JP2007128796A - Molybdenum disilicide based ceramic heating element - Google Patents

Molybdenum disilicide based ceramic heating element Download PDF

Info

Publication number
JP2007128796A
JP2007128796A JP2005321739A JP2005321739A JP2007128796A JP 2007128796 A JP2007128796 A JP 2007128796A JP 2005321739 A JP2005321739 A JP 2005321739A JP 2005321739 A JP2005321739 A JP 2005321739A JP 2007128796 A JP2007128796 A JP 2007128796A
Authority
JP
Japan
Prior art keywords
vol
heating element
heat generating
terminal
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005321739A
Other languages
Japanese (ja)
Other versions
JP4632205B2 (en
Inventor
Masaki Kuramae
雅規 蔵前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP2005321739A priority Critical patent/JP4632205B2/en
Priority to CN 200610153889 priority patent/CN1964583B/en
Publication of JP2007128796A publication Critical patent/JP2007128796A/en
Application granted granted Critical
Publication of JP4632205B2 publication Critical patent/JP4632205B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/018Heaters using heating elements comprising mosi2

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molybdenum disilicide based ceramic heating element that has superior heat resistance, pest resistance, high joining strength, and a superior durability. <P>SOLUTION: A heating part 10 that has 5 to 25 vol% based oxide content and a terminal part 20 that has 30 to 60 vol% are joined together and made into the molybdenum-disilicide based ceramic exothermic body. Between the heating part that has 5 vol% or more and 15 vol% or less of silica based oxide content, and the terminal part that has 30 to 60 vol%, the intermediate part that has 15 vol% or more and less than 30 vol% of silica based oxide content may be installed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、二珪化モリブデン系セラミック発熱体に関する。   The present invention relates to a molybdenum disilicide ceramic heating element.

二珪化モリブデン系セラミック発熱体(以下「MoSi系発熱体」という)は、シリカ(SiO)の酸化保護被膜の生成により高温で優れた耐酸化性を示すため、酸化性雰囲気で使用される高温加熱炉用発熱体として用いられている。一般にMoSi系発熱体は、MoSi粉末に膨潤ベントナイトを含有する粘土鉱物を加えて製造され、発熱体中にはシリカ系酸化物相が10〜20vol%程度含まれている。粘度鉱物は成形助剤、焼結助剤、シリカ保護被膜生成促進剤及び抵抗調整剤等として機能する。 Molybdenum disilicide-based ceramic heating elements (hereinafter referred to as “MoSi 2 -based heating elements”) are used in an oxidizing atmosphere because they exhibit excellent oxidation resistance at high temperatures due to the formation of silica (SiO 2 ) oxidation protective coatings. It is used as a heating element for high-temperature heating furnaces. In general, the MoSi 2 heating element is manufactured by adding a clay mineral containing swollen bentonite to MoSi 2 powder, and the heating element contains about 10 to 20 vol% of a silica-based oxide phase. The viscosity mineral functions as a molding aid, a sintering aid, a silica protective film formation accelerator, a resistance adjuster, and the like.

MoSi系発熱体の製造工程を概略すると、原料紛末に所定量のバインダーと水を加えて混練して作製した粘土を押出成形して、所定の線径・長さのグリーンを作製する。このグリーンを所定の条件で乾燥・焼結することで発熱体素材を得ることができる。バインダーとして有機系の材料を多量に使用する場合には、焼結前に水素雰囲気中などで脱脂を行うのが一般的である。発熱体素材は高温で優れた可塑性を有するため、その後、高温で直線度の校正を行う。 The manufacturing process of the MoSi 2 heating element can be summarized as follows. A clay having a predetermined wire diameter and length is manufactured by extruding clay prepared by adding a predetermined amount of binder and water to a raw material powder and kneading. A heating element material can be obtained by drying and sintering the green under predetermined conditions. When a large amount of an organic material is used as a binder, degreasing is generally performed in a hydrogen atmosphere or the like before sintering. Since the heating element material has excellent plasticity at high temperature, the linearity is calibrated at high temperature.

具体的には、発熱体素材に電流を印加して自己発熱させ、その状態で発熱体素材両端に所定の張力を負荷することで発熱体の直線度の校正を行う。この操作は大気中で行うため、発熱体素材が可塑性を有する温度域では二珪化モリブデン系セラミック中のシリコン(Si)が選択酸化され、或いは、通常添加剤中に含まれるガラス成分により、発熱体表面にガラス質の緻密な酸化被膜が生成する。発熱体表面に酸化被膜が生成すると、発熱体素材の強度特性や耐酸化特性が著しく改善される。このように、一般にMoSi系発熱体表面には酸化被膜が予め形成されている。また、上述の処理を行うことで発熱体素材の焼結も進行する(通電焼結)。 Specifically, current is applied to the heating element material to cause self-heating, and in this state, a predetermined tension is applied to both ends of the heating element material to calibrate the linearity of the heating element. Since this operation is performed in the air, silicon (Si) in the molybdenum disilicide ceramic is selectively oxidized in the temperature range where the heat generating material is plastic, or the heat generating element is usually produced by a glass component contained in the additive. A dense glassy oxide film is formed on the surface. When an oxide film is formed on the surface of the heating element, the strength characteristics and oxidation resistance characteristics of the heating element material are significantly improved. Thus, generally, an oxide film is formed in advance on the surface of the MoSi 2 heating element. In addition, the heating element material is also sintered by performing the above-described treatment (electric current sintering).

このようにして得られた素線を曲げ加工及び接合することで目的とする形状の発熱体が完成する。代表的なU字形状のMoSi系発熱体では、端子部の径を発熱部の径の約2倍とすることで、端子部の抵抗を下げ、通電加熱時に発熱部のみが高温になるような構造を有している。発熱部と端子部の接合法としては、両者を加圧しながら電気抵抗突合せによって加熱し固相拡散接合させる方法が一般的である。 A heating element having a target shape is completed by bending and joining the obtained wires. In a typical U-shaped MoSi 2 heating element, the resistance of the terminal portion is lowered by making the diameter of the terminal portion about twice the diameter of the heating portion, so that only the heating portion becomes high temperature during energization heating. It has a simple structure. As a joining method of the heat generating portion and the terminal portion, a method of solid-phase diffusion joining by heating both of them by applying electric resistance while applying pressure is generally used.

MoSi系材料では、400℃〜600℃において、バルク体が酸化によって粉化するペストと呼ばれる特有の現象が生じるため、MoSi系発熱体は低温での使用には適さないとされている。ペスト現象は、高温加熱炉用発熱体においても低温度域に曝される端子部で発生しやすく、導通不良や破断といった不具合を引き起こすことがある。 In a MoSi 2 -based material, a special phenomenon called plague in which a bulk body is pulverized by oxidation occurs at 400 ° C. to 600 ° C. Therefore, it is said that a MoSi 2 -based heating element is not suitable for use at a low temperature. The plague phenomenon is likely to occur in the terminal portion exposed to a low temperature region even in a heating element for a high temperature heating furnace, and may cause problems such as poor conduction and breakage.

非特許文献1には、MoSi系セラミックの欠陥部あるいは粒界におけるMoOの生成に伴う体積膨張と高い蒸気圧がペスト現象の原因であると報告されている。そのため、ペストの防止には十分緻密な材料を作製し、クラックやポア等の欠陥を無くすことが有効と考えられる。 Non-Patent Document 1 reports that the pest phenomenon is caused by the volume expansion and high vapor pressure accompanying the generation of MoO 3 at the defect or grain boundary of the MoSi 2 ceramic. For this reason, it is considered effective to produce a sufficiently dense material and prevent defects such as cracks and pores in order to prevent plague.

また、特許文献1では、粒界におけるMoOの形成による粒界剥離(分離)がペストの主原因であると考え、MoSi結晶粒子の粒界ができるだけ少なくなるようなMoSi系セラミックの材料設計を行っている。即ち、発熱体中のシリカ系酸化物の含有量が従来に比べ多くなるように膨潤ベントナイトを含有する粘土鉱物を加えている。MoSi結晶粒子の粒界にシリカ系酸化物相が存在する組織とすることにより、ペスト現象が抑制できる。また、ペスト現象が起こり易い端子部に、このような組織の材料を使用することで、発熱体の耐久性を向上させることができる。 Further, in Patent Document 1, it is considered that grain boundary peeling (separation) due to the formation of MoO 3 at the grain boundary is the main cause of plague, and the material of the MoSi 2 based ceramic that minimizes the grain boundary of MoSi 2 crystal grains as much as possible. I am designing. That is, a clay mineral containing swollen bentonite is added so that the content of the silica-based oxide in the heating element is higher than that of the conventional one. By using a structure in which a silica-based oxide phase is present at the grain boundary of MoSi 2 crystal particles, the plague phenomenon can be suppressed. Moreover, the durability of the heating element can be improved by using a material having such a structure for the terminal portion where the plague phenomenon is likely to occur.

しかしながら、上記特許文献1に開示される発熱体は、1200℃以下の低温加熱炉用としては充分な耐熱性を発揮し得るが、より高温域で使用される加熱炉用とした場合には耐熱性が問題となる。即ち、発熱部でも、シリカ系酸化物の含有量が多いため融点が低下し、高温に曝されたとき、変形、気泡等が発生して発熱体として機能し得ないことがある。   However, the heating element disclosed in Patent Document 1 can exhibit sufficient heat resistance for a low-temperature heating furnace of 1200 ° C. or lower, but when used for a heating furnace used in a higher temperature range, Sex matters. That is, even in the heat generating part, the melting point is lowered due to the high content of the silica-based oxide, and when exposed to high temperatures, deformation, bubbles, etc. may occur and the heat generating part may not function.

特開平11−317282号公報JP 11-317282 A 黒川、第22回コロージョン・セミナー、腐食防食協会、1995、63―81頁Kurokawa, 22nd Corrosion Seminar, Corrosion Protection Association, 1995, 63-81

従って、本発明の目的は、優れた耐熱性及び耐ペスト性を有し、1200℃を超える高温域においても長期間に亘り使用できるMoSi系発熱体を提供することである。 Accordingly, an object of the present invention is to provide a MoSi 2 heating element that has excellent heat resistance and pest resistance and can be used for a long time even in a high temperature range exceeding 1200 ° C.

上記課題を解決するため、本発明のMoSi系発熱体は、シリカ系酸化物の含有量が5vol以上25vol%以下の発熱部と、30vol以上60vol%以下の端子部とからなることを特徴とする。ここで、発熱部と端子部の比抵抗差を20%以内とするのが好ましい。 In order to solve the above problems, the MoSi 2 heating element of the present invention is characterized in that the content of the silica-based oxide is composed of a heating part having a content of 5 vol% to 25 vol% and a terminal part having a content of 30 vol% to 60 vol%. To do. Here, it is preferable that the specific resistance difference between the heat generating portion and the terminal portion is within 20%.

さらに本発明では、シリカ系酸化物含有量が5vol以上15vol%未満の発熱部と、30vol%以上60vol%以下の端子部との間にシリカ系酸化物含有量が15vol%以上30vol%未満の中間部を設置することもできる。ここで、発熱部と中間部、および端子部と中間部の比抵抗差を20%以下とするのが好ましい。   Further, in the present invention, between the exothermic part having a silica-based oxide content of 5 vol% or more and less than 15 vol% and the terminal part having a volatility of 30 vol% or more and less than 60 vol%, an intermediate having a silica oxide content of 15 vol% or more and less than 30 vol%. A part can also be installed. Here, the specific resistance difference between the heat generating portion and the intermediate portion and between the terminal portion and the intermediate portion is preferably 20% or less.

本発明に係るMoSi系発熱体は、発熱部のシリカ系酸化物の含有量が5vol以上25vol%以下で、端子部のシリカ系酸化物の含有量が30vol以上60vol%以下であるため、耐熱性及び耐ペスト性に優れる。ここで、発熱部と端子部の比抵抗差を20%以内とすることにより、接合時の通電による両者の発熱温度の差を低減できるため、接合強度を向上させ、信頼性を高めることができる。これにより線径が一般市場品と互換があり、かつ耐熱性及び耐ペスト性に優れたMoSi系発熱体を製造することができる。 In the MoSi 2 heating element according to the present invention, the content of the silica-based oxide in the heating portion is 5 vol% or more and 25 vol% or less, and the content of the silica-based oxide in the terminal portion is 30 vol% or more and 60 vol% or less. Excellent in resistance and pest resistance. Here, by setting the specific resistance difference between the heat generating portion and the terminal portion to be within 20%, the difference in heat generation temperature between the two due to energization during bonding can be reduced, so that the bonding strength can be improved and the reliability can be improved. . As a result, it is possible to manufacture a MoSi 2 heating element having a wire diameter compatible with that of a general market product and excellent in heat resistance and pest resistance.

また、シリカ系酸化物の含有量が5vol以上15vol%未満の発熱部と30vol%以上60vol%以下の端子部との間に、シリカ系酸化物の含有量が15vol%以上30vol%未満の中間部を介在させた本発明のMoSi系発熱体でも、同様に優れた耐熱性及び耐ペスト性が得られる。ここで、各部材間の比抵抗差を20%以内とすることにより、接合強度を向上させ、発熱体の信頼性を高めることができる。 Moreover, between the heat generating part whose content of a silica type oxide is 5 vol% or more and less than 15 vol% and the terminal part of 30 vol% or more and 60 vol% or less, the intermediate part whose content of silica type oxide is 15 vol% or more and less than 30 vol% Similarly, excellent heat resistance and pest resistance can be obtained even with the MoSi 2 heat generating element of the present invention with the intervening metal. Here, by setting the specific resistance difference between the members within 20%, the bonding strength can be improved and the reliability of the heating element can be increased.

図1は、本発明の第1の実施形態に係るMoSi系発熱体を示す図である。第1の実施形態に係るMoSi系発熱体1は、シリカ系酸化物の含有量が5vol以上25vol%以下の発熱部10と、30vol以上60vol%以下の端子部20を加圧しながら電気抵抗突合せ法によって加熱して固相拡散接合させたものである。ここで、発熱部10のシリカ系酸化物の含有量は5vol以上15vol%以下とするのがより好ましい。端子部20の一方の端面22と、U字型の発熱部10の端面が接合されている。発熱部10および端子部20の表面は、酸化物被膜によって覆われているが、端子部20の一部は酸化物被膜が除去され、そこに電極としてAl溶射膜24が形成されている。 FIG. 1 is a view showing a MoSi 2 heating element according to the first embodiment of the present invention. In the MoSi 2 heating element 1 according to the first embodiment, the electrical resistance butting is performed while pressurizing the heating part 10 having a silica-based oxide content of 5 vol% or more and 25 vol% or less and the terminal part 20 of 30 vol% or more and 60 vol% or less. It is heated by the method and solid phase diffusion bonded. Here, it is more preferable that the content of the silica-based oxide in the heat generating portion 10 is 5 vol% or more and 15 vol% or less. One end face 22 of the terminal portion 20 and the end face of the U-shaped heat generating portion 10 are joined. The surfaces of the heat generating portion 10 and the terminal portion 20 are covered with an oxide film, but the oxide film is removed from a part of the terminal portion 20, and an Al sprayed film 24 is formed thereon as an electrode.

発熱部10と端子部20のシリカ系酸化物の含有量は、粘土鉱物の添加量によって制御する。MoSi粉末と粘土鉱物を混合した後、押出成形によって所定の径を有する棒状に成形して乾燥し、得られたグリーンを焼結して発熱体素材を作製する。ここで、シリカ系酸化物の含有量は、発熱体の破断面を1μmのアルミナを用いてバフ研磨した後の光学顕微鏡写真(×1000)から画像解析により求めた。具体的には、発熱体研磨面の光学顕微鏡写真をLuzex Fリアルタイム画像処理解析装置(株式会社ニレコ製)に取り込み、画像処理して、求められたシリカ系酸化物の面積率をシリカ系酸化物の含有量とした。尚、面積率は5視野の平均値とした。 The content of the silica-based oxide in the heat generating portion 10 and the terminal portion 20 is controlled by the amount of clay mineral added. After mixing the MoSi 2 powder and the clay mineral, it is molded into a rod shape having a predetermined diameter by extrusion molding and dried, and the resulting green is sintered to produce a heating element material. Here, the content of the silica-based oxide was determined by image analysis from an optical micrograph (× 1000) after the fracture surface of the heating element was buffed with 1 μm alumina. Specifically, an optical micrograph of the polished surface of the heating element is taken into a Luzex F real-time image processing analyzer (manufactured by Nireco Co., Ltd.), image-processed, and the area ratio of the obtained silica-based oxide is calculated. Content. In addition, the area ratio was made into the average value of 5 visual fields.

接合方法としては、通常、図4に示す電気抵抗突合せ接合が行われる。発熱部110と端子部120にそれぞれ電極130、132を取り付け、発熱部110の端面112と端子部120の端面122とを接触させた状態で交流電流を電極130、132間に印加することにより、端面112、122を加圧下で加熱して接合する。ここで、発熱部及び端子部の接合端面112、122からそれぞれの電極130、132までの距離A、Bを調整することができる。即ち、発熱部110側の距離Aをより長く、端子部120側の距離Bまたは端子勾配部の長さCをより短くする。発熱部110と端子部120ではシリカ系酸化物の含有量が異なるため、両者の比抵抗が異なり、通電時に両部材間で温度差が生じるが、上記の方法で、発熱部110及び端子部120の発熱量を同程度に調整することができる。この結果、両部材間の温度差が小さくなり、充分な固相拡散を進行させることができるため、優れた接合強度の発熱体が得られる。 As a joining method, electric resistance butt joining shown in FIG. 4 is usually performed. By attaching the electrodes 130 and 132 to the heat generating part 110 and the terminal part 120, respectively, and applying an alternating current between the electrodes 130 and 132 with the end face 112 of the heat generating part 110 and the end face 122 of the terminal part 120 in contact with each other, The end faces 112 and 122 are joined by heating under pressure. Here, the distances A and B from the joining end surfaces 112 and 122 of the heat generating portion and the terminal portion to the respective electrodes 130 and 132 can be adjusted. That is, the distance A on the heat generating part 110 side is made longer, and the distance B on the terminal part 120 side or the length C of the terminal gradient part is made shorter. Since the exothermic part 110 and the terminal part 120 have different silica-based oxide contents, their specific resistances are different, and a temperature difference occurs between the two members when energized. The calorific value of can be adjusted to the same extent. As a result, the temperature difference between the two members becomes small, and sufficient solid phase diffusion can proceed, so that a heating element with excellent bonding strength can be obtained.

また、粘土鉱物の添加量が異なり、シリカ系酸化物含有量が異なる発熱部10と端子部20の焼結温度を変えることにより、両部材間の比抵抗差を小さくすることができる。ここで、両部材間の比抵抗差が20%以内であれば、接合時に充分な固相拡散が進行し、信頼性の優れた発熱体が得られる。尚、シリカ系酸化物の含有量等を傾斜させた部材を用いる場合には、少なくとも接合部付近での両部材間の比抵抗差が20%以内であればよい。端子部をより高温で焼成させるほどMoSi結晶及びシリカ系酸化物の粒子が粒成長を起す。そのため、比抵抗を低くしたい端子部20は発熱部10よりもより高温で焼結し、発熱部10と端子部20の比抵抗差が20%以内になるような焼結条件を選定すればよい。このときの焼結はアルゴンなどの不活性ガス雰囲気又は水素雰囲気下で行うことが好ましい。ここで、発熱部と端子部との比抵抗差とは、発熱部の室温比抵抗に対する端子部の室温比抵抗と発熱部の室温比抵抗との差の比のことをいう。 Moreover, the specific resistance difference between both members can be made small by changing the sintering temperature of the heat generating part 10 and the terminal part 20 with different addition amounts of clay minerals and different silica-based oxide contents. Here, if the specific resistance difference between the two members is within 20%, sufficient solid phase diffusion proceeds at the time of joining, and a heat generating element with excellent reliability can be obtained. In addition, when using the member which inclined the content etc. of the silica type oxide, the specific resistance difference between both members at least in the vicinity of the joint may be within 20%. As the terminal portion is fired at a higher temperature, the MoSi 2 crystal and silica-based oxide particles grow. Therefore, the terminal part 20 for which the specific resistance is desired to be lowered may be sintered at a higher temperature than the heat generating part 10 and the sintering conditions may be selected so that the specific resistance difference between the heat generating part 10 and the terminal part 20 is within 20%. . Sintering at this time is preferably performed in an inert gas atmosphere such as argon or a hydrogen atmosphere. Here, the specific resistance difference between the heat generating portion and the terminal portion refers to the ratio of the difference between the room temperature specific resistance of the terminal portion and the room temperature specific resistance of the heat generating portion with respect to the room temperature specific resistance of the heat generating portion.

この方法で比抵抗を調整すれば、端子部及び発熱部の接合端面と電極との距離を調整する必要がない。そのため、発熱部側の距離Aを長くすることにより生じやすい接合部以外の箇所での変形、端子部側の距離B、又は端子勾配部の長さCを短くした場合、接合時に発生した熱の電極132への伝導により生じやすい電極132の酸化によるスパーク等の弊害を防止できる。また、端子部の線径等を変えて比抵抗を調整する必要もないため、一般市場品と互換性があり、且つ接合強度の高い発熱体を提供することができる。   If the specific resistance is adjusted by this method, it is not necessary to adjust the distance between the joining end face of the terminal portion and the heat generating portion and the electrode. Therefore, if the deformation at locations other than the joint, which is likely to occur by increasing the distance A on the heat generating part, the distance B on the terminal part side, or the length C of the terminal gradient part is shortened, the heat generated during joining It is possible to prevent adverse effects such as sparks due to oxidation of the electrode 132 that are likely to occur due to conduction to the electrode 132. Further, since it is not necessary to adjust the specific resistance by changing the wire diameter or the like of the terminal portion, it is possible to provide a heating element that is compatible with general market products and has high bonding strength.

発熱部10と端子部20を同じ条件で焼成した後、端子部20を大気中にて再び加熱処理し、MoSi結晶とシリカ系酸化物の粒子を粗大化させることもできる。この場合、発熱部との比抵抗差が一定範囲になるように熱処理条件を選定すればよい。尚、酸化雰囲気下で熱処理を行う場合には端子部には数十μmのシリカ保護被膜が形成されるため、端子部の耐ペスト性を更に高める働きもある。 After firing the heating portion 10 and the terminal portion 20 in the same conditions, the terminal unit 20 and heated again in the atmosphere, may also be coarse particles of MoSi 2 crystal and silica oxides. In this case, the heat treatment condition may be selected so that the specific resistance difference with the heat generating part is within a certain range. When heat treatment is performed in an oxidizing atmosphere, a silica protective film of several tens of μm is formed on the terminal portion, and thus has a function of further improving the pest resistance of the terminal portion.

このように、シリカ系酸化物含有量が異なる発熱部10と端子部20の焼成或いは酸化処理条件を制御し、両者の比抵抗差を20%以内とすることにより、より信頼性の高い電気抵抗突合せ接合を実現することができる。この際の加熱方式は、前述した被接合体に電流を印加して加熱する通電方式(図4を参照)の他、MoSi系材料の金属導電性を利用して高周波誘導方式も適用できる。高周波誘導方式は、発熱部および端子部を加圧した状態でその周囲に誘導コイルを巻き、誘導コイルに高周波交流電流を印加して発熱体にうず電流を誘導し、うず電流と発熱体との電気抵抗によりジュール熱を発生させ、発熱部10と端子部20とを接合させるものである。 Thus, by controlling the firing or oxidation treatment conditions of the heat generating part 10 and the terminal part 20 having different silica-based oxide contents, and making the specific resistance difference between the two within 20%, a more reliable electrical resistance Butt joint can be realized. As the heating method at this time, a high-frequency induction method can be applied by utilizing the metal conductivity of the MoSi 2 -based material in addition to the above-described energization method (see FIG. 4) in which current is applied to the object to be bonded. In the high frequency induction method, an induction coil is wound around the heat generating part and the terminal part in a pressurized state, and a high frequency alternating current is applied to the induction coil to induce an eddy current in the heating element. Joule heat is generated by electrical resistance, and the heat generating part 10 and the terminal part 20 are joined.

図2は、本発明の第2の実施形態に係るMoSi系発熱体を示す図である。第2の実施形態に係るMoSi系発熱体2は、シリカ系酸化物の含有量が5vol以上15vol%未満の発熱部10と、30vol%以上60vol%以下の端子部20との間にシリカ系酸化物の含有量が15vol%以上30vol%未満の中間部30を備える。本実施形態では中間部30は、発熱部10と同一径を有し、中間部30の一方の端面が発熱部10に接合され、他方の端面が端子部20に接合されている。また、本構成においても、発熱部10、端子部20および中間部30のシリカ系酸化物含の有量は、粘土鉱物の添加量によって制御する。 FIG. 2 is a view showing a MoSi 2 heating element according to the second embodiment of the present invention. The MoSi 2 heating element 2 according to the second embodiment includes a silica-based material between the heating part 10 having a silica-based oxide content of 5 vol% or more and less than 15 vol% and the terminal part 20 of 30 vol% or more and 60 vol% or less. An intermediate portion 30 having an oxide content of 15 vol% or more and less than 30 vol% is provided. In the present embodiment, the intermediate portion 30 has the same diameter as the heat generating portion 10, one end surface of the intermediate portion 30 is bonded to the heat generating portion 10, and the other end surface is bonded to the terminal portion 20. Also in this configuration, the content of the silica-based oxide in the heat generating portion 10, the terminal portion 20, and the intermediate portion 30 is controlled by the amount of clay mineral added.

本構成の発熱体は各部材同士を加圧しながら電気抵抗突合せ法により加熱して固相拡散接合させたものである。この構成でも、上記と同様に、通電方式の他、高周波誘導方式によって被接合体を加熱することもできる。ここでも、シリカ系酸化物含有量が異なる発熱部10、端子部20、及び中間部30の焼成温度を変えることにより、接合する部材間の比抵抗差を小さくすることができる。即ち、端子部20を中間部30及び発熱部10より、高温で焼成しMoSi結晶及びシリカ系酸化物の粒成長を進行させ、比抵抗を低くし、中間部30は端子部20と発熱部10の中間の温度で焼成し、発熱部10は粒成長が進行しないように最も低温で焼成するのが好ましい。このように調整して、接合する部材間の比抵抗差を20%以内とすることにより、充分な固相拡散が進行し、信頼性の優れた発熱体が得られる。尚、シリカ系酸化物の含有量等を傾斜させた部材を用いる場合には、少なくとも接合部付近での両部材間の比抵抗差が20%以内であればよい。ここで、発熱部と中間部との比抵抗差とは、発熱部の室温比抵抗に対する中間部の室温比抵抗と発熱部の室温比抵抗との差の比のことをいい、端子部と中間部との比抵抗差とは、中間部の室温比抵抗に対する端子部の室温比抵抗と中間部の室温比抵抗との差の比のことをいう。 The heating element of this configuration is obtained by solid-phase diffusion bonding by heating each member while applying pressure to each other by an electric resistance butt method. Even in this configuration, similarly to the above, the member to be joined can be heated by a high frequency induction method in addition to the energization method. Also here, the specific resistance difference between the members to be joined can be reduced by changing the firing temperatures of the heat generating portion 10, the terminal portion 20, and the intermediate portion 30 having different silica-based oxide contents. That is, the terminal portion 20 is fired at a higher temperature than the intermediate portion 30 and the heat generating portion 10 to advance the grain growth of MoSi 2 crystals and silica-based oxides, and the specific resistance is lowered. It is preferable that firing is performed at an intermediate temperature of 10, and the heat generating portion 10 is fired at the lowest temperature so that grain growth does not proceed. By adjusting the specific resistance difference between the members to be joined within 20% by adjusting in this way, sufficient solid phase diffusion proceeds and a heat generating element with excellent reliability can be obtained. In addition, when using the member which inclined the content etc. of the silica type oxide, the specific resistance difference between both members at least in the vicinity of the joint may be within 20%. Here, the specific resistance difference between the heat generating part and the intermediate part means the ratio of the difference between the room temperature specific resistance of the intermediate part and the room temperature specific resistance of the heat generating part to the room temperature specific resistance of the heat generating part. The specific resistance difference with the part means the ratio of the difference between the room temperature specific resistance of the terminal part and the room temperature specific resistance of the intermediate part with respect to the room temperature specific resistance of the intermediate part.

以上、MoSi相とシリカ系酸化物相から成る2相系材料について述べてきたが、MoSiのMoの一部をWで置換した化学式が(Mo1−x,W)Si(x=0.1〜0.45)の化合物を用いた発熱体、MoSi又は(Mo1−x,W)Si(x=0.1〜0.45)にMoB、MoB、MoB、Mo、WB、WB、W、SiC、HfB、ZrB、TiB、TiB、HfC、ZrC、TiCの群の中から選択される1種もしくは2種以上の化合物を添加したMoSi系発熱体に適用することもできる。 The two-phase material composed of the MoSi 2 phase and the silica-based oxide phase has been described above. The chemical formula in which a part of Mo in MoSi 2 is replaced by W is (Mo 1−x , W x ) Si 2 (x = compound heating element using the 0.1 to 0.45), MoSi 2 or (Mo 1-x, W x ) MoB the Si 2 (x = 0.1~0.45), Mo 2 B, MoB 1 , Mo 2 B 5 , WB, W 2 B, W 2 B 5 , SiC, HfB 2 , ZrB 2 , TiB, TiB 2 , HfC, ZrC, TiC, or one or more selected from the group It can also be applied to a MoSi 2 heating element to which the above compound is added.

以下に具体的な実施例を説明する。
(実施例1及び比較例1,2)
MoSi粉末及びベントナイトの配合比を調整して、シリカ系酸化物含有量が10vol%の発熱部と35vol%の端子部を作製した(実施例1)。ここで、発熱部の線径を6mmφ、端子部の線径を12mmφとし、発熱部及び端子部ともAr雰囲気中、1400℃で2時間焼成した。発熱部を曲げ加工し、U字形状(端子長さ400mm−発熱部長さ670mm−シャンク幅60mm)とした後、端子部と電気抵抗突合せ接合することにより、図1に示す発熱体を作製した。尚、接合前に、端子部の発熱部との接合面が直径6mmφとなるようにNC加工機でテーパー形状に加工した。得られた発熱体を電気炉に装着し、昇温速度5℃/minで、目標温度(炉内温度)まで昇温させ、その温度で10時間保持した後の変形・発泡等の有無を確認した。(耐熱試験)。ここで、目標温度としては1400℃, 1450℃, 1500℃, 1550℃,1600℃,1650℃,及び1700℃の7水準で評価を行った。また、表面のシリカ保護被膜を除去した端子部材を電気炉中で500℃にて100時間加熱し、加熱処理後のペストの有無を確認した(低温酸化試験)。
Specific examples will be described below.
(Example 1 and Comparative Examples 1 and 2)
The mixing ratio of MoSi 2 powder and bentonite was adjusted to produce a heat generating portion having a silica-based oxide content of 10 vol% and a terminal portion having a 35 vol% (Example 1). Here, the wire diameter of the heat generating portion was 6 mmφ, the wire diameter of the terminal portion was 12 mmφ, and both the heat generating portion and the terminal portion were baked at 1400 ° C. for 2 hours in an Ar atmosphere. The heating part was bent to form a U shape (terminal length 400 mm—heating part length 670 mm—shank width 60 mm), and then joined to the terminal part to make an electrical resistance butt joint, thereby producing the heating element shown in FIG. In addition, before joining, it processed into the taper shape with the NC processing machine so that the joint surface with the heat generating part of a terminal part might be 6 mm in diameter. The obtained heating element is installed in an electric furnace, heated to a target temperature (furnace temperature) at a heating rate of 5 ° C / min, and checked for deformation, foaming, etc. after holding at that temperature for 10 hours did. (Heat resistance test). Here, the target temperature was evaluated at seven levels of 1400 ° C, 1450 ° C, 1500 ° C, 1550 ° C, 1600 ° C, 1650 ° C, and 1700 ° C. In addition, the terminal member from which the silica protective coating on the surface was removed was heated in an electric furnace at 500 ° C. for 100 hours to confirm the presence or absence of a pest after the heat treatment (low temperature oxidation test).

発熱部及び端子部ともシリカ系酸化物含有量が10vol%の試料(比較例1)及び35vol%の試料(比較例2)を作製して、実施例1と同様に耐熱試験及び低温酸化試験を行った。結果を表1に示す。 Samples with a silica-based oxide content of 10 vol% (Comparative Example 1) and 35 vol% (Comparative Example 2) were prepared for both the heat generating part and the terminal part, and the heat resistance test and the low temperature oxidation test were conducted in the same manner as in Example 1. went. The results are shown in Table 1.

比較例1では1700℃で10時間保持した後も変形や発泡は認められず、良好な耐熱性を示したが、低温酸化試験ではペストが認められた。一方、比較例2では、低温酸化試験後にペストは認められなかったが、1450℃で10時間保持した後、発熱体に気泡が発生し、変形が生じた。これに対して、実施例1では、1700℃で10時間保持した後も変形や発泡は認められず、優れた耐熱性を示し、低温酸化試験においてもペストは認められなかった。   In Comparative Example 1, no deformation or foaming was observed after holding at 1700 ° C. for 10 hours, and good heat resistance was exhibited, but plague was observed in the low-temperature oxidation test. On the other hand, in Comparative Example 2, no plague was observed after the low-temperature oxidation test, but after maintaining at 1450 ° C. for 10 hours, bubbles were generated in the heating element and deformation occurred. On the other hand, in Example 1, no deformation or foaming was observed even after holding at 1700 ° C. for 10 hours, excellent heat resistance was exhibited, and no plague was observed in the low-temperature oxidation test.

Figure 2007128796
Figure 2007128796

(実施例2,3,4)
実施例1と同様に、MoSi粉末及びベントナイトの配合比を調整して、シリカ系酸化物含有量が10vol%の発熱部と35vol%の端子部を作製した。ここで、発熱部の線径を6mmφ、端子部の線径を12mmφとし、発熱部はAr雰囲気中、1400℃で2時間焼成した。一方、端子部としては、焼成温度を1450℃、1460℃及び1480℃と変えた3種類の試料を作製した(実施例2,3及び4)。それぞれの端子部の室温における比抵抗及び端子部と発熱部との比抵抗差(発熱部の室温比抵抗に対する端子部の室温比抵抗と発熱部の室温比抵抗との差の比)を表2に示す。尚、発熱部の室温比抵抗は0.29μΩ・mであった。発熱部を実施例1と同様に曲げ加工し、U字形状とした後、焼成温度の異なる各端子部と電気抵抗突合せ接合することにより、図1に示す発熱体を作製した。また、同様の条件で発熱部及び端子部とも線径を6mmφとして作製した発熱体を負荷点間スパン20mm、支持点間スパン40mmで固定し、オートグラフにて0.5mm/minのヘッドスピードで荷重を加え、接合部が破断する時の荷重(接合強度)を測定した。各実施例とも10試料ずつ測定を行い、接合強度の平均値を求めた結果を表2に示す。
(Examples 2, 3, and 4)
In the same manner as in Example 1, the mixing ratio of MoSi 2 powder and bentonite was adjusted to produce a heat generating portion with a silica-based oxide content of 10 vol% and a terminal portion with 35 vol%. Here, the wire diameter of the heat generating portion was 6 mmφ, the wire diameter of the terminal portion was 12 mmφ, and the heat generating portion was baked at 1400 ° C. for 2 hours in an Ar atmosphere. On the other hand, as the terminal portion, three types of samples were produced in which the firing temperature was changed to 1450 ° C., 1460 ° C., and 1480 ° C. (Examples 2, 3 and 4). Table 2 shows the specific resistance of each terminal portion at room temperature and the specific resistance difference between the terminal portion and the heat generating portion (ratio of the difference between the room temperature specific resistance of the terminal portion and the room temperature specific resistance of the heat generating portion to the room temperature specific resistance of the heat generating portion). Shown in The room temperature specific resistance of the heat generating part was 0.29 μΩ · m. The heat generating part was bent in the same manner as in Example 1 to form a U shape, and then the electric heating element shown in FIG. In addition, a heating element manufactured with a wire diameter of 6 mmφ for both the heat generating part and the terminal part under the same conditions is fixed at a load point span of 20 mm and a support point span of 40 mm, and is loaded at a head speed of 0.5 mm / min with an autograph. And the load (bonding strength) when the bonded portion broke was measured. Table 2 shows the results of measuring 10 samples in each example and calculating the average value of the bonding strength.

表2より、焼成温度を高くして粒成長を促進させた試料では室温比抵抗が低下して、シリカ系酸化物含有量の低い発熱部の室温比抵抗値に近づくことがわかる。また、このように発熱部と端子部の比抵抗を近づけることにより、接合強度が向上することも確認された。特に、端子部と発熱部の室温比抵抗差が20%以内の実施例3及び4では200MPaを超える高い接合強度が得られた。   From Table 2, it can be seen that in the sample in which the firing temperature was increased and the grain growth was promoted, the room temperature specific resistance was lowered and approached the room temperature specific resistance value of the heat generating part having a low silica-based oxide content. It was also confirmed that the bonding strength was improved by bringing the specific resistance of the heat generating portion and the terminal portion close to each other. In particular, in Examples 3 and 4 in which the difference in room temperature resistance between the terminal portion and the heat generating portion was within 20%, a high bonding strength exceeding 200 MPa was obtained.

Figure 2007128796
Figure 2007128796

(実施例5)
実施例1と同様にMoSi粉末及びベントナイトの配合比を調整して、シリカ系酸化物含有量が10vol%の発熱部と35vol%の端子部を作製した。ここで、発熱部及び端子部をAr雰囲気中、1400℃で2時間焼成した後、端子部については、さらに大気中において1500℃で5時間酸化処理を行った。得られた端子部の室温比抵抗は0.30μΩ・mであり、端子部と発熱部の室温比抵抗差は3.4%であった。発熱部を実施例1と同様に曲げ加工し、U字形状とした後、端子部と電気抵抗突合せ接合することにより、図1に示す発熱体を作製した。
(Example 5)
The mixing ratio of MoSi 2 powder and bentonite was adjusted in the same manner as in Example 1 to prepare a heat generating portion with a silica-based oxide content of 10 vol% and a terminal portion with 35 vol%. Here, after the heat generating portion and the terminal portion were baked at 1400 ° C. for 2 hours in an Ar atmosphere, the terminal portion was further oxidized at 1500 ° C. for 5 hours in the air. The room temperature specific resistance of the obtained terminal part was 0.30 μΩ · m, and the difference in room temperature specific resistance between the terminal part and the heat generating part was 3.4%. The heat generating part was bent in the same manner as in Example 1 to form a U shape, and then the terminal part was joined to the electric resistance butt joint to produce the heat generating element shown in FIG.

このU字形発熱体を加熱試験炉に装着し、図3に示すように、昇温3時間→炉内温度1600℃で5時間保持→降温3時間のパターンを繰り返し通電加熱試験を行った。実施例2〜4のU字形発熱体についても同様に通電加熱試験を行った。それぞれの発熱体に脱落又は断線が発生したサイクル数を表3に示す。   This U-shaped heating element was mounted in a heating test furnace, and as shown in FIG. 3, an energization heating test was repeated by repeating a pattern of increasing temperature for 3 hours → maintaining the furnace temperature at 1600 ° C. for 5 hours → decreasing temperature for 3 hours. The electric heating test was similarly performed on the U-shaped heating elements of Examples 2 to 4. Table 3 shows the number of cycles in which each heating element was dropped or disconnected.

実施例2では50サイクルで発熱体の接合部に脱落が発生した。一方、実施例2〜5では100サイクル経過後も接合部に脱落及び断線は認められず、焼成条件により端子部の比抵抗値を調整することにより、発熱体の信頼性が向上することが確認された。   In Example 2, dropout occurred at the joined portion of the heating element in 50 cycles. On the other hand, in Examples 2 to 5, no dropout or disconnection was observed after 100 cycles, and it was confirmed that the reliability of the heating element was improved by adjusting the specific resistance value of the terminal part according to the firing conditions. It was done.

Figure 2007128796
Figure 2007128796

(実施例6)
MoSi粉末及びベントナイトの配合比を調整して、シリカ系酸化物含有量が10vol%の発熱部、15vol%の中間部、及び35vol%の端子部を作製した。Ar雰囲気中、1400℃で2時間焼成した後の各部材の室温比抵抗を表4に示す。ここで、発熱部及び中間部の線径が6mmφ、端子の線径が12mmφになるように作製し、端子部は中間部と接合させるために先端の接合面が6mmφになるようにテーパー加工した。尚、中間部の長さは10mmとした。発熱部を曲げ加工し、U字形状(端子長さ400mm−発熱部長さ670mm−シャンク幅60mm)とした後、中間部と電気抵抗突合せ接合し、さらに、中間部に端子部を電気抵抗突合せ接合することにより、図2に示す発熱体を作製した。得られたU字形発熱体を加熱試験炉に装着し、大気中で1サイクル昇温3時間→炉内温度1600℃で5時間保持→降温3時間のパターン(図3を参照)で100サイクルの通電試験を行った。
(Example 6)
The mixing ratio of the MoSi 2 powder and bentonite was adjusted to produce a heating part with a silica-based oxide content of 10 vol%, an intermediate part with 15 vol%, and a terminal part with 35 vol%. Table 4 shows the room temperature specific resistance of each member after firing at 1400 ° C. for 2 hours in an Ar atmosphere. Here, the heat generating portion and the intermediate portion were prepared so that the wire diameter was 6 mmφ and the terminal wire diameter was 12 mmφ, and the terminal portion was tapered so that the joining surface at the tip was 6 mmφ in order to join the intermediate portion. . In addition, the length of the intermediate part was 10 mm. Bending the heat generating part to make a U-shape (terminal length 400mm-heat generating part length 670mm-shank width 60mm), then joining the middle part with electrical resistance butt joint, and further joining the terminal part to the middle part with electrical resistance butt joint As a result, the heating element shown in FIG. 2 was produced. The obtained U-shaped heating element is installed in a heating test furnace, and the temperature is increased for 1 cycle in the atmosphere for 3 hours, held in the furnace at 1600 ° C. for 5 hours, and the temperature is decreased for 3 hours (see FIG. 3). An energization test was conducted.

通電試験の結果、100サイクル経過後も発熱体の形態が維持され、接合部で脱落又は断線した試料はなかった。以上の結果より、発熱部と端子部の間にシリカ系酸化物含有量が両部材の中間の値である中間部を設置することにより、部材間の比抵抗の勾配が緩和され、発熱体の信頼性が向上することが確認できた。   As a result of the energization test, the form of the heating element was maintained even after 100 cycles, and there was no sample dropped or disconnected at the joint. From the above results, by installing an intermediate portion in which the silica-based oxide content is an intermediate value between both members between the heat generating portion and the terminal portion, the gradient of the specific resistance between the members is alleviated, and the heating element It was confirmed that the reliability was improved.

Figure 2007128796
Figure 2007128796

以上本発明の好ましい実施の形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。   Although the preferred embodiment of the present invention has been described in detail above, the present invention is not limited to the specific embodiment, and various modifications are possible within the scope of the gist of the present invention described in the claims. Can be changed.

本発明の第1の実施の形態に係るMoSi系発熱体の模式図である。It is a schematic diagram of a MoSi 2 based heating element according to a first embodiment of the present invention. 本発明の第2の実施の形態に係るMoSi系発熱体の模式図である。It is a schematic diagram of the MoSi2 type heat generating body which concerns on the 2nd Embodiment of this invention. 通電試験時のサイクルパターンを示す図である。It is a figure which shows the cycle pattern at the time of an electricity test. 電気抵抗突合せ接合方法の概略を示す図である。It is a figure which shows the outline of an electrical resistance butt-joining method.

符号の説明Explanation of symbols

1、2:MoSi系発熱体
10:発熱部
20:端子部
22:接合端面
30:中間部
1, 2: MoSi 2 heating element 10: heating part 20: terminal part 22: joining end face 30: intermediate part

Claims (4)

発熱部および端子部からなる二珪化モリブデン系セラミック発熱体において、前記発熱部のシリカ系酸化物の含有量が5vol以上25vol%以下、前記端子部のシリカ系酸化物の含有量が30vol以上60vol%以下であることを特徴とする二珪化モリブデン系セラミック発熱体。 In the molybdenum disilicide ceramic heating element composed of a heat generating part and a terminal part, the content of the silica-based oxide in the heat-generating part is 5 vol% or more and 25 vol% or less, and the content of the silica-based oxide in the terminal part is 30 vol% or more and 60 vol%. A molybdenum disilicide-based ceramic heating element characterized by the following: 発熱部、端子部、および前記発熱部と前記端子部との間に備えられた中間部からなる二珪化モリブデン系セラミック発熱体において、前記発熱部、前記中間部および前記端子部のシリカ系酸化物の含有量がそれぞれ5vol以上15vol%未満、15vol%以上30vol%未満、および30vol%以上60vol%以下であることを特徴とする二珪化モリブデン系セラミック発熱体。 A molybdenum disilicide-based ceramic heating element comprising a heating part, a terminal part, and an intermediate part provided between the heating part and the terminal part, wherein the heating part, the intermediate part, and the silica oxide of the terminal part The molybdenum disilicide ceramic heating element is characterized in that the content of each is 5 vol% or more and less than 15 vol%, 15 vol% or more and less than 30 vol%, and 30 vol% or more and 60 vol% or less. 前記発熱部と前記端子部との比抵抗差が、20%以内であることを特徴とする請求項1に記載の二珪化モリブデン系セラミック発熱体。 2. The molybdenum disilicide-based ceramic heating element according to claim 1, wherein a specific resistance difference between the heat generating portion and the terminal portion is within 20%. 前記発熱部と前記中間部、および前記端子部と前記中間部との比抵抗差が20%以内であることを特徴とする請求項2に記載の二珪化モリブデン系セラミック発熱体。 3. The molybdenum disilicide-based ceramic heating element according to claim 2, wherein a specific resistance difference between the heat generating portion and the intermediate portion and between the terminal portion and the intermediate portion is within 20%.
JP2005321739A 2005-11-07 2005-11-07 Molybdenum disilicide ceramic heating element Expired - Fee Related JP4632205B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005321739A JP4632205B2 (en) 2005-11-07 2005-11-07 Molybdenum disilicide ceramic heating element
CN 200610153889 CN1964583B (en) 2005-11-07 2006-09-14 Molybdenum disilicides ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005321739A JP4632205B2 (en) 2005-11-07 2005-11-07 Molybdenum disilicide ceramic heating element

Publications (2)

Publication Number Publication Date
JP2007128796A true JP2007128796A (en) 2007-05-24
JP4632205B2 JP4632205B2 (en) 2011-02-16

Family

ID=38083404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005321739A Expired - Fee Related JP4632205B2 (en) 2005-11-07 2005-11-07 Molybdenum disilicide ceramic heating element

Country Status (2)

Country Link
JP (1) JP4632205B2 (en)
CN (1) CN1964583B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2427412A1 (en) * 2009-05-05 2012-03-14 Sandvik Intellectual Property AB Heating element
JP2014160673A (en) * 2014-04-30 2014-09-04 Jx Nippon Mining & Metals Corp MoSi2-MADE HEATING ELEMENT AND MANUFACTURING METHOD OF THE HEATING ELEMENT
CN104302021A (en) * 2014-09-30 2015-01-21 洛阳市西格马炉业有限公司 Heating unit used for electrical heating and preparation technology of heating unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103796346A (en) * 2014-02-27 2014-05-14 上海理工大学 High-temperature nano-electrothermal film of double-film structure and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124772A (en) * 1992-10-12 1994-05-06 Toshiba Ceramics Co Ltd Heating element for high temperature electric furnace
JPH11317282A (en) * 1998-02-20 1999-11-16 Riken Corp Molybdenum disilicide composite ceramic heating element and its manufacture
JP2002164154A (en) * 2000-11-24 2002-06-07 Nikko Materials Co Ltd MODULE HEATER WITH EXCELLENT HEAT UNIFORMITY MEADE OF MoSi2
JP2005281041A (en) * 2004-03-29 2005-10-13 Nikko Materials Co Ltd HEATER HAVING EXCELLENT PEST RESISTANCE AND COMPOSED ESSENTIALLY OF MoSi2 AND METHOD OF MANUFACTURING THE SAME

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85205099U (en) * 1985-11-23 1986-10-01 刘长富 Carbon fibre wire as heating element
CN1080109A (en) * 1992-06-12 1993-12-29 王涛 A kind of complex electrocaloric film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124772A (en) * 1992-10-12 1994-05-06 Toshiba Ceramics Co Ltd Heating element for high temperature electric furnace
JPH11317282A (en) * 1998-02-20 1999-11-16 Riken Corp Molybdenum disilicide composite ceramic heating element and its manufacture
JP2002164154A (en) * 2000-11-24 2002-06-07 Nikko Materials Co Ltd MODULE HEATER WITH EXCELLENT HEAT UNIFORMITY MEADE OF MoSi2
JP2005281041A (en) * 2004-03-29 2005-10-13 Nikko Materials Co Ltd HEATER HAVING EXCELLENT PEST RESISTANCE AND COMPOSED ESSENTIALLY OF MoSi2 AND METHOD OF MANUFACTURING THE SAME

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2427412A1 (en) * 2009-05-05 2012-03-14 Sandvik Intellectual Property AB Heating element
EP2427412A4 (en) * 2009-05-05 2013-01-16 Sandvik Intellectual Property Heating element
JP2014160673A (en) * 2014-04-30 2014-09-04 Jx Nippon Mining & Metals Corp MoSi2-MADE HEATING ELEMENT AND MANUFACTURING METHOD OF THE HEATING ELEMENT
CN104302021A (en) * 2014-09-30 2015-01-21 洛阳市西格马炉业有限公司 Heating unit used for electrical heating and preparation technology of heating unit

Also Published As

Publication number Publication date
JP4632205B2 (en) 2011-02-16
CN1964583B (en) 2011-02-09
CN1964583A (en) 2007-05-16

Similar Documents

Publication Publication Date Title
US10309650B2 (en) Ceramic heater
JP2009155150A (en) High electric resistance high zirconia cast refractory
JP4632205B2 (en) Molybdenum disilicide ceramic heating element
KR20120027218A (en) Heating element
JP4134028B2 (en) Ceramic heater and glow plug including the same
JP2009287920A (en) Glow plug
JP2002220285A (en) Silicon nitride/tungsten carbide composite sintered compact and its manufacturing method
JP2003229236A (en) Production method of ceramic heater and production method of glow plug
JP4546756B2 (en) Ceramic heater and glow plug
KR102364910B1 (en) Heating elements comprising chromium alloy molybdenum disilicide and uses thereof
JP2009266396A (en) Molybdenum disilicide based ceramic heating element
CN103889076A (en) Electric heating wire with insulation layer and method for processing electric heating wire with insulation layer
JPH0743075A (en) Dipping tube heater
JP2004259610A (en) Ceramic heater, manufacturing method thereof, and glow plug
JP5986136B2 (en) Method for manufacturing MoSi2 heating element
JP5765277B2 (en) Low temperature thermistor material and manufacturing method thereof
JPH11251039A (en) Aluminum nitride ceramic heater
JP2534847B2 (en) Ceramic Heater
KR100460810B1 (en) High-temperature ceramic heater with high efficiency and method for manufacturing the same
JP5586916B2 (en) MoSi2 heating element and method of manufacturing the same
JP2537606B2 (en) Ceramic Heater
JP2006086013A (en) Molybdenum disilicide based ceramic heating element and its manufacturing method
JP2005149973A (en) Silicon carbide heating element and manufacturing method therefor
JP2000048936A (en) Silicon carbide heating element
JP6392004B2 (en) Heater and glow plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

R150 Certificate of patent or registration of utility model

Ref document number: 4632205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees