニッケル被覆銅微粒子。   The nickel-coated copper fine particles according to claim 1, wherein the weight ratio of nickel to copper is 1: 100 to 2: 1. 銅塩、ニッケル塩、銅及びニッケルの錯化剤を含む水溶液に還元剤を加えて銅及びニッケルの錯イオンを還元し、ニッケルが被覆された銅微粒子を製造することを特徴とするニッケル被覆銅微粒子の製造方法。   A nickel-coated copper characterized in that a copper fine particle coated with nickel is produced by adding a reducing agent to an aqueous solution containing a copper salt, nickel salt, copper and nickel complexing agent to reduce the complex ions of copper and nickel. A method for producing fine particles. 上記還元剤を加える前の水溶液に更に分散剤を添加したことを特徴とする請求項3に記載のニッケル被覆銅微粒子の製造方法。   The method for producing nickel-coated copper fine particles according to claim 3, wherein a dispersant is further added to the aqueous solution before the reducing agent is added. 上記水溶液にアルカリを添加して銅及びニッケルの錯イオンの還元を行うようにしたことを特徴とする請求項3または請求項4に記載のニッケル被覆銅微粒子の製造方法。   5. The method for producing nickel-coated copper fine particles according to claim 3, wherein alkali is added to the aqueous solution to reduce the complex ions of copper and nickel. 上記銅塩と上記ニッケル塩とがそれぞれ硫酸塩、硝酸塩、塩化物のいずれかから選ばれる化合物であることを特徴とする請求項3〜請求項5のいずれかに記載のニッケル被覆銅微粒子の製造方法。   The said copper salt and said nickel salt are the compounds respectively chosen from sulfate, nitrate, and a chloride, The manufacture of the nickel covering copper fine particle in any one of Claims 3-5 characterized by the above-mentioned. Method. 上記銅の錯化剤が酒石酸カリウムナトリウム、EDTA−Na、NTA−Na、meso−エリトリトール、D−マンニトール、D−ソルビトール、トリエタノールアミン、トリイソプロパノールアミン、エチレンジアミンから選ばれる1種または数種であることを特徴とする請求項3〜請求項6のいずれかに記載のニッケル被覆銅微粒子の製造方法。   The copper complexing agent is one or several selected from potassium sodium tartrate, EDTA-Na, NTA-Na, meso-erythritol, D-mannitol, D-sorbitol, triethanolamine, triisopropanolamine, and ethylenediamine. The method for producing nickel-coated copper fine particles according to any one of claims 3 to 6, wherein: 上記ニッケルの錯化剤がコハク酸ナトリウム、マロン酸ナトリウム、酢酸ナトリウム、クエン酸ナトリウム、酒石酸カリウムナトリウム、EDTA−Na、トリエタノールアミンから選ばれる1種または数種であることを特徴とする請求項3〜請求項6のいずれかに記載のニッケル被覆銅微粒子の製造方法。   The nickel complexing agent is one or several selected from sodium succinate, sodium malonate, sodium acetate, sodium citrate, potassium sodium tartrate, EDTA-Na, and triethanolamine. A method for producing nickel-coated copper fine particles according to any one of claims 3 to 6. 上記錯化剤の添加当量を還元する金属当量の1.5〜10倍としたことを特徴とする請求項3〜請求項8のいずれかに記載のニッケル被覆銅微粒子の製造方法。   The method for producing nickel-coated copper fine particles according to any one of claims 3 to 8, wherein an addition equivalent of the complexing agent is 1.5 to 10 times a metal equivalent to be reduced. 上記分散剤がPVP、PEG、PVAから選ばれる1種であることを特徴とする請求項4〜請求項9のいずれかに記載のニッケル被覆銅微粒子の製造方法。   The method for producing nickel-coated copper fine particles according to any one of claims 4 to 9, wherein the dispersant is one selected from PVP, PEG, and PVA. 上記分散剤の添加量を0.1mM/L〜10mM/Lとしたことを特徴とする請求項4〜請求項10のいずれかに記載のニッケル被覆銅微粒子の製造方法。   The method for producing nickel-coated copper fine particles according to any one of claims 4 to 10, wherein the amount of the dispersing agent added is 0.1 mM / L to 10 mM / L. 上記還元剤がヒドラジン、ヒドラジン化合物、水素化硼素ナトリウム、ジメチルアミンボランから選ばれる1種であることを特徴とする請求項3〜請求項11のいずれかに記載のニッケル被覆銅微粒子の製造方法。   The method for producing nickel-coated copper fine particles according to any one of claims 3 to 11, wherein the reducing agent is one selected from hydrazine, a hydrazine compound, sodium borohydride, and dimethylamine borane. 上記還元剤が銅についてはホルマリンであり、ニッケルについては次亜リン酸ナトリウムであることを特徴とする請求項3〜請求項11のいずれかに記載のニッケル被覆銅微粒子の製造方法。   The method for producing nickel-coated copper fine particles according to any one of claims 3 to 11, wherein the reducing agent is formalin for copper and sodium hypophosphite for nickel. 上記還元剤の添加当量を還元する金属に対する理論反応当量の1.5〜3.0としたことを特徴とする請求項3〜請求項13のいずれかに記載のニッケル被覆銅微粒子の製造方法。   The method for producing nickel-coated copper fine particles according to any one of claims 3 to 13, wherein the addition equivalent of the reducing agent is 1.5 to 3.0, which is a theoretical reaction equivalent to the metal to be reduced. 請求項1または請求項2に記載のニッケル被覆銅微粒子を樹脂に分散して成ることを特徴とする導電ペースト。   A conductive paste comprising the nickel-coated copper fine particles according to claim 1 dispersed in a resin. 請求項1または請求項2に記載のニッケル被覆銅微粒子を焼結して製造することを特徴とする導電膜の製造方法。   A method for producing a conductive film, comprising producing the nickel-coated copper fine particles according to claim 1 by sintering.
JP2005305184A 2005-10-20 2005-10-20 Nickel-coated copper fine particle, manufacturing method of the same, conductive paste, and manufacturing method of conductive film Withdrawn JP2007115497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005305184A JP2007115497A (en) 2005-10-20 2005-10-20 Nickel-coated copper fine particle, manufacturing method of the same, conductive paste, and manufacturing method of conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005305184A JP2007115497A (en) 2005-10-20 2005-10-20 Nickel-coated copper fine particle, manufacturing method of the same, conductive paste, and manufacturing method of conductive film

Publications (1)

Publication Number Publication Date
JP2007115497A true JP2007115497A (en) 2007-05-10

Family

ID=38097500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005305184A Withdrawn JP2007115497A (en) 2005-10-20 2005-10-20 Nickel-coated copper fine particle, manufacturing method of the same, conductive paste, and manufacturing method of conductive film

Country Status (1)

Country Link
JP (1) JP2007115497A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046761A (en) * 2007-07-20 2009-03-05 Mec Kk Surface treatment agent
JP2011063828A (en) * 2009-09-15 2011-03-31 Dowa Electronics Materials Co Ltd Copper-nickel nanoparticle, and method for producing the same
JP2012004034A (en) * 2010-06-18 2012-01-05 Sekisui Chem Co Ltd Conductive particles, anisotropic conductive material and connection structure
JP2012180563A (en) * 2011-03-01 2012-09-20 Mitsui Mining & Smelting Co Ltd Copper particle
JP2012180564A (en) * 2011-03-01 2012-09-20 Mitsui Mining & Smelting Co Ltd Copper particle
CN103273061A (en) * 2013-06-08 2013-09-04 沈阳化工大学 Preparation method for electroplating dispersing agent nickel coated aluminum powder
US20150287492A1 (en) * 2014-04-02 2015-10-08 Oci Company Ltd. Non-homogeneous copper-nickel composite and method for synthesizing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046761A (en) * 2007-07-20 2009-03-05 Mec Kk Surface treatment agent
JP2011063828A (en) * 2009-09-15 2011-03-31 Dowa Electronics Materials Co Ltd Copper-nickel nanoparticle, and method for producing the same
JP2012004034A (en) * 2010-06-18 2012-01-05 Sekisui Chem Co Ltd Conductive particles, anisotropic conductive material and connection structure
JP2012180563A (en) * 2011-03-01 2012-09-20 Mitsui Mining & Smelting Co Ltd Copper particle
JP2012180564A (en) * 2011-03-01 2012-09-20 Mitsui Mining & Smelting Co Ltd Copper particle
CN103273061A (en) * 2013-06-08 2013-09-04 沈阳化工大学 Preparation method for electroplating dispersing agent nickel coated aluminum powder
US20150287492A1 (en) * 2014-04-02 2015-10-08 Oci Company Ltd. Non-homogeneous copper-nickel composite and method for synthesizing the same
JP2015196906A (en) * 2014-04-02 2015-11-09 オーシーアイ カンパニー リミテッドOCI Company Ltd. Non-homogeneous copper-nickel composite and method for synthesizing said composite

Similar Documents

Publication Publication Date Title
KR101345441B1 (en) Spherical silver powder and method for producing same
KR101407197B1 (en) Nickel powder and its production method
JP4660701B2 (en) Silver-coated copper powder, method for producing the same, and conductive paste
WO2016038914A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder
KR102007306B1 (en) Silver powder for sintered conductive paste
JP5907301B1 (en) Silver-coated copper powder, copper paste using the same, conductive paint, conductive sheet, and method for producing silver-coated copper powder
JP2007115497A (en) Nickel-coated copper fine particle, manufacturing method of the same, conductive paste, and manufacturing method of conductive film
WO2016151859A1 (en) Silver-coated copper powder and conductive paste, conductive material, and conductive sheet using same
WO2016031286A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet each of which uses same
JP2010242143A (en) Metallic powder and method for manufacturing the same, conductive paste, and laminated ceramic capacitor
JP2012251208A (en) Silver powder and method for producing the same
WO2019022230A1 (en) Copper oxide ink and method for producing conductive substrate using same, product containing coating film and method for producing product using same, method for producing product with conductive pattern, and product with conductive pattern
JP2016139598A (en) Silver coated copper powder, and copper paste, conductive coating and conductive sheet using the same
JP2005174824A (en) Metal paste, and film forming method using same
JP2016094665A (en) Silver coated copper powder and conductive paste using the same, conductive coating and conductive sheet
JP5453598B2 (en) Silver-coated copper powder and conductive paste
JP5206246B2 (en) Nickel powder and method for producing the same
JP2007220332A (en) Silver powder and its manufacturing method, paste, electronic circuit component, and electric product using the same
JP2007191752A (en) Tin-coated silver powder and method for producing the tin-coated silver powder
JP2009013490A (en) Nickel powder, and method for producing the same
JP2016139597A (en) Manufacturing method of dendritic silver coated copper powder
JP5410850B2 (en) Method for producing copper composite particles, method for producing composite metal copper particles, method for producing copper paste and metal copper conductor
JP5790900B1 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
JP6332125B2 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
JP2018204047A (en) Method for producing a nickel-coated copper powder and method for producing a conductive paste

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090106