JP2014160673A - MoSi2-MADE HEATING ELEMENT AND MANUFACTURING METHOD OF THE HEATING ELEMENT - Google Patents

MoSi2-MADE HEATING ELEMENT AND MANUFACTURING METHOD OF THE HEATING ELEMENT Download PDF

Info

Publication number
JP2014160673A
JP2014160673A JP2014093680A JP2014093680A JP2014160673A JP 2014160673 A JP2014160673 A JP 2014160673A JP 2014093680 A JP2014093680 A JP 2014093680A JP 2014093680 A JP2014093680 A JP 2014093680A JP 2014160673 A JP2014160673 A JP 2014160673A
Authority
JP
Japan
Prior art keywords
heating element
mosi
plate
shaped
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014093680A
Other languages
Japanese (ja)
Other versions
JP5986136B2 (en
Inventor
Hiroshi Takamura
博 高村
Satoyasu Narita
里安 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2014093680A priority Critical patent/JP5986136B2/en
Publication of JP2014160673A publication Critical patent/JP2014160673A/en
Application granted granted Critical
Publication of JP5986136B2 publication Critical patent/JP5986136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heating element which is a hybrid-shape heater formed from a heating part having a U-shaped plane and a rod-shaped terminal part, improves heat conduction efficiency of radiation energy and is capable of obtaining energy saving or uniform heat property improving effects rather than a conventional rod-shaped heater and using accessories such as a holder, a clip, a connecting band and the like which are used for mounting the heater to a furnace, as they are.SOLUTION: In the heating element, a rod-shaped terminal part 1 has the same shape as a heater which is generally used in the market and mainly contains MoSi, and both ends of the rod-shaped terminal part 1 are columnar terminal portions and a plate-like heating part 3 is included which connects both the terminal portions. A plate width of the heating part is 0.7 to 1.0 times of a diameter of the columnar terminal portions, and a sectional area of the plate-like heating part is 0.15 to 0.3 times of a sectional area of the columnar terminal portions. The plane-shaped heating part may have a larger area than that of a conventional rod-shaped heating part.

Description

本発明は、円柱状端子部と板状発熱部が同一材料からなる一体型MoSi製発熱体であり、従来の棒状のヒーターよりも省エネルギーであり、均熱性改善効果を得ることが可能であるMoSi製発熱体及び同発熱体の製造方法に関する。
なお、本明細書で使用するMoSi製板状発熱体は、純MoSi乃至MoSiにSiO等の絶縁性酸化物等を含有させて(通常、MoSiは70wt%以上含有する)電気抵抗を増加させたMoSi主成分とする発熱体を含む。
The present invention is an integrated MoSi 2 heating element in which a cylindrical terminal part and a plate-like heating part are made of the same material, which is more energy-saving than a conventional rod-shaped heater, and can achieve a soaking improvement effect. The present invention relates to a MoSi 2 heating element and a method of manufacturing the heating element.
Note that the MoSi 2 plate-like heating element used in this specification includes pure MoSi 2 to MoSi 2 containing an insulating oxide such as SiO 2 (usually containing 70 wt% or more of MoSi 2 ). A heating element mainly composed of MoSi 2 with increased resistance is included.

二珪化モリブデン(MoSi)を主成分とする発熱体は、優れた耐酸化特性を有するため、特に大気又は酸化性雰囲気下で使用する超高温発熱体として1950〜1960年頃から市販され、現在まで幅広い用途で使用されている。この発熱体は主成分として、MoSiを70wt%以上含有している。
従来、ガラス工業やセラミックス焼成等の多くの分野で使用されている発熱体は発熱部(なお、通常「発熱部」は、通電時に主に発熱する、発熱体の径が細い部分(端子部以外)を意味する。)が1つのU字形を成す形状(2シャンク型)をしており、炉の天井や側壁から宙吊りに取り付けられ、その炉の最高使用温度は1700〜1800°Cに達する。
Since the heating element mainly composed of molybdenum disilicide (MoSi 2 ) has excellent oxidation resistance, it is commercially available as an ultra-high temperature heating element used especially in the atmosphere or in an oxidizing atmosphere from about 1950 to 1960. Used in a wide range of applications. This heating element contains 70 wt% or more of MoSi 2 as a main component.
Conventionally, the heating element used in many fields such as the glass industry and ceramic firing is the heating part (Note that the “heating part” usually generates heat mainly when energized and the heating element has a small diameter (other than the terminal part). ) Has a U-shaped shape (two shank type), and is suspended from the ceiling or side wall of the furnace, and the maximum operating temperature of the furnace reaches 1700-1800 ° C.

MoSiを主成分とする発熱体は、図2に示すように、通常棒状の発熱体素材をU字形に曲げ、この発熱部の両端に端子部を溶接したU字形発熱体が使用されている。図2において、このU字形発熱体は発熱部3、溶接部4、グリップ(端子)部2、給電部1からなる。 As shown in FIG. 2, the heating element mainly composed of MoSi 2 is a U-shaped heating element in which a rod-shaped heating element material is bent into a U shape and terminal portions are welded to both ends of the heating portion. . In FIG. 2, the U-shaped heating element includes a heating part 3, a welding part 4, a grip (terminal) part 2, and a power feeding part 1.

現在、市販されているMoSiを主成分とするU字形ヒーターの規格は、発熱部と端子部の線径が、それぞれφ3/φ6、φ4/φ9、φ6/φ12、φ9/φ18、φ12/φ24等になる。これはMoSiヒーターの場合は、基本的に発熱部と端子部は同じ組成になるため、素線の直径(断面積)で電気抵抗を変化させ、発熱量をコントロールする必要があるためである。従ってヒーターに通電すると、高抵抗の細い径の部分が高温になり加熱体としての役割を担い、低抵抗の太い径の部分は発熱を抑え、給電する部分を低温に保つための端子部の役割を担う。 Currently, the standard of the U-shaped heater mainly composed of MoSi 2 is that the wire diameters of the heat generating portion and the terminal portion are φ3 / φ6, φ4 / φ9, φ6 / φ12, φ9 / φ18, φ12 / φ24, respectively. Etc. This is because in the case of the MoSi 2 heater, since the heat generating portion and the terminal portion basically have the same composition, it is necessary to change the electric resistance with the diameter (cross-sectional area) of the wire to control the heat generation amount. . Therefore, when the heater is energized, the high resistance thin diameter part becomes hot and plays a role as a heating element, while the low resistance thick diameter part suppresses heat generation and the role of the terminal part to keep the power supply part at a low temperature. Take on.

MoSiヒーターでは、この機能を引き出すには発熱部の断面積は端子部の断面積の1/4以下にする必要があり、つまりヒーターの線径では、市販されている規格にあるとおり、発熱部は端子部の1/2以下にする必要があった。
このため、従来の棒状ヒーターでは、発熱部線幅と端子部線幅の比は1:2もしくは4:9となり、つまり発熱部線幅/端子部線幅の比率は0.44〜0.50が常識となっている。
In order to bring out this function in the MoSi 2 heater, the cross-sectional area of the heat generating portion needs to be ¼ or less of the cross-sectional area of the terminal portion. In other words, the heater wire diameter generates heat as in the standard on the market. The part had to be ½ or less of the terminal part.
For this reason, in the conventional bar heater, the ratio of the heating part line width to the terminal part line width is 1: 2 or 4: 9, that is, the ratio of the heating part line width / terminal part line width is 0.44 to 0.50. Has become common sense.

伝熱には熱伝導、熱対流、熱輻射の3形態あるが、抵抗加熱炉における被熱処理体への伝熱は、ヒーターからの熱輻射の割合が高いと言われている。輻射エネルギーの伝熱量Qは、Q=σ(T −T )・A・Fという式で表され、ここでσはステファン・ボルツマン定数、T1,Tは絶対温度になり、抵抗加熱炉においてはヒーターと被熱処理体の絶対温度に相当し、またAは面積、Fは形態係数になる。
形態係数Fは、二つの面の幾何学的関係を表す数値で、一方の面のすべての位置から発射された輻射線が相手の面内に到達する割合を足し合わせた値を意味し、0〜1で表示される。
There are three forms of heat transfer: heat conduction, heat convection, and heat radiation, and it is said that heat transfer from the heater to the heat-treated body in the resistance heating furnace has a high rate of heat radiation. The heat transfer amount Q of radiant energy, Q = σ (T 1 4 -T 2 4) · A · F that is expressed by the formula, where sigma is the Stefan-Boltzmann constant, T 1, T 2 becomes absolute temperature, In a resistance heating furnace, it corresponds to the absolute temperature of the heater and the heat-treated body, A is an area, and F is a form factor.
The form factor F is a numerical value representing the geometric relationship between the two surfaces, and means a value obtained by adding the ratios of the radiations emitted from all positions on one surface reaching the surface of the other surface. Displayed with ~ 1.

従って抵抗加熱炉において同一の表面積を有する被熱処理体に輻射エネルギーの伝熱量Qを多くするには、ヒーターの絶対温度を高くするか、もしくは形態係数を大きくするかになる。絶対温度を高くする場合は、それだけ多くの電力が必要となるため、省エネルギーの観点からは効果がない。
一方、ヒーターから発射される輻射線が被熱処理体に到達する割合、つまり形態係数を大きくすることができれば、効果的に被熱処理体へ伝熱が可能となり、省エネルギー化が達成できると考えられる。
Accordingly, in order to increase the heat transfer amount Q of the radiant energy to the heat-treated body having the same surface area in the resistance heating furnace, it is necessary to increase the absolute temperature of the heater or increase the form factor. In the case where the absolute temperature is increased, a large amount of electric power is required, which is not effective from the viewpoint of energy saving.
On the other hand, if the rate at which the radiation emitted from the heater reaches the body to be heat-treated, that is, the shape factor, can be increased, it is possible to effectively transfer heat to the body to be heat-treated and energy saving can be achieved.

そこで本発明者らは、発熱部を従来の棒状から断面積は同一のまま板状にすることによって、被熱処理体と対面する発熱部の面積を大きくすることを考えた。発熱部線幅/端子部線幅の比率を従来の0.44〜0.50から0.7〜1.0に大きくすれば、形態係数も大きくなり、同じヒーターの表面温度でも輻射エネルギーの伝熱量が多くなると考えられる。
板状のMoSiヒーターについては、以前、本発明者によって特許出願を行なっているが、棒状に押し出した後、加熱変形させて板状にする場合(文献1参照)は、形状安定性が非常に難しかった。
Therefore, the present inventors considered increasing the area of the heat generating portion facing the heat-treated body by changing the heat generating portion from a conventional rod shape to a plate shape with the same cross-sectional area. If the ratio of the heating part line width / terminal part line width is increased from the conventional 0.44 to 0.50 to 0.7 to 1.0, the shape factor increases, and the transmission of radiant energy even at the same heater surface temperature. It is thought that the amount of heat increases.
As for the plate-like MoSi 2 heater, a patent application was previously filed by the present inventor. However, when the plate-like MoSi 2 heater is extruded into a rod shape and then heat-deformed into a plate shape (see Reference 1), the shape stability is very high It was difficult.

また、帯状(板状)に押し出し成形して作製する場合(特許文献2参照)場合は、端子部も板状となり、炉の構造を見直す必要があり、また端子部周辺の付属品を特別に調達する必要があり、従来の棒状ヒーターからの置き換えが非常に不便であった。
また、板状に押し出し発熱部と棒状の端子部を接合する方法は、溶接が安定しない問題があった。このようなことから最近は、形状安定性に優れ、溶接部の問題がなく、既存ヒーターの容易に置き換え可能なヒーターが要求されていた。
In addition, in the case of manufacturing by extruding into a band shape (plate shape) (see Patent Document 2), the terminal portion is also plate-shaped, and it is necessary to review the structure of the furnace, and specially attach accessories around the terminal portion. It was necessary to procure, and it was very inconvenient to replace the conventional bar heater.
In addition, the method of joining the exothermic part and the bar-like terminal part extruded in a plate shape has a problem that welding is not stable. For these reasons, recently, there has been a demand for a heater that is excellent in shape stability, has no problem of a welded portion, and can be easily replaced with an existing heater.

炉の構造やヒーター周辺の付属品を変更することなく従来品と置き換えを可能にするには、端子部は従来通り棒状にしておく必要がある。また、U字形のピッチを市販の規格と同一にしておく必要がある。
現在、市場で販売されている発熱部と端子部の線径がφ4/φ9、φ6/φ12、φ9/φ18のヒーターにおいて発熱部(線径が細い部分)の標準U字ピッチは、それぞれ、25mm(φ4材使用)、40mm(φ6材)、50mm(φ9材)となっている。
In order to be able to replace the conventional product without changing the furnace structure and accessories around the heater, the terminal portion needs to be in the form of a rod as before. Moreover, it is necessary to make the U-shaped pitch the same as a commercially available standard.
At present, the standard U-shaped pitch of the heat generating part (thin part with a thin wire diameter) in the heaters with the wire diameters of φ4 / φ9, φ6 / φ12, φ9 / φ18 sold on the market is 25 mm respectively. (Use of φ4 material), 40 mm (φ6 material), 50 mm (φ9 material).

この部分を、端子部の太い材料で25mm(φ9材)、40mm(φ12材)、50mm(φ18材)を用いて通電加熱しながら曲げようとした場合、従来は断線するか、曲がってもU字頂点部にクラックが入るために、加工が非常に難しく、行われていなかった。また、仮にU字型に曲がっても、U字部が同一平面に乗るのが難しく、そのまま発熱部を研削すると、厚みばらつきが生じ、均一に発熱するヒーターを作製するのは困難であった。  When this part is bent with energization heating using 25mm (φ9 material), 40mm (φ12 material), 50mm (φ18 material) with a thick material of the terminal part, conventionally, even if the wire is disconnected or bent, Since cracks occurred at the top of the character, the processing was very difficult and was not performed. Moreover, even if it bends in a U-shape, it is difficult for the U-shaped portion to get on the same plane, and if the heat-generating portion is ground as it is, thickness variations occur, and it is difficult to produce a heater that generates heat uniformly.

特許第3947661号Japanese Patent No. 3947661 WO20020871WO20020871

本発明は、円柱状端子部と板状発熱部が同一材料からなる一体型MoSi製発熱体であって、棒状の素線を通電加熱によりU字曲げ加工した後、発熱部とする領域を研削することにより、U型平面を有する発熱部と、棒状の端子部で構成されるハイブリッド形状のヒーターを提供する。
平面状の発熱部は従来の棒状より断面積は同一だが表面積は大きく、輻射エネルギーの伝熱効率を高め、従来の棒状ヒーターより省エネや均熱性改善の効果を得ることができるようにする。
一方、棒状の端子部は、一般に市場で使用されているMoSiを主成分とするヒーターと同形状とし、ヒーターを炉に装着する時に使用される図3で示したホルダー5やクリップ6、接続帯7等の付属品をそのまま使用できるようにすることを課題とする。
The present invention is an integrated MoSi 2 heating element in which a cylindrical terminal part and a plate-like heating part are made of the same material, and a bar-shaped element wire is bent into a U shape by energization heating, and then a region to be a heating part is formed. By grinding, a hybrid heater comprising a heat generating portion having a U-shaped plane and a rod-shaped terminal portion is provided.
The flat heat generating portion has the same cross-sectional area as the conventional bar shape but has a larger surface area, so that the heat transfer efficiency of the radiant energy can be improved, and the effect of energy saving and soaking improvement can be obtained from the conventional bar heater.
On the other hand, the rod-shaped terminal portion has the same shape as that of a heater mainly composed of MoSi 2 which is generally used in the market, and the holder 5 and clip 6 shown in FIG. It is an object to make it possible to use accessories such as the band 7 as they are.

上記の課題を解決するために、本発明者らは鋭意研究の結果、端子部となる太い棒状の部分を、それより半分の細さで行なわれていたU字曲げのピッチと同じ小さいピッチで曲げることができるようになった。またU字曲げた後の形状が同一平面にない場合は矯正することによって、発熱部となる中央部からU字形まで研削加工した場合に発熱の厚みが均一にすることができるとの知見を得た。   In order to solve the above-mentioned problems, the present inventors have conducted intensive research and made a thick rod-like portion serving as a terminal portion at a pitch as small as the pitch of the U-bending performed at half the thickness. It can be bent. In addition, the knowledge that the thickness of the heat generation can be made uniform when grinding from the central portion that becomes the heat generation portion to the U-shape by correcting when the shape after the U-bend is not in the same plane is obtained. It was.

本発明はこの知見に基づき、
1)両端が円柱状端子部、その間をつなぐ板状発熱部からなる発熱体であって、発熱部の板幅が円柱状端子部の直径の0.7〜1.0であり、板状発熱部の断面積が円柱状端子部の断面積の0.15〜0.3倍であることを特徴とするMoSi製発熱体
2)板状発熱部がU字形であり、円柱状端子部が給電部に接合できる構造を備えていることを特徴とする上記1)記載のMoSi製発熱体
3)板状発熱部の片面が円柱状端子部の曲面を有することを特徴とする上記1)又は2)記載のMoSi製発熱体、を提供する。
The present invention is based on this finding,
1) A heating element comprising a cylindrical terminal portion at both ends and a plate-like heat generating portion connecting between the two, the plate width of the heating portion being 0.7 to 1.0 of the diameter of the cylindrical terminal portion, MoSi 2 heating element characterized in that the sectional area of the part is 0.15 to 0.3 times the sectional area of the cylindrical terminal part 2) The plate-like heating part is U-shaped and the cylindrical terminal part is The heating element made of MoSi 2 according to the above 1), characterized in that it has a structure that can be joined to a power feeding part. 3) One side of the plate-like heating part has a curved surface of a cylindrical terminal part. or 2) MoSi 2 made heating element according to offer.

また本発明は、
4)円柱状端子部と板状発熱部が同一材料からなる一体型MoSi製発熱体の製造方法であって、円柱状のMoSi製原材料を曲げ加工によりU字形とした後、中央の発熱部となる位置を切削加工して、該発熱部の板幅が円柱状端子部の直径の0.7〜1.0に、板状発熱部の断面積が円柱状端子部の断面積の0.15〜0.3倍にすることを特徴とするMoSi製発熱体の製造方法
5)円柱状のMoSi製原材料を曲げ加工によりU字形とした後、中央の発熱部となる位置を切削加工する際に、MoSi製の円柱の一方の曲面から削除を開始して、板状発熱部の一方の面を平面に加工し、板状発熱部の他方の面が円柱の曲面が残るように加工することを特徴とする前記4)記載のMoSi製発熱体、を提供する。
The present invention also provides
4) A method for manufacturing an integrated MoSi 2 heating element in which a cylindrical terminal part and a plate-like heating part are made of the same material, wherein the cylindrical MoSi 2 raw material is bent into a U shape and then heated at the center. The plate width of the heat generating portion is 0.7 to 1.0 of the diameter of the cylindrical terminal portion, and the cross sectional area of the plate heat generating portion is 0 of the cross sectional area of the cylindrical terminal portion. Manufacturing method of MoSi 2 heating element characterized in that it is made 15 to 0.3 times 5) After a cylindrical MoSi 2 raw material is bent into a U shape by cutting, the position to be the central heating part is cut When processing, start deletion from one curved surface of the MoSi 2 cylinder so that one surface of the plate-like heat generating part is processed into a flat surface so that the other surface of the plate-like heat generating part remains a cylindrical curved surface The heating element made of MoSi 2 according to the above 4), wherein the heating element is processed into a heating element.

本発明は、両端が円柱状端子部、その間をつなぐ板状発熱部からなる発熱体であって、棒状の素線を通電加熱によりU字曲げ加工した後、発熱部とする領域を研削することにより、U型平面を有する発熱部と、棒状の端子部で構成されるハイブリッド形状のヒーターを提供することが可能となった。
また、平面状の発熱部は従来の棒状より大面積とし、輻射エネルギーの伝熱効率を高め、従来の棒状ヒーターより省エネや均熱性改善の効果を得ることができる効果を得ることができる。さらに、棒状の端子部は、一般に市場で使用されているMoSiを主成分とするヒーターと同形状とすることができるので、ヒーターを炉に装着する時に使用されるホルダーやクリップ、接続帯等の付属品はそのまま使用することが可能で、従来ヒーターからの置き換えが容易となる効果を有する。
The present invention is a heating element including a cylindrical terminal portion at both ends and a plate-shaped heating portion connecting between the two, and after bending a rod-shaped element wire by current heating, a region to be the heating portion is ground. Thus, it is possible to provide a hybrid heater composed of a heat generating part having a U-shaped plane and a rod-shaped terminal part.
In addition, the planar heat generating portion has a larger area than that of the conventional bar shape, and the heat transfer efficiency of the radiant energy can be increased, so that the effect of energy saving and improvement of the thermal uniformity can be obtained from the conventional bar heater. Furthermore, since the rod-shaped terminal portion can have the same shape as a heater mainly composed of MoSi 2 used in the market, a holder, a clip, a connection band, etc. used when the heater is mounted in the furnace The accessory can be used as it is, and has the effect of facilitating replacement from the conventional heater.

さらに、本発明のMoSi製板状発熱体及び同発熱体の製造方法は、加熱時の変形(あばれ)やショート等の故障が少なく、溶接部の剥離もない。また発熱体の交換が容易でありメンテナンスコストを低減できるという優れた効果を有する。 Further, the MoSi 2 plate-like heating element and the method for manufacturing the heating element of the present invention are less likely to be deformed during heating (shortening), short-circuiting, and the like, and there is no peeling of the weld. Moreover, it has the outstanding effect that replacement | exchange of a heat generating body is easy and can reduce a maintenance cost.

円柱状端子部と板状発熱部が同一材料からなる一体型MoSi製発熱体であり、発熱部が板状であり、端子部が円柱状である本発明のMoSi製板状発熱体の例を示す模式図である。The MoSi 2 plate-like heating element of the present invention in which the cylindrical terminal portion and the plate-like heating portion are an integrated MoSi 2 heating element made of the same material, the heating portion is plate-like, and the terminal portion is cylindrical. It is a schematic diagram which shows an example. 従来の棒状体から作製されたU字形発熱部を有する発熱体の模式図である。It is a schematic diagram of the heat generating body which has the U-shaped heat generating part produced from the conventional rod-shaped body. ヒーターを炉に装着する時に使用する接続帯等の付属品の説明図である。It is explanatory drawing of accessories, such as a connection band used when attaching a heater to a furnace. 本発明の円柱状端子部と板状発熱部が同一材料からなる一体型MoSi製発熱体の模式図であり、上図は、上面と下面が平面である平板状板状発熱部を示す図であり、下図は、上面が平面であり、下面が円柱の曲面である平板状板状発熱部を示す図である。FIG. 3 is a schematic view of an integrated MoSi 2 heating element in which the cylindrical terminal portion and the plate-like heating portion of the present invention are made of the same material, and the upper diagram is a diagram showing a flat plate-like heating portion whose upper and lower surfaces are flat. The lower figure is a diagram showing a flat plate-like heating part having a flat upper surface and a cylindrical curved lower surface.

本発明のMoSi製板状発熱体を製造するには、まず発熱体の原料粉末をバインダーと混合し、この混合物を型から押出して円柱状の成形体(グリーン)とする。そして、脱脂を行なった後、一次焼結及び通電焼結により原料粉末を焼結させて、緻密で直進性の良い円柱状の原材料を作製する。
図1に、本発明のMoSi製板状発熱体の代表的な形状例を示す。同図において、符号1は電極部、符号2は端子部、符号3は発熱部をそれぞれ示す。
In order to produce the MoSi 2 plate-shaped heating element of the present invention, first, the raw material powder of the heating element is mixed with a binder, and this mixture is extruded from a mold to form a cylindrical molded body (green). Then, after degreasing, the raw material powder is sintered by primary sintering and electric current sintering to produce a dense cylindrical raw material having good straightness.
Figure 1 shows a typical example of a shape of MoSi 2 made plate-like heating element of the present invention. In the figure, reference numeral 1 denotes an electrode part, reference numeral 2 denotes a terminal part, and reference numeral 3 denotes a heat generating part.

図4は、本発明の円柱状端子部2と板状発熱部3が同一材料からなる一体型MoSi製発熱体の2種類の例を示す図である。上図は、上面と下面が平面である平板状板状発熱部3を示し、図4の下図は、上面が平面であり、下面が円柱の曲面である平板状板状発熱部3を示す。
上記の通り、円柱状端子部2の構造は従来品と同様であり、両端の円柱状端子部の末端に電極部を構成することができる。したがって、市販の付属品を利用して給電できる。
FIGS. 4A and 4B are diagrams showing two types of integrated MoSi 2 heating elements in which the cylindrical terminal portion 2 and the plate-like heating portion 3 of the present invention are made of the same material. The upper diagram shows the flat plate-like heat generating portion 3 whose upper surface and lower surface are flat, and the lower diagram of FIG. 4 shows the flat plate-shaped heat generating portion 3 whose upper surface is flat and whose lower surface is a cylindrical curved surface.
As described above, the structure of the cylindrical terminal portion 2 is the same as that of the conventional product, and the electrode portions can be configured at the ends of the cylindrical terminal portions at both ends. Therefore, power can be supplied using commercially available accessories.

発熱部3の一方の面を板状に、他方の面を円柱状の曲面とした場合は、双方の面で表面積が異なるので、熱放射に異方性を持たせることができる。通常は、被熱処理体には形態係数を大きくして輻射伝熱量を多くするためにフラットな面を向けるが、炉体全体を均一に加熱したい場合は曲面側を炉内の内側に向けても良い。
片側が曲面である板状発熱部3は、図4に示すように片側から加工するだけで良いので、作業が簡略化でき、低コストで作製できるメリットがある。また図4の下図のような断面にした場合に板厚を少し肉厚にできる点や、エッジでのチッピングを低減できる等で材料の信頼性を向上させる効果もある。
When one surface of the heat generating portion 3 is formed in a plate shape and the other surface is formed in a cylindrical curved surface, the heat radiation can be made anisotropic because the surface areas of both surfaces are different. Normally, a flat surface is directed to the body to be heat treated in order to increase the shape factor and increase the amount of radiant heat transfer, but if the entire furnace body is to be heated uniformly, the curved surface side may be directed to the inside of the furnace. good.
Since the plate-like heat generating portion 3 having a curved surface on one side only needs to be processed from one side as shown in FIG. 4, there is an advantage that the operation can be simplified and can be manufactured at low cost. Further, when the cross section as shown in the lower diagram of FIG. 4 is used, there is an effect that the reliability of the material can be improved by the fact that the plate thickness can be slightly increased and chipping at the edge can be reduced.

この例は、発熱体の原料粉末をバインダーと混合し、この混合物を型から押出して板状の成形体(グリーン)を作製したものである。しかし、この原料となる円柱状の成形体の製造方法は、円柱状の成形体を得ることができれば、押し出しに限定される必要はないことは容易に理解できるであろう。例えば、プレス成型により円柱状の成型体とすることもできる。密度の高いより精密な焼結体を得ることができれば、いずれの原材料を使用しても良い。  In this example, a raw material powder for a heating element is mixed with a binder, and the mixture is extruded from a mold to produce a plate-like molded body (green). However, it will be easily understood that the method for producing the cylindrical molded body as the raw material is not necessarily limited to extrusion as long as a cylindrical molded body can be obtained. For example, a cylindrical molded body can be formed by press molding. Any raw material may be used as long as a denser and more precise sintered body can be obtained.

このように作製した円柱状の原材料は、通電加熱し、高温下で曲げ加工することができる。円柱状のMoSi製原材料を、所定のピッチに曲げ加工によりU字形とした後、中央の発熱部となる位置を切削加工して、該発熱部の板幅が円柱状端子部の直径の0.7〜1.0に、板状発熱部の断面積が円柱状端子部の断面積の0.15〜0.3倍にする。これにより、円柱状端子部と板状発熱部が同一材料からなる一体型MoSi製発熱体を得ることができる。 The columnar raw material thus produced can be heated by energization and bent at a high temperature. After the cylindrical MoSi 2 raw material is bent into a U-shape by bending to a predetermined pitch, the position of the central heat generating part is cut, and the plate width of the heat generating part is 0 of the diameter of the cylindrical terminal part. 7 to 1.0, the cross-sectional area of the plate-like heat generating portion is 0.15 to 0.3 times the cross-sectional area of the cylindrical terminal portion. Thereby, an integrated MoSi 2 heating element in which the cylindrical terminal portion and the plate-like heating portion are made of the same material can be obtained.

上記のように、円柱状の原材料を通電加熱し高温下で曲げ加工した後、両端に円柱状端子部を残してその間を切削し、円柱状端子部の間をつなぐ板状発熱部を形成するものであるから、板状発熱部の向きを任意に形成できる。
通常、図1及び図2に示すように、板状発熱部3はU字形の面と平行な面となるように切削する。しかし、U字形の面に垂直な面になるように切削することもできることも容易に理解できるであろう。すなわち、加熱する対象物によって、板状発熱部3の面の向きを変えることができる。
As described above, the cylindrical raw material is energized and heated and bent at a high temperature, and then the cylindrical terminal portions are cut at both ends to form a plate-like heat generating portion that connects between the cylindrical terminal portions. Therefore, the direction of the plate-like heat generating portion can be arbitrarily formed.
Usually, as shown in FIG.1 and FIG.2, the plate-shaped heat generating part 3 is cut so that it may become a surface parallel to a U-shaped surface. However, it will be easily understood that the cutting can be performed so that the surface is perpendicular to the U-shaped surface. That is, the direction of the surface of the plate-like heat generating portion 3 can be changed depending on the object to be heated.

太い端子部となる素線をそのままU字曲げして、その後に発熱部となる部分を厚み方向に研削して薄くすることにより、端子部より十分に高抵抗にしてヒーターの構造をとる。この時、研削してフラットになった発熱部の板幅は、端子部の線幅の0.7〜1.0になり、従来品より大きくすることができるという大きな効果を得ることができる。これは、本願発明の製造方法において初めて達成することが可能となった。  The wire that becomes the thick terminal portion is bent in a U shape as it is, and then the portion that becomes the heat generating portion is ground and thinned in the thickness direction, so that the resistance is sufficiently higher than that of the terminal portion, thereby taking the heater structure. At this time, the plate width of the heat generating portion that has been flattened by grinding becomes 0.7 to 1.0 of the line width of the terminal portion, and a great effect that it can be made larger than the conventional product can be obtained. This can be achieved for the first time in the production method of the present invention.

本発明は、円柱状端子部と板状発熱部が同一材料からなる一体型MoSi製発熱体であって、棒状の素線を通電加熱によりU字曲げ加工した後、発熱部とする領域を研削することにより、U型平面を有する発熱部と、棒状の端子部で構成されるハイブリッド形状のヒーターとして利用できる。
また、平面状の発熱部は従来の棒状より大面積とし、輻射エネルギーの伝熱効率を高め、従来の棒状ヒーターより省エネや均熱性改善の効果を得ることができる効果を得ることができ、棒状の端子部は、一般に市場で使用されているMoSiを主成分とするヒーターと同形状とすることができるので、ヒーターを炉に装着する時に使用されるホルダーやクリップ、接続帯(図示)等の付属品はそのまま使用することが可能で、従来ヒーターからの置き換えが容易となる。
The present invention is an integrated MoSi 2 heating element in which a cylindrical terminal part and a plate-like heating part are made of the same material, and a bar-shaped element wire is bent into a U shape by energization heating, and then a region to be a heating part is formed. By grinding, it can be used as a hybrid heater composed of a heat generating portion having a U-shaped plane and a rod-shaped terminal portion.
In addition, the flat heat generating part has a larger area than the conventional bar shape, can improve the heat transfer efficiency of radiant energy, can obtain the effect of energy saving and heat uniformity improvement than the conventional bar heater, Since the terminal part can have the same shape as a heater mainly composed of MoSi 2 used in the market, a holder, a clip, a connection band (illustrated), etc. used when the heater is mounted in the furnace Accessories can be used as they are, making it easy to replace conventional heaters.

1: 給電部
2: 端子部
3: 発熱部
4: 溶接部
5: ヒーターホルダー
6: クリップ
7: 接続帯
1: Power feeding part 2: Terminal part 3: Heat generation part 4: Welding part 5: Heater holder 6: Clip 7: Connection zone

Claims (5)

両端が円柱状端子部、その間をつなぐ板状発熱部からなる発熱体であって、発熱部の板幅が円柱状端子部の直径の0.7〜1.0であり、板状発熱部の断面積が円柱状端子部の断面積の0.15〜0.3倍であることを特徴とするMoSi製発熱体。 A heating element composed of a cylindrical heat generating part connecting both ends of the cylindrical terminal part, the plate width of the heat generating part being 0.7 to 1.0 of the diameter of the cylindrical terminal part, MoSi 2 heating element, characterized in that the cross-sectional area is 0.15 to 0.3 times the cross-sectional area of the cylindrical terminal portion. 板状発熱部がU字形であり、円柱状端子部が給電部に接合できる構造を備えていることを特徴とする請求項1記載のMoSi製発熱体。 2. The MoSi 2 heating element according to claim 1, wherein the plate-like heat generating part is U-shaped and has a structure in which the cylindrical terminal part can be joined to the power feeding part. 板状発熱部の片面が円柱状端子部の曲面を有することを特徴とする請求項1又は2記載のMoSi製発熱体。 The heating element made of MoSi 2 according to claim 1 or 2, wherein one side of the plate-like heating part has a curved surface of a cylindrical terminal part. 円柱状端子部と板状発熱部が同一材料からなる一体型MoSi製発熱体の製造方法であって、円柱状のMoSi製原材料を曲げ加工によりU字形とした後、中央の発熱部となる位置を切削加工して、該発熱部の板幅が円柱状端子部の直径の0.7〜1.0に、板状発熱部の断面積が円柱状端子部の断面積の0.15〜0.3倍にすることを特徴とするMoSi製発熱体の製造方法。 A method of manufacturing an integrated MoSi 2 heating element in which a cylindrical terminal part and a plate-like heating part are made of the same material, wherein after the cylindrical MoSi 2 raw material is bent into a U shape, The plate width of the heat generating portion is 0.7 to 1.0 of the diameter of the cylindrical terminal portion, and the cross sectional area of the plate heat generating portion is 0.15 of the cross sectional area of the cylindrical terminal portion. A method for producing a heating element made of MoSi 2, which is made to be 0.3 times. 円柱状のMoSi製原材料を曲げ加工によりU字形とした後、中央の発熱部となる位置を切削加工する際に、MoSi製の円柱の一方の曲面から削除を開始して、板状発熱部の一方の面を平面に加工し、板状発熱部の他方の面が円柱の曲面が残るように加工することを特徴とする前記4)記載のMoSi製発熱体。 After the cylindrical MoSi 2 raw material is bent into a U-shape by bending, when the center heat generation part is cut, the deletion starts from one of the curved surfaces of the MoSi 2 column, and the plate-like heat generation The MoSi 2 heating element as described in 4) above, wherein one surface of the portion is processed into a flat surface, and the other surface of the plate-shaped heating portion is processed so that a cylindrical curved surface remains.
JP2014093680A 2014-04-30 2014-04-30 Method for manufacturing MoSi2 heating element Active JP5986136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014093680A JP5986136B2 (en) 2014-04-30 2014-04-30 Method for manufacturing MoSi2 heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014093680A JP5986136B2 (en) 2014-04-30 2014-04-30 Method for manufacturing MoSi2 heating element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009241291A Division JP5586916B2 (en) 2009-10-20 2009-10-20 MoSi2 heating element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2014160673A true JP2014160673A (en) 2014-09-04
JP5986136B2 JP5986136B2 (en) 2016-09-06

Family

ID=51612192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014093680A Active JP5986136B2 (en) 2014-04-30 2014-04-30 Method for manufacturing MoSi2 heating element

Country Status (1)

Country Link
JP (1) JP5986136B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101642510B1 (en) * 2015-03-25 2016-07-29 주식회사 솔렉스 Hot Wire for Heating Device
EP3200558A1 (en) * 2016-01-27 2017-08-02 JX Nippon Mining & Metals Corporation Mosi2 heating element and method of producing said heating element

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2992959A (en) * 1958-02-20 1961-07-18 Kanthal Ab Production of shaped bodies from heat resistant oxidation proof materials
JPH0220293U (en) * 1988-07-26 1990-02-09
JPH0725685A (en) * 1991-08-30 1995-01-27 Jasco Corp Method for forming ceramic
JPH10324571A (en) * 1997-05-23 1998-12-08 Riken Corp Molybdenum disilicide ceramic heat generating body and its production
WO2003075613A1 (en) * 2002-03-05 2003-09-12 Winner Technology Co., Ltd. High-temperature ceramic heater with high efficiency and method for manufacturing the same
JP2004047282A (en) * 2002-07-12 2004-02-12 Nikko Materials Co Ltd Plate-like heating element and method of manufacturing the same
JP2005056725A (en) * 2003-08-06 2005-03-03 Nikko Materials Co Ltd Heating element made of mosi2 and its manufacturing method
JP2005519427A (en) * 2002-02-27 2005-06-30 サンドビク アクチボラゲット Molybdenum silicide type element
JP2006302887A (en) * 2005-04-20 2006-11-02 Ngk Insulators Ltd Power supply member and heating device
JP2007128796A (en) * 2005-11-07 2007-05-24 Riken Corp Molybdenum disilicide based ceramic heating element
JP2007535782A (en) * 2003-07-16 2007-12-06 カンサル・リミテッド Silicon carbide furnace heating element

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2992959A (en) * 1958-02-20 1961-07-18 Kanthal Ab Production of shaped bodies from heat resistant oxidation proof materials
JPH0220293U (en) * 1988-07-26 1990-02-09
JPH0725685A (en) * 1991-08-30 1995-01-27 Jasco Corp Method for forming ceramic
JPH10324571A (en) * 1997-05-23 1998-12-08 Riken Corp Molybdenum disilicide ceramic heat generating body and its production
JP2005519427A (en) * 2002-02-27 2005-06-30 サンドビク アクチボラゲット Molybdenum silicide type element
WO2003075613A1 (en) * 2002-03-05 2003-09-12 Winner Technology Co., Ltd. High-temperature ceramic heater with high efficiency and method for manufacturing the same
JP2004047282A (en) * 2002-07-12 2004-02-12 Nikko Materials Co Ltd Plate-like heating element and method of manufacturing the same
JP2007535782A (en) * 2003-07-16 2007-12-06 カンサル・リミテッド Silicon carbide furnace heating element
JP2005056725A (en) * 2003-08-06 2005-03-03 Nikko Materials Co Ltd Heating element made of mosi2 and its manufacturing method
JP2006302887A (en) * 2005-04-20 2006-11-02 Ngk Insulators Ltd Power supply member and heating device
JP2007128796A (en) * 2005-11-07 2007-05-24 Riken Corp Molybdenum disilicide based ceramic heating element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101642510B1 (en) * 2015-03-25 2016-07-29 주식회사 솔렉스 Hot Wire for Heating Device
EP3200558A1 (en) * 2016-01-27 2017-08-02 JX Nippon Mining & Metals Corporation Mosi2 heating element and method of producing said heating element

Also Published As

Publication number Publication date
JP5986136B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
WO2016186721A8 (en) Boron nitride nanotube synthesis via direct induction
JP5986136B2 (en) Method for manufacturing MoSi2 heating element
CN104302021B (en) A kind of for electrically heated heater and preparation technology thereof
JP5586916B2 (en) MoSi2 heating element and method of manufacturing the same
CN107046739A (en) High-power silicon nitride ceramics heating plate and its interior hard outer soft preparation method
WO2023029465A1 (en) Heating element and preparation method therefor
JP6590319B2 (en) MoSi2 heating element and method of manufacturing the same
JP6766101B2 (en) A heater made of a MoSi2 heating element and a method for manufacturing the heater.
JP4632205B2 (en) Molybdenum disilicide ceramic heating element
JP2005056725A (en) Heating element made of mosi2 and its manufacturing method
CN110662338B (en) Arc channel structure of long arc plasma beam generator
JP6892064B2 (en) Multi-shank type heater
CN206042393U (en) Adopt electric heating element of boron nitride as insulating material
CN107277946A (en) A kind of refractory ceramics heating plate
JP2004273383A (en) BELT-LIKE HEATING ELEMENT MADE FROM MoSi2 AND MANUFACTURING METHOD OF HEATING ELEMENT
CN205119801U (en) Resistance furnace for work piece
CN105873253A (en) High-thermal-conductivity ceramic membrane heating pipe
JP2000048936A (en) Silicon carbide heating element
CN107343331A (en) High heat-conducting ceramic film heating pipe
JP2020011865A (en) Method for controlling temperature of heating element and method for manufacturing glass article
JPS5814486A (en) Heater for electric furnace
CN201594017U (en) Thermoelectric couple temperature controlling device
CN201986185U (en) Oval silicon molybdenum rod
CN203590494U (en) Thick end type silicon carbide rod
TW201134573A (en) Screw-manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160608

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160804

R150 Certificate of patent or registration of utility model

Ref document number: 5986136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250