JP2007124789A - Contact strip for pantograph - Google Patents

Contact strip for pantograph Download PDF

Info

Publication number
JP2007124789A
JP2007124789A JP2005312824A JP2005312824A JP2007124789A JP 2007124789 A JP2007124789 A JP 2007124789A JP 2005312824 A JP2005312824 A JP 2005312824A JP 2005312824 A JP2005312824 A JP 2005312824A JP 2007124789 A JP2007124789 A JP 2007124789A
Authority
JP
Japan
Prior art keywords
carbon fiber
carbon
fiber structure
pantograph
granular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005312824A
Other languages
Japanese (ja)
Inventor
Subiantoro
スビアントロ
Takayuki Tsukada
高行 塚田
Takeshi Okubo
毅 大久保
Keigi Tan
佳義 単
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bussan Nanotech Research Institute Inc
Original Assignee
Bussan Nanotech Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bussan Nanotech Research Institute Inc filed Critical Bussan Nanotech Research Institute Inc
Priority to JP2005312824A priority Critical patent/JP2007124789A/en
Publication of JP2007124789A publication Critical patent/JP2007124789A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel contact strip for pantographs that meets all the requirements for contact strips for pantographs with respect to friction performance (for prevention of wear in trolleys), wear performance (for prevention of wear in a contact strip itself), strength performance (for prevention of fracture during running), and electricity conducting performance. <P>SOLUTION: The contact strip for pantographs is formed of a composite material composed of metal and carbon fiber. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電車のパンタグラフ頂部の集電舟に取り付けられるパンタグラフ用すり板に関する。   The present invention relates to a pantograph sliding plate attached to a current collecting boat at the top of a pantograph of a train.

電車は、パンタグラフを架線に接触させて集電している。パンタグラフの頂部には、弓状の集電舟が取り付けられ、この集電舟の上面に直接架線と接触するすり板が載置固定されている。   The train collects the pantograph in contact with the overhead line. A bow-shaped current collector boat is attached to the top of the pantograph, and a sliding plate that directly contacts the overhead wire is placed and fixed on the upper surface of the current collector boat.

従来、このすり板には銅や銅の焼結合金製のものが用いられているが、これらの金属製のパンタグラフ用すり板は、架線との間に発生するスパークで溶損しやすく、表面に凹凸が生じるため、この凹凸面と摺動する架線が著しく摩耗して、寿命が短くなる問題がある。   Conventionally, this sliding plate is made of copper or a sintered alloy of copper, but these metal pantograph sliding plates are easily melted by sparks generated between the overhead wire and the surface. Since the unevenness is generated, there is a problem that the overhead wire sliding with the uneven surface is significantly worn and the life is shortened.

近年、この問題に対処するため、スパークが発生しても溶損し難いカーボン製のパンタグラフ用すり板が開発され、実用化が進んでいる(例えば特許文献1)。このカーボン製のすり板は、架線との摩擦係数も小さいため、架線の寿命を従来の5倍から10倍に延長できることが確認されている。   In recent years, in order to cope with this problem, carbon pantograph sliding plates that are difficult to melt even if sparks have been developed have been put into practical use (for example, Patent Document 1). Since this carbon sliding plate has a small coefficient of friction with the overhead wire, it has been confirmed that the lifetime of the overhead wire can be extended from 5 times to 10 times that of the conventional wire.

図11および図12に、カーボン製のパンタグラフ用すり板51を取り付けた集電舟52の一般的な構造を示す。集電舟52は、パンタグラフを軽量化するため、アルミニウム板が用いられ、このアルミニウム板をコの字状に折り曲げて形成されている。この集電舟52の中央部に、2つのカーボン製のすり板51が並列に取り付けられている。   FIG. 11 and FIG. 12 show a general structure of a current collecting boat 52 to which a pantograph sliding plate 51 made of carbon is attached. The current collector boat 52 uses an aluminum plate to reduce the weight of the pantograph, and is formed by bending the aluminum plate into a U-shape. Two carbon sliding plates 51 are attached in parallel to the central portion of the current collecting boat 52.

前記すり板51は、カーボン製のすり板本体53と亜鉛めっき鋼板製のさや54とで構成され、すり板本体53の底面に設けられた溝55に頭部を収納されたボルト56をさや54の孔に通して、すり板51が集電舟52にナット57で締め付け固定されている。   The sliding plate 51 includes a carbon sliding plate body 53 and a galvanized steel plate sheath 54, and a bolt 56 having a head housed in a groove 55 provided on the bottom surface of the sliding plate main body 53. The sliding plate 51 is fastened and fixed to the current collector boat 52 with a nut 57.

前記集電舟52の両端部には、引き込み線等への出入り時に、架線がパンタグラフの中央からずれた際の集電用に補助すり板58が2列に取り付けられ、さらにその端には、架線をパンタグラフの中央に導くための当て板59が取り付けられている。   At both ends of the current collecting boat 52, auxiliary sliding plates 58 are attached in two rows for current collection when the overhead line is displaced from the center of the pantograph when entering and exiting the lead-in line, etc. A contact plate 59 for guiding the overhead wire to the center of the pantograph is attached.

前記補助すり板58には通常アルミニウム材が用いられ、その厚みは前記すり板51の半分程度に形成されている。この補助すり板58とすり板51の上面を一致させるため、前記集電舟52はすり板51と補助すり板58の境界部で分割され、結合板60で段違いに接続されている。   The auxiliary sliding plate 58 is usually made of an aluminum material and has a thickness about half that of the sliding plate 51. In order to make the upper surfaces of the auxiliary sliding plate 58 and the sliding plate 51 coincide with each other, the current collecting boat 52 is divided at the boundary between the sliding plate 51 and the auxiliary sliding plate 58, and is connected to the connecting plate 60 in steps.

そして、図9および図10に示したように、前記カーボン製のすり板本体53はさや54を介して集電舟52に取り付けられているため、架線からすり板本体53に取り込まれた電流は、さや54を通して集電舟52に送られる。   As shown in FIGS. 9 and 10, since the carbon sliding plate body 53 is attached to the current collector boat 52 via the sheath 54, the current taken into the sliding plate body 53 from the overhead wire is , The sheath 54 is sent to the current collector boat 52.

ところで、前記カーボン製のすり板は、従来の金属製のすり板に比べてすり板自体が摩耗しやすいため、その厚みを金属製のそれに比べて約2倍に形成しなければならないといった問題がある。また、金属製のそれに比べ脆いため、電車の走行中にすり板が欠けて脱落する危険もあった。前記特許文献1は、このような問題を解決するための発明ではあるが、未だ完全とはいえない。   By the way, the above-mentioned carbon sliding plate is likely to be worn out more than the conventional metal sliding plate, so that the thickness thereof has to be formed approximately twice as much as that of the metal sliding plate. is there. Moreover, since it is more fragile than that made of metal, there is a risk that the sliding plate may be cut off and fall off while the train is running. Although Patent Document 1 is an invention for solving such a problem, it is not yet complete.

さらに、カーボン製のすり板は、従来の金属製のすり板と比べると導電性が劣るという問題もあった。
特開平11−75301号公報
Further, the carbon sliding plate has a problem that its conductivity is inferior to that of a conventional metallic sliding plate.
JP-A-11-75301

本発明はこのような状況においてなされたものであり、パンタグラフ用すり板に要求される摩擦性能(架線を摩耗せしめない性能)、摩耗性能(すり板自体が摩耗しない性能)、強度性能(走行中に欠損しない性能)、さらには導電性能の全てを満たす新規なパンタグラフ用すり板を提供することを主たる課題とする。   The present invention has been made in such a situation, and friction performance (performance that does not cause the overhead wire to wear), wear performance (performance that prevents the slide plate itself from being worn), strength performance (during traveling) The main object is to provide a new pantograph sliding plate that satisfies all of the electrical performance.

上記課題を解決するための本発明は、金属と炭素繊維とからなる複合材料により形成されていることを特徴とするパンタグラフ用すり板である。   The present invention for solving the above-mentioned problems is a pantograph slip plate characterized by being formed of a composite material made of metal and carbon fiber.

本発明はまた、前記炭素繊維の外径が15〜100nmであることを特徴とする上記パンタグラフ用すり板を示すものである。   The present invention also shows the pantograph sliding plate, wherein the carbon fiber has an outer diameter of 15 to 100 nm.

本発明はまた、前記炭素繊維が3次元ネットワーク状の炭素繊維構造体を構成しており、当該炭素繊維構造体は、前記炭素繊維が複数延出する態様で、当該炭素繊維を互いに結合する粒状部を有しており、かつ当該粒状部は前記炭素繊維の成長過程において形成されてなるものであることを特徴する上記パンタグラフ用すり板を示すものである。   In the present invention, the carbon fiber constitutes a three-dimensional network-like carbon fiber structure, and the carbon fiber structure has a granular shape in which the carbon fibers are bonded to each other in a form in which a plurality of the carbon fibers extend. The pantograph slide plate is characterized in that it has a portion and the granular portion is formed during the growth process of the carbon fiber.

本発明はまた、前記炭素繊維構造体は、面積基準の円相当平均径が50〜100μmであることを特徴とする上記パンタグラフ用すり板を示すものである。   The present invention also provides the pantograph sliding plate, wherein the carbon fiber structure has an area-based circle-equivalent mean diameter of 50 to 100 μm.

本発明はさらに、前記炭素繊維構造体は、嵩密度が、0.0001〜0.05g/cmであることを特徴とする上記パンタグラフ用すり板を示すものである。 The present invention further shows the pantograph slide plate, wherein the carbon fiber structure has a bulk density of 0.0001 to 0.05 g / cm 3 .

本発明はまた、前記炭素繊維構造体は、ラマン分光分析法で測定されるI/Iが、0.2以下であることを特徴とする上記パンタグラフ用すり板を示すものである。 The present invention also provides the pantograph slide plate, wherein the carbon fiber structure has an I D / I G measured by Raman spectroscopy of 0.2 or less.

本発明はまた、前記炭素繊維構造体は、空気中での燃焼開始温度が750℃以上であることを特徴とする上記パンタグラフ用すり板を示すものである。   The present invention also provides the pantograph sliding plate, wherein the carbon fiber structure has a combustion start temperature in air of 750 ° C. or higher.

本発明はまた、前記炭素繊維の結合箇所において、前記粒状部の粒径が、前記炭素繊維の外径よりも大きいことを特徴とする上記パンタグラフ用すり板を示すものである。   The present invention also shows the pantograph slide plate, wherein a particle diameter of the granular portion is larger than an outer diameter of the carbon fiber at a bonding portion of the carbon fibers.

本発明はまた、前記炭素繊維構造体は、炭素源として、分解温度の異なる少なくとも2つ以上の炭素化合物を用いて、生成されたものである上記パンタグラフ用すり板を示すものである。   The present invention also shows the pantograph slide plate, wherein the carbon fiber structure is produced using at least two carbon compounds having different decomposition temperatures as a carbon source.

本発明はまた、前記金属が銅、または銅の焼結合金であることを特徴とする上記パンタグラフ用すり板を示すものである。   The present invention also shows the pantograph sliding plate, wherein the metal is copper or a sintered alloy of copper.

本発明はまた、前記複合材料の組成が、金属50〜99.5質量%、炭素繊維50〜0.5質量%であることを特徴とする上記パンタグラフ用すり板を示すものである。   The present invention also shows the pantograph sliding plate, wherein the composition of the composite material is 50 to 99.5% by mass of metal and 50 to 0.5% by mass of carbon fiber.

本発明のパンタグラフ用すり板は、金属と炭素繊維とからなる複合材料により形成されているので、金属製のすり板が有する特性とカーボン製のすり板が有する特性を合わせ持つことができる。具体的には、パンタグラフ用すり板を構成する金属として銅を用いることにより、従来のカーボン製のすり板に比べて導電性を向上することができ、また強度特性を付与することができる。一方で、前記銅の中に炭素繊維を含有せしめることにより、銅が溶損することを防止することができるとともに、炭素は自己潤滑性に優れるため、従来の金属製のすり板に比べて、摩擦性能(架線を摩耗せしめない性能)、摩耗性能(すり板自体が摩耗しない性能)を向上することができる。   Since the pantograph sliding plate of the present invention is formed of a composite material composed of metal and carbon fiber, it can have both the characteristics of the metal sliding plate and the properties of the carbon sliding plate. Specifically, by using copper as the metal constituting the pantograph slide plate, the conductivity can be improved as compared with the conventional carbon slide plate, and strength characteristics can be imparted. On the other hand, by including carbon fibers in the copper, it is possible to prevent copper from being melted and to be excellent in self-lubricating properties, so that the friction is higher than that of a conventional metal sliding plate. It is possible to improve performance (performance that does not cause the overhead wire to wear) and wear performance (performance that the sliding plate itself does not wear).

さらに、本発明のパンタグラフ用すり板を構成する炭素繊維を外径が15〜100nmである炭素繊維としたり、前記炭素繊維が3次元ネットワーク状の炭素繊維構造体を構成しており、当該炭素繊維構造体は、前記炭素繊維が複数延出する態様で、当該炭素繊維を互いに結合する粒状部を有しており、かつ当該粒状部は前記炭素繊維の成長過程において形成されてなるものとすることにより、金属に対する炭素繊維の分散性を向上することができるとともに、強度特性や導電特性をも向上することができる。   Further, the carbon fiber constituting the pantograph slide plate of the present invention is a carbon fiber having an outer diameter of 15 to 100 nm, or the carbon fiber constitutes a three-dimensional network-like carbon fiber structure, and the carbon fiber The structure has a granular part that couples the carbon fibers to each other in a form in which a plurality of the carbon fibers extend, and the granular part is formed in the growth process of the carbon fibers. Thus, the dispersibility of the carbon fibers with respect to the metal can be improved, and the strength characteristics and the conductive characteristics can also be improved.

以下、本発明を好ましい実施形態に基づき詳細に説明する。   Hereinafter, the present invention will be described in detail based on preferred embodiments.

図9、図10は、本発明のパンタグラフ用すり板の一例を示す図である。   9 and 10 are diagrams showing an example of a pantograph slide plate according to the present invention.

図示するように、本発明のパンタグラフ用すり板は、すり板本体11と、鋼板製のさや12とで構成されている。さや12の片面側には、図10に示すように、アルミニウムの溶射皮膜13が形成されおり、この皮膜13を外側にして、さや12の両端部が折り曲げられ、さや12が裾広がりのすり板本体11の下部にかしめ込まれている。前記すり板本体11底面の幅中央部には、その長手方向に沿って溝14が設けられ、この溝14に頭部を収納された2本のボルト15が、前記さや12に設けられた孔に通されている。これらの各ボルト15は、パンタグラフ用すり板を集電舟に取り付けるためのものである。   As shown in the figure, the pantograph sliding plate of the present invention is composed of a sliding plate body 11 and a steel plate sheath 12. As shown in FIG. 10, an aluminum sprayed coating 13 is formed on one side of the sheath 12. Both ends of the sheath 12 are bent with the coating 13 on the outside, and the sheath 12 has a hem-spreading plate. It is caulked in the lower part of the main body 11. A groove 14 is provided in the center of the width of the bottom surface of the sliding plate main body 11 along the longitudinal direction thereof, and two bolts 15 having a head housed in the groove 14 are provided in the hole provided in the sheath 12. Has been passed. Each of these bolts 15 is for attaching a pantograph slide plate to the current collector boat.

このようなパンタグラフ用すり板にあって、本発明は当該すり板(すり板本体11)を金属と炭素繊維からなる複合材料により形成したことに特徴を有している。   In such a pantograph slide plate, the present invention is characterized in that the slide plate (slide plate body 11) is formed of a composite material made of metal and carbon fiber.

複合材料を構成する炭素繊維としては、本発明は特に限定することはなく、従来公知の炭素繊維を適宜選択して用いることができるが、その中でも外径が15〜100nmの炭素繊維、いわゆるカーボンナノチューブ(CNT)を用いることが好ましく、さらには、当該炭素繊維が、3次元ネットワーク状の炭素繊維構造体を構成しており、当該炭素繊維構造体は、前記炭素繊維が複数延出する態様で、当該炭素繊維を互いに結合する粒状部を有しており、かつ当該粒状部は前記炭素繊維の成長過程において形成されてなるものであることが特に好ましい。   The carbon fiber constituting the composite material is not particularly limited, and conventionally known carbon fibers can be appropriately selected and used. Among them, carbon fibers having an outer diameter of 15 to 100 nm, so-called carbon It is preferable to use a nanotube (CNT), and furthermore, the carbon fiber constitutes a three-dimensional network-like carbon fiber structure, and the carbon fiber structure is a mode in which a plurality of the carbon fibers extend. It is particularly preferable that the carbon fiber has a granular part for bonding the carbon fibers to each other, and the granular part is formed during the growth process of the carbon fiber.

以下に本発明に好適に用いられる炭素繊維構造体について詳細に説明する。   Hereinafter, the carbon fiber structure suitably used in the present invention will be described in detail.

炭素繊維構造体は、例えば、図3に示すSEM写真または図4(a)および(b)に示すTEM写真に見られるように、外径15〜100nmの炭素繊維から構成される3次元ネットワーク状の炭素繊維構造体であって、前記炭素繊維構造体は、前記炭素繊維が複数延出する態様で、当該炭素繊維を互いに結合する粒状部を有することを特徴とする炭素繊維構造体である。   The carbon fiber structure is, for example, a three-dimensional network formed of carbon fibers having an outer diameter of 15 to 100 nm as seen in the SEM photograph shown in FIG. 3 or the TEM photograph shown in FIGS. 4 (a) and 4 (b). The carbon fiber structure is a carbon fiber structure characterized in that the carbon fiber structure has a granular portion that binds the carbon fibers to each other in a manner in which a plurality of the carbon fibers extend.

炭素繊維構造体を構成する炭素繊維の外径を、15〜100nmの範囲のものとするのは、外径が15nm未満であると、後述するように炭素繊維の断面が多角形状とならず、一方、炭素繊維の物性上直径が小さいほど単位量あたりの本数が増えるとともに、炭素繊維の軸方向への長さも長くなり、高い導電性が得られるため、100nmを越える外径を有することは、金属との複合材料に用いる炭素繊維構造体として適当でないためである。なお、炭素繊維の外径としては特に、20〜70nmの範囲内にあることが、より望ましい。この外径範囲のもので、筒状のグラフェンシートが軸直角方向に積層したもの、すなわち多層であるものは、曲がりにくく、弾性、すなわち変形後も元の形状に戻ろうとする性質が付与されるため、炭素繊維構造体が一旦圧縮された後においても、金属に配合された後において、疎な構造を採りやすくなる。   The outer diameter of the carbon fiber constituting the carbon fiber structure is in the range of 15 to 100 nm, when the outer diameter is less than 15 nm, the cross section of the carbon fiber is not polygonal as described later, On the other hand, as the diameter of the carbon fiber is smaller, the number per unit amount increases, the length of the carbon fiber in the axial direction also becomes longer, and high conductivity is obtained, so having an outer diameter exceeding 100 nm It is because it is not suitable as a carbon fiber structure used for a composite material with a metal. The outer diameter of the carbon fiber is particularly preferably in the range of 20 to 70 nm. In this outer diameter range, a cylindrical graphene sheet laminated in a direction perpendicular to the axis, that is, a multilayer, is not easily bent, and is elastic, that is, has the property of returning to its original shape even after deformation. Therefore, even after the carbon fiber structure is once compressed, it becomes easy to adopt a sparse structure after being blended with the metal.

なお、2400℃以上でアニール処理すると、積層したグラフェンシートの面間隔が狭まり真密度が1.89g/cmから2.1g/cmに増加するとともに、炭素繊維の軸直交断面が多角形状となり、この構造の炭素繊維は、積層方向および炭素繊維を構成する筒状のグラフェンシートの面方向の両方において緻密で欠陥の少ないものとなるため、曲げ剛性(EI)が向上する。 Incidentally, when annealing at 2400 ° C. or higher, with a true density narrowed spacing of graphene sheets stacked is increased from 1.89 g / cm 3 to 2.1 g / cm 3, perpendicular to the axis the cross-section of the carbon fiber becomes a polygonal shape The carbon fiber having this structure is dense and has few defects both in the laminating direction and in the plane direction of the cylindrical graphene sheet constituting the carbon fiber, so that the bending rigidity (EI) is improved.

加えて、該微細炭素繊維は、その外径が軸方向に沿って変化するものであることが望ましい。このように炭素繊維の外径が軸方向に沿って一定でなく、変化するものであると、金属に配合された際に当該炭素繊維に一種のアンカー効果が生じるものと思われ、金属中における移動が生じにくく分散安定性が高まるものとなる。   In addition, it is desirable that the fine carbon fiber has an outer diameter that changes along the axial direction. Thus, when the outer diameter of the carbon fiber is not constant along the axial direction and changes, it seems that a kind of anchor effect is produced in the carbon fiber when blended with the metal, It is difficult for movement to occur and the dispersion stability is increased.

そして、本発明において用いられる炭素繊維構造体においては、このような所定外径を有する微細炭素繊維が3次元ネットワーク状に存在するが、これら炭素繊維は、当該炭素繊維の成長過程において形成された粒状部において互いに結合され、該粒状部から前記炭素繊維が複数延出する形状を呈しているものである。このように、微細炭素繊維同士が単に絡合しているものではなく、粒状部において相互に強固に結合されているものであることから、金属に配合した場合に当該構造体が炭素繊維単体として分散されることなく、嵩高な構造体のまま金属中に分散配合されることができる。また、本発明において用いられる炭素繊維構造体においては、当該炭素繊維の成長過程において形成された粒状部によって炭素繊維同士が互いに結合されていることから、その構造体自体の電気的特性等も非常に優れたものであり、例えば、一定圧縮密度において測定した電気抵抗値は、微細炭素繊維の単なる絡合体、あるいは微細炭素繊維同士の接合点を当該炭素繊維合成後に炭素質物質ないしその炭化物によって付着させてなる構造体等の値と比較して、非常に低い値を示し、金属中に分散配合された場合に、良好な導電パスを形成できることができ、その結果、パンタグラフ用すり板の導電特性を向上することができる。   And in the carbon fiber structure used in the present invention, fine carbon fibers having such a predetermined outer diameter exist in a three-dimensional network shape, but these carbon fibers were formed in the growth process of the carbon fibers. They are bonded to each other in the granular portion and have a shape in which a plurality of the carbon fibers extend from the granular portion. In this way, the fine carbon fibers are not merely entangled with each other, but are firmly bonded to each other in the granular portion, so that when the structure is mixed with a metal, the structure as a single carbon fiber Without being dispersed, the bulky structure can be dispersed and blended in the metal. Further, in the carbon fiber structure used in the present invention, since the carbon fibers are bonded to each other by the granular portion formed in the growth process of the carbon fiber, the electrical characteristics of the structure itself are also extremely high. For example, the electrical resistance value measured at a constant compression density is a simple entanglement of fine carbon fibers, or a junction between fine carbon fibers attached by a carbonaceous material or a carbide thereof after synthesis of the carbon fiber. Compared with the value of the structure etc. made, it shows a very low value, and when dispersed in a metal, it can form a good conductive path. As a result, the conductive characteristics of the pantograph sliding plate Can be improved.

当該粒状部は、上述するように炭素繊維の成長過程において形成されるものであるため、当該粒状部における炭素間結合は十分に発達したものとなり、正確には明らかではないが、sp結合およびsp結合の混合状態を含むと思われる。そして、生成後(後述する中間体および第一中間体)においては、粒状部と繊維部とが、炭素原子からなるパッチ状のシート片を貼り合せたような構造をもって連続しており、その後の高温熱処理後においては、図4(a)および(b)に示されるように、粒状部を構成するグラフェン層の少なくとも一部は、当該粒状部より延出する微細炭素繊維を構成するグラフェン層に連続するものとなる。本発明において用いられる炭素繊維構造体において、粒状部と微細炭素繊維との間は、上記したような粒状部を構成するグラフェン層が微細炭素繊維を構成するグラフェン層と連続していることに象徴されるように、炭素結晶構造的な結合によって(少なくともその一部が)繋がっているものであって、これによって粒状部と微細炭素繊維との間の強固な結合が形成されているものである。 Since the granular part is formed in the growth process of the carbon fiber as described above, the carbon-carbon bond in the granular part is sufficiently developed, and although it is not exactly clear, sp 2 bond and It seems to include a mixed state of sp 3 bonds. And after the generation (intermediate and first intermediate described later), the granular part and the fiber part are continuous with a structure in which patch-like sheet pieces made of carbon atoms are bonded together, and thereafter After the high-temperature heat treatment, as shown in FIGS. 4A and 4B, at least a part of the graphene layer constituting the granular portion is formed on the graphene layer constituting the fine carbon fiber extending from the granular portion. It will be continuous. In the carbon fiber structure used in the present invention, between the granular portion and the fine carbon fiber, it is a symbol that the graphene layer constituting the granular portion as described above is continuous with the graphene layer constituting the fine carbon fiber. As described above, the carbon crystal structural bonds are connected (at least a part thereof), thereby forming a strong bond between the granular portion and the fine carbon fiber. .

なお、本願明細書において、粒状部から炭素繊維が「延出する」するとは、粒状部と炭素繊維とが他の結着剤(炭素質のものを含む)によって、単に見かけ上で繋がっているような状態をさすものではなく、上記したように炭素結晶構造的な結合によって繋がっている状態を主として意味するものである。   In the present specification, the term “extending” the carbon fiber from the granular part simply means that the granular part and the carbon fiber are apparently connected by other binder (including carbonaceous material). It does not indicate such a state, but mainly means a state in which they are connected by carbon crystal structural bonds as described above.

また、当該粒状部は、上述するように炭素繊維の成長過程において形成されるが、その痕跡として粒状部の内部には、少なくとも1つの触媒粒子、あるいはその触媒粒子がその後の熱処理工程において揮発除去されて生じる空孔を有している。この空孔(ないし触媒粒子)は、粒状部より延出している各微細炭素繊維の内部に形成される中空部とは、本質的に独立したものである(なお、ごく一部に、偶発的に中空部と連続してしまったものも観察される。)。   Further, as described above, the granular part is formed in the carbon fiber growth process. As a trace, at least one catalyst particle or the catalyst particle is volatilized and removed in the subsequent heat treatment process. And the resulting voids. These pores (or catalyst particles) are essentially independent from the hollow portions formed inside the fine carbon fibers extending from the granular portions (note that only a small part is accidental) In addition, it is also observed that it is continuous with the hollow part.)

この触媒粒子ないし空孔の数としては特に限定されるものではないが、粒状部1つ当りに1〜1000個程度、より望ましくは3〜500個程度存在する。このような範囲の数の触媒粒子の存在下で粒状部が形成されたことによって、後述するような所望の大きさの粒状部とすることができる。   The number of catalyst particles or holes is not particularly limited, but is about 1 to 1000, more preferably about 3 to 500, per granular part. By forming the granular portion in the presence of such a number of catalyst particles, it is possible to obtain a granular portion having a desired size as described later.

また、この粒状部中に存在する触媒粒子ないし空孔の1つ当りの大きさとしては、例えば、1〜100nm、より好ましくは2〜40nm、さらに好ましくは3〜15nmである。   The size of each catalyst particle or hole present in the granular part is, for example, 1 to 100 nm, more preferably 2 to 40 nm, and further preferably 3 to 15 nm.

さらに、特に限定されるわけではないが、この粒状部の粒径は、図2に示すように、前記微細炭素繊維の外径よりも大きいことが望ましい。具体的には、例えば、前記微細炭素繊維の外径の1.3〜250倍、より好ましくは1.5〜100倍、さらに好ましくは2.0〜25倍である。なお、前記値は平均値である。このように炭素繊維相互の結合点である粒状部の粒径が微細炭素繊維外径の1.3倍以上と十分に大きなものであると、当該粒状部より延出する炭素繊維に対して高い結合力がもたらされ、金属中に当該炭素繊維構造体を配合した場合に、ある程度のせん弾力を加えた場合であっても、3次元ネットワーク構造を保持したまま金属中に分散させることができる。一方、粒状部の大きさが微細炭素繊維の外径の250倍を超える極端に大きなものとなると、炭素繊維構造体の繊維状の特性が損なわれる虞れがあり、例えば、金属との複合材料として適当なものとならない虞れがあるために望ましくない。なお、本明細書でいう「粒状部の粒径」とは、炭素繊維相互の結合点である粒状部を1つの粒子とみなして測定した値である。   Further, although not particularly limited, it is desirable that the particle size of the granular portion is larger than the outer diameter of the fine carbon fiber as shown in FIG. Specifically, for example, the outer diameter of the fine carbon fiber is 1.3 to 250 times, more preferably 1.5 to 100 times, and still more preferably 2.0 to 25 times. In addition, the said value is an average value. Thus, when the particle diameter of the granular part which is a bonding point between carbon fibers is sufficiently large as 1.3 times or more of the outer diameter of the fine carbon fiber, it is higher than the carbon fiber extending from the granular part. When the carbon fiber structure is blended in the metal with a bonding force, it can be dispersed in the metal while maintaining the three-dimensional network structure even when a certain amount of elasticity is applied. . On the other hand, if the size of the granular portion is extremely large exceeding 250 times the outer diameter of the fine carbon fiber, the fibrous properties of the carbon fiber structure may be impaired. For example, a composite material with metal It is not desirable because there is a possibility that it will not be suitable. The “particle size of the granular part” in the present specification is a value measured by regarding the granular part, which is a bonding point between carbon fibers, as one particle.

その粒状部の具体的な粒径は、炭素繊維構造体の大きさ、炭素繊維構造体中の微細炭素繊維の外径にも左右されるが、例えば、平均値で20〜5000nm、より好ましくは25〜2000nm、さらに好ましくは30〜500nm程度である。   The specific particle size of the granular part depends on the size of the carbon fiber structure and the outer diameter of the fine carbon fiber in the carbon fiber structure, but for example, an average value of 20 to 5000 nm, more preferably It is about 25 to 2000 nm, more preferably about 30 to 500 nm.

さらにこの粒状部は、前記したように炭素繊維の成長過程において形成されるものであるため、比較的球状に近い形状を有しており、その円形度は、平均値で0.2〜<1、好ましくは0.5〜0.99、より好ましくは0.7〜0.98程度である。   Furthermore, since this granular part is formed in the growth process of the carbon fiber as described above, it has a relatively spherical shape, and the circularity is 0.2 to <1 on average. , Preferably 0.5 to 0.99, more preferably about 0.7 to 0.98.

加えて、この粒状部は、前記したように炭素繊維の成長過程において形成されるものであって、例えば、微細炭素繊維同士の接合点を当該炭素繊維合成後に炭素質物質ないしその炭化物によって付着させてなる構造体等と比較して、当該粒状部における、炭素繊維同士の結合は非常に強固なものであり、炭素繊維構造体における炭素繊維の破断が生じるような条件下においても、この粒状部(結合部)は安定に保持される。具体的には例えば、後述する実施例において示すように、当該炭素繊維構造体を液状媒体中に分散させ、これに一定出力で所定周波数の超音波をかけて、炭素繊維の平均長がほぼ半減する程度の負荷条件としても、該粒状部の平均粒径の変化率は、10%未満、より好ましくは5%未満であって、粒状部、すなわち、繊維同士の結合部は、安定に保持されているものである。   In addition, the granular portion is formed in the carbon fiber growth process as described above, and, for example, the joining point between the fine carbon fibers is adhered by the carbonaceous material or the carbide after the carbon fiber synthesis. Compared with the structure, etc., the bonds between the carbon fibers in the granular part are very strong, and even under conditions where the carbon fiber breaks in the carbon fiber structure, the granular part (Coupling part) is held stably. Specifically, for example, as shown in the examples described later, the carbon fiber structure is dispersed in a liquid medium, and ultrasonic waves with a predetermined output and a predetermined frequency are applied to the carbon fiber structure so that the average length of the carbon fibers is almost halved. Even when the load condition is such that the change rate of the average particle diameter of the granular part is less than 10%, more preferably less than 5%, the granular part, that is, the bonded part of the fibers is stably held. It is what.

また、本発明において用いられる炭素繊維構造体は、面積基準の円相当平均径が50〜100μm、より好ましくは60〜90μm程度程度であることが望ましい。ここで面積基準の円相当平均径とは、炭素繊維構造体の外形を電子顕微鏡などを用いて撮影し、この撮影画像において、各炭素繊維構造体の輪郭を、適当な画像解析ソフトウェア、例えばWinRoof(商品名、三谷商事株式会社製)を用いてなぞり、輪郭内の面積を求め、各繊維構造体の円相当径を計算し、これを平均化したものである。   The carbon fiber structure used in the present invention desirably has an area-based circle-equivalent mean diameter of about 50 to 100 μm, more preferably about 60 to 90 μm. Here, the area-based circle-equivalent mean diameter is obtained by photographing the outer shape of the carbon fiber structure using an electron microscope or the like, and in this photographed image, the contour of each carbon fiber structure is represented by an appropriate image analysis software such as WinRoof. (Trade name, manufactured by Mitani Shoji Co., Ltd.) is used to determine the area within the contour, calculate the equivalent circle diameter of each fiber structure, and average it.

複合化される金属の種類によっても左右されるため、全ての場合において適用されるわけではないが、この円相当平均径は、金属中に配合された場合における当該炭素繊維構造体の最長の長さを決める要因となるものであり、概して、円相当平均径が50μm未満であると、導電性が十分に発揮されないおそれがあり、一方、100μmを越えるものであると、例えば、金属中へ配合する際に大きな粘度上昇が起こり混合分散が困難あるいは成形性が劣化する虞れがあるためである。   Since it depends on the type of metal to be compounded, it does not apply in all cases, but this circle-equivalent mean diameter is the longest length of the carbon fiber structure when blended in metal. In general, if the average equivalent circle diameter is less than 50 μm, the conductivity may not be sufficiently exhibited. On the other hand, if it exceeds 100 μm, for example, it is incorporated into a metal. This is because a large increase in viscosity occurs during mixing, which makes mixing and dispersion difficult or moldability may deteriorate.

また本発明において用いられる炭素繊維構造体は、上記したように、3次元ネットワーク状に存在する炭素繊維が粒状部において互いに結合され、該粒状部から前記炭素繊維が複数延出する形状を呈しているが、1つの炭素繊維構造体において、炭素繊維を結合する粒状部が複数個存在して3次元ネットワークを形成している場合、隣接する粒状部間の平均距離は、例えば、0.5μm〜300μm、より好ましくは0.5〜100μm、さらに好ましくは1〜50μm程度となる。なお、この隣接する粒状部間の距離は、1つの粒状体の中心部からこれに隣接する粒状部の中心部までの距離を測定したものである。粒状体間の平均距離が、0.5μm未満であると、炭素繊維が3次元ネットワーク状に十分に発展した形態とならないため、例えば、金属中に分散配合された場合に、良好な導電パスを形成し得ないものとなる虞れがあり、一方、平均距離が300μmを越えるものであると、金属中に分散配合させる際に、粘性を高くさせる要因となり、炭素繊維構造体の金属に対する分散性が低下する虞れがあるためである。   Further, as described above, the carbon fiber structure used in the present invention has a shape in which carbon fibers existing in a three-dimensional network are bonded to each other in the granular portion, and a plurality of the carbon fibers extend from the granular portion. However, in one carbon fiber structure, when a plurality of granular parts that combine carbon fibers are present to form a three-dimensional network, the average distance between adjacent granular parts is, for example, 0.5 μm to 300 μm, more preferably 0.5 to 100 μm, and even more preferably about 1 to 50 μm. In addition, the distance between this adjacent granule part measures the distance from the center part of one granular material to the center part of the granule part adjacent to this. When the average distance between the granular materials is less than 0.5 μm, the carbon fiber does not sufficiently develop into a three-dimensional network, and therefore, for example, when dispersed in a metal, a good conductive path is obtained. On the other hand, if the average distance exceeds 300 μm, it becomes a factor to increase the viscosity when dispersed in the metal, and the dispersibility of the carbon fiber structure to the metal This is because there is a risk of lowering.

さらに、本発明において用いられる炭素繊維構造体は、上記したように、3次元ネットワーク状に存在する炭素繊維が粒状部において互いに結合され、該粒状部から前記炭素繊維が複数延出する形状を呈しており、このため当該構造体は炭素繊維が疎に存在した嵩高な構造を有するが、具体的には、例えば、その嵩密度が0.0001〜0.05g/cm、より好ましくは0.001〜0.02g/cmであることが望ましい。嵩密度が0.05g/cmを超えるものであると、少量添加によって、金属の物性を改善することが難しくなるためである。 Furthermore, as described above, the carbon fiber structure used in the present invention has a shape in which carbon fibers existing in a three-dimensional network are bonded to each other in the granular portion, and a plurality of the carbon fibers extend from the granular portion. For this reason, the structure has a bulky structure in which carbon fibers are sparsely present. Specifically, for example, the bulk density is 0.0001 to 0.05 g / cm 3 , more preferably 0.00. It is desirable that it is 001-0.02 g / cm < 3 >. If the bulk density exceeds 0.05 g / cm 3 , it is difficult to improve the physical properties of the metal by adding a small amount.

また、本発明に係る炭素繊維構造体は、3次元ネットワーク状に存在する炭素繊維がその成長過程において形成された粒状部において互いに結合されていることから、上記したように構造体自体の電気的特性等も非常に優れたものであるが、例えば、一定圧縮密度0.8g/cmにおいて測定した粉体抵抗値が、0.02Ω・cm以下、より望ましくは、0.001〜0.010Ω・cmであることが好ましい。粉体抵抗値が0.02Ω・cmを超えるものであると、金属中に配合された際に、良好な導電パスを形成することが難しくなるためである。 In addition, since the carbon fiber structure according to the present invention is bonded to each other in the granular part formed in the growth process, the carbon fibers existing in a three-dimensional network form are electrically connected as described above. For example, the powder resistance value measured at a constant compression density of 0.8 g / cm 3 is 0.02 Ω · cm or less, more preferably 0.001 to 0.010 Ω. -It is preferable that it is cm. This is because, when the powder resistance value exceeds 0.02 Ω · cm, it is difficult to form a good conductive path when blended in a metal.

また、本発明において用いられる炭素繊維構造体は、高い強度および導電性を有する上から、炭素繊維を構成するグラフェンシート中における欠陥が少ないことが望ましく、具体的には、例えば、ラマン分光分析法で測定されるI/I比が、0.2以下、より好ましくは0.1以下であることが望ましい。ここで、ラマン分光分析では、大きな単結晶の黒鉛では1580cm−1付近のピーク(Gバンド)しか現れない。結晶が有限の微小サイズであることや格子欠陥により、1360cm−1付近にピーク(Dバンド)が出現する。このため、DバンドとGバンドの強度比(R=I1360/I1580=I/I)が上記したように所定値以下であると、グラフェンシート中における欠陥量が少ないことが認められるためである。 In addition, the carbon fiber structure used in the present invention desirably has high strength and conductivity, and it is desirable that there are few defects in the graphene sheet constituting the carbon fiber. Specifically, for example, Raman spectroscopy It is desirable that the I D / IG ratio measured by the above is 0.2 or less, more preferably 0.1 or less. Here, in the Raman spectroscopic analysis, only a peak (G band) near 1580 cm −1 appears in large single crystal graphite. A peak (D band) appears in the vicinity of 1360 cm −1 due to the crystal having a finite minute size or lattice defects. For this reason, when the intensity ratio (R = I 1360 / I 1580 = I D / I G ) of the D band and the G band is equal to or less than the predetermined value as described above, it is recognized that the amount of defects in the graphene sheet is small. Because.

本発明に係る前記炭素繊維構造体はまた、空気中での燃焼開始温度が750℃以上、より好ましくは800〜900℃であることが望ましい。前記したように炭素繊維構造体が欠陥が少なく、かつ炭素繊維が所期の外径を有するものであることから、このような高い熱的安定性を有するものとなる。   The carbon fiber structure according to the present invention preferably has a combustion start temperature in air of 750 ° C. or higher, more preferably 800 to 900 ° C. As described above, since the carbon fiber structure has few defects and the carbon fiber has an intended outer diameter, the carbon fiber structure has such a high thermal stability.

上記したような所期の形状を有する炭素繊維構造体は、特に限定されるものではないが、例えば、次のようにして調製することができる。   The carbon fiber structure having the desired shape as described above is not particularly limited, but can be prepared, for example, as follows.

基本的には、遷移金属超微粒子を触媒として炭化水素等の有機化合物をCVD法で化学熱分解して繊維構造体(以下、中間体という)を得、これをさらに高温熱処理する。   Basically, an organic compound such as hydrocarbon is chemically pyrolyzed by CVD using transition metal ultrafine particles as a catalyst to obtain a fiber structure (hereinafter referred to as an intermediate), which is further heat-treated.

原料有機化合物としては、ベンゼン、トルエン、キシレンなどの炭化水素、一酸化炭素(CO)、エタノール等のアルコール類などが使用できる。特に限定されるわけではないが、本発明に係る繊維構造体を得る上においては、炭素源として、分解温度の異なる少なくとも2つ以上の炭素化合物を用いることが好ましい。なお、本明細書において述べる「少なくとも2つ以上の炭素化合物」とは、必ずしも原料有機化合物として2種以上のものを使用するというものではなく、原料有機化合物としては1種のものを使用した場合であっても、繊維構造体の合成反応過程において、例えば、トルエンやキシレンの水素脱アルキル化(hydrodealkylation)などのような反応を生じて、その後の熱分解反応系においては分解温度の異なる2つ以上の炭素化合物となっているような態様も含むものである。   As the raw material organic compound, hydrocarbons such as benzene, toluene and xylene, alcohols such as carbon monoxide (CO) and ethanol can be used. Although not particularly limited, in obtaining the fiber structure according to the present invention, it is preferable to use at least two or more carbon compounds having different decomposition temperatures as the carbon source. In this specification, “at least two or more carbon compounds” do not necessarily mean that two or more kinds of raw material organic compounds are used, but one kind of raw material organic compound is used. However, in the process of synthesizing the fiber structure, for example, a reaction such as hydrodealkylation of toluene or xylene occurs, and in the subsequent thermal decomposition reaction system, two decomposition temperatures are different. The aspect which becomes the above carbon compound is also included.

なお、熱分解反応系において炭素源としてこのように2種以上の炭素化合物を存在させた場合、それぞれの炭素化合物の分解温度は、炭素化合物の種類のみでなく、原料ガス中の各炭素化合物のガス分圧ないしモル比によっても変動するものであるため、原料ガス中における2種以上の炭素化合物の組成比を調整することにより、炭素化合物として比較的多くの組み合わせを用いることができる。   In addition, when two or more types of carbon compounds are present as carbon sources in the thermal decomposition reaction system, the decomposition temperature of each carbon compound is not limited to the type of the carbon compound, but the carbon compound in the raw material gas. Since it varies depending on the gas partial pressure or molar ratio, a relatively large number of combinations can be used as carbon compounds by adjusting the composition ratio of two or more carbon compounds in the raw material gas.

例えば、メタン、エタン、プロパン類、ブタン類、ペンタン類、へキサン類、ヘプタン類、シクロプロパン、シクロヘキサンなどといったアルカンないしシクロアルカン、特に炭素数1〜7程度のアルカン;エチレン、プロピレン、ブチレン類、ペンテン類、ヘプテン類、シクロペンテンなどといったアルケンないしシクロオレフィン、特に炭素数1〜7程度のアルケン;アセチレン、プロピン等のアルキン、特に炭素数1〜7程度のアルキン;ベンゼン、トルエン、スチレン、キシレン、ナフタレン、メチルナフタレン、インデン、フェナントレン等の芳香族ないし複素芳香族炭化水素、特に炭素数6〜18程度の芳香族ないし複素芳香族炭化水素、メタノール、エタノール等のアルコール類、特に炭素数1〜7程度のアルコール類;その他、一酸化炭素、ケトン類、エーテル類等の中から選択した2種以上の炭素化合物を、所期の熱分解反応温度域において異なる分解温度を発揮できるようにガス分圧を調整し、組み合わせて用いること、および/または、所定の温度領域における滞留時間を調整することで可能であり、その混合比を最適化することで効率よく本発明に係る炭素繊維構造体を製造することができる。   For example, alkanes or cycloalkanes such as methane, ethane, propanes, butanes, pentanes, hexanes, heptanes, cyclopropane, cyclohexane, etc., particularly alkanes having about 1 to 7 carbon atoms; ethylene, propylene, butylenes, Alkenes or cycloolefins such as pentenes, heptenes and cyclopentenes, especially alkenes having about 1 to 7 carbon atoms; alkynes such as acetylene and propyne, especially alkynes having about 1 to 7 carbon atoms; benzene, toluene, styrene, xylene, naphthalene , Aromatic or heteroaromatic hydrocarbons such as methylnaphthalene, indene and phenanthrene, especially aromatic or heteroaromatic hydrocarbons having about 6 to 18 carbon atoms, alcohols such as methanol and ethanol, especially about 1 to 7 carbon atoms Of alcohol; its Combine two or more carbon compounds selected from carbon monoxide, ketones, ethers, etc., by adjusting the gas partial pressure so that different decomposition temperatures can be exhibited in the desired thermal decomposition reaction temperature range. The carbon fiber structure according to the present invention can be efficiently produced by using the material and / or adjusting the residence time in a predetermined temperature range and optimizing the mixing ratio.

このような2種以上の炭素化合物の組み合わせのうち、例えば、メタンとベンゼンとの組み合わせにおいては、メタン/ベンゼンのモル比が、>1〜600、より好ましくは1.1〜200、さらに好ましくは3〜100とすることが望ましい。なお、この値は、反応炉の入り口におけるガス組成比であり、例えば、炭素源の1つとしてトルエンを使用する場合には、反応炉内でトルエンが100%分解して、メタンおよびベンゼンが1:1で生じることを考慮して、不足分のメタンを別途供給するようにすれば良い。例えば、メタン/ベンゼンのモル比を3とする場合には、トルエン1モルに対し、メタン2モルを添加すれば良い。なお、このようなトルエンに対して添加するメタンとしては、必ずしも新鮮なメタンを別途用意する方法のみならず、当該反応炉より排出される排ガス中に含まれる未反応のメタンを循環使用することにより用いることも可能である。   Among such combinations of two or more carbon compounds, for example, in the combination of methane and benzene, the molar ratio of methane / benzene is> 1 to 600, more preferably 1.1 to 200, still more preferably. It is desirable to set it as 3-100. This value is the gas composition ratio at the entrance of the reactor. For example, when toluene is used as one of the carbon sources, toluene is decomposed 100% in the reactor, and methane and benzene are 1 In consideration of the occurrence of: 1, a shortage of methane may be supplied separately. For example, when the methane / benzene molar ratio is 3, 2 moles of methane may be added to 1 mole of toluene. In addition, as methane added to such toluene, not only a method of preparing fresh methane separately, but also the unreacted methane contained in the exhaust gas discharged from the reactor is circulated and used. It is also possible to use it.

このような範囲内の組成比とすることで、炭素繊維部および粒状部のいずれもが十分を発達した構造を有する炭素繊維構造体を得ることが可能となる。   By setting the composition ratio within such a range, it becomes possible to obtain a carbon fiber structure having a structure in which both the carbon fiber part and the granular part are sufficiently developed.

なお、雰囲気ガスには、アルゴン、ヘリウム、キセノン等の不活性ガスや水素を用いることができる。   Note that an inert gas such as argon, helium, or xenon, or hydrogen can be used as the atmospheric gas.

また、触媒としては、鉄、コバルト、モリブデンなどの遷移金属あるいはフェロセン、酢酸金属塩などの遷移金属化合物と硫黄あるいはチオフェン、硫化鉄などの硫黄化合物の混合物を使用する。   As the catalyst, a transition metal such as iron, cobalt or molybdenum, or a mixture of a transition metal compound such as ferrocene or metal acetate and sulfur or a sulfur compound such as thiophene or iron sulfide is used.

中間体の合成は、通常行われている炭化水素等のCVD法を用い、原料となる炭化水素および触媒の混合液を蒸発させ、水素ガス等をキャリアガスとして反応炉内に導入し、800〜1300℃の温度で熱分解する。これにより、外径が15〜100nmの繊維相互が、前記触媒の粒子を核として成長した粒状体によって結合した疎な三次元構造を有する炭素繊維構造体(中間体)が複数集まった数cmから数十センチの大きさの集合体を合成する。   The synthesis of the intermediate is carried out by using a CVD method such as hydrocarbon which is usually performed, evaporating a mixed liquid of hydrocarbon and catalyst as raw materials, introducing hydrogen gas or the like into the reaction furnace as a carrier gas, Pyrolysis at a temperature of 1300 ° C. Thereby, from several centimeters in which a plurality of carbon fiber structures (intermediates) having a sparse three-dimensional structure in which fibers having an outer diameter of 15 to 100 nm are bonded together by granular materials grown using the catalyst particles as nuclei are collected. Synthesize an aggregate of several tens of centimeters.

原料となる炭化水素の熱分解反応は、主として触媒粒子ないしこれを核として成長した粒状体表面において生じ、分解によって生じた炭素の再結晶化が当該触媒粒子ないし粒状体より一定方向に進むことで、繊維状に成長する。しかしながら、本発明に係る炭素繊維構造体を得る上においては、このような熱分解速度と成長速度とのバランスを意図的に変化させる、例えば上記したように炭素源として分解温度の異なる少なくとも2つ以上の炭素化合物を用いることで、一次元的方向にのみ炭素物質を成長させることなく、粒状体を中心として三次元的に炭素物質を成長させる。もちろん、このような三次元的な炭素繊維の成長は、熱分解速度と成長速度とのバランスにのみ依存するものではなく、触媒粒子の結晶面選択性、反応炉内における滞留時間、炉内温度分布等によっても影響を受け、また、前記熱分解反応と成長速度とのバランスは、上記したような炭素源の種類のみならず、反応温度およびガス温度等によっても影響受けるが、概して、上記したような熱分解速度よりも成長速度の方が速いと、炭素物質は繊維状に成長し、一方、成長速度よりも熱分解速度の方が速いと、炭素物質は触媒粒子の周面方向に成長する。従って、熱分解速度と成長速度とのバランスを意図的に変化させることで、上記したような炭素物質の成長方向を一定方向とすることなく、制御下に多方向として、本発明に係るような三次元構造を形成することができるものである。なお、生成する中間体において、繊維相互が粒状体により結合された前記したような三次元構造を容易に形成する上では、触媒等の組成、反応炉内における滞留時間、反応温度、およびガス温度等を最適化することが望ましい。   The thermal cracking reaction of the hydrocarbon as a raw material mainly occurs on the surface of the granular particles grown using the catalyst particles or the core, and the recrystallization of carbon generated by the decomposition proceeds in a certain direction from the catalytic particles or granular materials. Grows in a fibrous form. However, in obtaining the carbon fiber structure according to the present invention, the balance between the thermal decomposition rate and the growth rate is intentionally changed. For example, as described above, at least two carbon sources having different decomposition temperatures are used. By using the above carbon compound, the carbon material is grown three-dimensionally around the granular material without growing the carbon material only in a one-dimensional direction. Of course, the growth of such three-dimensional carbon fibers does not depend only on the balance between the thermal decomposition rate and the growth rate, but the crystal surface selectivity of the catalyst particles, the residence time in the reactor, and the furnace temperature. The balance between the pyrolysis reaction and the growth rate is influenced not only by the type of carbon source as described above but also by the reaction temperature and gas temperature, etc. When the growth rate is faster than the thermal decomposition rate, the carbon material grows in a fibrous form. On the other hand, when the thermal decomposition rate is faster than the growth rate, the carbon material grows in the circumferential direction of the catalyst particles. To do. Therefore, by intentionally changing the balance between the pyrolysis rate and the growth rate, the carbon material growth direction as described above is made to be a multi-direction under control without changing the growth direction to a constant direction, as in the present invention. A three-dimensional structure can be formed. In order to easily form the three-dimensional structure in which the fibers are bonded to each other by the granular material in the produced intermediate, the composition of the catalyst, the residence time in the reaction furnace, the reaction temperature, and the gas temperature Etc. are desirable.

なお、本発明に係る炭素繊維構造体を効率良く製造する方法としては、上記したような分解温度の異なる2つ以上の炭素化合物を最適な混合比にて用いるアプローチ以外に、反応炉に供給される原料ガスに、その供給口近傍において乱流を生じさせるアプローチを挙げることができる。ここでいう乱流とは、激しく乱れた流れであり、渦巻いて流れるような流れをいう。   In addition, as a method for efficiently producing the carbon fiber structure according to the present invention, the carbon fiber structure is supplied to the reactor in addition to the approach using two or more carbon compounds having different decomposition temperatures at an optimal mixing ratio as described above. An approach for generating turbulent flow in the vicinity of the supply port of the raw material gas can be mentioned. The turbulent flow here is a flow that is turbulent and turbulent and flows in a spiral.

反応炉においては、原料ガスが、その供給口より反応炉内へ導入された直後において、原料混合ガス中の触媒としての遷移金属化合物の分解により金属触媒微粒子が形成されるが、これは、次のような段階を経てもたらされる。すなわち、まず、遷移金属化合物が分解され金属原子となり、次いで、複数個、例えば、約100原子程度の金属原子の衝突によりクラスター生成が起こる。この生成したクラスターの段階では、微細炭素繊維の触媒として作用せず、生成したクラスター同士が衝突により更に集合し、約3nm〜10nm程度の金属の結晶性粒子に成長して、微細炭素繊維の製造用の金属触媒微粒子として利用されることとなる。   In the reaction furnace, immediately after the raw material gas is introduced into the reaction furnace from the supply port, metal catalyst fine particles are formed by the decomposition of the transition metal compound as the catalyst in the raw material mixed gas. It is brought about through such a stage. That is, first, the transition metal compound is decomposed to become metal atoms, and then cluster generation occurs by collision of a plurality of, for example, about 100 atoms. At the stage of this generated cluster, it does not act as a catalyst for fine carbon fibers, and the generated clusters are further aggregated by collision and grow into crystalline particles of metal of about 3 nm to 10 nm to produce fine carbon fibers. It will be used as metal catalyst fine particles.

この触媒形成過程において、上記したように激しい乱流による渦流が存在すると、ブラウン運動のみの金属原子又はクラスター同士の衝突と比してより激しい衝突が可能となり、単位時間あたりの衝突回数の増加によって金属触媒微粒子が短時間に高収率で得られ、又、渦流によって濃度、温度等が均一化されることにより粒子のサイズの揃った金属触媒微粒子を得ることができる。さらに、金属触媒微粒子が形成される過程で、渦流による激しい衝突により金属の結晶性粒子が多数集合した金属触媒微粒子の集合体を形成する。このようにして金属触媒微粒子が速やかに生成されるため、炭素化合物の分解が促進されて、十分な炭素物質が供給されることになり、前記集合体の各々の金属触媒微粒子を核として放射状に微細炭素繊維が成長し、一方で、前記したように一部の炭素化合物の熱分解速度が炭素物質の成長速度よりも速いと、炭素物質は触媒粒子の周面方向にも成長し、前記集合体の周りに粒状部を形成し、所期の三次元構造を有する炭素繊維構造体を効率よく形成する。なお、前記金属触媒微粒子の集合体中には、他の触媒微粒子よりも活性の低いないしは反応途中で失活してしまった触媒微粒子も一部に含まれていることも考えられ、集合体として凝集するより以前にこのような触媒微粒子の表面に成長していた、あるいは集合体となった後にこのような触媒微粒子を核として成長した非繊維状ないしはごく短い繊維状の炭素物質層が、集合体の周縁位置に存在することで、本発明に係る炭素繊維構造体の粒状部を形成しているものとも思われる。   In this catalyst formation process, if there is a vortex due to intense turbulence as described above, more intense collision is possible compared to collisions between metal atoms or clusters with only Brownian motion, and by increasing the number of collisions per unit time Metal catalyst fine particles can be obtained in a high yield in a short time, and metal catalyst fine particles having a uniform particle size can be obtained by equalizing the concentration, temperature, etc. by vortex. Furthermore, in the process of forming the metal catalyst fine particles, an aggregate of metal catalyst fine particles in which a large number of metal crystalline particles are gathered is formed by vigorous collision due to the vortex. In this way, the metal catalyst fine particles are rapidly generated, so that the decomposition of the carbon compound is promoted and sufficient carbon material is supplied, and the metal catalyst fine particles of the aggregate are radially formed as nuclei. On the other hand, when the fine carbon fibers grow, and as described above, when the thermal decomposition rate of some of the carbon compounds is faster than the growth rate of the carbon material, the carbon material also grows in the circumferential direction of the catalyst particles, A granular part is formed around the body, and a carbon fiber structure having an intended three-dimensional structure is efficiently formed. The metal catalyst fine particle aggregate may include a part of catalyst fine particles that are less active than other catalyst fine particles or have been deactivated during the reaction. A non-fibrous or very short fibrous carbon material layer that has grown on the surface of such a catalyst fine particle before agglomeration or has grown into an aggregate after such a fine particle has become an aggregate. It seems that the granular part of the carbon fiber structure according to the present invention is formed by being present at the peripheral position of the body.

反応炉の原料ガス供給口近傍において、原料ガスの流れに乱流を生じさせる具体的手段としては、特に限定されるものではなく、例えば、原料ガス供給口より反応炉内に導出される原料ガスの流れに干渉し得る位置に、何らかの衝突部を設ける等の手段を採ることができる。前記衝突部の形状としては、何ら限定されるものではなく、衝突部を起点として発生した渦流によって十分な乱流が反応炉内に形成されるものであれば良いが、例えば、各種形状の邪魔板、パドル、テーパ管、傘状体等を単独であるいは複数組み合わせて1ないし複数個配置するといった形態を採択することができる。   The specific means for generating a turbulent flow in the raw material gas flow in the vicinity of the raw material gas supply port of the reaction furnace is not particularly limited. For example, the raw material gas introduced into the reaction furnace from the raw material gas supply port It is possible to adopt means such as providing some type of collision part at a position where it can interfere with the current flow. The shape of the collision part is not limited in any way, as long as a sufficient turbulent flow is formed in the reactor by the vortex generated from the collision part. It is possible to adopt a form in which one or a plurality of plates, paddles, taper tubes, umbrellas, etc. are arranged alone or in combination.

このようにして、触媒および炭化水素の混合ガスを800〜1300℃の範囲の一定温度で加熱生成して得られた中間体は、炭素原子からなるパッチ状のシート片を貼り合わせたような(生焼け状態の、不完全な)構造を有し、ラマン分光分析をすると、Dバンドが非常に大きく、欠陥が多い。また、生成した中間体は、未反応原料、非繊維状炭化物、タール分および触媒金属を含んでいる。   Thus, the intermediate obtained by heating and producing the mixed gas of catalyst and hydrocarbon at a constant temperature in the range of 800 to 1300 ° C. is like a patch-like sheet piece made of carbon atoms ( It has an incomplete (burnt) structure and its Raman spectroscopic analysis reveals that the D band is very large and has many defects. The produced intermediate contains unreacted raw material, non-fibrous carbide, tar content and catalytic metal.

従って、このような中間体からこれら残留物を除去し、欠陥が少ない所期の炭素繊維構造体を得るために、適切な方法で2400〜3000℃の高温熱処理する。   Therefore, in order to remove these residues from such an intermediate and obtain an intended carbon fiber structure with few defects, high-temperature heat treatment at 2400 to 3000 ° C. is performed by an appropriate method.

すなわち、例えば、この中間体を800〜1200℃で加熱して未反応原料やタール分などの揮発分を除去した後、2400〜3000℃の高温でアニール処理することによって所期の構造体を調製し、同時に繊維に含まれる触媒金属を蒸発させて除去する。なお、この際、物質構造を保護するために不活性ガス雰囲気中に還元ガスや微量の一酸化炭素ガスを添加してもよい。   That is, for example, the intermediate is heated at 800 to 1200 ° C. to remove volatile components such as unreacted raw materials and tars, and then annealed at a high temperature of 2400 to 3000 ° C. to prepare the desired structure. At the same time, the catalyst metal contained in the fiber is removed by evaporation. At this time, a reducing gas or a small amount of carbon monoxide gas may be added to the inert gas atmosphere in order to protect the material structure.

前記中間体を2400〜3000℃の範囲の温度でアニール処理すると、炭素原子からなるパッチ状のシート片は、それぞれ結合して複数のグラフェンシート状の層を形成する。   When the intermediate is annealed at a temperature in the range of 2400 to 3000 ° C., the patch-like sheet pieces made of carbon atoms are bonded to each other to form a plurality of graphene sheet-like layers.

また、このような高温熱処理前もしくは処理後において、炭素繊維構造体の円相当平均径を数cmに解砕処理する工程と、解砕処理された炭素繊維構造体の円相当平均径を50〜100μmに粉砕処理する工程とを経ることで、所望の円相当平均径を有する炭素繊維構造体を得る。なお、解砕処理を経ることなく、粉砕処理を行っても良い。また、本発明に係る炭素繊維構造体を複数有する集合体を、使いやすい形、大きさ、嵩密度に造粒する処理を行っても良い。さらに好ましくは、反応時に形成された上記構造を有効に活用するために、嵩密度が低い状態(極力繊維が伸びきった状態でかつ空隙率が大きい状態)で、アニール処理するとさらに樹脂への導電性付与に効果的である。   Moreover, before or after such high-temperature heat treatment, a step of crushing the equivalent circle average diameter of the carbon fiber structure to several centimeters, and a circle equivalent average diameter of the crushed carbon fiber structure of 50 to A carbon fiber structure having a desired circle-equivalent mean diameter is obtained through a step of pulverizing to 100 μm. In addition, you may perform a grinding | pulverization process, without passing through a crushing process. Moreover, you may perform the process which granulates the aggregate | assembly which has two or more carbon fiber structures which concern on this invention in the shape, size, and bulk density which are easy to use. More preferably, in order to effectively utilize the structure formed at the time of the reaction, if annealing is performed in a state where the bulk density is low (a state where the fiber is fully stretched and the porosity is large), further conductivity to the resin is achieved. It is effective for imparting sex.

本発明において用いられる微細炭素繊維構造体は、
A)嵩密度が低い、
B)金属に対する分散性が良い、
C)導電性が高い、
D)熱伝導性が高い、
E)摺動性が良い、
F)化学的安定性が良い、
G)熱的安定性が高い、
などの特性があり、従って、これを用いた複合材料によりパンタグラフ用すり板を形成することにより、当該すり板に前記特性を付与することができる。
Fine carbon fiber structure used in the present invention,
A) low bulk density,
B) Good dispersibility for metal,
C) High conductivity
D) High thermal conductivity,
E) Good slidability,
F) Good chemical stability
G) High thermal stability,
Therefore, by forming a pantograph sliding plate with a composite material using the same, the above properties can be imparted to the sliding plate.

次に、上記で説明した炭素繊維(炭素繊維構造体)とともに複合材料を構成する金属について説明する。なお、本発明において、「金属」とは単一元素からなる金属のみならず、合金をも含む概念である。   Next, the metal which comprises a composite material with the carbon fiber (carbon fiber structure) demonstrated above is demonstrated. In the present invention, “metal” is a concept including not only a metal composed of a single element but also an alloy.

本発明においては、当該金属について特に限定することはなく、従来からパンタグラフ用すり板の材料として用いられてきた金属を適宜選択して用いることができる。中でも、銅または銅の焼結合金は、従来から頻繁に用いられており、本発明においても好適に用いることができる。   In this invention, it does not specifically limit about the said metal, The metal conventionally used as a material of a pantograph slip board can be selected suitably, and can be used. Among these, copper or a sintered alloy of copper has been frequently used conventionally, and can be suitably used in the present invention.

また、金属と炭素繊維との配合量についても本発明は特に限定することはないが、例えば、金属50〜99.5質量%、炭素繊維50〜0.5質量%の割合(合計で100質量%となる)で配合することが好ましい。炭素繊維の配合量が50質量%を超えると、配合量に見合うだけの作用効果の向上が見られずコスト高となるからであり、一方、炭素繊維の配合量が0.5質量%を下回ると、期待する効果が発現しない可能性があるからである。   Moreover, the present invention is not particularly limited with respect to the blending amount of the metal and the carbon fiber. %) Is preferable. This is because if the amount of carbon fiber exceeds 50% by mass, the improvement of the function and effect corresponding to the amount of compounding is not seen and the cost is increased, while the amount of carbon fiber is less than 0.5% by mass. This is because the expected effect may not be realized.

以下、実施例により本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited to the following Example at all.

なお、以下において、各物性値は次のようにして測定した。   In the following, each physical property value was measured as follows.

<面積基準の円相当平均径>
まず、粉砕品の写真をSEMで撮影する。得られたSEM写真において、炭素繊維構造体の輪郭が明瞭なもののみを対象とし、炭素繊維構造体が崩れているようなものは輪郭が不明瞭であるために対象としなかった。1視野で対象とできる炭素繊維構造体(60〜80個程度)はすべて用い、3視野で約200個の炭素繊維構造体を対象とした。対象とされた各炭素繊維構造体の輪郭を、画像解析ソフトウェア WinRoof(商品名、三谷商事株式会社製)を用いてなぞり、輪郭内の面積を求め、各繊維構造体の円相当径を計算し、これを平均化した。
<Area-based circle equivalent average diameter>
First, a photograph of the pulverized product is taken with an SEM. In the obtained SEM photograph, only the carbon fiber structure with a clear outline was targeted, and the carbon fiber structure with a broken outline was not targeted because the outline was unclear. All carbon fiber structures (about 60 to 80) that can be targeted in one field of view were used, and about 200 carbon fiber structures were targeted in three fields of view. Trace the contour of each carbon fiber structure targeted using image analysis software WinRoof (trade name, manufactured by Mitani Corp.), obtain the area within the contour, and calculate the equivalent circle diameter of each fiber structure This was averaged.

<嵩密度の測定>
内径70mmで分散板付透明円筒に1g粉体を充填し、圧力0.1Mpa、容量1.3リットルの空気を分散板下部から送り粉体を吹出し、自然沈降させる。5回吹出した時点で沈降後の粉体層の高さを測定する。このとき測定箇所は6箇所とることとし、6箇所の平均を求めた後、嵩密度を算出した。
<Measurement of bulk density>
A transparent cylinder with an inner diameter of 70 mm is filled with 1 g of powder, and air with a pressure of 0.1 Mpa and a capacity of 1.3 liters is sent from the lower part of the dispersion plate to blow out the powder and let it settle naturally. At the time of blowing out 5 times, the height of the powder layer after settling is measured. At this time, the number of measurement points was six, and after calculating the average of the six points, the bulk density was calculated.

<ラマン分光分析>
堀場ジョバンイボン製LabRam800を用い、アルゴンレーザーの514nmの波長を用いて測定した。
<Raman spectroscopy>
Using a LabRam800 manufactured by Horiba Jobin Yvon, measurement was performed using a wavelength of 514 nm of an argon laser.

<TG燃焼温度>
マックサイエンス製TG−DTAを用い、空気を0.1リットル/分の流速で流通させながら、10℃/分の速度で昇温し、燃焼挙動を測定した。燃焼時にTGは減量を示し、DTAは発熱ピークを示すので、発熱ピークのトップ位置を燃焼開始温度と定義した。
<TG combustion temperature>
Using TG-DTA manufactured by Mac Science, the temperature was increased at a rate of 10 ° C./min while circulating air at a flow rate of 0.1 liter / min, and the combustion behavior was measured. During combustion, TG indicates a decrease in weight and DTA indicates an exothermic peak. Therefore, the top position of the exothermic peak was defined as the combustion start temperature.

<X線回折>
粉末X線回折装置(JDX3532、日本電子製)を用いて、アニール処理後の炭素繊維構造体を調べた。Cu管球で40kV、30mAで発生させたKα線を用いることとし、面間隔の測定は学振法(最新の炭素材料実験技術(分析・解析編)、炭素材料学会編)に従い、シリコン粉末を内部標準として用いた。
<X-ray diffraction>
The carbon fiber structure after the annealing treatment was examined using a powder X-ray diffractometer (JDX3532, manufactured by JEOL Ltd.). The Kα ray generated at 40 kV and 30 mA in a Cu tube is used, and the surface spacing is measured according to the Gakushin method (the latest carbon material experiment technology (analysis and analysis), edited by the Carbon Materials Society of Japan). Used as internal standard.

<粉体抵抗および復元性>
CNT粉体1gを秤取り、樹脂製ダイス(内寸40L、10W、80Hmm)に充填圧縮し、変位および荷重を読み取る。4端子法で定電流を流して、そのときの電圧を測定し、0.9g/cmの密度まで測定したら、圧力を解除し復元後の密度を測定した。粉体抵抗については、0.5、0.8および0.9g/cmに圧縮したときの抵抗を測定することとする。
<Powder resistance and resilience>
1 g of CNT powder is weighed, filled and compressed in a resin die (inner dimensions 40 L, 10 W, 80 Hmm), and the displacement and load are read. When a constant current was passed by the 4-terminal method, the voltage at that time was measured, and when the density was measured to a density of 0.9 g / cm 3 , the pressure was released and the density after restoration was measured. As for powder resistance, resistance when compressed to 0.5, 0.8 and 0.9 g / cm 3 is measured.

<粒状部の平均粒径、円形度、微細炭素繊維との比>
面積基準の円相当平均径の測定と同様に、まず、炭素繊維構造体の写真をSEMで撮影する。得られたSEM写真において、炭素繊維構造体の輪郭が明瞭なもののみを対象とし、炭素繊維構造体が崩れているようなものは輪郭が不明瞭であるために対象としなかった。1視野で対象とできる炭素繊維構造体(60〜80個程度)はすべて用い、3視野で約200個の炭素繊維構造体を対象とした。
<Average particle size of granular part, circularity, ratio with fine carbon fiber>
Similar to the measurement of the area-based circle-equivalent mean diameter, first, a photograph of the carbon fiber structure is taken with an SEM. In the obtained SEM photograph, only the carbon fiber structure with a clear outline was targeted, and the carbon fiber structure with a broken outline was not targeted because the outline was unclear. All carbon fiber structures (about 60 to 80) that can be targeted in one field of view were used, and about 200 carbon fiber structures were targeted in three fields of view.

対象とされた各炭素繊維構造体において、炭素繊維相互の結合点である粒状部を1つの粒子とみなして、その輪郭を、画像解析ソフトウェア WinRoof(商品名、三谷商事株式会社製)を用いてなぞり、輪郭内の面積を求め、各粒状部の円相当径を計算し、これを平均化して粒状部の平均粒径とした。また、円形度(R)は、前記画像解析ソフトウェアを用いて測定した輪郭内の面積(A)と、各粒状部の実測の輪郭長さ(L)より、次式により各粒状部の円形度を求めこれを平均化した。   In each of the targeted carbon fiber structures, a granular portion that is a bonding point between carbon fibers is regarded as one particle, and its outline is defined by using image analysis software WinRoof (trade name, manufactured by Mitani Corporation). By tracing, the area in the contour was obtained, the equivalent circle diameter of each granular part was calculated, and this was averaged to obtain the average particle diameter of the granular part. Further, the circularity (R) is calculated based on the following equation from the area (A) in the contour measured using the image analysis software and the measured contour length (L) of each granular portion. Was averaged.

R=A*4π/L
さらに、対象とされた各炭素繊維構造体における微細炭素繊維の外径を求め、これと前記各炭素繊維構造体の粒状部の円相当径から、各炭素繊維構造体における粒状部の大きさを微細炭素繊維との比として求め、これを平均化した。
R = A * 4π / L 2
Furthermore, the outer diameter of fine carbon fibers in each targeted carbon fiber structure is obtained, and the size of the granular portion in each carbon fiber structure is determined from this and the equivalent circle diameter of the granular portion in each carbon fiber structure. It calculated | required as a ratio with a fine carbon fiber, and averaged this.

<粒状部の間の平均距離>
面積基準の円相当平均径の測定と同様に、まず、炭素繊維構造体の写真をSEMで撮影する。得られたSEM写真において、炭素繊維構造体の輪郭が明瞭なもののみを対象とし、炭素繊維構造体が崩れているようなものは輪郭が不明瞭であるために対象としなかった。1視野で対象とできる炭素繊維構造体(60〜80個程度)はすべて用い、3視野で約200個の炭素繊維構造体を対象とした。
<Average distance between granular parts>
Similar to the measurement of the area-based circle-equivalent mean diameter, first, a photograph of the carbon fiber structure is taken with an SEM. In the obtained SEM photograph, only the carbon fiber structure with a clear outline was targeted, and the carbon fiber structure with a broken outline was not targeted because the outline was unclear. All carbon fiber structures (about 60 to 80) that can be targeted in one field of view were used, and about 200 carbon fiber structures were targeted in three fields of view.

対象とされた各炭素繊維構造体において、粒状部が微細炭素繊維によって結ばれている箇所を全て探し出し、このように微細炭素繊維によって結ばれる隣接する粒状部間の距離(一端の粒状体の中心部から他端の粒状体の中心部までを含めた微細炭素繊維の長さ)をそれぞれ測定し、これを平均化した。   In each target carbon fiber structure, find all the places where the granular parts are connected by the fine carbon fibers, and the distance between adjacent granular parts connected by the fine carbon fibers in this way (the center of the granular material at one end) The length of the fine carbon fiber including the part to the central part of the granular material at the other end) was measured and averaged.

<炭素繊維構造体の破壊試験>
蓋付バイアル瓶中に入れられたトルエン100mlに、30μg/mlの割合で炭素繊維構造体を添加し、炭素繊維構造体の分散液試料を調製した。
<Destructive test of carbon fiber structure>
A carbon fiber structure was added to 100 ml of toluene in a vial with a lid at a rate of 30 μg / ml to prepare a dispersion sample of the carbon fiber structure.

このようにして得られた炭素繊維構造体の分散液試料に対し、発信周波数38kHz、出力150wの超音波洗浄器((株)エスエヌディ製、商品名:USK-3)を用いて、超音波を照射し、分散液試料中の炭素繊維構造体の変化を経時的に観察した。   The dispersion sample of the carbon fiber structure thus obtained was subjected to ultrasonic waves using an ultrasonic cleaner having a transmission frequency of 38 kHz and an output of 150 w (trade name: USK-3, manufactured by SND Co., Ltd.). Irradiation was performed, and changes in the carbon fiber structure in the dispersion liquid sample were observed over time.

まず超音波を照射し、30分経過後において、瓶中から一定量2mlの分散液試料を抜き取り、この分散液中の炭素繊維構造体の写真をSEMで撮影する。得られたSEM写真の炭素繊維構造体中における微細炭素繊維(少なくとも一端部が粒状部に結合している微細炭素繊維)をランダムに200本を選出し、選出された各微細炭素繊維の長さを測定し、D50平均値を求め、これを初期平均繊維長とした。 First, ultrasonic waves are irradiated, and after 30 minutes, a predetermined amount of 2 ml of the dispersion liquid sample is extracted from the bottle, and a photograph of the carbon fiber structure in the dispersion liquid is taken with an SEM. 200 fine carbon fibers (fine carbon fibers having at least one end bonded to the granular part) in the carbon fiber structure of the obtained SEM photograph were randomly selected, and the length of each selected fine carbon fiber It was measured to obtain the D 50 average, which was used as the initial average fiber length.

一方、得られたSEM写真の炭素繊維構造体中における炭素繊維相互の結合点である粒状部をランダムに200個を選出し、選出された各粒状部をそれぞれ1つの粒子とみなしてその輪郭を、画像解析ソフトウェア WinRoof(商品名、三谷商事株式会社製)を用いてなぞり、輪郭内の面積を求め、各粒状部の円相当径を計算し、このD50平均値を求めた。そして得られたD50平均値を粒状部の初期平均径とした。 On the other hand, 200 granular parts which are the bonding points between carbon fibers in the carbon fiber structure of the obtained SEM photograph are selected at random, and each selected granular part is regarded as one particle, and its outline is defined. Then, the image analysis software WinRoof (trade name, manufactured by Mitani Corporation) was traced to determine the area within the contour, calculate the equivalent circle diameter of each granular portion, and determine the D 50 average value. And the resulting D 50 average value as the initial average diameter of the granular part.

その後、一定時間毎に、前記と同様に瓶中から一定量2mlの分散液試料を抜き取り、この分散液中の炭素繊維構造体の写真をSEMで撮影し、この得られたSEM写真の炭素繊維構造体中における微細炭素繊維のD50平均長さおよび粒状部のD50平均径を前記と同様にして求めた。 Thereafter, a fixed amount of 2 ml of the dispersion liquid sample was taken out from the bottle at regular intervals in the same manner as described above, a photograph of the carbon fiber structure in the dispersion liquid was taken with an SEM, and the carbon fiber of the obtained SEM photograph the D 50 average diameter of D 50 average length and granular part of the carbon fibers in the structure in was determined in the same manner as above.

そして、算出される微細炭素繊維のD50平均長さが、初期平均繊維長の約半分となった時点(本実施例においては超音波を照射し、500分経過後)における、粒状部のD50平均径を、初期平均径と対比しその変動割合(%)を調べた。 And the D 50 average length of the calculated fine carbon fiber is about half of the initial average fiber length (in this example, after irradiating ultrasonic waves and 500 minutes have elapsed), the D of the granular portion The 50 average diameter was compared with the initial average diameter, and the variation ratio (%) was examined.

(本発明において用いられる炭素繊維構造体の合成)
CVD法によって、トルエンを原料として本発明において用いられる炭素繊維構造体を合成した。
(Synthesis of carbon fiber structure used in the present invention)
A carbon fiber structure used in the present invention was synthesized by a CVD method using toluene as a raw material.

触媒としてフェロセン及びチオフェンの混合物を使用し、水素ガスの還元雰囲気で行った。トルエン、触媒を水素ガスとともに380℃に加熱し、生成炉に供給し、1250℃で熱分解して、炭素繊維構造体(第一中間体)を得た。   A mixture of ferrocene and thiophene was used as a catalyst, and the reaction was performed in a hydrogen gas reducing atmosphere. Toluene and the catalyst were heated to 380 ° C. together with hydrogen gas, supplied to the production furnace, and pyrolyzed at 1250 ° C. to obtain a carbon fiber structure (first intermediate).

なお、この炭素繊維構造体(第一中間体)を製造する際に用いられた生成炉の概略構成を図8に示す。図8に示すように、生成炉1は、その上端部に、上記したようなトルエン、触媒および水素ガスからなる原料混合ガスを生成炉1内へ導入する導入ノズル2を有しているが、さらにこの導入ノズル2の外側方には、円筒状の衝突部3が設けられている。この衝突部3は、導入ノズル2の下端に位置する原料ガス供給口4より反応炉内に導出される原料ガスの流れに干渉し得るものとされている。なお、この実施例において用いられた生成炉1では、導入ノズル2の内径a、生成炉1の内径b、筒状の衝突部3の内径c、生成炉1の上端から原料混合ガス導入口4までの距離d、原料混合ガス導入口4から衝突部3の下端までの距離e、原料混合ガス導入口4から生成炉1の下端までの距離をfとすると、各々の寸法比は、おおよそa:b:c:d:e:f=1.0:3.6:1.8:3.2:2.0:21.0に形成されていた。また、反応炉への原料ガス導入速度は、1850NL/min、圧力は1.03atmとした。   In addition, the schematic structure of the production | generation furnace used when manufacturing this carbon fiber structure (1st intermediate body) is shown in FIG. As shown in FIG. 8, the production furnace 1 has an introduction nozzle 2 for introducing a raw material mixed gas composed of toluene, a catalyst, and hydrogen gas as described above into the production furnace 1 at its upper end. Further, a cylindrical collision portion 3 is provided outside the introduction nozzle 2. The collision unit 3 is capable of interfering with the flow of the raw material gas introduced into the reaction furnace from the raw material gas supply port 4 located at the lower end of the introduction nozzle 2. In the production furnace 1 used in this embodiment, the inner diameter a of the introduction nozzle 2, the inner diameter b of the production furnace 1, the inner diameter c of the cylindrical collision portion 3, and the raw material mixed gas inlet 4 from the upper end of the production furnace 1 are used. Distance d, the distance e from the raw material mixed gas inlet 4 to the lower end of the collision part 3, and the distance from the raw material mixed gas inlet 4 to the lower end of the production furnace 1 are f, : B: c: d: e: f = 1.0: 3.6: 1.8: 3.2: 2.0: 21.0. The raw material gas introduction rate into the reactor was 1850 NL / min, and the pressure was 1.03 atm.

上記のようにして合成された中間体を窒素中で900℃で焼成して、タールなどの炭化水素を分離し、第二中間体を得た。この第二中間体のラマン分光測定のR値は0.98であった。また、この第一中間体をトルエン中に分散して電子顕微鏡用試料調製後に観察したSEMおよびTEM写真を図1、2に示す。   The intermediate synthesized as described above was calcined at 900 ° C. in nitrogen to separate hydrocarbons such as tar to obtain a second intermediate. The R value of this second intermediate measured by Raman spectroscopy was 0.98. 1 and 2 show SEM and TEM photographs observed after the first intermediate is dispersed in toluene and a sample for an electron microscope is prepared.

さらにこの第二中間体をアルゴン中で2600℃で高温熱処理し、得られた炭素繊維構造体の集合体を気流粉砕機にて粉砕し、本発明において用いられる炭素繊維構造体を得た。   Further, this second intermediate was heat treated at 2600 ° C. in argon at high temperature, and the resulting aggregate of carbon fiber structures was pulverized with an airflow pulverizer to obtain a carbon fiber structure used in the present invention.

得られた炭素繊維構造体をトルエン中に超音波で分散して電子顕微鏡用試料調製後に観察したSEMおよびTEM写真を図3、4に示す。   FIGS. 3 and 4 show SEM and TEM photographs of the obtained carbon fiber structure dispersed in toluene with ultrasonic waves and observed after preparing a sample for an electron microscope.

また、得られた炭素繊維構造体をそのまま電子顕微鏡用試料ホルダーに載置して観察したSEM写真を図5に、またその粒度分布を表1に示した。   Further, FIG. 5 shows an SEM photograph of the obtained carbon fiber structure as it is placed on an electron microscope sample holder, and Table 1 shows the particle size distribution.

さらに高温熱処理前後において、炭素繊維構造体のX線回折およびラマン分光分析を行い、その変化を調べた。結果を図6および7に示す。   Furthermore, before and after the high temperature heat treatment, the carbon fiber structure was subjected to X-ray diffraction and Raman spectroscopic analysis, and the change was examined. The results are shown in FIGS.

また、得られた炭素繊維構造体の円相当平均径は、72.8μm、嵩密度は0.0032g/cm、ラマンI/I比値は0.090、TG燃焼温度は786℃、面間隔は3.383オングストローム、粉体抵抗値は0.0083Ω・cm、復元後の密度は0.25g/cmであった。 Furthermore, the circle-equivalent mean diameter of the obtained carbon fibrous structures, 72.8Myuemu, bulk density of 0.0032 g / cm 3, Raman I D / I G ratio is 0.090, TG combustion temperature of 786 ° C., The face spacing was 3.383 Å, the powder resistance value was 0.0083 Ω · cm, and the density after restoration was 0.25 g / cm 3 .

さらに炭素繊維構造体における粒状部の粒径は平均で、443nm(SD207nm)であり、炭素繊維構造体における微細炭素繊維の外径の7.38倍となる大きさであった。また粒状部の円形度は、平均値で0.67(SD0.14)であった。   Further, the average particle size of the granular portion in the carbon fiber structure was 443 nm (SD 207 nm), which was 7.38 times the outer diameter of the fine carbon fiber in the carbon fiber structure. Further, the circularity of the granular portion was 0.67 (SD 0.14) on average.

また、前記した手順によって炭素繊維構造体の破壊試験を行ったところ、超音波印加30分後の初期平均繊維長(D50)は、12.8μmであったが、超音波印加500分後の平均繊維長(D50)は、6.7μmとほぼ半分の長さとなり、炭素繊維構造体において微細炭素繊維に多くの切断が生じたことが示された。しかしながら、超音波印加500分後の粒状部の平均径(D50)を、超音波印加30分後の初期初期平均径(D50)と対比したところ、その変動(減少)割合は、わずか4.8%であり、測定誤差等を考慮すると、微細炭素繊維に多くの切断が生じた負荷条件下でも、切断粒状部自体はほとんど破壊されることなく、繊維相互の結合点として機能していることが明らかとなった。 Further, when the carbon fiber structure was subjected to the destructive test according to the procedure described above, the initial average fiber length (D 50 ) after 30 minutes of application of the ultrasonic wave was 12.8 μm. The average fiber length (D 50 ) was almost half of 6.7 μm, indicating that many cuts were generated in the fine carbon fibers in the carbon fiber structure. However, when the average diameter (D 50 ) of the granular part 500 minutes after application of ultrasonic waves is compared with the initial initial average diameter (D 50 ) 30 minutes after application of ultrasonic waves, the variation (decrease) rate is only 4 .8%, and taking into account measurement errors, etc., even under load conditions where many cuts occurred in fine carbon fibers, the cut granular parts themselves are hardly destroyed and function as bonding points between the fibers. It became clear.

なお、当該炭素繊維構造体における炭素繊維の各種物性値を表2にまとめた。   In addition, various physical property values of the carbon fiber in the carbon fiber structure are summarized in Table 2.

(本発明のパンタグラフ用すり板の作製)
前記で合成した炭素繊維構造体と銅からなる複合材料を用いて、本発明の実施例に係るパンタグラフ用すり板を作製した。
(Preparation of pantograph slip plate of the present invention)
A pantograph slip plate according to an example of the present invention was produced using the composite material composed of the carbon fiber structure synthesized above and copper.

なお、炭素繊維構造体と銅との配合割合は、炭素繊維構造体が30質量%、銅が70質量%とした。   In addition, the mixing ratio of the carbon fiber structure and copper was 30% by mass for the carbon fiber structure and 70% by mass for copper.

また、同様に炭素繊維構造体が40質量%、銅―すず合金60質量%の配合割合をもってパンタグラフ用すり板を作製した。   Similarly, a pantograph slip plate was prepared with a blending ratio of 40% by mass of the carbon fiber structure and 60% by mass of the copper-tin alloy.

(評価)
前記本発明の実施例に係るパンタグラフ用すり板の各種性能を評価した。評価結果を表3に示す。表3に示すように、摩擦性能(架線を摩耗せしめない性能)、摩耗性能(すり板自体が摩耗しない性能)、耐熱性、導電性の全てにおいて良好な結果を得た。
(Evaluation)
Various performances of the pantograph sliding plate according to the example of the present invention were evaluated. The evaluation results are shown in Table 3. As shown in Table 3, good results were obtained in all of friction performance (performance that does not cause the overhead wire to wear), wear performance (performance that the sliding plate itself does not wear), heat resistance, and conductivity.

本発明の複合材料に用いる炭素繊維構造体の中間体のSEM写真である。It is a SEM photograph of the intermediate body of the carbon fiber structure used for the composite material of this invention. 本発明の複合材料に用いる炭素繊維構造体の中間体のTEM写真である。It is a TEM photograph of the intermediate body of the carbon fiber structure used for the composite material of this invention. 本発明の複合材料に用いる炭素繊維構造体のSEM写真である。It is a SEM photograph of the carbon fiber structure used for the composite material of the present invention. (a)(b)は、それぞれ本発明の複合材料に用いる炭素繊維構造体のTEM写真である。(A) (b) is a TEM photograph of the carbon fiber structure used for the composite material of the present invention, respectively. 本発明の複合材料に用いる炭素繊維構造体のSEM写真である。It is a SEM photograph of the carbon fiber structure used for the composite material of the present invention. 本発明の複合材料に用いる炭素繊維構造体および該炭素繊維構造体の中間体のX線回折チャートである。2 is an X-ray diffraction chart of a carbon fiber structure used in the composite material of the present invention and an intermediate of the carbon fiber structure. 本発明の複合材料に用いる炭素繊維構造体および該炭素繊維構造体の中間体のラマン分光分析チャートである。It is a Raman spectroscopic analysis chart of the carbon fiber structure used for the composite material of this invention, and the intermediate body of this carbon fiber structure. 本発明の実施例において炭素繊維構造体の製造に用いた生成炉の概略構成を示す図面である。It is drawing which shows schematic structure of the production | generation furnace used for manufacture of the carbon fiber structure in the Example of this invention. 本発明のパンタグラフ用すり板の一例を示す一部省略斜視図である。It is a partially-omission perspective view which shows an example of the pantograph slip board of this invention. 図9に示す本発明のパンタグラフ用すり板の拡大断面図である。FIG. 10 is an enlarged cross-sectional view of the pantograph slide plate of the present invention shown in FIG. 9. 従来の集電舟の構造を示す一部省略斜視図である。It is a partially-omission perspective view which shows the structure of the conventional current collector boat. 図11に示す従来の集電舟のVI−VI線に沿った断面図である。It is sectional drawing along the VI-VI line of the conventional current collection boat shown in FIG.

符号の説明Explanation of symbols

1 生成炉
2 導入ノズル
3 衝突部
4 原料ガス供給口
a 導入ノズルの内径
b 生成炉の内径
c 衝突部の内径
d 生成炉の上端から原料混合ガス導入口までの距離
e 原料混合ガス導入口から衝突部の下端までの距離
f 原料混合ガス導入口から生成炉の下端までの距離
11、53 すり板本体
12、54 さや
13 皮膜
14、55 溝
15、56 ボルト
51 すり板
52 集電舟
57 ナット
58 補助すり板
59 当て板
60 結合板
DESCRIPTION OF SYMBOLS 1 Generation furnace 2 Introduction nozzle 3 Collision part 4 Raw material gas supply port a Inner diameter of introduction nozzle b Inner diameter of production furnace c Inner diameter of collision part d Distance from upper end of production furnace to raw material mixed gas introduction port e From raw material mixed gas introduction port Distance to the lower end of the collision part f Distance from the raw material mixed gas introduction port to the lower end of the generating furnace 11, 53 Grind plate body 12, 54 Sheath 13 Film 14, 55 Groove 15, 56 Bolt 51 Grind plate 52 Current collecting boat 57 Nut 58 Auxiliary sliding plate 59 Catch plate 60 Coupling plate

Claims (11)

金属と炭素繊維とからなる複合材料により形成されていることを特徴とするパンタグラフ用すり板。   A pantograph slide plate, characterized by being formed of a composite material made of metal and carbon fiber. 前記炭素繊維の外径が15〜100nmであることを特徴とする請求項1に記載のパンタグラフ用すり板。   The pantograph slide plate according to claim 1, wherein the carbon fiber has an outer diameter of 15 to 100 nm. 前記炭素繊維が3次元ネットワーク状の炭素繊維構造体を構成しており、
当該炭素繊維構造体は、前記炭素繊維が複数延出する態様で、当該炭素繊維を互いに結合する粒状部を有しており、かつ当該粒状部は前記炭素繊維の成長過程において形成されてなるものであることを特徴する請求項2に記載のパンタグラフ用すり板。
The carbon fiber constitutes a three-dimensional network-like carbon fiber structure,
The carbon fiber structure has a granular part that bonds the carbon fibers to each other in a form in which a plurality of the carbon fibers extend, and the granular part is formed in the growth process of the carbon fiber. The pantograph sliding plate according to claim 2, wherein
前記炭素繊維構造体は、面積基準の円相当平均径が50〜100μmであることを特徴とする請求項3に記載のパンタグラフ用すり板。   4. The pantograph slide plate according to claim 3, wherein the carbon fiber structure has an area-based circle-equivalent mean diameter of 50 to 100 [mu] m. 前記炭素繊維構造体は、嵩密度が、0.0001〜0.05g/cmであることを特徴とする請求項3または4に記載のパンタグラフ用すり板。 5. The pantograph slip plate according to claim 3 , wherein the carbon fiber structure has a bulk density of 0.0001 to 0.05 g / cm 3 . 前記炭素繊維構造体は、ラマン分光分析法で測定されるI/Iが、0.2以下であることを特徴とする請求項3〜5のいずれか1つに記載のパンタグラフ用すり板。 The pantograph slide plate according to any one of claims 3 to 5, wherein the carbon fiber structure has an I D / I G measured by Raman spectroscopy of 0.2 or less. . 前記炭素繊維構造体は、空気中での燃焼開始温度が750℃以上であることを特徴とする請求項3〜6のいずれか1つに記載のパンタグラフ用すり板。   The pantograph slide plate according to any one of claims 3 to 6, wherein the carbon fiber structure has a combustion start temperature in air of 750 ° C or higher. 前記炭素繊維の結合箇所において、前記粒状部の粒径が、前記炭素繊維の外径よりも大きいことを特徴とする請求項3〜7のいずれか1つに記載のパンタグラフ用すり板。   The pantograph slide plate according to any one of claims 3 to 7, wherein a particle diameter of the granular portion is larger than an outer diameter of the carbon fiber at a bonding portion of the carbon fibers. 前記炭素繊維構造体は、炭素源として、分解温度の異なる少なくとも2つ以上の炭素化合物を用いて、生成されたものである請求項3〜8のいずれか1つに記載のパンタグラフ用すり板。   The pantograph slip plate according to any one of claims 3 to 8, wherein the carbon fiber structure is generated using at least two or more carbon compounds having different decomposition temperatures as a carbon source. 前記金属が銅、または銅の焼結合金であることを特徴とする請求項1〜9のいずれか1つに記載のパンタグラフ用すり板。   The pantograph slide plate according to any one of claims 1 to 9, wherein the metal is copper or a sintered alloy of copper. 前記複合材料の組成が、金属50〜99.5質量%、炭素繊維50〜0.5質量%であることを特徴とする請求項1〜10のいずれか1つに記載のパンタグラフ用すり板。   The composition of the said composite material is 50-99.5 mass% of metals, and 50-0.5 mass% of carbon fibers, The pantograph slip board as described in any one of Claims 1-10 characterized by the above-mentioned.
JP2005312824A 2005-10-27 2005-10-27 Contact strip for pantograph Pending JP2007124789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005312824A JP2007124789A (en) 2005-10-27 2005-10-27 Contact strip for pantograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005312824A JP2007124789A (en) 2005-10-27 2005-10-27 Contact strip for pantograph

Publications (1)

Publication Number Publication Date
JP2007124789A true JP2007124789A (en) 2007-05-17

Family

ID=38148009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005312824A Pending JP2007124789A (en) 2005-10-27 2005-10-27 Contact strip for pantograph

Country Status (1)

Country Link
JP (1) JP2007124789A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105291847A (en) * 2014-07-28 2016-02-03 湖南元素密码石墨烯研究院(有限合伙) Method for making pantograph slide plate
CN107539132A (en) * 2017-08-21 2018-01-05 硕阳科技股份公司 A kind of preparation method of light-weight conducting high-abrasive material
CN110303891A (en) * 2019-07-17 2019-10-08 西南交通大学 Self-lubricating modular metal roller block of bow collector of electric locomotive bow containing shock-damping structure
CN116535227A (en) * 2023-07-05 2023-08-04 西南交通大学 Preparation method of carbon fiber in-situ generation nano silver enhanced pantograph carbon slide plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140050A (en) * 1986-12-02 1988-06-11 Hitachi Chem Co Ltd Current-collecting material
JP2001107203A (en) * 1999-09-30 2001-04-17 Yazaki Corp Composite material and its production method
JP2001115348A (en) * 1999-10-13 2001-04-24 Nikkiso Co Ltd Sliver yarn-like yarn of carbon nanofiber and method for producing the same
JP2001324119A (en) * 2000-05-12 2001-11-22 Mitsubishi Rayon Co Ltd Exhaust gas treatment device for carbonizing furnace and method of treating exhaust gas from carbonizing furnace
WO2005095687A1 (en) * 2004-03-31 2005-10-13 Bussan Nanotech Research Institute Inc. Microscopic carbon fiber with a variety of structures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140050A (en) * 1986-12-02 1988-06-11 Hitachi Chem Co Ltd Current-collecting material
JP2001107203A (en) * 1999-09-30 2001-04-17 Yazaki Corp Composite material and its production method
JP2001115348A (en) * 1999-10-13 2001-04-24 Nikkiso Co Ltd Sliver yarn-like yarn of carbon nanofiber and method for producing the same
JP2001324119A (en) * 2000-05-12 2001-11-22 Mitsubishi Rayon Co Ltd Exhaust gas treatment device for carbonizing furnace and method of treating exhaust gas from carbonizing furnace
WO2005095687A1 (en) * 2004-03-31 2005-10-13 Bussan Nanotech Research Institute Inc. Microscopic carbon fiber with a variety of structures

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105291847A (en) * 2014-07-28 2016-02-03 湖南元素密码石墨烯研究院(有限合伙) Method for making pantograph slide plate
CN107539132A (en) * 2017-08-21 2018-01-05 硕阳科技股份公司 A kind of preparation method of light-weight conducting high-abrasive material
CN110303891A (en) * 2019-07-17 2019-10-08 西南交通大学 Self-lubricating modular metal roller block of bow collector of electric locomotive bow containing shock-damping structure
CN116535227A (en) * 2023-07-05 2023-08-04 西南交通大学 Preparation method of carbon fiber in-situ generation nano silver enhanced pantograph carbon slide plate
CN116535227B (en) * 2023-07-05 2023-10-10 西南交通大学 Preparation method of carbon fiber in-situ generation nano silver enhanced pantograph carbon slide plate

Similar Documents

Publication Publication Date Title
JP3776111B1 (en) Carbon fiber structure
JP4847106B2 (en) Carbon fiber structure
KR100682445B1 (en) Composite material
US8603620B2 (en) Carbon fiber and composite material
KR100719421B1 (en) Carbon fibrous structure
JP4847164B2 (en) Fine carbon fiber structure
JP4570553B2 (en) Composite material
JP2007138039A (en) Recycled composite material
JP2007119647A (en) Composite material
JP2007124789A (en) Contact strip for pantograph
JP2007119931A (en) Synthetic fiber
RU2354763C2 (en) Carbon fibre structure
JP2006183227A (en) Carbon fiber structure
WO2007058299A1 (en) Composite material
JP2007119522A (en) Fluororesin molded product
JP5054915B2 (en) Method for producing carbon fiber structure
JP2007146316A (en) Method for producing gas phase method carbon fiber
JP2007115495A (en) Electron emission source
JP2007139668A (en) Control rod for reactor and manufacturing method for the same
WO2016094149A1 (en) Method of manufacturing carbon nanotubes and fibers using catlytic magnesium oxide nanoparticles
JP2007162164A (en) Oxidation method for carbon fiber
KR100483802B1 (en) Dual-carbon nanofiber with two nanofibers

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20080208

Free format text: JAPANESE INTERMEDIATE CODE: A711

A711 Notification of change in applicant

Effective date: 20080828

Free format text: JAPANESE INTERMEDIATE CODE: A711

A621 Written request for application examination

Effective date: 20081017

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20101125

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20101130

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329