JP2007126974A - Electromagnetic pump - Google Patents

Electromagnetic pump Download PDF

Info

Publication number
JP2007126974A
JP2007126974A JP2005317938A JP2005317938A JP2007126974A JP 2007126974 A JP2007126974 A JP 2007126974A JP 2005317938 A JP2005317938 A JP 2005317938A JP 2005317938 A JP2005317938 A JP 2005317938A JP 2007126974 A JP2007126974 A JP 2007126974A
Authority
JP
Japan
Prior art keywords
pump
electromagnetic
discharge
pump chamber
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005317938A
Other languages
Japanese (ja)
Inventor
Yukihiro Shoji
幸広 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP2005317938A priority Critical patent/JP2007126974A/en
Publication of JP2007126974A publication Critical patent/JP2007126974A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electromagnetic Pumps, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic pump simplified in structure by forming an electromagnetic valve integrally with a pump mechanism and capable of discharging a low-pressure large flow and a high-pressure small flow by one electromagnetic pump. <P>SOLUTION: This electromagnetic pump 60 comprises the electromagnetic valve 61 and a pump part 62 engaged with the electromagnetic valve 61. In the pump part 62, a body 78 is engaged with a stopper 68 by a screw mechanism, and the rod 73 of the stopper 68 is connected to one end of a stepped piston 81 slidably inserted into the body 78 with a retainer disposed therebetween. The other end of the stepped piston 81 is pressed by a spring member 85 engaged with a piston shaft 86a fitted to the body 78. A suction passage 88 and a discharge passage 89 communicate with the large diameter hole part 79a of a stepped hole part 79, and a suction check valve 91 is installed in the suction passage 88 and a discharge check valve 90 is installed in the discharge passage 89 to form the pump mechanism 92. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電磁ポンプに関し、さらに詳細には電磁弁の操作により液体を低圧大流量と高圧小流量に吐出をすることができる電磁ポンプに関する。   The present invention relates to an electromagnetic pump, and more particularly to an electromagnetic pump capable of discharging a liquid into a low pressure high flow rate and a high pressure small flow rate by operating an electromagnetic valve.

従来、工作機などにおいてチャッキングやクランプ等に使用する油圧装置では、可変ポンプを使用しているが、クランプ時や待機状態も常にポンプ(電動機)が定常回転しているため、損失が大きい。更なる省エネを行うため、電動機にインバータを付け、電動機の回転数制御を行い、無駄な流量を吐出させず、吐出流量が不要なときは電動機の回転数を下げ、省エネを図っている(例えば、特許文献1参照)。
特開2001−280257号公報
Conventionally, a hydraulic device used for chucking or clamping in a machine tool or the like uses a variable pump. However, since the pump (electric motor) always rotates at the time of clamping and in a standby state, the loss is large. In order to further save energy, an inverter is attached to the motor, the motor speed is controlled, and no unnecessary flow rate is discharged. When the discharge flow rate is unnecessary, the motor speed is reduced to save energy (for example, , See Patent Document 1).
JP 2001-280257 A

しかしながら、特許文献1ではインバータにより電動機の回転数を制御し省エネを図っているが、クランプ中、電動機は低回転でありながら回転しているため損失は発生している。また、小さいシリンダによるクランプでもインバータやコントローラ、ドライバーが必要であり、コストを抑制することができない。
本発明は、上記の不具合を解決するためになされたもので、電磁コイルと流体を吸入・吐出するポンプ機構を有するポンプ本体とを一体にし、1台の電磁ポンプで低圧大流量と高圧小流量を吐出することにより、回転構造の電動機・ポンプを使用することなく、クランプ等の油圧源に電磁ポンプを作動させることにより、小型化、省エネを図ることができる電磁ポンプを提供することを目的とする。
However, in Patent Document 1, the number of revolutions of the electric motor is controlled by an inverter to save energy. However, a loss occurs because the electric motor is rotating at a low speed during clamping. Even with a small cylinder clamp, an inverter, controller, and driver are required, and the cost cannot be reduced.
The present invention has been made to solve the above-described problems. The electromagnetic coil and a pump body having a pump mechanism for sucking and discharging fluid are integrated, and a low pressure high flow rate and a high pressure small flow rate are provided by a single electromagnetic pump. The purpose is to provide an electromagnetic pump that can be reduced in size and save energy by operating the electromagnetic pump to a hydraulic source such as a clamp without using a rotating structure electric motor / pump. To do.

上記の課題を達成するために請求項1記載の発明は、
電磁弁部材と、
前記電磁弁部材に液密に係合されたポンプ部材と、
を備えた電磁ポンプにおいて、
前記ポンプ部材は、
ポンプ本体に設けられた段差形状のポンプ室と、
前記ポンプ本体に設けられ前記ポンプ室に連通するポンプ機構と、
を有し、
前記電磁弁部材の励磁、非励磁の作動により前記ポンプ室を稼動させて前記ポンプ機構により吸入路から吐出路に流れる液体の流量を制御することができる。
In order to achieve the above object, the invention described in claim 1
A solenoid valve member;
A pump member liquid-tightly engaged with the electromagnetic valve member;
In an electromagnetic pump with
The pump member is
A step-shaped pump chamber provided in the pump body;
A pump mechanism provided in the pump body and communicating with the pump chamber;
Have
The pump chamber can be operated by the excitation or non-excitation operation of the electromagnetic valve member, and the flow rate of the liquid flowing from the suction path to the discharge path can be controlled by the pump mechanism.

請求項2記載の発明では、前記ポンプ機構は、前記ポンプ本体に設けられた前記吸入路と、
前記ポンプ本体に設けられた前記吐出路と、前記吐出路の途中に設けられた吸入逆止弁と、を備えるので、構造が簡素化されコンパクト化を図ることができるのでよい。
請求項3記載の発明では、前記ポンプ室は、前記ポンプ本体に形成され前記吸入路及び前記吐出路に連通する段付孔部と、前記段付孔部に摺動自在に嵌挿されたピストン部材と、を備え、前記ポンプ室は前記ピストン部材の小径部のポンプ室と大径部と小径部の段差部により形成されると、前記ポンプ部材は段付ピストンにより構造が簡単で、2種類の流量が得られるのでよい。
In the invention of claim 2, the pump mechanism includes the suction passage provided in the pump body,
Since the discharge passage provided in the pump body and the suction check valve provided in the middle of the discharge passage are provided, the structure can be simplified and the size can be reduced.
According to a third aspect of the present invention, the pump chamber includes a stepped hole portion formed in the pump body and communicating with the suction passage and the discharge passage, and a piston slidably fitted in the stepped hole portion. The pump chamber is formed by a pump chamber of a small diameter portion of the piston member and a step portion of the large diameter portion and the small diameter portion, and the pump member has a simple structure by a stepped piston and is of two types The flow rate of

請求項4記載の発明では、前記小径部のポンプ室の吐出口と大径部と小径部の段差部に形成されたポンプ室の吐出口を各吐出逆止弁の後部で接続されると、段付き部の流量と小径部の流量が合流されるので、大きな流量が得られるのでよい。
請求項5記載の発明では、前記小径部のポンプ室に低圧の安全弁が形成されると、吐出側の圧力が上がると小径部の大流量は小径部の吐出路に設けられた安全弁から吸入部へ戻され、段差部のポンプ室のみが吐出され、高圧の圧力が得られるのでよい。
請求項6記載の発明では、前記電磁ポンプの電圧を調整することにより吐出圧を変えると、電磁ポンプに入れる電圧を調整することによりコイルの吸引力が上がるため、吐出圧の調整が可能となり、従来の油圧回路で必要な圧力調整弁なしで圧力の調整が可能になるのでよい。
In the invention of claim 4, when the discharge port of the pump chamber of the small diameter portion and the discharge port of the pump chamber formed in the step portion of the large diameter portion and the small diameter portion are connected at the rear of each discharge check valve, Since the flow rate of the stepped portion and the flow rate of the small diameter portion are merged, a large flow rate may be obtained.
In a fifth aspect of the present invention, when a low-pressure safety valve is formed in the small-diameter pump chamber, when the pressure on the discharge side rises, a large flow rate of the small-diameter portion is increased from a safety valve provided in the discharge passage of the small-diameter portion. It is sufficient that only the pump chamber of the stepped portion is discharged and a high pressure is obtained.
In the invention of claim 6, if the discharge pressure is changed by adjusting the voltage of the electromagnetic pump, the suction force of the coil is increased by adjusting the voltage to be put into the electromagnetic pump, so that the discharge pressure can be adjusted. This is because the pressure can be adjusted without the pressure adjusting valve required in the conventional hydraulic circuit.

本発明は、油圧クランプなどの油圧回路に従来の電動機、回転型のポンプを必要とせず、電磁ポンプ1台で高低圧ポンプの機能を有するため、シリンダの早送りとクランプが他のバルブを必要とせず、小さい電磁ポンプ1台ですることができる。また、クランプ時は電磁ポンプの通電を止めることにより、省エネになる。   The present invention does not require a conventional electric motor or rotary pump in a hydraulic circuit such as a hydraulic clamp, and has one high-low pressure pump function with one electromagnetic pump. It can be done with one small electromagnetic pump. In addition, energy is saved by stopping energization of the electromagnetic pump during clamping.

本発明の実施の形態に係る電磁ポンプについて図面により詳細に説明する。図1は、本発明の第一の実施の形態に係る電磁ポンプ60の概略構造を示す縦断面図である。
図1に示すように、電磁ポンプ60は、基本的には吸引力を発生する電磁弁61と、ポンプ部62とから構成されている。
An electromagnetic pump according to an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional view showing a schematic structure of an electromagnetic pump 60 according to the first embodiment of the present invention.
As shown in FIG. 1, the electromagnetic pump 60 basically includes an electromagnetic valve 61 that generates a suction force and a pump unit 62.

前記電磁弁61は、磁界を発生させる電磁コイル64と、外部磁路となるコイルボビン65、リング66、67とを備えるコイル本体63と、磁界が付与されると固定鉄心であるストッパ68に吸引される可動鉄心の機能を有するプランジャ69と、前記プランジャ69を支持し、かつ該プランジャ69に磁界を付与するためのガイド70と、該ガイド70からストッパ68にプランジャ69を介して磁界が流れるように溶接した非磁性体71とを備えるスリーブ本体72から形成される。この場合、電磁コイル64はコイルボビン65に装着され、かつリング66、67と共にコイルボビン65に嵌挿された状態で、金型(図示しない)にインサートされて射出成形機によりコイル本体63が成形される。   The electromagnetic valve 61 is attracted by a coil body 63 including an electromagnetic coil 64 that generates a magnetic field, a coil bobbin 65 and rings 66 and 67 that are external magnetic paths, and a stopper 68 that is a fixed iron core when a magnetic field is applied. A plunger 69 having the function of a movable iron core, a guide 70 for supporting the plunger 69 and applying a magnetic field to the plunger 69, and a magnetic field flows from the guide 70 to the stopper 68 via the plunger 69. It is formed from the sleeve main body 72 provided with the welded nonmagnetic material 71. In this case, the electromagnetic coil 64 is mounted on the coil bobbin 65 and is inserted into the coil bobbin 65 together with the rings 66 and 67, and is inserted into a mold (not shown), and the coil body 63 is molded by an injection molding machine. .

前記ストッパ68には、その軸心部に前記プランジャ69と一体的に形成されるロッド73が変位自在に嵌挿され、該プランジャ69の一端部が後述するリテーナ82aを介して段付ピストン(ピストン部材)81に接続されている。
なお、コイル本体63とスリーブ本体72とを組付けるときは、コイル本体63の孔63aにスリーブ74を挿入し、該スリーブ74のボス部75に形成されたねじ部75aに固定ナット76が螺着されている。さらに、ストッパ68に一端部に形成される突出部77は、ポンプ部62の本体(ポンプ本体)78の穴部83aに形成するねじ部84aに接合される。
A rod 73 formed integrally with the plunger 69 is inserted into the stopper 68 so as to be displaceable at an axial center thereof, and one end of the plunger 69 is inserted into a stepped piston (piston) via a retainer 82a described later. Member) 81.
When the coil main body 63 and the sleeve main body 72 are assembled, the sleeve 74 is inserted into the hole 63a of the coil main body 63, and the fixing nut 76 is screwed to the screw portion 75a formed in the boss portion 75 of the sleeve 74. Has been. Further, the protruding portion 77 formed at one end of the stopper 68 is joined to a screw portion 84 a formed in the hole 83 a of the main body (pump main body) 78 of the pump portion 62.

前記本体の78の段付孔部79に摺動自在に嵌挿された前記段付ピストン81は、大径軸部81aが段付孔部79の大径孔部79aに嵌挿され、小径軸部81bが段付孔部79の小径孔部79bに係合されており、かつ該段付ピストン81は一端部がリテーナ82aによりストッパ68に係合され、他端部がリテーナ82bによりばね部材85を介してピストン軸86aに接合されている。なお、小径軸部81bは軸心方向に大径孔部79aに延伸しており、段付孔部79と段付ピストン81とによりポンプ室80が形成されている。
また、小径軸部81bは本体78の穴部83bとによりポンプ室100が形成されている。
前記ピストン軸86aは、本体78の端面に開口した穴部83bにねじ部84bに螺着したボス部87にねじ機構に進退自在に設けられたねじ軸86bに係合している。ねじ軸86bを軸心方向に変位させると、ピストン軸86aの移動によりばね部材85の弾発力が調整される。よって、前記ばね部材85の弾発力の調整により段付ピストン81に作用する電磁弁61の励磁による吸引力が制御されると共に、該電磁弁61の非励磁時における段付ピストン81の復帰力が調整される。
The stepped piston 81 slidably fitted in the stepped hole 79 of the main body 78 has a large diameter shaft portion 81a fitted in the large diameter hole 79a of the stepped hole portion 79, and a small diameter shaft. The portion 81b is engaged with the small diameter hole 79b of the stepped hole 79, and one end of the stepped piston 81 is engaged with the stopper 68 by the retainer 82a, and the other end is engaged by the spring 82 with the retainer 82b. Is joined to the piston shaft 86a. The small diameter shaft portion 81b extends in the axial direction to the large diameter hole portion 79a, and the stepped hole portion 79 and the stepped piston 81 form a pump chamber 80.
The small-diameter shaft portion 81 b forms a pump chamber 100 with the hole portion 83 b of the main body 78.
The piston shaft 86a is engaged with a screw shaft 86b provided in a boss portion 87 screwed to a screw portion 84b in a hole portion 83b opened in the end surface of the main body 78 so as to be able to advance and retreat in a screw mechanism. When the screw shaft 86b is displaced in the axial direction, the elastic force of the spring member 85 is adjusted by the movement of the piston shaft 86a. Therefore, the attraction force by the excitation of the electromagnetic valve 61 acting on the stepped piston 81 is controlled by adjusting the elastic force of the spring member 85, and the restoring force of the stepped piston 81 when the electromagnetic valve 61 is not excited. Is adjusted.

一方、ポンプ室80の大径孔部79aには、本体78に穿設され該大径孔部79aの軸心方向に略直交して吸入路88、吐出路89が連通している。前記吸入路88は液体を収納するタンク装置(図示しない)に連通しており、前記吐出路89は液体の供給先であるシリンダ、バルブ(図示しない)に接続されている。さらに、吐出路89の途中には、吐出逆止弁90が設けられている。前記吐出逆止弁90は、液体が吸込路88から吐出路89に流れる際に開口し、液体が逆流方向である吐出路89から吸入路88に流れるときに閉塞する。また、吸入路88の途中には吸入逆止弁91が設けられている。前記吸入逆止弁91は、液体が吸入路88から流れるときは開口し、液体が逆方向である吐出路89から吸入路88に流れるときは閉塞する。ここで、吸入路88、吸入逆止弁91、吐出路89、吐出吸入弁90によりポンプ機構92が形成される。   On the other hand, a suction passage 88 and a discharge passage 89 communicate with the large-diameter hole 79a of the pump chamber 80 so as to be formed in the main body 78 and substantially perpendicular to the axial direction of the large-diameter hole 79a. The suction path 88 communicates with a tank device (not shown) that stores liquid, and the discharge path 89 is connected to a cylinder and a valve (not shown) that are liquid supply destinations. Further, a discharge check valve 90 is provided in the middle of the discharge path 89. The discharge check valve 90 opens when the liquid flows from the suction path 88 to the discharge path 89 and closes when the liquid flows from the discharge path 89 in the reverse flow direction to the suction path 88. A suction check valve 91 is provided in the suction path 88. The suction check valve 91 is opened when the liquid flows from the suction path 88 and is closed when the liquid flows from the discharge path 89 in the reverse direction to the suction path 88. Here, a pump mechanism 92 is formed by the suction path 88, the suction check valve 91, the discharge path 89, and the discharge suction valve 90.

穴部83bの一側には、軸方向に略直交する流路93が設けられ、該流路93は穴部83a及び吸入路88に連通する連通路94に接続している。流路93とポンプ室100との途中には吸入逆止弁101が設けられている。穴部83bの他側には、流路95が設けられ、該流路95が吐出路89に連通する連通路96に接続しており、前記連通路96の途中には吐出逆止弁102が設けられている。
ここで、連通路94,吸入逆止弁101,流路95、吐出逆止弁102によりポンプ機構93が形成される。また、連通路94及び96に接続する配管104、106の途中にはポンプ機構103の安全機能を有する安全弁105が設けられている。
なお、前記連通路94は、段付ピストン81が矢印XまたはY方向に変位した際、穴部83aに収納された液体を穴部83bに流し、穴部83aの液体の圧力を下げる機能を有する。
A channel 93 that is substantially orthogonal to the axial direction is provided on one side of the hole 83 b, and the channel 93 is connected to a communication channel 94 that communicates with the hole 83 a and the suction channel 88. A suction check valve 101 is provided midway between the flow path 93 and the pump chamber 100. A flow path 95 is provided on the other side of the hole 83 b, and the flow path 95 is connected to a communication path 96 communicating with the discharge path 89, and a discharge check valve 102 is disposed in the middle of the communication path 96. Is provided.
Here, a pump mechanism 93 is formed by the communication path 94, the suction check valve 101, the flow path 95, and the discharge check valve 102. A safety valve 105 having a safety function of the pump mechanism 103 is provided in the middle of the pipes 104 and 106 connected to the communication passages 94 and 96.
The communication path 94 has a function of flowing the liquid stored in the hole 83a to the hole 83b and reducing the pressure of the liquid in the hole 83a when the stepped piston 81 is displaced in the direction of the arrow X or Y. .

本発明の第一の実施の形態に係わる電磁ポンプ60は基本的には以上のように構成されるものであり、図2により電磁ポンプ60の動作について説明する。
図2(A)は、電磁コイル64が非励磁(OFF)の保持状態を示している。この状態では、ばね部材85の弾発力により段付ピストン81がリテーナ82b、82aを介して矢印X方向に変位する。よって、ロッド73がプランジャ69と共に矢印X方向に変位する。そのとき、ポンプ室80は、段付ピストン81が矢印X方向に移動して引き込まれるので負圧の状態に保持される。よって、液体が吸入路88から吸入逆止弁91を開いてポンプ室80に吸い込まれ、該ポンプ室80に充填される。また、ポンプ室100も段付ピストン81が矢印X方向に移動して引き込まれるので負圧の状態に保持され、液体が吸入路88、連通路94から吸入逆止弁101を開いてポンプ室100に吸い込まれ、該ポンプ室100に充填される。
The electromagnetic pump 60 according to the first embodiment of the present invention is basically configured as described above, and the operation of the electromagnetic pump 60 will be described with reference to FIG.
FIG. 2A shows a holding state in which the electromagnetic coil 64 is not excited (OFF). In this state, the stepped piston 81 is displaced in the direction of the arrow X via the retainers 82b and 82a by the elastic force of the spring member 85. Therefore, the rod 73 is displaced together with the plunger 69 in the arrow X direction. At that time, the pump chamber 80 is held in a negative pressure state because the stepped piston 81 moves in the arrow X direction and is pulled. Accordingly, the liquid opens the suction check valve 91 from the suction path 88 and is sucked into the pump chamber 80 and filled in the pump chamber 80. Further, the pump chamber 100 is also held in a negative pressure state because the stepped piston 81 moves in the direction of the arrow X and is pulled in, so that the liquid opens the suction check valve 101 from the suction passage 88 and the communication passage 94 and pumps 100. The pump chamber 100 is filled.

図2(B)に示すように、電磁コイル64を励磁(ON)にすると、プランジャ69は、ストッパ68に吸着されるため矢印Y方向に変位する。よって、段付ピストン81はリテーナ82aを介してロッド73により押圧され、ばね部材85がリテーナ82bにより矢印Y方向に撓む。これにより、ポンプ室80は、段付ピストン81が移動し吸入逆止弁91が閉じポンプ室80内の液体が加圧され、該液体によって吐出逆止弁90が開くので液体が吐出逆止弁90、吐出路89より吐出される。また、ポンプ室100は段付ピストン81が移動し吸入逆止弁101が閉じポンプ室100内の液体が加圧され、該液体によって吐出逆止弁102が開くので液体が該吐出逆止弁102、連通路96より吐出路89に合流する。
この場合、ポンプ室80の体積は段付ピストン81が矢印Y方向に変位すると共に、減少し、液体がポンプ室80より吐出逆止弁90を介して吐出路89に吐出される際、大径軸部81aと小径軸部81bとの断面積差により流量が調整される。よって、電磁コイル64の電磁力、すなわちプランジャ69を吸引するストッパ68に付勢される吸引力を制御することによりポンプ室80から吐出路89に供給される液体の圧力を調整することができる。
As shown in FIG. 2B, when the electromagnetic coil 64 is energized (ON), the plunger 69 is adsorbed by the stopper 68 and is displaced in the arrow Y direction. Therefore, the stepped piston 81 is pressed by the rod 73 via the retainer 82a, and the spring member 85 is bent in the arrow Y direction by the retainer 82b. Thereby, in the pump chamber 80, the stepped piston 81 is moved, the suction check valve 91 is closed, the liquid in the pump chamber 80 is pressurized, and the discharge check valve 90 is opened by the liquid, so that the liquid is discharged. 90, discharged from the discharge path 89. Further, in the pump chamber 100, the stepped piston 81 moves, the suction check valve 101 is closed, the liquid in the pump chamber 100 is pressurized, and the discharge check valve 102 is opened by the liquid, so that the liquid is discharged to the discharge check valve 102. Then, the discharge passage 89 merges from the communication passage 96.
In this case, the volume of the pump chamber 80 decreases as the stepped piston 81 is displaced in the direction of the arrow Y, and when the liquid is discharged from the pump chamber 80 through the discharge check valve 90 to the discharge passage 89, the diameter of the pump chamber 80 increases. The flow rate is adjusted by the difference in cross-sectional area between the shaft portion 81a and the small diameter shaft portion 81b. Therefore, the pressure of the liquid supplied from the pump chamber 80 to the discharge path 89 can be adjusted by controlling the electromagnetic force of the electromagnetic coil 64, that is, the suction force biased by the stopper 68 that sucks the plunger 69.

図2(C)は、電磁コイル64の励磁完了状態を示している。この状態では、プランジャ69がストッパ68に吸引され、ロッド73が段付ピストン81を介してばね部材85を矢印Y方向に撓み、電磁コイル64の吸引力とばね部材85の弾発力とが平衡に確保されている。
図2(D)に示すように、電磁コイル64を非励磁にすると、電磁コイル64の吸引力は無くなり、よって、段付ピストン81はばね部材85の弾発力によりロッド73と協動し、プランジャ69が矢印X方向に移動する。これにより、ポンプ室80は負圧になり、該ポンプ室80は吸入路88に設けられた吸入逆止弁91を開き、ポンプ室80は該吸入路88からポンプ室80に液体が充填される。また、ポンプ室100も負圧になり、該ポンプ室100は連通路94に設けられた吸入逆止弁101を開き、ポンプ室100には吸入路88、該連通路94から液体が充填される。
FIG. 2C shows the excitation completion state of the electromagnetic coil 64. In this state, the plunger 69 is attracted by the stopper 68, and the rod 73 deflects the spring member 85 in the arrow Y direction via the stepped piston 81, so that the attracting force of the electromagnetic coil 64 and the elastic force of the spring member 85 are balanced. Is secured.
As shown in FIG. 2 (D), when the electromagnetic coil 64 is de-excited, the attractive force of the electromagnetic coil 64 disappears. The plunger 69 moves in the arrow X direction. As a result, the pump chamber 80 becomes negative pressure, the pump chamber 80 opens the suction check valve 91 provided in the suction passage 88, and the pump chamber 80 is filled with liquid from the suction passage 88. . The pump chamber 100 also has a negative pressure, and the pump chamber 100 opens the suction check valve 101 provided in the communication path 94, and the pump chamber 100 is filled with liquid from the suction path 88 and the communication path 94. .

電磁コイル64への励磁、非励磁を繰り返し、吐出路89から配管された図示していないシリンダなどへの液体が充満し、圧力が上がると図3のようにポンプ室100の液体は流路95、連通路96、配管106より安全弁105を開き、ポンプ室100の液体は配管104を通り、連通路94より吸入路88に戻される。
ポンプ室80の液体は段付ピストン81の断面積が小さいため、更に圧力を上げることができ、図示していないシリンダの押付力が大きくすることができる。
図4で説明すると、低圧時はポンプ室80から吐出されるQ1の流量とポンプ室100から吐出される流量(O2−Q1)との合成された流量Q2が吐出され、圧力がP1を超えると安全弁105から流量(Q2−Q1)が流れ、Q1流量が吐出される。
また、電磁コイルの吸引力は電圧により大きくなるので、電圧を変えることによりシリンダの押付力が調整可能になる。
Excitation and de-excitation of the electromagnetic coil 64 is repeated, and liquid in a cylinder (not shown) or the like piped from the discharge path 89 is filled and when the pressure rises, the liquid in the pump chamber 100 flows into the flow path 95 as shown in FIG. The safety valve 105 is opened from the communication path 96 and the pipe 106, and the liquid in the pump chamber 100 passes through the pipe 104 and is returned to the suction path 88 through the communication path 94.
Since the liquid in the pump chamber 80 has a small sectional area of the stepped piston 81, the pressure can be further increased and the pressing force of a cylinder (not shown) can be increased.
Referring to FIG. 4, when a low pressure is applied, a combined flow rate Q2 of a flow rate of Q1 discharged from the pump chamber 80 and a flow rate (O2-Q1) discharged from the pump chamber 100 is discharged, and the pressure exceeds P1. A flow rate (Q2-Q1) flows from the safety valve 105, and a Q1 flow rate is discharged.
Moreover, since the attractive force of the electromagnetic coil increases with voltage, the pressing force of the cylinder can be adjusted by changing the voltage.

図5は、本発明の第二の実施の形態に係わる電磁ポンプ110の概略構造を示す縦断面図である。図5中、図1の構成要素と同一の構成要素については同一符号を付して詳細な説明を省略する。   FIG. 5 is a longitudinal sectional view showing a schematic structure of the electromagnetic pump 110 according to the second embodiment of the present invention. In FIG. 5, the same components as those of FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

本発明の第一の実施の形態に係わる電磁ポンプの概略構造を示す縦断面図である。It is a longitudinal section showing a schematic structure of an electromagnetic pump concerning a first embodiment of the present invention. 図1の電磁ポンプの動作説明図である。It is operation | movement explanatory drawing of the electromagnetic pump of FIG. 図1の安全弁が開いた状態を示す説明図である。It is explanatory drawing which shows the state which the safety valve of FIG. 1 opened. 本発明の電磁ポンプと圧力、流量特性線図である。It is an electromagnetic pump of this invention, a pressure, and a flow rate characteristic diagram. 本発明の第二の実施の形態に係わる電磁ポンプの概略構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the electromagnetic pump concerning 2nd embodiment of this invention.

符号の説明Explanation of symbols

60、110 電磁ポンプ 61 電磁弁
62 ポンプ部 63 コイル部
64 電磁コイル 68 ストッパ
69 プランジャ 73 ロッド
78 本体 79 段付孔部
80 ポンプ室 81 段付ピストン
88 吸入路 89 吐出路
90、102 吐出逆止弁 91、101 吸入逆止弁
92、103 ポンプ機構 93、95 流路
94、96 連通路 105 安全弁

60, 110 Electromagnetic pump 61 Electromagnetic valve 62 Pump part 63 Coil part 64 Electromagnetic coil 68 Stopper 69 Plunger 73 Rod 78 Body 79 Stepped hole part 80 Pump chamber 81 Stepped piston 88 Suction path 89 Discharge path 90, 102 Discharge check valve 91, 101 Suction check valve 92, 103 Pump mechanism 93, 95 Flow path 94, 96 Communication path 105 Safety valve

Claims (6)

電磁弁部材と、
前記電磁弁部材に液密に係合されたポンプ部材と、
を備えた電磁ポンプにおいて、
前記ポンプ部材は、
ポンプ本体に設けられた段差形状のポンプ室と、
前記ポンプ本体に設けられ前記ポンプ室に連通するポンプ機構と、
を有し、
前記電磁弁部材の励磁、非励磁の作動により前記ポンプ室を稼動させて前記ポンプ機構により吸入路から吐出路に流れる液体の流量を調整することを特徴とする電磁ポンプ。
A solenoid valve member;
A pump member liquid-tightly engaged with the electromagnetic valve member;
In an electromagnetic pump with
The pump member is
A step-shaped pump chamber provided in the pump body;
A pump mechanism provided in the pump body and communicating with the pump chamber;
Have
An electromagnetic pump characterized by adjusting the flow rate of the liquid flowing from the suction path to the discharge path by the pump mechanism by operating the pump chamber by excitation and non-excitation of the electromagnetic valve member.
請求項1記載の電磁ポンプにおいて、前記ポンプ機構は、
前記ポンプ本体に設けられた前記吸入路と、
前記ポンプ本体に設けられた前記吐出路と、
前記吐出路の途中に設けられた吸入逆止弁と、
を備えることを特徴とする電磁ポンプ。
The electromagnetic pump according to claim 1, wherein the pump mechanism is
The suction passage provided in the pump body;
The discharge passage provided in the pump body;
A suction check valve provided in the middle of the discharge path;
An electromagnetic pump comprising:
請求項1または2記載の電磁ポンプにおいて、前記ポンプ室は、
前記ポンプ本体に形成され前記吸入路及び前記吐出路に連通する段付孔部と、
前記段付孔部に摺動自在に嵌挿されたピストン部材と、
を備え、
前記ポンプ室は前記ピストン部材の小径部のポンプ室と大径部と小径部の段差部により形成されたことを特徴とする電磁ポンプ。
The electromagnetic pump according to claim 1 or 2, wherein the pump chamber is
A stepped hole formed in the pump body and communicating with the suction passage and the discharge passage;
A piston member slidably inserted into the stepped hole,
With
2. The electromagnetic pump according to claim 1, wherein the pump chamber is formed by a pump chamber of a small diameter portion of the piston member, a large diameter portion, and a step portion of the small diameter portion.
請求項1乃至3のいずれか1に記載の電磁ポンプにおいて、前記小径部のポンプ室の吐出口と大径部と小径部の段差部に形成されたポンプ室の吐出口を各吐出逆止弁の後部で接続されたことを特徴とする電磁ポンプ。   4. The electromagnetic pump according to claim 1, wherein the discharge port of the pump chamber of the small-diameter portion, the discharge port of the pump chamber formed at the step portion of the large-diameter portion, and the small-diameter portion are connected to each discharge check valve. An electromagnetic pump characterized by being connected at the rear part. 請求項4記載の電磁ポンプにおいて、前記小径部のポンプ室に低圧の安全弁が形成されたことを特徴とする電磁ポンプ。   5. The electromagnetic pump according to claim 4, wherein a low-pressure safety valve is formed in the pump chamber of the small diameter portion. 請求項1乃至5のいずれか1に記載の電磁ポンプにおいて、前記電磁ポンプの電圧を調整することにより吐出圧を変えることを特徴とする電磁ポンプ。
6. The electromagnetic pump according to claim 1, wherein the discharge pressure is changed by adjusting a voltage of the electromagnetic pump.
JP2005317938A 2005-11-01 2005-11-01 Electromagnetic pump Pending JP2007126974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005317938A JP2007126974A (en) 2005-11-01 2005-11-01 Electromagnetic pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005317938A JP2007126974A (en) 2005-11-01 2005-11-01 Electromagnetic pump

Publications (1)

Publication Number Publication Date
JP2007126974A true JP2007126974A (en) 2007-05-24

Family

ID=38149833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005317938A Pending JP2007126974A (en) 2005-11-01 2005-11-01 Electromagnetic pump

Country Status (1)

Country Link
JP (1) JP2007126974A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145176A1 (en) 2008-05-29 2009-12-03 アイシン・エィ・ダブリュ株式会社 Solenoid valve device
WO2010073842A1 (en) * 2008-12-25 2010-07-01 アイシン・エィ・ダブリュ株式会社 Electromagnetic valve system and power transmission system
WO2010109945A1 (en) * 2009-03-24 2010-09-30 アイシン・エィ・ダブリュ株式会社 Solenoid operated valve
WO2010143496A1 (en) * 2009-06-11 2010-12-16 アイシン・エィ・ダブリュ株式会社 Solenoid operated valve device
WO2011074360A1 (en) * 2009-12-15 2011-06-23 アイシン・エィ・ダブリュ株式会社 Pump device and power transmission device, and vehicle
US9383005B2 (en) 2013-09-13 2016-07-05 Gm Global Technology Operations, Llc Hydraulic control for engine start stop transmission system
CN107489602A (en) * 2016-06-12 2017-12-19 胡传胜 Electromagnetic power energy-conserving hydraulic pump
JP2018066288A (en) * 2016-10-18 2018-04-26 豊興工業株式会社 Electromagnetic pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56109675A (en) * 1980-12-26 1981-08-31 Osamu Suzuki Method of preventing spread of fire
JPH0444483A (en) * 1990-06-11 1992-02-14 Toshiba Corp Video recording reproduction controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56109675A (en) * 1980-12-26 1981-08-31 Osamu Suzuki Method of preventing spread of fire
JPH0444483A (en) * 1990-06-11 1992-02-14 Toshiba Corp Video recording reproduction controller

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145176A1 (en) 2008-05-29 2009-12-03 アイシン・エィ・ダブリュ株式会社 Solenoid valve device
US9157544B2 (en) 2008-05-29 2015-10-13 Aisin Aw Co., Ltd. Solenoid valve
JP2012251558A (en) * 2008-05-29 2012-12-20 Aisin Aw Co Ltd Hydraulic control device
EP2213920A1 (en) * 2008-05-29 2010-08-04 Aisin AW Co., Ltd. Solenoid valve device
EP2213920A4 (en) * 2008-05-29 2015-04-01 Aisin Aw Co Solenoid valve device
JPWO2009145176A1 (en) * 2008-05-29 2011-10-13 アイシン・エィ・ダブリュ株式会社 Solenoid valve device
US8251194B2 (en) 2008-12-25 2012-08-28 Aisin Aw Co., Ltd. Solenoid valve
WO2010073842A1 (en) * 2008-12-25 2010-07-01 アイシン・エィ・ダブリュ株式会社 Electromagnetic valve system and power transmission system
JP2010151233A (en) * 2008-12-25 2010-07-08 Aisin Aw Co Ltd Solenoid valve device and power transmitting device
CN102265073A (en) * 2009-03-24 2011-11-30 爱信艾达株式会社 Solenoid operated valve
JP2010223359A (en) * 2009-03-24 2010-10-07 Aisin Aw Co Ltd Solenoid valve device
WO2010109945A1 (en) * 2009-03-24 2010-09-30 アイシン・エィ・ダブリュ株式会社 Solenoid operated valve
DE112010000066T5 (en) 2009-03-24 2012-07-05 Aisin Aw Co., Ltd. solenoid valve assembly
US8312895B2 (en) 2009-03-24 2012-11-20 Aisin Aw Co., Ltd. Solenoid valve device
WO2010143496A1 (en) * 2009-06-11 2010-12-16 アイシン・エィ・ダブリュ株式会社 Solenoid operated valve device
CN102341631A (en) * 2009-06-11 2012-02-01 爱信艾达株式会社 Solenoid valve apparatus
US8347918B2 (en) 2009-06-11 2013-01-08 Aisin Aw Co., Ltd. Solenoid valve apparatus
CN102597515A (en) * 2009-12-15 2012-07-18 爱信艾达株式会社 Pump device and power transmission device, and vehicle
US8636483B2 (en) 2009-12-15 2014-01-28 Aisin Aw Co., Ltd. Pump apparatus, power transmission apparatus, and vehicle
JP2011127633A (en) * 2009-12-15 2011-06-30 Aisin Aw Co Ltd Pump apparatus, power transmission apparatus, and vehicle
CN102597515B (en) * 2009-12-15 2015-05-13 爱信艾达株式会社 Pump device and power transmission device, and vehicle
WO2011074360A1 (en) * 2009-12-15 2011-06-23 アイシン・エィ・ダブリュ株式会社 Pump device and power transmission device, and vehicle
US9383005B2 (en) 2013-09-13 2016-07-05 Gm Global Technology Operations, Llc Hydraulic control for engine start stop transmission system
CN107489602A (en) * 2016-06-12 2017-12-19 胡传胜 Electromagnetic power energy-conserving hydraulic pump
JP2018066288A (en) * 2016-10-18 2018-04-26 豊興工業株式会社 Electromagnetic pump

Similar Documents

Publication Publication Date Title
JP2007126974A (en) Electromagnetic pump
JP5711628B2 (en) Solenoid valves, solenoids and variable displacement pumps
JP2004263856A (en) Solenoid valve
JPH10338116A (en) Solenoid valve
WO2018180367A1 (en) Electromagnetic proportional valve
JP5760961B2 (en) Hydraulic control valve device
JP2006300022A (en) Electromagnetic pump
JP4526082B2 (en) Electromagnetic pump
JP2008157027A (en) Electromagnetic pump
JP7325192B2 (en) Solenoid valve and working machine
JP4561976B2 (en) Solenoid switching valve
JP2009007976A (en) Electromagnetic pump
JP2014151742A (en) Actuator for controlling brake fluid pressure
JP2017142696A (en) Two step proportional pressure reducing valve
JP4110894B2 (en) Solenoid valve
JP2009203891A (en) Electromagnetic pump
JP2006300023A (en) Electromagnetic pump
JP4441370B2 (en) Anti-lock brake control device for vehicle
JP2009203892A (en) Electromagnetic pump
US11841091B2 (en) Directional control valve
JP2023128319A (en) Electromagnetic driving pump
JP3649358B2 (en) Solenoid switching valve
JP2008045508A (en) Electromagnetic fuel pump
JP2008082527A (en) Solenoid valve
KR100982692B1 (en) proportional pressure-reducing valves

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081016

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906