JP2001160607A - Anisotropic heat conducting sheet - Google Patents

Anisotropic heat conducting sheet

Info

Publication number
JP2001160607A
JP2001160607A JP34389999A JP34389999A JP2001160607A JP 2001160607 A JP2001160607 A JP 2001160607A JP 34389999 A JP34389999 A JP 34389999A JP 34389999 A JP34389999 A JP 34389999A JP 2001160607 A JP2001160607 A JP 2001160607A
Authority
JP
Japan
Prior art keywords
heat
heat conductive
conductive sheet
anisotropic
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34389999A
Other languages
Japanese (ja)
Inventor
Natsuko Ishihara
奈津子 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polymatech Co Ltd
Original Assignee
Polymatech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymatech Co Ltd filed Critical Polymatech Co Ltd
Priority to JP34389999A priority Critical patent/JP2001160607A/en
Publication of JP2001160607A publication Critical patent/JP2001160607A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Abstract

PROBLEM TO BE SOLVED: To provide an anisotropic heat conducting sheet which is high in thermal conductivity in parallel with a sheet plane and capable of diffusing heat to a heating element located distant from a heat source. SOLUTION: Short fiber pitch carbon fiber is filled in a matrix resin of silicone rubber as it is oriented in parallel with a sheet plane.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発熱性のある電子
部品等の熱源から発生する熱を、ヒートシンク等の放熱
体等に拡散させる熱伝導性シートに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat conductive sheet for diffusing heat generated from a heat source such as a heat-generating electronic component to a radiator such as a heat sink.

【0002】[0002]

【従来の技術】従来より、電子部品等の熱源から発生す
る熱の拡散方法として、ヒートシンク等の放熱体を用
い、そして熱源と放熱体の間に熱伝導性シリコーングリ
ースや柔軟性のある熱伝導性シリコーンゴムを介在させ
ることにより、接触熱抵抗を下げる構造が知られてい
る。超低硬度の熱伝導性シリコーンゴムを熱源と放熱体
の間に介在させると、発熱素子と放熱体の圧着に伴う変
形や損傷を防ぎ、また大きさや高さの異なる発熱素子が
高密度で実装された際の凹凸を吸収することができる。
2. Description of the Related Art Conventionally, as a method of diffusing heat generated from a heat source such as an electronic component, a heat radiator such as a heat sink is used, and a heat conductive silicone grease or a flexible heat conductive material is provided between the heat source and the heat radiator. A structure that lowers the contact thermal resistance by interposing a conductive silicone rubber is known. Ultra-low hardness thermally conductive silicone rubber is interposed between the heat source and the heat radiator to prevent deformation and damage due to the pressure contact between the heat radiator and the heat radiator, and to mount high density heat generating elements of different sizes and heights. Irregularities at the time of being performed can be absorbed.

【0003】そのような熱伝導性シートとしては、熱伝
導性を上げるためにマトリックス樹脂に熱伝導率の大き
な金属やセラミックス、炭素繊維などが充填されたもの
が公知である。例えば、特開平2−166755号公報
には、金属酸化物や窒化ホウ素をシリコーンゲルに混入
し、さらに表面に溝を設けた伝熱シートが提案され、圧
着時に撓んで熱膨張を吸収する構造となっている。
[0003] As such a heat conductive sheet, a sheet in which a metal, a ceramic, a carbon fiber or the like having a high heat conductivity is filled in a matrix resin in order to increase the heat conductivity is known. For example, Japanese Patent Application Laid-Open No. 2-166755 proposes a heat transfer sheet in which a metal oxide or boron nitride is mixed into a silicone gel, and a groove is provided on the surface thereof. Has become.

【0004】また、強度を持たせ作業性を向上させるた
めに、特開平2−196453号公報には熱伝導性フィ
ラーを混入したシリコーンゴムを強度保持層とし、熱伝
導性フィラーを混入した柔軟性シリコーンゲルを変形層
として複合化した熱伝導性シートが提案されている。
Japanese Patent Laid-Open Publication No. 2-196453 discloses a silicone rubber containing a heat conductive filler as a strength holding layer and a flexibility containing a heat conductive filler to improve the workability. There has been proposed a heat conductive sheet in which silicone gel is used as a deformable layer to form a composite.

【0005】さらにまた、特開平6−155517号公
報および特開平7−14950号公報には、網目状物、
樹脂製のフィルムあるいは不織布から選ばれる補強層を
有した低硬度シリコーンゴムシートが提案されている。
Further, JP-A-6-155517 and JP-A-7-14950 disclose mesh-like materials,
A low-hardness silicone rubber sheet having a reinforcing layer selected from a resin film or a nonwoven fabric has been proposed.

【0006】一方、ノートパソコンや携帯電話など小型
化や薄型化の進む電子機器においては、CPUやIC等
の熱源の上に十分なスペースが確保できないために、熱
源から離れた位置に放熱体を設けて熱を拡散している。
例えば、ノートパソコンにおいて放熱体をLCD側に設
けたり、複数の熱源から発生する熱を離れた位置にある
放熱体に伝える構造が考えられている。
On the other hand, in electronic devices such as notebook personal computers and mobile phones that are becoming smaller and thinner, a sufficient space cannot be secured on a heat source such as a CPU or an IC. Provided to spread the heat.
For example, in a notebook personal computer, a structure is considered in which a heat radiator is provided on the LCD side, or heat generated from a plurality of heat sources is transmitted to a heat radiator at a remote position.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来使
用されている熱伝導性グリースや前述のような熱伝導性
シートは熱源と放熱体の間に挟んで使用するものであ
り、シートの厚み方向と面方向の熱伝導率が等しい等方
性の熱伝導性シートであって、熱源から離れた位置に放
熱体を設けて熱を拡散する放熱構造には適さなかった。
However, conventionally used thermal conductive grease and the above-described thermal conductive sheet are used between a heat source and a heat radiator, and the thickness of the sheet depends on the thickness. It is an isotropic heat conductive sheet having the same heat conductivity in the plane direction, and is not suitable for a heat radiation structure in which a heat radiator is provided at a position distant from a heat source to diffuse heat.

【0008】炭素繊維からなる放熱材料として、特開平
9−283955号公報には平均アスペクト比が3未満
の黒鉛質炭素繊維が充填された放熱シートが提案されて
いる。しかしながら、炭素繊維はランダムな向きに分散
されており、厚み方向と面方向の熱伝導率が等しい等方
性の熱伝導性シートであったため、熱源から離れた位置
にある放熱体に熱を伝えにくいという問題があった。
As a heat radiating material made of carbon fiber, Japanese Patent Application Laid-Open No. 9-283955 proposes a heat radiating sheet filled with a graphitic carbon fiber having an average aspect ratio of less than 3. However, the carbon fibers are distributed in random directions, and because they are isotropic heat conductive sheets with the same thermal conductivity in the thickness direction and the plane direction, they transfer heat to the radiator located away from the heat source. There was a problem that it was difficult.

【0009】その他にも、特開平10−330502号
公報では炭素繊維がシートの面に沿って配向されている
充填シートを提案しているが、熱を広い面積に広げる用
途の記載のみであって、熱源から離れた位置にある放熱
体に熱を伝えるという用途は示されていない。さらに、
充填シートの具体的な製法および効果の詳細な説明がな
されていない。
[0009] In addition, Japanese Patent Application Laid-Open No. 10-330502 proposes a filling sheet in which carbon fibers are oriented along the surface of the sheet, but only describes a use for spreading heat over a wide area. However, there is no disclosure of an application for transferring heat to a radiator located at a position away from a heat source. further,
There is no detailed description of the specific manufacturing method and effect of the filling sheet.

【0010】[0010]

【課題を解決するための手段】本発明は、上記の課題を
解決するものであり、シート平面と平行方向に高い熱伝
導性を有し熱源から離れた位置にある放熱体に熱を拡散
する熱伝導性シートを提供することを目的とする。すな
わち本発明は、シリコーンゴムからなるマトリックス樹
脂に、短繊維状ピッチ系炭素繊維がシート平面と平行方
向に配向して充填されていることを特徴とする、熱源か
ら離れた位置にある放熱体へ熱を拡散する異方性熱伝導
性シートである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has high thermal conductivity in a direction parallel to a sheet plane and diffuses heat to a radiator located at a position remote from a heat source. An object is to provide a heat conductive sheet. That is, the present invention is directed to a radiator located at a position away from a heat source, characterized in that matrix fibers made of silicone rubber are filled with short fibrous pitch-based carbon fibers oriented in a direction parallel to the sheet plane. It is an anisotropic heat conductive sheet that diffuses heat.

【0011】さらに、短繊維状ピッチ系炭素繊維がシー
ト平面と平行な一方向に配向して充填されていることを
特徴とする異方性熱伝導性シートである。さらに、酸化
アルミニウム、酸化マグネシウム、窒化ホウ素、窒化ア
ルミニウム、炭化ケイ素、水酸化アルミニウムから選ば
れた少なくとも一種の熱伝導性充填剤が充填されている
ことを特徴とする異方性熱伝導性シートである。
Further, there is provided an anisotropic heat conductive sheet characterized in that short fibrous pitch-based carbon fibers are filled while being oriented in one direction parallel to the sheet plane. Further, an anisotropic heat conductive sheet characterized by being filled with at least one heat conductive filler selected from aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon carbide, and aluminum hydroxide. is there.

【0012】さらに、少なくとも片面に電気絶縁層が積
層されていることを特徴とする異方性熱伝導性シートで
ある。さらに、電気絶縁層が、シリコーンゴムに酸化ア
ルミニウム、酸化マグネシウム、窒化ホウ素、窒化アル
ミニウム、炭化ケイ素、水酸化アルミニウムから選ばれ
た少なくとも一種の熱伝導性充填剤が充填され、かつ硬
化後の硬度がアスカーC硬度で30未満であることを特
徴とする異方性熱伝導性シートである。さらに、表面あ
るいは内部に網目状物、織布、不織布、フィルムから選
ばれた少なくとも一種の補強層を有することを特徴とす
る異方性熱伝導性シートである。
Further, there is provided an anisotropic heat conductive sheet characterized in that an electric insulating layer is laminated on at least one side. Further, the electrical insulating layer is formed by filling the silicone rubber with at least one heat conductive filler selected from aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon carbide, and aluminum hydroxide, and having a hardness after curing. An anisotropic heat conductive sheet having an Asker C hardness of less than 30. Further, an anisotropic heat conductive sheet characterized by having at least one type of reinforcing layer selected from a mesh, a woven fabric, a nonwoven fabric and a film on the surface or inside.

【0013】[0013]

【発明の実施の形態】以下、本発明に関してさらに詳し
く説明する。本発明で用いるピッチ系炭素繊維として
は、石油系あるいは石炭系に限らず光学的異方性ピッチ
と光学的等方性ピッチに区別されるうち、高強度、高弾
性率であり、かつ耐薬品性、耐高温酸化性に優れた光学
的異方性ピッチを用いることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The pitch-based carbon fiber used in the present invention is not limited to petroleum-based or coal-based, but is classified into optically anisotropic pitch and optically isotropic pitch, and has high strength, high elastic modulus, and chemical resistance. It is preferable to use an optically anisotropic pitch excellent in heat resistance and high-temperature oxidation resistance.

【0014】さらには、光学的異方性ピッチを原料とし
て1500〜3000℃程で熱処理を行った黒鉛化ピッ
チが繊維長方向に高い熱伝導率を有するため好ましい。
この熱処理は短繊維状にする前の繊維に行っても短繊維
状にした後で行っても構わない。
Further, a graphitized pitch obtained by heat-treating an optically anisotropic pitch as a raw material at about 1500 to 3000 ° C. is preferable since it has a high thermal conductivity in the fiber length direction.
This heat treatment may be performed on the fibers before the short fibers or after the short fibers.

【0015】短繊維の繊維長としては特に限定するもの
ではないが、平均長20μm〜1mmの範囲のものがマ
トリックス樹脂に充填し易く好ましい。平均長が20μ
mよりも短いと嵩比重が小さくなり、マトリックス樹脂
への充填が困難となって作業性が低下するため適さな
い。平均長が1mmを超えると繊維同士が絡まりあって
高充填できず、硬化後の熱伝導性シート表面に凹凸を生
じてしまうため適さない。さらにマトリックス樹脂との
ぬれ性を向上させるため、ピッチ系炭素繊維に、電解酸
化、UV改質、コロナ改質、カップリング剤塗布等の表
面処理を施しても構わない。
Although the fiber length of the short fibers is not particularly limited, those having an average length in the range of 20 μm to 1 mm are preferable because they can be easily filled in the matrix resin. Average length 20μ
If it is shorter than m, the bulk specific gravity becomes small, and it becomes difficult to fill the matrix resin, and the workability is reduced, which is not suitable. If the average length exceeds 1 mm, the fibers are entangled with each other and cannot be filled at a high level. Further, in order to improve the wettability with the matrix resin, the pitch-based carbon fiber may be subjected to a surface treatment such as electrolytic oxidation, UV modification, corona modification, and application of a coupling agent.

【0017】本発明のマトリックス樹脂には、シリコー
ンゴム、エポキシ樹脂、ウレタン樹脂、フッ素ゴム等が
挙げられるが、加工性に優れ、耐熱性が高く、物性値の
温度依存性が小さいシリコーンゴムが好ましい。さらに
シリコーンゲルを用いることで硬度の低いシリコーンゴ
ム層とすることができる。
The matrix resin of the present invention includes silicone rubber, epoxy resin, urethane resin, fluororubber and the like. Silicone rubber which is excellent in workability, has high heat resistance, and has small temperature dependence of physical properties is preferable. . Further, by using silicone gel, a silicone rubber layer having low hardness can be obtained.

【0018】このようなシリコーンゴム及びシリコーン
ゲルは、公知のポリオルガノシロキサンを硬化すること
によって得られる。硬化方法については限定するもので
はなく、有機過酸化物によるラジカル反応、ビニル基を
含むポリオルガノシロキサンとケイ素原子に結合した水
素原子を有するオルガノハイドロジェンと白金系触媒と
からなる付加反応、縮合反応等が挙げられる。その中で
も、液状の付加反応型ポリオルガノシロキサンを用いる
と成形時に短繊維状ピッチ系炭素繊維がシート平面と平
行方向に配向し易く好ましい。シリコーンゴムには補強
性シリカや難燃剤、着色剤、耐熱性向上剤、接着助剤、
粘着剤、可塑剤、オイル、硬化遅延剤等が添加されてい
ても良い。
Such silicone rubber and silicone gel can be obtained by curing a known polyorganosiloxane. The curing method is not limited, and a radical reaction with an organic peroxide, an addition reaction comprising a polyorganosiloxane containing a vinyl group, an organohydrogen having a hydrogen atom bonded to a silicon atom, and a platinum-based catalyst, and a condensation reaction And the like. Among them, the use of a liquid addition-reaction type polyorganosiloxane is preferable because the short fibrous pitch-based carbon fibers are easily oriented in a direction parallel to the sheet plane during molding. Silicone rubber has reinforcing silica, flame retardant, colorant, heat resistance improver, adhesion aid,
An adhesive, a plasticizer, an oil, a curing retarder and the like may be added.

【0019】本発明における熱伝導性シートの成形方法
は限定するものではないが、プレス成形、射出成形、押
出成形、カレンダー成形、ロール成形、ドクターブレー
ド成形等が挙げられ、これらの成形によりシリコーンゴ
ムに充填した短繊維状ピッチ系炭素繊維の繊維長方向を
流れ方向、すなわちシート平面と平行方向に配向させる
ことができる。さらにシート平面と平行な一方向(y軸
方向)に繊維を配向させるために、y軸方向を流れ方向
として射出成形、押し出し成形、カレンダー成形、ロー
ル成形、ドクターブレード成形等を行うことにより、y
軸方向への熱伝導性をより向上させることができる。
The method for forming the thermally conductive sheet in the present invention is not limited, but includes press molding, injection molding, extrusion molding, calender molding, roll molding, doctor blade molding and the like. The length direction of the short fibrous pitch-based carbon fibers filled in the fiber can be oriented in the flow direction, that is, the direction parallel to the sheet plane. Further, in order to orient the fiber in one direction (y-axis direction) parallel to the sheet plane, injection molding, extrusion molding, calender molding, roll molding, doctor blade molding, etc. are performed with the y-axis direction as the flow direction.
Thermal conductivity in the axial direction can be further improved.

【0020】本発明の熱伝導性充填剤は、熱伝導性の優
れる酸化アルミニウム、酸化マグネシウム、フェライ
ト、窒化ホウ素、窒化アルミニウム、炭化ケイ素、水酸
化アルミニウム等の金属酸化物、金属窒化物、金属炭化
物、金属水酸化物や、銀、金、銅、アルミニウム、マグ
ネシウム等の金属や合金、並びにダイヤモンドやグラフ
ァイトから選ばれる少なくとも一種の球状、粉体状、繊
維状、針状、鱗片状、ペレット状の充填剤が挙げられ
る。その中でも、電気絶縁性に優れる酸化アルミニウ
ム、酸化マグネシウム、窒化ホウ素、窒化アルミニウ
ム、炭化ケイ素、水酸化アルミニウムから選ばれる少な
くとも一種の熱伝導性充填剤が好ましい。
The heat-conductive filler of the present invention includes metal oxides, metal nitrides, metal carbides such as aluminum oxide, magnesium oxide, ferrite, boron nitride, aluminum nitride, silicon carbide and aluminum hydroxide, which have excellent heat conductivity. , Metal hydroxides, and metals and alloys such as silver, gold, copper, aluminum and magnesium, and at least one type of sphere, powder, fiber, needle, scale, or pellet selected from diamond and graphite. Fillers. Among them, at least one kind of thermally conductive filler selected from aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon carbide, and aluminum hydroxide, which is excellent in electric insulation, is preferable.

【0021】さらに熱伝導性充填剤の表面を公知のカッ
プリング剤等にて表面処理することによって、分散性を
向上することが可能である。このような熱伝導性充填剤
を短繊維状ピッチ系炭素繊維と共にマトリックス樹脂中
に充填させることにより、熱伝導率及びシート強度を向
上させることができる。
Further, by subjecting the surface of the heat conductive filler to a surface treatment with a known coupling agent or the like, the dispersibility can be improved. By filling such a thermally conductive filler in the matrix resin together with the short fibrous pitch-based carbon fibers, the thermal conductivity and the sheet strength can be improved.

【0022】本発明の熱伝導性シートの少なくとも片面
に積層される電気絶縁層には、ポリイミド、ポリエチレ
ンテレフタレート、ポリテトラフルオロエチレン等の耐
熱性樹脂フィルムや、アラミド繊維、ポリエステル繊維
等の織布あるいは不織布、またはシリコーンゴム、フッ
素ゴム等からなる電気絶縁層が挙げられる。電気絶縁層
の厚みは特に限定するものではない。
The electrically insulating layer laminated on at least one side of the heat conductive sheet of the present invention may be made of a heat-resistant resin film such as polyimide, polyethylene terephthalate, polytetrafluoroethylene, or a woven fabric such as aramid fiber or polyester fiber. Examples include a nonwoven fabric, or an electrically insulating layer made of silicone rubber, fluorine rubber, or the like. The thickness of the electric insulating layer is not particularly limited.

【0023】さらに、電気絶縁層の積層による熱伝導性
シートの熱伝導率の低下を抑えるために、これらの電気
絶縁層に電気絶縁性および熱伝導性の充填剤である、酸
化アルミニウム、酸化マグネシウム、窒化ホウ素、窒化
アルミニウム、炭化ケイ素、水酸化アルミニウムから選
ばれる少なくとも一種の熱伝導性充填剤が配合されたも
のが好ましい。
Further, in order to suppress a decrease in the thermal conductivity of the thermally conductive sheet due to the lamination of the electrically insulating layers, aluminum oxide and magnesium oxide, which are electrically insulating and thermally conductive fillers, are added to these electrically insulating layers. It is preferable that at least one kind of thermally conductive filler selected from the group consisting of boron, boron nitride, aluminum nitride, silicon carbide and aluminum hydroxide is blended.

【0024】さらに電気絶縁層のマトリックス樹脂とし
てシリコーンゲルを用い、硬化後の硬度がアスカーC硬
度で30未満とすることにより、熱源および放熱体との
接触面積が向上し、接触熱抵抗が低下するため好まし
い。なお、アスカーC硬度とは、SRIS 0101
(日本ゴム協会規格)およびJIS S6050に基づ
き、スプリング式硬さ試験機アスカーC型を使用して測
定した硬さである。
Further, by using silicone gel as the matrix resin of the electric insulating layer and setting the hardness after curing to less than 30 in Asker C hardness, the contact area with the heat source and the heat radiator is improved, and the contact thermal resistance is reduced. Therefore, it is preferable. The Asker C hardness is SRIS 0101.
This is a hardness measured by using a spring type hardness tester Asker C type based on (JIS of Japan Rubber Association) and JIS S6050.

【0025】本発明の補強層は、上記の電気絶縁層の
他、ガラス製、金属製、耐熱性の樹脂製、炭素繊維製等
の網目状物、織布、不織布またはフィルムが適してお
り、特に網目状物を用いると開口部分にマトリックス樹
脂が入り込み補強性が向上する。さらに、マトリックス
樹脂とのぬれ性を向上するため、補強層に電解酸化、U
V改質、コロナ改質、カップリング剤塗布等の表面処理
を施しても構わない。
As the reinforcing layer of the present invention, in addition to the above-mentioned electric insulating layer, a network, a woven fabric, a nonwoven fabric or a film made of glass, metal, heat-resistant resin, carbon fiber or the like is suitable. In particular, when a mesh-like material is used, the matrix resin enters the opening and the reinforcing property is improved. Furthermore, in order to improve the wettability with the matrix resin, electrolytic oxidation is applied to the reinforcing layer,
Surface treatment such as V modification, corona modification, and application of a coupling agent may be performed.

【0026】本発明の異方性熱伝導性シートの例を図1
〜4に示す。図1はシリコーンゴム2に短繊維状ピッチ
系炭素繊維1がx−y面の一方向であるy軸方向に配向
して充填されてなる異方性熱伝導性シートの構成図であ
る。図2はシリコーンゴム2に短繊維状ピッチ系炭素繊
維1がx−y面の一方向であるy軸方向に配向して充填
され、さらに熱伝導性充填剤3が分散配合されてなる異
方性熱伝導性シートの構成図である。
FIG. 1 shows an example of the anisotropic heat conductive sheet of the present invention.
Are shown in FIGS. FIG. 1 is a configuration diagram of an anisotropic heat conductive sheet in which short fibrous pitch-based carbon fibers 1 are filled in a silicone rubber 2 while being oriented in a y-axis direction which is one direction of an xy plane. FIG. 2 shows an anisotropic composition in which short fibrous pitch-based carbon fibers 1 are filled in silicone rubber 2 while being oriented in the y-axis direction, which is one direction of the xy plane, and a thermally conductive filler 3 is dispersed and blended. It is a lineblock diagram of a conductive heat conductive sheet.

【0027】図3(a)はシリコーンゴム2に短繊維状
ピッチ系炭素繊維1がx−y面の一方向であるy軸方向
に配向して充填され、片面に電気絶縁層4を積層してな
る異方性熱伝導性シートの構成図である。図3(b)は
シリコーンゴム2に短繊維状ピッチ系炭素繊維1がx−
y面の一方向であるy軸方向に配向して充填され、片面
に熱伝導性充填剤3が充填された電気絶縁層4を積層し
てなる異方性熱伝導性シートの構成図である。図3
(c)はシリコーンゴム2に短繊維状ピッチ系炭素繊維
1がx−y面の一方向であるy軸方向に配向して充填さ
れ、熱伝導性充填剤3が分散配合されてなる電気絶縁層
4を熱伝導性シートの両面に積層してなる異方性熱伝導
性シートの構成図である。
FIG. 3A shows a short fibrous pitch-based carbon fiber 1 filled in a silicone rubber 2 oriented in the y-axis direction, which is one direction of the xy plane, and an electrical insulating layer 4 laminated on one side. 1 is a configuration diagram of an anisotropic heat conductive sheet. FIG. 3B shows that the short fibrous pitch-based carbon fiber 1 is added to the silicone rubber 2 by x-.
FIG. 3 is a configuration diagram of an anisotropic heat conductive sheet formed by laminating an electric insulating layer 4 that is filled while being oriented in the y-axis direction, which is one direction of the y-plane, and has one surface filled with a heat conductive filler 3. . FIG.
(C) shows an electrical insulation in which short fibrous pitch-based carbon fibers 1 are filled in a silicone rubber 2 while being oriented in the y-axis direction which is one direction of the xy plane, and a thermally conductive filler 3 is dispersed and blended. It is a block diagram of the anisotropic heat conductive sheet formed by laminating layer 4 on both sides of the heat conductive sheet.

【0028】図4(a)はシリコーンゴム2に短繊維状
ピッチ系炭素繊維1がx−y面の一方向であるy軸方向
に配向して充填され、片面に補強層5を積層してなる異
方性熱伝導性シートの構成図である。図4(b)はシリ
コーンゴム2に短繊維状ピッチ系炭素繊維1がx−y面
の一方向であるy軸方向に配向して充填され、熱伝導性
充填剤3が分散配合されてなるシートの内部に補強層5
を積層してなる異方性熱伝導性シートの構成図である。
図4(c)はシリコーンゴム2に短繊維状ピッチ系炭素
繊維1がx−y面の一方向であるy軸方向に配向して充
填されたシートの片面に補強層5を積層し、さらに熱伝
導性充填剤3が充填された電気絶縁層4を積層してなる
異方性熱伝導性シートの構成図である。図4(d)はシ
リコーンゴム2に短繊維状ピッチ系炭素繊維1がx−y
面の一方向であるy軸方向に配向して充填されたシート
の片面に、内部に補強層5を有する電気絶縁層4を積層
してなる異方性熱伝導性シートの構成図である。
FIG. 4 (a) shows a short fibrous pitch-based carbon fiber 1 filled in a silicone rubber 2 oriented in the y-axis direction, which is one direction of the xy plane, and a reinforcing layer 5 laminated on one side. 1 is a configuration diagram of an anisotropic heat conductive sheet. FIG. 4 (b) shows that short fibrous pitch-based carbon fibers 1 are filled in silicone rubber 2 while being oriented in the y-axis direction which is one direction of the xy plane, and thermally conductive filler 3 is dispersed and blended. Reinforcing layer 5 inside sheet
FIG. 3 is a configuration diagram of an anisotropic heat conductive sheet obtained by laminating.
FIG. 4C shows a sheet in which the short fibrous pitch-based carbon fibers 1 are filled in the silicone rubber 2 in a direction oriented in the y-axis direction, which is one direction of the xy plane, and the reinforcing layer 5 is laminated on one side of the sheet. FIG. 3 is a configuration diagram of an anisotropic heat conductive sheet formed by laminating an electric insulating layer 4 filled with a heat conductive filler 3. FIG. 4D shows that the short fibrous pitch-based carbon fiber 1 is xy in the silicone rubber 2.
FIG. 2 is a configuration diagram of an anisotropic heat conductive sheet obtained by laminating an electric insulating layer 4 having a reinforcing layer 5 inside on one side of a sheet filled in a direction oriented in the y-axis direction which is one direction of the surface.

【0029】本発明の異方性熱伝導性シートを用いた電
子機器の放熱構造例を図5および6に示す。図5はプリ
ント基板8上の熱源6からの熱を、離れた位置にありプ
リント基板8に平行に置かれた放熱体7に拡散するよう
な電子機器の放熱構造の図である。本発明の異方性熱伝
導性シート9を用いることにより、スムーズな熱の流れ
10が生じる。図6はプリント基板8上の熱源6からの
熱を、離れた位置にあり、プリント基板8に交差するよ
うに置かれた放熱体7に拡散するような電子機器の放熱
構造の図である。本発明の異方性熱伝導性シート9を用
いることにより、折り曲げて使用することも可能であ
り、スムーズな熱の流れ10が生じる。
FIGS. 5 and 6 show examples of a heat radiation structure of an electronic device using the anisotropic heat conductive sheet of the present invention. FIG. 5 is a diagram of a heat dissipation structure of an electronic device in which heat from the heat source 6 on the printed board 8 is diffused to a radiator 7 located at a remote position and parallel to the printed board 8. By using the anisotropic heat conductive sheet 9 of the present invention, a smooth heat flow 10 is generated. FIG. 6 is a diagram of a heat dissipation structure of an electronic device in which heat from the heat source 6 on the printed circuit board 8 is diffused to a radiator 7 located at a remote position so as to cross the printed circuit board 8. By using the anisotropic heat conductive sheet 9 of the present invention, the sheet can be bent and used, and a smooth heat flow 10 is generated.

【0030】以下の実施例にて、本発明の異方性熱伝導
性シートを具体的に説明する。各実施例と比較例にて得
られた熱伝導性シートの熱伝導率は、迅速熱伝導率計
(京都電子工業株式会社製 QTM−500)で測定し
た。表面抵抗は抵抗率計(三菱油化製 MCP−T30
0 ロレスタCP)で測定した。また面方向の伝熱性の
評価方法を以下に示す。
The following examples specifically describe the anisotropic heat conductive sheet of the present invention. The thermal conductivity of the thermal conductive sheet obtained in each of the examples and comparative examples was measured by a rapid thermal conductivity meter (QTM-500, manufactured by Kyoto Electronics Industry Co., Ltd.). Surface resistance is measured with a resistivity meter (MCP-T30 manufactured by Mitsubishi Yuka).
0 Loresta CP). The method for evaluating the heat conductivity in the plane direction is described below.

【0031】5×5cmのヒーター面に5×12cmの
試料を密着させ、試料のヒーターと密着しない部分は断
熱材で囲って支持した後、ヒーターを加熱していき、1
1分後にヒーターとヒーターから3.5cm離れた点の
温度を測定し、室温との差ΔTを求めることにより評価
した。この時、ヒーターのΔT(以下ΔT)が小さい
ほど熱がよく拡散されたことを表し、試料のΔT(以下
ΔT)が大きいほどシート平面と平行方向によく熱が
伝わったことを表す。測定の結果と、各熱伝導性シート
の比重を表1に示す。
A sample of 5 × 12 cm was brought into close contact with the heater surface of 5 × 5 cm, and a portion of the sample that did not adhere to the heater was surrounded and supported by a heat insulating material, and then the heater was heated.
One minute later, the temperature of the heater and a point 3.5 cm away from the heater were measured, and the difference ΔT from the room temperature was evaluated. At this time, the smaller the ΔT (hereinafter ΔT H ) of the heater, the better the heat was diffused, and the larger the ΔT (hereinafter, ΔT S ) of the sample, the better the heat was transmitted in a direction parallel to the sheet plane. Table 1 shows the measurement results and the specific gravity of each heat conductive sheet.

【0032】[0032]

【実施例1】図1に本実施例の異方性熱伝導性シートを
示す。液状の付加反応型シリコーンゲル2(GE東芝シ
リコーン株式会社製)に、短繊維状ピッチ系炭素繊維1
(株式会社ペトカ製 メルブロンミルド)を57wt%
充填し、ドクターブレード成形により、y軸方向を流れ
方向として一方向に展開してシーティングした後加熱硬
化させ、厚さ0.7mmの異方性熱伝導性シートを得
た。
Embodiment 1 FIG. 1 shows an anisotropic heat conductive sheet of this embodiment. A short fibrous pitch-based carbon fiber 1 is added to a liquid addition reaction type silicone gel 2 (GE Toshiba Silicone Co., Ltd.).
57% by weight (Metal Bron Mill manufactured by Petka Co., Ltd.)
It was filled, developed by doctor blade molding in one direction with the y-axis direction as the flow direction, sheeted, and then heat-cured to obtain a 0.7 mm thick anisotropic heat conductive sheet.

【0033】[0033]

【実施例2】液状の付加反応型シリコーンゴム2(GE
東芝シリコーン株式会社製)に短繊維状ピッチ系炭素繊
維1(株式会社ペトカ製 メルブロンミルド)を67w
t%充填し、プレス成形により実施例1と同様の構成
の、厚さ0.7mmの異方性熱伝導性シートを得た。
Example 2 Liquid addition reaction type silicone rubber 2 (GE
Toshiba Silicone Co., Ltd.) with short fibrous pitch-based carbon fiber 1 (Petoka Co., Ltd., Melbron Milled) 67w
Then, an anisotropic heat conductive sheet having the same configuration as that of Example 1 and a thickness of 0.7 mm was obtained by press molding.

【0034】[0034]

【実施例3】図2に本実施例の異方性熱伝導性シートを
示す。液状の付加反応型シリコーンゲル2(GE東芝シ
リコーン株式会社製)に短繊維状ピッチ系炭素繊維1
(株式会社ペトカ製 メルブロンミルド)を50wt%
充填し、さらに熱伝導性充填剤3として酸化アルミニウ
ム粉末(昭和電工株式会社製 球状アルミナAS−2
0)を充填したシリコーンコンパウンドを、ドクターブ
レード成形によりy軸方向を流れ方向として一方向に展
開してシーティングした後加熱硬化させ、厚さ0.7m
mの異方性熱伝導性シートを得た。
Embodiment 3 FIG. 2 shows an anisotropic heat conductive sheet of this embodiment. Short fibrous pitch-based carbon fiber 1 in liquid addition reaction type silicone gel 2 (GE Toshiba Silicone Co., Ltd.)
(Petoka Co., Ltd. Melbron Milled) 50 wt%
Aluminum oxide powder (manufactured by Showa Denko KK, spherical alumina AS-2)
The silicone compound filled with 0) was developed and sheeted in one direction with the y-axis direction as the flow direction by doctor blade molding, and then heated and cured to a thickness of 0.7 m.
m was obtained.

【0035】[0035]

【実施例4】図3(b)に本実施例の異方性熱伝導性シ
ートを示す。実施例1で得られた異方性熱伝導性シート
の片面に、熱伝導性充填剤3として酸化アルミニウム粉
末(昭和電工株式会社製 球状アルミナAS−20)を
充填したシリコーンコンパウンドをドクターブレード成
形により積層した後加熱硬化させ電気絶縁層4とし、厚
さ0.7mmの異方性熱伝導性シートを得た。
Embodiment 4 FIG. 3 (b) shows an anisotropic heat conductive sheet of this embodiment. A silicone compound in which aluminum oxide powder (spherical alumina AS-20 manufactured by Showa Denko KK) was filled as one of the heat conductive fillers 3 on one side of the anisotropic heat conductive sheet obtained in Example 1 by doctor blade molding. After lamination, it was cured by heating to form an electric insulating layer 4 to obtain an anisotropic heat conductive sheet having a thickness of 0.7 mm.

【0036】[0036]

【実施例5】図3(a)または図4(a)に本実施例の
異方性熱伝導性シートを示す。厚さ50μmのポリイミ
ドフィルム上で実施例1と同様の材料をドクターブレー
ド成形によりy軸方向を流れ方向として一方向に展開し
てシーティングし積層した後、加熱硬化させ、異方性熱
伝導性シートを作製し、ポリイミドフィルムからなる電
気絶縁層4および補強層5を積層し、厚さ0.7mmの
異方性熱伝導性シートを得た。
Embodiment 5 FIG. 3A or FIG. 4A shows an anisotropic heat conductive sheet of this embodiment. On a polyimide film having a thickness of 50 μm, the same material as in Example 1 was developed in one direction with the y-axis direction as the flow direction by doctor blade molding, sheeted and laminated, and then heated and cured to form an anisotropic heat conductive sheet. And an electrical insulating layer 4 made of a polyimide film and a reinforcing layer 5 were laminated to obtain a 0.7 mm-thick anisotropic heat conductive sheet.

【0037】[0037]

【実施例6】図4(c)に本実施例の異方性熱伝導性シ
ートを示す。実施例1で得られた異方性熱伝導性シート
に、補強層5として網目状のナイロンクロスを置き、さ
らに熱伝導性充填剤3として酸化アルミニウム粉末(昭
和電工株式会社製 球状アルミナAS−20)を充填し
たシリコーンコンパウンドをドクターブレード成形によ
りシーティングし積層した後加熱硬化させ、厚さ0.7
mmの異方性熱伝導性シートを得た。
Embodiment 6 FIG. 4C shows an anisotropic heat conductive sheet of this embodiment. A network-like nylon cloth is placed on the anisotropic heat conductive sheet obtained in Example 1 as the reinforcing layer 5 and aluminum oxide powder (spherical alumina AS-20 manufactured by Showa Denko KK) is used as the heat conductive filler 3. ) -Filled silicone compound is sheeted by doctor blade molding and laminated, then heated and cured to a thickness of 0.7.
mm was obtained.

【0038】[0038]

【比較例1】液状の付加反応型シリコーンゲル2(東芝
シリコーン株式会社製)に酸化アルミニウム粉末(昭和
電工株式会社製 球状アルミナAS−20)を充填した
シリコーンコンパウンドを、ドクターブレード法により
厚さ0.7mmのシート状に展開した後加熱硬化させ、
硬度がアスカーC硬度27の熱伝導性シートを得た。
Comparative Example 1 A silicone compound obtained by filling a liquid addition reaction type silicone gel 2 (manufactured by Toshiba Silicone Co., Ltd.) with an aluminum oxide powder (spherical alumina AS-20 manufactured by Showa Denko KK) was applied to a thickness of 0 by a doctor blade method. After being developed into a sheet of 0.7 mm, it is cured by heating,
A heat conductive sheet having a hardness of Asker C hardness 27 was obtained.

【0039】[0039]

【表1】 [Table 1]

【0040】表1によれば、比較例1は電気絶縁性に優
れるけれども熱伝導性が低く、ΔT が小さい、すなわ
ち面方向の伝熱性が悪いためにΔTが大きくなり、ヒ
ーターの熱を拡散することができない。また、添加する
熱伝導性充填剤の比重が大きいために得られた熱伝導性
シートの比重も大きくなり、電子機器の軽量化を妨げる
要因となってしまう。
According to Table 1, Comparative Example 1 was excellent in electrical insulation.
But low thermal conductivity, ΔT SBut small
ΔT due to poor heat transferHGrows larger
Cannot spread the heat of the rotor. Also add
Thermal conductivity obtained due to high specific gravity of thermal conductive filler
The specific gravity of the seat also increases, preventing the weight reduction of electronic devices
It becomes a factor.

【0041】[0041]

【発明の効果】一方、本発明の異方性熱伝導性シートは
短繊維状ピッチ系炭素繊維をシリコーンゴムに充填し、
シリコーンゴムの一般的な成形方法によって繊維長方向
をシート平面と平行方向に配向させることにより、シー
ト平面と平行方向によく熱を伝えて熱源から離れた位置
にある放熱体に熱を拡散することができる。
On the other hand, the anisotropic heat conductive sheet of the present invention is prepared by filling short fibrous pitch-based carbon fibers into silicone rubber,
By orienting the fiber length direction parallel to the sheet plane by the general molding method of silicone rubber, heat is transmitted well in the direction parallel to the sheet plane, and the heat is diffused to a radiator located away from the heat source. Can be.

【0042】さらには、成形時の流れ方向をy軸方向と
することで特にy軸方向に熱伝導性を向上させた異方性
熱伝導性シートが得られる。また、ピッチ系炭素繊維の
比重が小さいために得られた熱伝導性シートの比重も小
さくなっている。さらに、電気絶縁層を積層した場合で
は表面抵抗が高く、絶縁性を求められる用途においても
熱伝導率の高い熱伝導性シートとして使用することがで
きる。
Further, by setting the flow direction at the time of molding to the y-axis direction, an anisotropic heat conductive sheet having improved heat conductivity particularly in the y-axis direction can be obtained. Further, since the specific gravity of the pitch-based carbon fiber is small, the specific gravity of the obtained heat conductive sheet is also small. Furthermore, when an electric insulating layer is laminated, the surface resistance is high, and it can be used as a heat conductive sheet having high heat conductivity even in applications requiring insulation.

【0043】さらにまた、補強層を複合することにより
作業性と形状保持性に優れたものとなる。さらに、金属
板を使用する場合には電子機器の軽量化を妨げる要因と
なるばかりでなく、硬くて使用形態が限られるという問
題があるが、マトリックス樹脂に柔軟なシリコーンゴム
を用いることにより折り曲げて使用することができる。
Furthermore, by combining the reinforcing layer, workability and shape retention can be excellent. Furthermore, when a metal plate is used, not only is it a factor that hinders the weight reduction of electronic devices, but there is a problem that it is hard and its use form is limited, but it is bent by using a flexible silicone rubber for the matrix resin. Can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の異方性熱伝導性シートの構成例を示
す。
FIG. 1 shows a configuration example of an anisotropic heat conductive sheet of the present invention.

【図2】本発明の異方性熱伝導性シートの構成例を示
す。
FIG. 2 shows a configuration example of an anisotropic heat conductive sheet of the present invention.

【図3】本発明の異方性熱伝導性シートの構成例を示
す。
FIG. 3 shows a configuration example of the anisotropic heat conductive sheet of the present invention.

【図4】本発明の異方性熱伝導性シートの構成例を示
す。
FIG. 4 shows a configuration example of an anisotropic heat conductive sheet of the present invention.

【図5】本発明の異方性熱伝導性シートを用いた電子機
器の放熱構造例を示す。
FIG. 5 shows an example of a heat dissipation structure of an electronic device using the anisotropic heat conductive sheet of the present invention.

【図6】本発明の異方性熱伝導性シートを用いた電子機
器の放熱構造例を示す。
FIG. 6 shows an example of a heat dissipation structure of an electronic device using the anisotropic heat conductive sheet of the present invention.

【符号の説明】[Explanation of symbols]

1 短繊維状ピッチ系炭素繊維 2 シリコーンゴム 3 熱伝導性充填剤 4 電気絶縁層 5 補強層 6 熱源 7 放熱体 8 プリント基板 9 本発明の異方性熱伝導性シート 10 熱の流れ REFERENCE SIGNS LIST 1 short fibrous pitch-based carbon fiber 2 silicone rubber 3 heat conductive filler 4 electric insulating layer 5 reinforcing layer 6 heat source 7 radiator 8 printed circuit board 9 anisotropic heat conductive sheet of the present invention 10 heat flow

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】シリコーンゴムからなるマトリックス樹脂
に、短繊維状ピッチ系炭素繊維がシート平面と平行方向
に配向して充填されていることを特徴とする、熱源から
離れた位置にある放熱体へ熱を拡散する異方性熱伝導性
シート。
1. A radiator at a position remote from a heat source, wherein a matrix resin made of silicone rubber is filled with short fibrous pitch-based carbon fibers oriented in a direction parallel to a sheet plane. Anisotropic heat conductive sheet that diffuses heat.
【請求項2】短繊維状ピッチ系炭素繊維がシート平面と
平行な一方向に配向して充填されていることを特徴とす
る請求項1に記載の異方性熱伝導性シート。
2. The anisotropic heat conductive sheet according to claim 1, wherein the short fibrous pitch-based carbon fibers are filled while being oriented in one direction parallel to the sheet plane.
【請求項3】酸化アルミニウム、酸化マグネシウム、窒
化ホウ素、窒化アルミニウム、炭化ケイ素、水酸化アル
ミニウムから選ばれた少なくとも一種の熱伝導性充填剤
が配合されていることを特徴とする請求項1または2に
記載の異方性熱伝導性シート。
3. The method according to claim 1, wherein at least one kind of thermally conductive filler selected from aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon carbide, and aluminum hydroxide is blended. 4. The anisotropic heat conductive sheet according to 1.
【請求項4】少なくとも片面に電気絶縁層が積層されて
いることを特徴とする請求項1〜3のいずれかに記載の
異方性熱伝導性シート。
4. The anisotropic heat conductive sheet according to claim 1, wherein an electric insulating layer is laminated on at least one side.
【請求項5】電気絶縁層が、シリコーンゴムに酸化アル
ミニウム、酸化マグネシウム、窒化ホウ素、窒化アルミ
ニウム、炭化ケイ素、水酸化アルミニウムから選ばれる
少なくとも一種の熱伝導性充填剤が配合され、かつ硬化
後の硬度がアスカーC硬度で30未満であることを特徴
とする、請求項4に記載の異方性熱伝導性シート。
5. The electric insulating layer, wherein at least one kind of heat conductive filler selected from aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon carbide, and aluminum hydroxide is blended with silicone rubber, and after curing. The anisotropic heat conductive sheet according to claim 4, wherein the hardness is less than 30 in Asker C hardness.
【請求項6】表面あるいは内部に網目状物、織布、不織
布、フィルムから選ばれた少なくとも一種の補強層を有
することを特徴とする、請求項1〜5のいずれかに記載
の異方性熱伝導性シート。
6. The anisotropic material according to claim 1, wherein the material has at least one reinforcing layer selected from a mesh, a woven fabric, a nonwoven fabric, and a film on the surface or inside. Thermal conductive sheet.
JP34389999A 1999-12-02 1999-12-02 Anisotropic heat conducting sheet Pending JP2001160607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34389999A JP2001160607A (en) 1999-12-02 1999-12-02 Anisotropic heat conducting sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34389999A JP2001160607A (en) 1999-12-02 1999-12-02 Anisotropic heat conducting sheet

Publications (1)

Publication Number Publication Date
JP2001160607A true JP2001160607A (en) 2001-06-12

Family

ID=18365109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34389999A Pending JP2001160607A (en) 1999-12-02 1999-12-02 Anisotropic heat conducting sheet

Country Status (1)

Country Link
JP (1) JP2001160607A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005527460A (en) * 2002-05-29 2005-09-15 ダウ・コ−ニング・コ−ポレ−ション Silicone composition
JP2006222400A (en) * 2005-02-14 2006-08-24 Sumitomo Bakelite Co Ltd Adhesive, semiconductor device and manufacturing method thereof
JP2007128829A (en) * 2005-11-07 2007-05-24 Fuji Polymer Industries Co Ltd Sheet for thermocompression bonding
JP2009088205A (en) * 2007-09-28 2009-04-23 Tdk Corp Heat dissipating substrate and method of manufacturing the same
JP2009164552A (en) * 2007-12-11 2009-07-23 Fujitsu Ltd Sheet-like structure, manufacturing method thereof, and electronic unit
JP2010264740A (en) * 2009-04-14 2010-11-25 Teijin Ltd Heat-conductive resin molding
JP2011249682A (en) * 2010-05-28 2011-12-08 Sony Chemical & Information Device Corp Thermal conductive sheet and semiconductor device
JP2012001638A (en) * 2010-06-17 2012-01-05 Sony Chemical & Information Device Corp Heat-conductive sheet and process for producing heat-conductive sheet
JP2012119725A (en) * 2005-05-26 2012-06-21 Nanocomp Technologies Inc Systems and methods for thermal management of electronic components
JP2013038179A (en) * 2011-08-05 2013-02-21 Teijin Dupont Films Japan Ltd High thermal conductive biaxially stretched polyester film
WO2013129300A1 (en) * 2012-02-28 2013-09-06 東芝キヤリア株式会社 Electrical apparatus and air conditioning apparatus
US8658263B2 (en) 2010-04-30 2014-02-25 Mitsui Chemicals, Inc. Shape-retaining film, process for producing same, laminate for packaging, packaging material and process for producing same, shape-retaining fiber, and anisotropic heat-conductive film
JP2014101459A (en) * 2012-11-21 2014-06-05 Sumitomo Bakelite Co Ltd Composite resin composition and molding having an excellent heat diffusibility
EP2871674A4 (en) * 2012-07-07 2016-02-17 Dexerials Corp Thermally conductive sheet
CN106158666A (en) * 2015-04-02 2016-11-23 明安国际企业股份有限公司 The manufacture method of high heat-conductive assembly
CN109354874A (en) * 2018-09-17 2019-02-19 深圳市驭晟新能源科技有限公司 A kind of preparation of new type silicone rubber heat-conducting pad and cutting process
WO2019065976A1 (en) * 2017-09-29 2019-04-04 ナガセケムテックス株式会社 Method for producing mounting structure, and layered sheet used in same
JP2020047507A (en) * 2018-09-20 2020-03-26 信越ポリマー株式会社 Heat dissipation structure and battery including the same
WO2023157829A1 (en) * 2022-02-16 2023-08-24 デンカ株式会社 Heat dissipation sheet manufacturing method and heat dissipation sheet

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005527460A (en) * 2002-05-29 2005-09-15 ダウ・コ−ニング・コ−ポレ−ション Silicone composition
JP2006222400A (en) * 2005-02-14 2006-08-24 Sumitomo Bakelite Co Ltd Adhesive, semiconductor device and manufacturing method thereof
JP2012119725A (en) * 2005-05-26 2012-06-21 Nanocomp Technologies Inc Systems and methods for thermal management of electronic components
JP2007128829A (en) * 2005-11-07 2007-05-24 Fuji Polymer Industries Co Ltd Sheet for thermocompression bonding
JP2009088205A (en) * 2007-09-28 2009-04-23 Tdk Corp Heat dissipating substrate and method of manufacturing the same
JP2009164552A (en) * 2007-12-11 2009-07-23 Fujitsu Ltd Sheet-like structure, manufacturing method thereof, and electronic unit
JP2010264740A (en) * 2009-04-14 2010-11-25 Teijin Ltd Heat-conductive resin molding
US8658263B2 (en) 2010-04-30 2014-02-25 Mitsui Chemicals, Inc. Shape-retaining film, process for producing same, laminate for packaging, packaging material and process for producing same, shape-retaining fiber, and anisotropic heat-conductive film
JP2011249682A (en) * 2010-05-28 2011-12-08 Sony Chemical & Information Device Corp Thermal conductive sheet and semiconductor device
JP2012001638A (en) * 2010-06-17 2012-01-05 Sony Chemical & Information Device Corp Heat-conductive sheet and process for producing heat-conductive sheet
JP2013038179A (en) * 2011-08-05 2013-02-21 Teijin Dupont Films Japan Ltd High thermal conductive biaxially stretched polyester film
JPWO2013129300A1 (en) * 2012-02-28 2015-07-30 東芝キヤリア株式会社 Electric equipment and air conditioner
GB2513794A (en) * 2012-02-28 2014-11-05 Toshiba Carrier Corp Electrical apparatus and air conditioning apparatus
WO2013129300A1 (en) * 2012-02-28 2013-09-06 東芝キヤリア株式会社 Electrical apparatus and air conditioning apparatus
US9516786B2 (en) 2012-02-28 2016-12-06 Toshiba Carrier Corporation Electric equipment and air conditioner
GB2513794B (en) * 2012-02-28 2018-08-22 Toshiba Carrier Corp Electric Equipment and Air Conditioner
EP3790044A1 (en) * 2012-07-07 2021-03-10 Dexerials Corporation Heat conductive sheet
EP2871674A4 (en) * 2012-07-07 2016-02-17 Dexerials Corp Thermally conductive sheet
CN107043538A (en) * 2012-07-07 2017-08-15 迪睿合电子材料有限公司 Heat conductive sheet
US10106672B2 (en) 2012-07-07 2018-10-23 Dexerials Corporation Heat conductive sheet
JP2014101459A (en) * 2012-11-21 2014-06-05 Sumitomo Bakelite Co Ltd Composite resin composition and molding having an excellent heat diffusibility
CN106158666A (en) * 2015-04-02 2016-11-23 明安国际企业股份有限公司 The manufacture method of high heat-conductive assembly
WO2019065976A1 (en) * 2017-09-29 2019-04-04 ナガセケムテックス株式会社 Method for producing mounting structure, and layered sheet used in same
JPWO2019065976A1 (en) * 2017-09-29 2020-11-26 ナガセケムテックス株式会社 Manufacturing method of mounting structure and laminated sheet used for this
JP7118985B2 (en) 2017-09-29 2022-08-16 ナガセケムテックス株式会社 Mounting structure manufacturing method and laminated sheet used therefor
US11799442B2 (en) 2017-09-29 2023-10-24 Nagase Chemtex Corporation Manufacturing method of mounting structure, and laminate sheet therefor
CN109354874A (en) * 2018-09-17 2019-02-19 深圳市驭晟新能源科技有限公司 A kind of preparation of new type silicone rubber heat-conducting pad and cutting process
JP2020047507A (en) * 2018-09-20 2020-03-26 信越ポリマー株式会社 Heat dissipation structure and battery including the same
JP7116653B2 (en) 2018-09-20 2022-08-10 信越ポリマー株式会社 Heat dissipation structure and battery with same
WO2023157829A1 (en) * 2022-02-16 2023-08-24 デンカ株式会社 Heat dissipation sheet manufacturing method and heat dissipation sheet
JP7399359B1 (en) 2022-02-16 2023-12-15 デンカ株式会社 Heat dissipation sheet manufacturing method and heat dissipation sheet

Similar Documents

Publication Publication Date Title
JP2001160607A (en) Anisotropic heat conducting sheet
JP4406484B2 (en) Thermally conductive electromagnetic shielding sheet
JP6435507B2 (en) COMPOSITE SHEET, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE USING COMPOSITE SHEET
KR100677818B1 (en) Heat-Release Structure
JP4791146B2 (en) Thermally conductive member and manufacturing method thereof
KR20080076761A (en) Thermal diffusion sheet and manufacturing method of the same
JP3515368B2 (en) High thermal conductive electromagnetic shielding sheet for mounting element, method of manufacturing the same, heat radiation of mounting element and electromagnetic shielding structure
JP2008251747A (en) Heat transfer sheet
JP2002234952A (en) Heat-softening radiating sheet
TW201819590A (en) Heat dissipation sheet having high load carrying capacity and high thermal conductivity
JP2002138205A (en) Thermal conductive molded article
JP2020098909A (en) Heat dissipation sheet
KR101603582B1 (en) Thermal diffusion sheet having a flexible layer of ceramic-carbon composite
JP2014003141A (en) Thermally conductive sheet, and electronic apparatus
TWI780200B (en) Heat sink with high thermal conductivity and high insulation
JP4489861B2 (en) Thermally conductive sheet
JP2011054609A (en) Thermally conductive sheet and method of manufacturing the same
JP2009076657A (en) Thermal conductive sheet
JP2001156227A (en) Anisotropic thermal-conductive sheet
JP2002003717A (en) Heat conductive sheet
JP4101391B2 (en) Heat dissipation member for electronic parts
JP3490011B2 (en) Heat conductive elastomer composition and heat conductive elastomer using the same
US11742258B2 (en) Thermally conductive sheet and method for manufacturing thermally conductive sheet
JP2000191812A (en) Thermally conductive sheet
JPH11145351A (en) Heat dissipating spacer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080526

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110526

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20140526