JP2007128829A - Sheet for thermocompression bonding - Google Patents

Sheet for thermocompression bonding Download PDF

Info

Publication number
JP2007128829A
JP2007128829A JP2005322657A JP2005322657A JP2007128829A JP 2007128829 A JP2007128829 A JP 2007128829A JP 2005322657 A JP2005322657 A JP 2005322657A JP 2005322657 A JP2005322657 A JP 2005322657A JP 2007128829 A JP2007128829 A JP 2007128829A
Authority
JP
Japan
Prior art keywords
sheet
thermocompression bonding
silicone rubber
rubber composition
thermocompression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005322657A
Other languages
Japanese (ja)
Inventor
Hirotomo Ota
太田浩智
Kenichi Suzuki
鈴木建市
Shigetaka Kobayashi
小林繁隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Polymer Industries Co Ltd
Original Assignee
Fuji Polymer Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Polymer Industries Co Ltd filed Critical Fuji Polymer Industries Co Ltd
Priority to JP2005322657A priority Critical patent/JP2007128829A/en
Publication of JP2007128829A publication Critical patent/JP2007128829A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sheet for thermocompression bonding with high thermal conductivity, durability, and antistatic effects. <P>SOLUTION: In the sheet for thermocompression bonding 10, used in intercalation between a thermocompression bonding tool of a crimping device and an object for connection in electrically connecting electrodes 12, 14 as objects for connection via an anisotropic conductive film 13 by heating and compressing them with the crimping device, conductive fiber fabric and heat conductive silicone rubber composition are integrated. The silicone rubber composition contains at least one kind of heat conductive filler selected from either heat conductive inorganic powder or metal powder, the fabric contains carbon fiber, and it is preferable that the thermal conductivity of the sheet for thermocompression bonding be 1.5 W/(m-K) or larger. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子・電気機器部品の圧着結合に用いられ、熱圧着機の圧着子の熱を被圧着体に伝達し、且つ熱圧着時の加圧の不均一を緩衝する事を目的とする熱圧着用シートに関する。さらに詳しくは、熱伝導性に優れ、耐久性が高く、帯電防止効果が高い熱圧着用シートを提供することに関する。   The present invention is used for pressure bonding of electronic / electrical equipment parts, and aims to transmit heat of a crimper of a thermocompression bonding machine to a member to be bonded and to buffer pressure unevenness during thermocompression bonding. The present invention relates to a thermocompression sheet. More specifically, the present invention relates to providing a thermocompression bonding sheet having excellent thermal conductivity, high durability, and high antistatic effect.

液晶パネルの画素電極と駆動用半導体を搭載したフレキシブル基板(TAB基板)のアウターリードの接合には、狭ピッチの電極どうしを接続するのに最適な異方導電性フィルム(ACF)が多く用いられて接合されている。この液晶パネルの画素電極とTAB基板のアウターリードとの接続に使用する異方導電性フィルムを熱圧着する際に、熱圧着装置の加熱圧着ツールとTAB基板の間に挟み込んで異方導電性フィルムを加熱硬化する目的及び熱圧着面の平行度を高める目的で、従来から使用されている熱圧着用シートとしては、下記の特許文献1〜3に記載のようなシリコーンゴム系のシートや、熱伝導性シリコーンゴムシート(富士高分子工業株式会社製商標名“サーコン”)が多く使用されている。
特開平5−198344号公報 特開平7−117175号公報 特開平10−219199号公報
An anisotropic conductive film (ACF) that is optimal for connecting electrodes with a narrow pitch is often used to join the outer leads of a flexible substrate (TAB substrate) mounted with a pixel electrode of a liquid crystal panel and a driving semiconductor. Are joined. When the anisotropic conductive film used to connect the pixel electrode of this liquid crystal panel and the outer lead of the TAB substrate is thermocompression bonded, the anisotropic conductive film is sandwiched between the thermocompression bonding tool of the thermocompression bonding device and the TAB substrate. Conventionally used thermocompression-bonding sheets for the purpose of heat-curing and increasing the parallelism of the thermocompression-bonding surface include silicone rubber-based sheets as described in Patent Documents 1 to 3 below, and heat A conductive silicone rubber sheet (trade name “Surcon” manufactured by Fuji Polymer Industries Co., Ltd.) is often used.
Japanese Patent Laid-Open No. 5-198344 Japanese Patent Laid-Open No. 7-117175 JP-A-10-219199

しかし、最近の液晶パネルの画素電極とTAB基板のアウターリード電極間ピッチは高精細化し、且つ大型化に伴い、従来の熱圧着用シートでは性能が充分でなく、液晶パネルの大型化に伴い熱圧着時の均熱性を確保する為に、熱圧着時間を長時間にする傾向があり、液晶パネルの生産性が低下する問題がある。同時に熱圧着時には熱圧着装置の加熱ツールのヒーター温度を高く設定する必要があるため、熱圧着用シートの耐久性が低下し所定の熱圧着回数に到達しない問題もある。さらには、液晶パネルの画素電極とTAB基板のアウターリードどうしを熱圧着する際に生じる静電気で液晶パネルや駆動用半導体が破損するという問題が多く発生している。   However, with the recent increase in the pitch between the pixel electrode of the liquid crystal panel and the outer lead electrode of the TAB substrate and the increase in size, the conventional thermocompression sheet does not have sufficient performance. In order to ensure the thermal uniformity during the pressure bonding, there is a tendency that the thermocompression bonding time tends to be long and the productivity of the liquid crystal panel is lowered. At the same time, since it is necessary to set the heater temperature of the heating tool of the thermocompression bonding apparatus high at the time of thermocompression bonding, there is a problem that the durability of the thermocompression bonding sheet is lowered and the predetermined number of thermocompression bonding is not reached. Furthermore, there are many problems that the liquid crystal panel and the driving semiconductor are damaged by static electricity generated when the pixel electrodes of the liquid crystal panel and the outer leads of the TAB substrate are thermocompression bonded.

本発明は、前記従来の問題を解決するため、熱伝導性、耐久性が高く、帯電防止効果が高い熱圧着用シートを提供する。   In order to solve the conventional problems, the present invention provides a thermocompression bonding sheet having high thermal conductivity and durability and high antistatic effect.

本発明の熱圧着用シートは、圧着装置により加熱加圧して異方導電性フィルムを介して接続対象物同士の電極間を電気的接続する際に、圧着装置の加熱圧着ツールと接続対象物との間に介在されて使用する熱圧着用シートにおいて、導電性繊維織物と熱伝導性シリコーンゴム組成物を一体化したことを特徴とする。   When the sheet for thermocompression bonding of the present invention is heated and pressed by a pressure bonding apparatus to electrically connect the electrodes of the connection objects through the anisotropic conductive film, the thermocompression bonding tool of the pressure bonding apparatus and the connection object In the sheet for thermocompression bonding used between the two, the conductive fiber fabric and the heat conductive silicone rubber composition are integrated.

本発明の熱圧着用シートは、熱伝導性に優れ、耐久性が高く、帯電防止効果が高く、離型性が高いので、熱圧着機における高ショットサイクル化が実現できる。また、大きな熱圧着面を有する液晶パネルの画素電極とTAB基板のアウターリードなど高精細化された接続電極部の熱圧着を短時間で効率よく異方導電性フィルムを用いて接合ができるため、接続工程の生産性向上に大きく寄与する事が出来る。   The sheet for thermocompression bonding of the present invention is excellent in thermal conductivity, high durability, high antistatic effect, and high releasability, so that a high shot cycle in a thermocompression bonding machine can be realized. In addition, since the thermocompression bonding of the high-definition connection electrode portion such as the pixel electrode of the liquid crystal panel having a large thermocompression surface and the outer lead of the TAB substrate can be efficiently and quickly bonded using the anisotropic conductive film, This can greatly contribute to the productivity improvement of the connection process.

本発明は、熱伝導性が高いシリコーンゴム組成物と、熱伝導性、機械的強度にすぐれ、電気導電性である炭素繊維織物を複合一体化したシート状とする。本発明の熱圧着用シートは液晶パネルの画素電極とTAB基板のアウターリード電極間を異方導電性フィルムによって熱圧着する場合に用いる熱圧着用シートであって、熱伝導性シリコーンゴム組成物と炭素繊維織物を備える。前記シリコーンゴム組成物の熱伝導率は、0.5W/m−K以上であることが好ましい。また前記熱圧着用シートの25℃における熱伝導率(JIS−R2616、非定常熱線法)は1.5W/m−K以上が好ましい。破れ耐久性は150回以上であることが好ましい。   In the present invention, a silicone rubber composition having high thermal conductivity and a carbon fiber fabric that is excellent in thermal conductivity and mechanical strength and is electrically conductive are combined into a sheet shape. The thermocompression-bonding sheet of the present invention is a thermocompression-bonding sheet used when thermocompression bonding is performed between the pixel electrode of the liquid crystal panel and the outer lead electrode of the TAB substrate with an anisotropic conductive film, and the thermally-conductive silicone rubber composition and Provided with carbon fiber fabric. The silicone rubber composition preferably has a thermal conductivity of 0.5 W / m-K or higher. Further, the thermal conductivity (JIS-R2616, unsteady hot wire method) at 25 ° C. of the thermocompression bonding sheet is preferably 1.5 W / m-K or more. The tear durability is preferably 150 times or more.

本発明の熱圧着用シートは液晶パネルの異方導電性フィルムによる熱圧着に限られることなく、熱可塑樹脂を含むさまざまな熱圧着工程に使用することができる。   The thermocompression-bonding sheet of the present invention is not limited to thermocompression bonding using an anisotropic conductive film of a liquid crystal panel, and can be used in various thermocompression bonding processes including a thermoplastic resin.

本発明の熱圧着用シートは液状シリコーンゴムに熱伝導性の無機粉末又は金属粉末から選択される少なくても1種類の熱伝導性充填剤を主成分として構成される熱伝導性シリコーンゴム組成物と繊維織物を複合一体化する事により得られる。順に構成原材料を説明する。
(1)オルガノポリシロキサン組成物
オルガノポリシロキサン組成物としては、付加反応硬化型オルガノポリシロキサン組成物、有機過酸化物硬化性オルガノポリシロキサン組成物とする事が好ましい。
The sheet for thermocompression bonding of the present invention is a thermally conductive silicone rubber composition comprising, as a main component, at least one kind of thermally conductive filler selected from a liquid silicone rubber and a thermally conductive inorganic powder or metal powder. It can be obtained by combining and integrating fiber fabrics. The constituent raw materials will be described in order.
(1) Organopolysiloxane composition The organopolysiloxane composition is preferably an addition reaction curable organopolysiloxane composition or an organic peroxide curable organopolysiloxane composition.

付加反応硬化型の場合は次の組成物とする。
a.1分子中に平均2個以上のアルケニル基を有するオルガノポリシロキサン 100質量部
b.1分子中に平均2個以上のケイ素原子に直接結合した水素原子を含有するオルガノハイドロジェンポリシロキサン 0.10〜50質量部
c.付加反応触媒 触媒量(0.5〜1000ppm)
aのオルガノポリシロキサンの構造は、通常、主鎖がジオルガノシロキサン単位の繰り返しからなり、分子両末端がトリオルガノシロキサン基で封鎖された基本的には直鎖状構造を有するジオルガノポリシロキサンであるが、部分的には分岐状の構造、環状構造でも良い。このアルケニル基含有オルガノポリシロキサンの粘度(又は重合度)は特に制限が無く、室温で液状のものからガム上のものまで使用可能であるが、通常、平均重合度50〜20,000、好ましくは100〜10,00、より好ましくは100〜2,000程度のものが使用される、平均重合度が50未満の時は十分効果せずゴム物性が不十分であるので100以上とした。熱伝導性シリコーンゴム組成物の構成要素である液状シリコーンゴムの主成分は、上記の様なオルガノポリシロキサンで、通常、液状付加反応型シリコーンゴムとして使用されている25℃における粘度が5,000CP以上、好ましくは5,000CPから100,000CPがよい。
In the case of an addition reaction curable type, the following composition is used.
a. 100 parts by mass of an organopolysiloxane having an average of 2 or more alkenyl groups in one molecule b. Organohydrogenpolysiloxane containing hydrogen atoms directly bonded to two or more silicon atoms on average in one molecule 0.10 to 50 parts by mass c. Addition reaction catalyst Catalyst amount (0.5-1000ppm)
The structure of the organopolysiloxane a is basically a diorganopolysiloxane having a linear structure in which the main chain is composed of repeating diorganosiloxane units and both molecular ends are blocked with triorganosiloxane groups. However, a partially branched structure or a ring structure may be used. The viscosity (or degree of polymerization) of the alkenyl group-containing organopolysiloxane is not particularly limited and can be used from liquid to room temperature on the gum at room temperature. Usually, the average degree of polymerization is 50 to 20,000, preferably 100 to 10,000, more preferably about 100 to 2,000 are used. When the average degree of polymerization is less than 50, the effect is insufficient and the rubber physical properties are insufficient. The main component of the liquid silicone rubber, which is a component of the thermally conductive silicone rubber composition, is the organopolysiloxane as described above, and the viscosity at 25 ° C., which is usually used as a liquid addition reaction type silicone rubber, is 5,000 CP. Above, preferably from 5,000 CP to 100,000 CP.

bの架橋剤は1分子中に少なくとも2個、好ましくは3個以上含有されるSiH基は、分子鎖途中のいずれに位置していても良い。このオルガノハイドロジェンポリシロキサンの分子構造は直鎖状、環状、分岐状、3次元構造状構造の何れでも良いが、1分子中のケイ素原子の数は通常2〜300個、好ましくは4〜150個程度で液状のものが好ましい。このオルガノハイドロジェンポリシロキサンの配合量は、100質量部に対して0.10〜50質量部、より好ましくは0.30〜20質量部である事が好ましい。   The cross-linking agent b may contain at least two, preferably three or more SiH groups in one molecule, and may be located anywhere in the molecular chain. The molecular structure of the organohydrogenpolysiloxane may be any of linear, cyclic, branched, and three-dimensional structures, but the number of silicon atoms in one molecule is usually 2 to 300, preferably 4 to 150. A liquid is preferable. The compounding amount of the organohydrogenpolysiloxane is preferably 0.10 to 50 parts by mass, more preferably 0.30 to 20 parts by mass with respect to 100 parts by mass.

cの付加反応触媒は塩化白金酸、塩化第2白金、塩化白金酸と1価アルコールの反応物、塩化第2白金とアレフィン酸との錯体、白金ビスアセトアセテートの白金系触媒、パラジュウム系触媒などが上げられる。この付加反応触媒の添加量は触媒量とする事が出来、好ましくは0.5〜1000ppm、より好ましくは1〜500ppmである事が好ましい。   The addition reaction catalyst for c is chloroplatinic acid, platinum chloride, a reaction product of chloroplatinic acid and monohydric alcohol, a complex of platinum chloride and alephinic acid, platinum-based catalyst of platinum bisacetoacetate, palladium-based catalyst, etc. Is raised. The addition amount of this addition reaction catalyst can be a catalyst amount, preferably 0.5 to 1000 ppm, more preferably 1 to 500 ppm.

有機過酸化物硬化型の場合は次の組成物とする。
(i)1分子中に平均2個以上のアルケニル基を有するオルガノポリシロキサン 100質量部
(ii)有機過酸化物 触媒量(0.1〜10質量部)
(iii)のオルガノポリシロキサン組成物の構造は成分の1分子中に平均2個以上のアルケニル基を含有するオルガノポリシロキサン組成物で、前記aの成分と同じ物を使用する事が出来る。
In the case of organic peroxide curing type, the following composition is used.
(I) Organopolysiloxane having an average of 2 or more alkenyl groups in one molecule 100 parts by mass (ii) Organic peroxide Catalyst amount (0.1 to 10 parts by mass)
The structure of the organopolysiloxane composition (iii) is an organopolysiloxane composition containing an average of two or more alkenyl groups in one molecule of the component, and the same component as the component a can be used.

の有機過酸化物としては、シリコーンゴム用有機過酸化物として市販されている、例えば、ベンゾイルパーオキサイド、2,4ジクロルベンゾイルパーオキサイド、ジキュミルパーオキサイド、2,5ジメチル2,5ジ(ターシャリブチルパーオキシヘキサン)、パラクロルベンゾイルパーオキサイド、ジターシャリブチルパーオキサイド等があげられる。有機過酸化物の配合量は、触媒量であり、通常(i)のオルガノポリシロキサン100質量部に対して0.01〜10質量部である事が好ましい。
(2)熱伝導性充填剤は無機粉末又は金属粉末であり、前記オルガノポリシロキサン組成物に熱伝導性を付与する為に混合される。オルガノポリシロキサン組成物に熱伝導性充填剤を混合したものを熱伝導性シリコーンゴム組成物と言う。
Examples of organic peroxides are commercially available as organic peroxides for silicone rubber, such as benzoyl peroxide, 2,4 dichlorobenzoyl peroxide, dicumyl peroxide, 2,5 dimethyl 2,5 di (Tertiary butyl peroxyhexane), parachlorobenzoyl peroxide, ditertiary butyl peroxide and the like. The compounding amount of the organic peroxide is a catalytic amount, and is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the organopolysiloxane (i).
(2) The thermally conductive filler is an inorganic powder or a metal powder, and is mixed to impart thermal conductivity to the organopolysiloxane composition. A mixture of an organopolysiloxane composition and a thermally conductive filler is referred to as a thermally conductive silicone rubber composition.

無機粉末には、金属酸化物系粉末としては、アルミナ粉末,酸化マグネシュウム粉末,酸化ベリリウム粉末,酸化クロム粉末,酸化チタン粉末などがあげられ。金属窒化物系粉末としては、窒化ホウ素粉末,窒化アルミニュウム粉末などがあげられ。金属炭化物系粉末としては、炭化ホウ素粉末,炭化チタン粉末,炭化ケイ素粉末などがあげられ。軟磁性合金粉末としては、Fe-Si合金,Fe-Al合金,Fe-Si-Al合金などがあげられる。さらにフェライト粉末。金属系粉末としては、アルミニュウム粉末,銅粉末,ニッケル粉末などがあげられる。また、これら2種類以上の混合物があげられる。これらの粉末の形状としては球状,針状,円盤状,棒状,不定形状が上げられる。   Examples of inorganic powders include alumina powder, magnesium oxide powder, beryllium oxide powder, chromium oxide powder, and titanium oxide powder as metal oxide powders. Examples of the metal nitride powder include boron nitride powder and aluminum nitride powder. Examples of the metal carbide powder include boron carbide powder, titanium carbide powder, and silicon carbide powder. Examples of soft magnetic alloy powders include Fe-Si alloys, Fe-Al alloys, and Fe-Si-Al alloys. Ferrite powder. Examples of the metal powder include aluminum powder, copper powder, and nickel powder. Moreover, the mixture of these 2 or more types is mention | raise | lifted. These powders can be spherical, needle-shaped, disc-shaped, rod-shaped, or indefinite.

本発明の熱伝導性シリコーンゴム組成物を硬化して得られる熱伝導性シリコーンゴム硬化物に電気絶縁性が必要とされる場合の熱伝導性充填剤は、金属酸化物系粉末,金属窒化物系粉末,金属炭化物系粉末である事が好ましく、より好ましくはアルミナ粉末である事が好ましい。   When the heat conductive silicone rubber cured product obtained by curing the heat conductive silicone rubber composition of the present invention requires electrical insulation, the heat conductive filler is metal oxide powder, metal nitride. It is preferable that the powder is a metal powder or a metal carbide powder, more preferably an alumina powder.

アルミナ粉末の平均粒度は限定されないが、0.1〜100μmの範囲である事が好ましく、より好ましくは0.1〜50μmの範囲である事が好ましい。又、粒子径が5〜50μmである球状アルミナ粉末と平均粒子径が0.10〜10μmである球状もしくは不定形状アルミナ粉末である事が好ましい。   The average particle size of the alumina powder is not limited, but is preferably in the range of 0.1 to 100 μm, more preferably in the range of 0.1 to 50 μm. Further, spherical alumina powder having a particle diameter of 5 to 50 μm and spherical or irregular-shaped alumina powder having an average particle diameter of 0.10 to 10 μm are preferable.

又、球状のアルミナ粉末の含有量は30〜60質量%の範囲であり、0.10〜5μmである球状もしくは不定形状のアルミナ粉末は10〜50質量%の範囲である事が好ましい。   Further, the content of the spherical alumina powder is in the range of 30 to 60% by mass, and the spherical or irregular-shaped alumina powder of 0.10 to 5 μm is preferably in the range of 10 to 50% by mass.

熱伝導性シリコーンゴム組成物への具体的なアルミナ粉末の具体的な含有量は、前記、熱硬化性オルガノポリシロキサン組成物としてあげた、付加反応硬化型オルガノポリシロキサン組成物又は有機過酸化物硬化性オルガノポリシロキサン組成物、100質量部に対し100〜1000質量部の範囲である事が好ましく、さらには200〜500質量部の範囲である事がより好ましい。   The specific content of alumina powder in the heat conductive silicone rubber composition is the addition reaction curable organopolysiloxane composition or organic peroxide described as the thermosetting organopolysiloxane composition. It is preferable that it is the range of 100-1000 mass parts with respect to 100 mass parts of curable organopolysiloxane compositions, Furthermore, it is more preferable that it is the range of 200-500 mass parts.

アルミナ粉末の添加量が上記範囲の下限未満であると、得られる熱伝導性シリコーンゴム硬化物の熱伝導率が不十分となり、上限を超えると、得られる熱伝導性シリコーンゴム組成物の粘度が高くなり過ぎて、アルミナ粉末が十分均一に分散混合できず、均一な物理的特性を得る事が出来ない。
(3)無機粉末又は金属粉末の熱伝導性充填剤の表面処理は前記アルミナ粉末を多量に充填混合しても充填混合作業性が良好である熱伝導性シリコーンゴム組成物を得るために市販のシランカップリング剤で表面処理したアルミナ粉末を充填する。熱伝導性充填剤へのシランカップリング剤の表面処理の方法は、直接処理法,インテグラルブレンド法,などを用いる事が出来る。
When the addition amount of the alumina powder is less than the lower limit of the above range, the thermal conductivity of the obtained thermally conductive silicone rubber cured product becomes insufficient, and when the upper limit is exceeded, the viscosity of the obtained thermally conductive silicone rubber composition is low. Too high, the alumina powder cannot be dispersed and mixed sufficiently uniformly, and uniform physical properties cannot be obtained.
(3) The surface treatment of the thermally conductive filler of inorganic powder or metal powder is commercially available in order to obtain a thermally conductive silicone rubber composition having good filling and mixing workability even if the alumina powder is filled and mixed in a large amount. An alumina powder surface-treated with a silane coupling agent is filled. As a surface treatment method of the silane coupling agent to the thermally conductive filler, a direct treatment method, an integral blend method, or the like can be used.

直接処理法は従来技術である乾式法,スラリー法,スプレー法,インテグラルブレンド法,マスターバッチ法などの方法が有り、これらのいずれかの方法で熱伝導性充填剤の表面処理を行う。
(4)炭素繊維織物布
構成要素である織物布は炭素繊維単体、又は炭素繊維とガラス繊維やアラミド繊維、合成繊維、天然繊維などと組み合わせて織り上げた複合織物があり、それらの織組織(クロスの織り方)には、平織り、綾織り,朱子織り、からみ織り、摸紗織りなどの代表的な織り方がある。織物の主たる構成要素である炭素繊維はPAN系,ピッチ系,レーヨン系などの種類があるが、その複合織物化、織組織、炭素繊維の種類、組合せに制限は無く、市販されているものから選択して使用する事が出来る。さらに前記、織物と熱伝導性シリコーンゴム組成物の相互の接着力を向上する為に、ケイ素原子に炭素原子を介して接合された有機官能基を持つシランカップリング剤を使用する事が出来る。
The direct treatment methods include the conventional methods such as dry method, slurry method, spray method, integral blend method, master batch method, etc., and any one of these methods performs surface treatment of the thermally conductive filler.
(4) Carbon fiber woven fabric The constituent fabric fabric is carbon fiber alone or composite fabric woven by combining carbon fiber with glass fiber, aramid fiber, synthetic fiber, natural fiber, etc. There are typical weaving methods such as plain weave, twill weave, satin weave, leash weave and birch weave. Carbon fibers, which are the main constituent elements of fabrics, include PAN, pitch, and rayon types, but there are no restrictions on the formation of composite fabrics, woven structures, types of carbon fibers, and combinations, and those that are commercially available You can select and use. Furthermore, a silane coupling agent having an organic functional group bonded to a silicon atom via a carbon atom can be used in order to improve the mutual adhesive force between the fabric and the thermally conductive silicone rubber composition.

シランカップリング剤は一般式Y〜SiX3で示されるもので、Yはアミノ基、エポキシ基、ビニル基、メタクリル基、メルカプト基に代表される反応性有機官能基を示し、Xはアルコキシ基に代表される加水分解性基をそれぞれあらわす。このシランカップリング剤を織物と熱伝導性シリコーンゴムとの接着力を向上する為に界面に適宜選択して用いる事が出来る。 The silane coupling agent is represented by a general formula Y to SiX 3 , where Y represents a reactive organic functional group represented by an amino group, an epoxy group, a vinyl group, a methacryl group, or a mercapto group, and X represents an alkoxy group. Each of the representative hydrolyzable groups is represented. This silane coupling agent can be appropriately selected and used at the interface in order to improve the adhesive force between the fabric and the heat conductive silicone rubber.

本発明では、炭素繊維織物は厚さ0.10mm〜0.55mmの平織り織物(東レ株式会社製、製品名“トレカ”)を使用できる。
(5)積層一体化
連続塗工装置で炭素繊維を含む織物の片面表面に、前記熱伝導性シリコーンゴム組成物を塗工し、例えば100℃で5分間、加熱硬化して熱圧着用シートを得る。炭素繊維を含む織物(A)と熱伝導性シリコーンゴム組成物(B)の割合は、A:B=1:0.5〜1:10の範囲が好ましい。熱伝導性シリコーンゴム組成物の硬化後の厚みは例えば0.25mm、単位面積当たりの質量は、例えば390g/m2である。また、熱伝導率は、ホットデスク法 熱物性測定装置 TP A−501 京都電子工業(株)製で測定したところ例えば1.75W/m−Kである。
In the present invention, a plain woven fabric (manufactured by Toray Industries, Inc., product name “TORAYCA”) having a thickness of 0.10 mm to 0.55 mm can be used as the carbon fiber fabric.
(5) Laminate integration The thermal conductive silicone rubber composition is applied to one surface of a woven fabric containing carbon fibers with a continuous coating apparatus, and is thermally cured at, for example, 100 ° C. for 5 minutes to form a thermocompression bonding sheet. obtain. The ratio of the woven fabric (A) containing carbon fibers to the thermally conductive silicone rubber composition (B) is preferably in the range of A: B = 1: 0.5 to 1:10. The thickness of the thermally conductive silicone rubber composition after curing is, for example, 0.25 mm, and the mass per unit area is, for example, 390 g / m 2 . The thermal conductivity is 1.75 W / m-K, for example, as measured by the hot desk method thermophysical property measuring apparatus TP A-501 manufactured by Kyoto Electronics Industry Co., Ltd.

次に図面を用いて本発明の熱圧着シートとその使用方法を説明する。図1は本発明の一実施形態における熱圧着シート10の断面図であり、1は炭素繊維織物、2,3は熱伝導性シリコーンゴム組成物層である。熱伝導性シリコーンゴム組成物は炭素繊維織物1の内部に含浸され、一部は熱伝導性シリコーンゴム組成物層2,3を形成している。   Next, the thermocompression-bonding sheet of the present invention and a method for using the same will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a thermocompression-bonding sheet 10 according to an embodiment of the present invention, in which 1 is a carbon fiber fabric, and 2, 3 are thermally conductive silicone rubber composition layers. The heat conductive silicone rubber composition is impregnated inside the carbon fiber fabric 1, and a part forms the heat conductive silicone rubber composition layers 2 and 3.

図2は本発明の一実施形態における熱圧着シート10の使用方法を示す断面図である。熱圧着シート10は圧着機ヘッド18のヒーター16とテープキャリアパッケージ(TCP)又はフレキシブル基板(TAB基板)11との間に介在させ、熱圧着時に融着樹脂が圧着機ヘッドのヒーター16にこびりつかないようにするために使用する。12,14は金属配線、13は異方導電性フィルム、15はガラス基板、17は圧着機ヘッドのプレス部である。   FIG. 2 is a cross-sectional view showing a method of using the thermocompression bonding sheet 10 in one embodiment of the present invention. The thermocompression bonding sheet 10 is interposed between the heater 16 of the crimping machine head 18 and the tape carrier package (TCP) or the flexible substrate (TAB board) 11 so that the fusion resin does not stick to the heater 16 of the crimping machine head during thermocompression bonding. Use to make it. 12 and 14 are metal wirings, 13 is an anisotropic conductive film, 15 is a glass substrate, and 17 is a press part of the crimping machine head.

以下実施例で本発明をさらに具体的に説明する。本発明は下記の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples.

(実施例1)
(1)熱伝導性シリコーンゴム組成物の作成
一分子中に少なくとも2個以上のアルケニル基を有するオルガノポリシロキサン、100質量部(旭化成ワッカーシリコーン株式会社製、商品名“エラストシルLR3303/20”)に熱伝導性フィラーとして酸化アルミニウム、AS−50、250質量部(昭和電工株式会社製、商品名“アルミナAL50”)を添加し、常温・常圧下で混合装置(プラネタリュウムミキサー、内容積5リットル)を用いて均一に分散混合した後、一分子中に少なくとも2個以上のケイ素原子に直接結合した水素原子を含有するオルガノハイドロジェンポリシロキサン1質量部(東レダウコーニング株式会社製、商品名“RD−1”)を混合し、熱伝導性シリコーンゴム組成物を作成した。
(2)織物
次に織物を準備した。東レ株式会社製、炭素繊維織物“トレカ”(同社登録商標)、CO6151B(厚み、0.11mm、平織り、目付け92g/m2)を準備し、この織物の表面にシランカップリング剤(GE東芝シリコーン社製、商品名“XP82−B1601”)を塗布し、十分風乾した後、100℃で10分間、熱風循環式乾燥機に入れて乾燥した。このようにしてシラン処理された炭素繊維織物を作成した。
(3)熱圧着用シートの作成
前記炭素繊維織物を縦30cm、横30cmに切断し、厚さ100μmのポリエチレンテレフタレート(PET)フィルムの上に配置し、さらにその上に前記熱伝導性シリコーンゴム組成物を計量して配置し、さらに別のPETフィルムをかぶせた後、圧延機を用いて全体を圧延し、厚さ400μmの板状とした。次に、PETフィルムを被せたまま熱風循環式乾燥機に投入し、100℃で5分間、硬化した。その後、熱風循環式乾燥機から取り出し十分冷却した後、両面のPETフィルムを剥ぎ取りほぼ中央付近に炭素繊維織物を内包した厚み200μmの熱圧着用シートを得た。炭素繊維織物(A)と熱伝導性シリコーンゴム組成物(B)の割合は、A:B=1:1であった。
Example 1
(1) Preparation of thermally conductive silicone rubber composition Organopolysiloxane having at least two alkenyl groups in one molecule, 100 parts by mass (trade name “Elastosyl LR3303 / 20”, manufactured by Asahi Kasei Wacker Silicone Co., Ltd.) Add aluminum oxide, AS-50, 250 parts by mass (made by Showa Denko KK, trade name “Alumina AL50”) as a heat conductive filler, and add a mixing device (planetium mixer, internal volume 5 liters) at room temperature and pressure. 1 part by mass of an organohydrogenpolysiloxane containing hydrogen atoms directly bonded to at least two or more silicon atoms in one molecule (trade name “RD-” manufactured by Toray Dow Corning Co., Ltd.) 1 ″) was mixed to prepare a heat conductive silicone rubber composition.
(2) Textile Next, a textile was prepared. Carbon fiber fabric "Torayca" (registered trademark), CO6151B (thickness, 0.11mm, plain weave, basis weight 92g / m 2 ) manufactured by Toray Industries, Inc. is prepared, and a silane coupling agent (GE Toshiba Silicone is applied to the surface of this fabric. The product name “XP82-B1601”) was applied and sufficiently air-dried, and then dried in a hot-air circulating dryer at 100 ° C. for 10 minutes. In this way, a silane-treated carbon fiber fabric was prepared.
(3) Preparation of thermocompression-bonding sheet The carbon fiber fabric is cut into a length of 30 cm and a width of 30 cm, and is placed on a polyethylene terephthalate (PET) film having a thickness of 100 μm, and the thermally conductive silicone rubber composition is further formed thereon. The objects were weighed and arranged, and further covered with another PET film, and then the whole was rolled using a rolling mill to form a plate having a thickness of 400 μm. Next, it was put into a hot air circulation dryer with the PET film covered, and cured at 100 ° C. for 5 minutes. Thereafter, the sheet was taken out from the hot air circulation dryer and sufficiently cooled, and then the PET films on both sides were peeled off to obtain a thermocompression bonding sheet having a thickness of 200 μm including a carbon fiber fabric in the vicinity of the center. The ratio of the carbon fiber fabric (A) to the heat conductive silicone rubber composition (B) was A: B = 1: 1.

(比較例1)
(1)熱伝導性シリコーンゴム組成物の作成
一分子中に少なくとも2個以上のアルケニル基を有するオルガノポリシロキサン、100質量部(旭化成ワッカーシリコーン株式会社製、商品名“エラストシル LR3303/20”)に熱伝導性フィラーとして酸化アルミニウム(昭和電工株式会社製、商品名“AS−50”)、250質量部を添加し、常温・常圧下で混合装置(プラネタリュウムミキサー、内容積5リットル)を用いて均一に分散混合した。その後、一分子中に少なくとも2個以上のケイ素原子に直接結合した水素原子を含有するオルガノハイドロジェンポリシロキサン1質量部(東レダウコーニング株式会社製、商品名“RD−1”)を混合し、熱伝導性シリコーンゴム組成物を作成した。
(2)織物
次に織物を準備した、ガラス繊維織物、(株式会社有沢製作所製、商品名“EPC030”、厚み0.034mm、平織、目付け26g/m2)織物の表面にシランカップリング剤(GE東芝シリコーン社製、商品名“XP82−B1601”)を塗布、十分風乾した後、100℃X10分間、熱風循環式乾燥機に投入し乾燥してシラン処理されたガラス繊維織物を作成した。
(3)熱圧着用シートの作成
ガラス繊維織物、EPC030を縦30cm、横30cmに切断し厚さ100μmのPETフィルムの上に乗せ、さらにその上に前記熱伝導性シリコーンゴム組成物を計量した後のせ、さらに別のPETフィルムをかぶせた後、圧延機を用いて全体を圧延し厚さ400μmの板状とし、PETフィルムのまま熱風循環式乾燥機に投入し100℃で5分間、硬化した後、熱風循環式乾燥機から取り出し十分冷却した後、両面のPETフィルムを剥ぎ取りほぼ中央付近にガラス繊維織物を内包した厚み200μm試験片を得た。ガラス繊維織物(X)と熱伝導性シリコーンゴム組成物(B)の割合は、X:B=1:5であった。
(Comparative Example 1)
(1) Preparation of thermally conductive silicone rubber composition Organopolysiloxane having at least two alkenyl groups in one molecule, 100 parts by mass (trade name “Elastosyl LR3303 / 20” manufactured by Asahi Kasei Silicone Co., Ltd.) Aluminum oxide (made by Showa Denko Co., Ltd., trade name “AS-50”), 250 parts by mass is added as a thermally conductive filler, and uniform using a mixing device (planetium mixer, internal volume 5 liters) at normal temperature and normal pressure. Disperse and mix. Thereafter, 1 part by mass of an organohydrogenpolysiloxane containing hydrogen atoms directly bonded to at least two silicon atoms in one molecule (trade name “RD-1” manufactured by Toray Dow Corning Co., Ltd.) A thermally conductive silicone rubber composition was prepared.
(2) Woven fabric Next, a glass fiber woven fabric (trade name “EPC030” manufactured by Arisawa Manufacturing Co., Ltd., thickness 0.034 mm, plain weave, basis weight 26 g / m 2 ) on which the woven fabric was prepared, GE Toshiba Silicone Co., Ltd., trade name “XP82-B1601”) was applied and sufficiently air-dried, and then poured into a hot-air circulating dryer for 10 minutes at 100 ° C. to prepare a silane-treated glass fiber fabric.
(3) Preparation of thermocompression-bonding sheet After glass fiber fabric, EPC030 was cut into a length of 30 cm and a width of 30 cm and placed on a PET film having a thickness of 100 μm, and the thermally conductive silicone rubber composition was weighed thereon. After covering with another PET film, the whole was rolled into a plate shape with a thickness of 400 μm using a rolling mill, put into a hot air circulation dryer as it was, and cured at 100 ° C. for 5 minutes. Then, after taking out from the hot air circulation dryer and sufficiently cooling, a PET film on both sides was peeled off to obtain a test piece having a thickness of 200 μm including a glass fiber fabric in the vicinity of the center. The ratio of the glass fiber fabric (X) and the heat conductive silicone rubber composition (B) was X: B = 1: 5.

(比較例2)
(1)熱伝導性シリコーンゴム組成物の作成
一分子中に少なくとも2個以上のアルケニル基を有するオルガノポリシロキサン、100質量部(旭化成ワッカーシリコーン株式会社製、商品名“エラストシル LR3303/20”)に熱伝導性フィラーとして酸化アルミニウム(昭和電工株式会社製アルミナ、商品名“AS−50”)、250質量部を添加し、常温・常圧下で混合装置(プラネタリュウムミキサー、内容積5リットル)を用いて均一に分散混合した後、一分子中に少なくとも2個以上のケイ素原子に直接結合した水素原子を含有するオルガノハイドロジェンポリシロキサン1質量部(東レダウコーニング株式会社製、商品名“RD−1”)を混合し、熱伝導性シリコーンゴム組成物を作成した。
(2)熱圧着用シートの作成
厚さ100μmのPETフィルムの上に前記熱伝導性シリコーンゴム組成物を計量してのせ、さらに別のPETフィルムをかぶせた後、圧延機を用いて全体を圧延し厚さ400μmの板状とし、PETフィルムのまま熱風循環式乾燥機に投入し100℃で5分間、硬化した後、熱風循環式乾燥機から取り出し十分冷却した後、両面のPETフィルムを剥ぎ取り厚み200μm試験片を得た。
(Comparative Example 2)
(1) Preparation of thermally conductive silicone rubber composition Organopolysiloxane having at least two alkenyl groups in one molecule, 100 parts by mass (trade name “Elastosyl LR3303 / 20” manufactured by Asahi Kasei Silicone Co., Ltd.) 250 parts by mass of aluminum oxide (Alumina manufactured by Showa Denko Co., Ltd., trade name “AS-50”) and 250 parts by mass are added as a thermally conductive filler, using a mixing device (planetium mixer, internal volume 5 liters) at normal temperature and normal pressure. After uniformly dispersing and mixing, 1 part by mass of an organohydrogenpolysiloxane containing hydrogen atoms directly bonded to at least two or more silicon atoms in one molecule (trade name “RD-1” manufactured by Toray Dow Corning Co., Ltd.) ) To prepare a thermally conductive silicone rubber composition.
(2) Preparation of thermocompression-bonding sheet Weigh the thermally conductive silicone rubber composition on a PET film with a thickness of 100 μm, cover with another PET film, and then roll the whole using a rolling mill. The plate is 400 μm thick, put into a hot air circulation dryer as it is with PET film, cured at 100 ° C. for 5 minutes, taken out from the hot air circulation dryer, cooled sufficiently, and then peeled off the PET film on both sides. A specimen having a thickness of 200 μm was obtained.

(耐久性テストの測定)
以上の実施例品、比較例品を用いて耐久性を測定した。耐久性は図3A−Bに示す測定装置を用いて測定した。ガラス基板21の上に熱電対22を置き、その上に熱圧着用シート10を置き、ヒーター24を内蔵する圧着ヘッド23を図3A−Bのように取り付けた。ツール幅は1.5mmとした。そして、実際の液晶パネルの画素電極とTAB基板のアウターリード電極間を異方導電性フィルムによって熱圧着する組立工程における熱圧着機の条件、すなわち圧着ツール温度:300℃、圧着ツール圧力:3MPa、加圧時間:15秒で繰り返し加圧し、亀裂・破れが発生するまでのショット数を測定した。
(Durability test measurement)
Durability was measured using the above example products and comparative product. Durability was measured using the measuring apparatus shown in FIGS. 3A-B. A thermocouple 22 was placed on the glass substrate 21, the thermocompression bonding sheet 10 was placed thereon, and a crimping head 23 incorporating a heater 24 was attached as shown in FIGS. 3A-B. The tool width was 1.5 mm. And the conditions of the thermocompression bonding machine in the assembly process of thermocompression bonding between the pixel electrode of the actual liquid crystal panel and the outer lead electrode of the TAB substrate with the anisotropic conductive film, that is, the pressure bonding tool temperature: 300 ° C., the pressure bonding tool pressure: 3 MPa, Pressurization time: Pressurization was repeated at 15 seconds, and the number of shots until cracks and tears occurred was measured.

その結果、比較例1は100ショット及び比較例2は30ショットであったのに対して、本発明の実施例品は180ショットの耐久性があった。上記の試験結果の様に同一熱圧着条件下で比較した場合、本発明の実施例品は、1.8倍〜6倍の耐久性を有していることがわかり、大幅な工程改善と資材コストの低減になった。   As a result, the comparative example 1 was 100 shots and the comparative example 2 was 30 shots, whereas the example product of the present invention had 180 shots durability. When compared under the same thermocompression bonding conditions as in the above test results, it can be seen that the product of the example of the present invention has a durability of 1.8 to 6 times. The cost was reduced.

以上の結果を図4に示す。すなわち図4は本発明の実施例と比較例のACF緩衝シート温度曲線である。図4から明らかなとおり、本発明の実施例品は熱伝導性にも優れるので、ツール温度を同じにセットしても、到達温度は高いことが確認できた。   The above results are shown in FIG. That is, FIG. 4 is an ACF buffer sheet temperature curve of an example of the present invention and a comparative example. As is clear from FIG. 4, since the product of the example of the present invention was excellent in thermal conductivity, it was confirmed that the ultimate temperature was high even when the tool temperature was set to be the same.

(静電気テストの測定)
次に静電気電圧を測定した。実施例1,比較例1,比較例2のシートを縦10cm、横10cmの方形に各2枚作成し相互を5秒間こすり合わせた後、高精度静電気センサー(キーエンス株式会社製、商品名“SK−030/200”)から7cmはなれたところに置き、測定状態とし、5秒後の静電気電圧を測定した結果、比較例1及び比較例2に比較して実施例1の静電気電圧は低く十分目的を果たし、液晶パネルの画素電極と駆動用半導体を搭載したフレキシブル基板(TAB基板)のアウターリードの接合には、狭ピッチの電極どうしを接続する際に生じる静電気により液晶パネルや駆動用半導体が破損する問題が解決できた。
(Measurement of electrostatic test)
Next, the electrostatic voltage was measured. Two sheets each of Example 1, Comparative Example 1 and Comparative Example 2 were formed in a 10 cm long and 10 cm wide square, and rubbed together for 5 seconds, and then a high-precision electrostatic sensor (trade name “SK manufactured by Keyence Corporation”). As a result of measuring the electrostatic voltage after 5 seconds after placing it at a distance of 7 cm from -030/200 "), the electrostatic voltage of Example 1 is sufficiently low compared to Comparative Example 1 and Comparative Example 2, and is sufficiently The liquid crystal panel and the driving semiconductor are damaged by the static electricity generated when connecting the electrodes with a narrow pitch at the joint between the liquid crystal panel pixel electrode and the outer lead of the flexible substrate (TAB substrate) on which the driving semiconductor is mounted. I was able to solve the problem.

表1に実施例1及び比較例1及び2の特性を比較した。   Table 1 compares the characteristics of Example 1 and Comparative Examples 1 and 2.

Figure 2007128829
(備考1)ホットデスク法 熱物性測定装置 TP A−501 京都電子工業(株)製によって測定した。
Figure 2007128829
(Remarks 1) Hot desk method Thermophysical property measuring device TP A-501 Measured by Kyoto Electronics Industry Co., Ltd.

図1は本発明の一実施形態における熱圧着シートの断面図である。FIG. 1 is a cross-sectional view of a thermocompression bonding sheet according to an embodiment of the present invention. 図2は本発明の一実施形態における熱圧着シートの使用方法を示す断面図である。FIG. 2 is a cross-sectional view showing a method of using the thermocompression bonding sheet in one embodiment of the present invention. 図3Aは本発明の一実施例における耐久性の測定装置を示す斜視図、図3Bは同断面図である。FIG. 3A is a perspective view showing a durability measuring apparatus in one embodiment of the present invention, and FIG. 3B is a cross-sectional view thereof. 図4は本発明の一実施例と比較例のACF緩衝シート温度曲線である。FIG. 4 is an ACF buffer sheet temperature curve of an example of the present invention and a comparative example.

符号の説明Explanation of symbols

1 炭素繊維織物
2,3 熱伝導性シリコーンゴム組成物層
10 熱圧着シート
11 TCPはTAB基板
12,14 金属配線
13 異方導電性フィルム
15 ガラス基板
16 ヒーター
17 圧着機ヘッドのプレス部
18 圧着機ヘッド
21 ガラス基板
22 熱電対
23 圧着ヘッド
24 ヒーター

DESCRIPTION OF SYMBOLS 1 Carbon fiber fabric 2, 3 Thermal conductive silicone rubber composition layer 10 Thermocompression bonding sheet 11 TCP is TAB board | substrate 12,14 Metal wiring 13 Anisotropic conductive film 15 Glass substrate 16 Heater 17 Press part 18 of a crimping machine head Crimping machine Head 21 Glass substrate 22 Thermocouple 23 Crimp head 24 Heater

Claims (6)

圧着装置により加熱加圧して異方導電性フィルムを介して接続対象物同士の電極間を電気的接続する際に、圧着装置の加熱圧着ツールと接続対象物との間に介在されて使用する熱圧着用シートにおいて、
導電性繊維織物と熱伝導性シリコーンゴム組成物を一体化したことを特徴とする熱圧着用シート。
The heat used by being interposed between the thermocompression bonding tool of the crimping device and the connection object when the electrodes of the connection object are electrically connected via the anisotropic conductive film by heating and pressing with the crimping device. In the crimping sheet,
A sheet for thermocompression bonding, wherein a conductive fiber fabric and a heat conductive silicone rubber composition are integrated.
前記シリコーンゴム組成物は、熱伝導性の無機粉末又は金属粉末から選択された少なくても1種類の熱伝導性充填剤を含有する請求項1に記載の熱圧着用シート。   The thermocompression-bonding sheet according to claim 1, wherein the silicone rubber composition contains at least one heat conductive filler selected from heat conductive inorganic powder or metal powder. 前記シリコーンゴム組成物の熱伝導率は、0.5W/m−K以上である請求項1又は2に記載の熱圧着用シート。   The sheet for thermocompression bonding according to claim 1 or 2, wherein the silicone rubber composition has a thermal conductivity of 0.5 W / m-K or more. 前記織物は、ポリアクリロニトリル(PAN)系,ピッチ系,及びレーヨン系から選択された少なくとも一つの炭素繊維で織られた織物、前記炭素繊維とガラス繊維、又は炭素繊維とアラミド繊維を組み合わせて織られた織物である請求項1に記載の熱圧着用シート。   The woven fabric is woven with at least one carbon fiber selected from a polyacrylonitrile (PAN) system, a pitch system, and a rayon system, woven with a combination of the carbon fiber and glass fiber, or the carbon fiber and aramid fiber. The sheet for thermocompression bonding according to claim 1, wherein the sheet is a woven fabric. 前記熱圧着用シートの熱伝導率は、1.5W/m−K以上である請求項1〜4のいずれかに記載の熱圧着用シート。   The sheet for thermocompression bonding according to any one of claims 1 to 4, wherein the thermal conductivity of the sheet for thermocompression bonding is 1.5 W / m-K or more. 前記熱圧着用シートの全体の厚さが0.10mm〜10.0mmの範囲である請求項1〜5のいずれかに記載の熱圧着用シート。

The sheet for thermocompression bonding according to any one of claims 1 to 5, wherein a total thickness of the sheet for thermocompression bonding is in a range of 0.10 mm to 10.0 mm.

JP2005322657A 2005-11-07 2005-11-07 Sheet for thermocompression bonding Pending JP2007128829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005322657A JP2007128829A (en) 2005-11-07 2005-11-07 Sheet for thermocompression bonding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005322657A JP2007128829A (en) 2005-11-07 2005-11-07 Sheet for thermocompression bonding

Publications (1)

Publication Number Publication Date
JP2007128829A true JP2007128829A (en) 2007-05-24

Family

ID=38151300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005322657A Pending JP2007128829A (en) 2005-11-07 2005-11-07 Sheet for thermocompression bonding

Country Status (1)

Country Link
JP (1) JP2007128829A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535969A (en) * 2007-08-10 2010-11-25 オーリコン レイボルド バキューム ゲーエムベーハー Pump bearing arrangement
JP2011011361A (en) * 2009-06-30 2011-01-20 Shin-Etsu Chemical Co Ltd Hot press bonding silicone rubber sheet, and method for manufacturing the same
CN109709695A (en) * 2019-01-10 2019-05-03 京东方科技集团股份有限公司 Display base plate and its manufacturing method, display device
KR20210103657A (en) * 2020-02-14 2021-08-24 실리콘밸리(주) silicone pad for hot press

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283619U (en) * 1985-11-15 1987-05-28
JPH0846335A (en) * 1994-07-26 1996-02-16 Oki Electric Ind Co Ltd Heat conduction sheet
JP2001160607A (en) * 1999-12-02 2001-06-12 Polymatech Co Ltd Anisotropic heat conducting sheet
JP2004168025A (en) * 2002-10-31 2004-06-17 Fuji Polymer Industries Co Ltd Releasing sheet for thermo-compression bonding and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283619U (en) * 1985-11-15 1987-05-28
JPH0846335A (en) * 1994-07-26 1996-02-16 Oki Electric Ind Co Ltd Heat conduction sheet
JP2001160607A (en) * 1999-12-02 2001-06-12 Polymatech Co Ltd Anisotropic heat conducting sheet
JP2004168025A (en) * 2002-10-31 2004-06-17 Fuji Polymer Industries Co Ltd Releasing sheet for thermo-compression bonding and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535969A (en) * 2007-08-10 2010-11-25 オーリコン レイボルド バキューム ゲーエムベーハー Pump bearing arrangement
JP2011011361A (en) * 2009-06-30 2011-01-20 Shin-Etsu Chemical Co Ltd Hot press bonding silicone rubber sheet, and method for manufacturing the same
CN109709695A (en) * 2019-01-10 2019-05-03 京东方科技集团股份有限公司 Display base plate and its manufacturing method, display device
CN109709695B (en) * 2019-01-10 2021-12-24 京东方科技集团股份有限公司 Display substrate, manufacturing method thereof and display device
KR20210103657A (en) * 2020-02-14 2021-08-24 실리콘밸리(주) silicone pad for hot press
KR102380624B1 (en) 2020-02-14 2022-03-31 실리콘밸리(주) silicone pad for hot press

Similar Documents

Publication Publication Date Title
JP7389014B2 (en) insulation heat dissipation sheet
JP2001018330A (en) Heat-resistant heat conductive silicone rubber composite sheet and production thereof
CN104312476B (en) Silver coated copper powder conductive adhesive and preparation method thereof
EP0892978A1 (en) Conductive, resin-based compositions
WO2014010520A1 (en) Thermally conductive sheet
US20060063017A1 (en) Thermally conductive sheet and method for producing the same
EP3608384B1 (en) Heat-conductive sheet
CN107406728B (en) Adhesive composition sheet, method for producing same, and semiconductor device
JP2007153969A (en) Highly heat-conductive resin composition and substrate for wiring
JP4739009B2 (en) Heat resistant and heat conductive silicone rubber sheet for thermocompression bonding
JP2007128829A (en) Sheet for thermocompression bonding
JP2001160607A (en) Anisotropic heat conducting sheet
JP4530283B2 (en) Thermally conductive sheet and method for producing the same
JP7164527B2 (en) Heat dissipation sheet with high thermal conductivity and high insulation
WO2021187609A1 (en) Heat dissipation sheet and method for manufacturing heat dissipation sheet
JP6451451B2 (en) Manufacturing method of conductive sheet
WO2018078436A1 (en) Three-dimensionally shaped thermally conductive molded body, and manufacturing method thereof
JP7160102B2 (en) Semiconductor device manufacturing method and thermally conductive sheet
TWI447173B (en) Heat transfer elastic sheet and manufacturing method thereof
JP4489861B2 (en) Thermally conductive sheet
TWI604037B (en) Fluororesin sheet and manufacturing method thereof
CN108074821B (en) Graphite sheet for electromagnetic wave shielding and heat dissipation composite sheet, electromagnetic wave shielding and heat dissipation composite sheet comprising same and preparation method thereof
TWI790284B (en) Adsorption Temporary Fixation Sheet
JP2002003717A (en) Heat conductive sheet
CN109608886B (en) Enhanced organic silicon composite sheet with surface viscosity removal function

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071127

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100215

A131 Notification of reasons for refusal

Effective date: 20100223

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A02 Decision of refusal

Effective date: 20101118

Free format text: JAPANESE INTERMEDIATE CODE: A02