JP2007106669A - METHOD FOR MANUFACTURING SEMI-INSULATING GaAs SINGLE CRYSTAL - Google Patents

METHOD FOR MANUFACTURING SEMI-INSULATING GaAs SINGLE CRYSTAL Download PDF

Info

Publication number
JP2007106669A
JP2007106669A JP2006289021A JP2006289021A JP2007106669A JP 2007106669 A JP2007106669 A JP 2007106669A JP 2006289021 A JP2006289021 A JP 2006289021A JP 2006289021 A JP2006289021 A JP 2006289021A JP 2007106669 A JP2007106669 A JP 2007106669A
Authority
JP
Japan
Prior art keywords
single crystal
semi
gaas single
raw material
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006289021A
Other languages
Japanese (ja)
Inventor
Toshiaki Asahi
聰明 朝日
Osamu Oda
小田  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006289021A priority Critical patent/JP2007106669A/en
Publication of JP2007106669A publication Critical patent/JP2007106669A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a semi-insulating GaAs single crystal with a constant carbon concentration in the direction of crystal growth through a VGF or VB method. <P>SOLUTION: In the manufacturing method, a crucible 3 containing a GaAs raw material 5 and B<SB>2</SB>O<SB>3</SB>6, As 7 for controlling the vapor pressure and an oxygen supply source 8 comprising at least one compound chosen from the group consisting of Ga<SB>2</SB>O<SB>3</SB>and As<SB>2</SB>O<SB>3</SB>or at least one compound chosen from the group consisting of carbon monoxide and carbon dioxide are sealed inside a quartz ample, and crystal is grown while controlling the CO gas concentration in the quartz ample. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半絶縁性GaAs単結晶の製造方法に関し、たとえばGaAsの原料融液を冷却して垂直方向に単結晶を成長させる垂直グラジェントフリージング(VGF)法や垂直ブリッジマン(VB)法に適用して有用な技術に関する。   The present invention relates to a method for producing a semi-insulating GaAs single crystal. For example, a vertical gradient freezing (VGF) method or a vertical Bridgman (VB) method in which a GaAs raw material melt is cooled to grow a single crystal in a vertical direction. It is related to useful technology.

通常、GaAs−FET(Field-Effect Transistor)やGaAs−ICの製作には、半絶縁性GaAs単結晶よりなる基板が用いられる。   Usually, a substrate made of a semi-insulating GaAs single crystal is used to manufacture a GaAs-FET (Field-Effect Transistor) or a GaAs-IC.

GaAsは、1.4eVの禁制帯幅を有し、不純物を全く含んでいなければ真性キャリア濃度が1.8×106cm-3の半絶縁性となる。しかし、そのような不純物を含まない半絶縁性GaAs単結晶を製造するのは極めて困難であり、高純度化しても浅いドナー準位を形成する珪素等のシャロードナーや浅いアクセプター準位を形成する炭素等のシャローアクセプターが不純物としてGaAs単結晶中に残存してしまう。したがって、工業的には、深いアクセプター準位を形成するクロム等のディープアクセプターや深いドナー準位を形成するEL2等のディープドナーによりそれぞれ結晶中のシャロードナーやシャローアクセプターを補償することによって半絶縁性を得るようにしている。 GaAs has a forbidden band width of 1.4 eV and is semi-insulating with an intrinsic carrier concentration of 1.8 × 10 6 cm −3 if it contains no impurities. However, it is extremely difficult to produce a semi-insulating GaAs single crystal that does not contain such impurities, and a shallow donor level such as silicon that forms a shallow donor level or a shallow acceptor level is formed even if it is highly purified. A shallow acceptor such as carbon remains as an impurity in the GaAs single crystal. Therefore, industrially, a half acceptor or a shallow acceptor in a crystal is compensated by a deep acceptor such as chromium that forms a deep acceptor level or a deep donor such as EL2 that forms a deep donor level. Insulation is obtained.

このような半絶縁性のGaAsは、水平ブリッジマン(HB)法や液体封止チョクラルスキー(LEC)法により工業的に製造されている。   Such semi-insulating GaAs is industrially manufactured by a horizontal Bridgman (HB) method or a liquid-sealed Czochralski (LEC) method.

LEC法には、高純度化し易く、半絶縁性のGaAs単結晶を安定して得ることができるという長所の他に、大口径で円形のウェハーが得られるという長所がある。しかし、LEC法では結晶育成中の結晶成長方向の温度勾配が大きいため、FETやICを作製した時の電気的な特性劣化を招く原因となる転位の密度が高い他、得られたGaAs結晶は割れやすいという短所がある。   The LEC method has the advantage that a large-diameter circular wafer can be obtained, in addition to the advantage that it is easy to achieve high purity and a semi-insulating GaAs single crystal can be obtained stably. However, since the LEC method has a large temperature gradient in the crystal growth direction during crystal growth, the density of dislocations that cause electrical characteristics deterioration when manufacturing FETs and ICs is high, and the obtained GaAs crystal is There is a disadvantage that it is easy to break.

一方、HB法には、結晶育成中の結晶成長方向の温度勾配が小さいため、低転位密度の結晶が得られるという長所がある反面、るつぼ(ボート)内で原料融液を固化させるため大口径化が困難であり、またリネージという転位の集積線が発生しやすく、さらにるつぼ形状に依存した形状(かまぼこ形)のウェハーしか得られないという短所がある。   On the other hand, the HB method has an advantage that a crystal having a low dislocation density can be obtained because the temperature gradient in the crystal growth direction during crystal growth is small. However, the HB method has a large diameter to solidify the raw material melt in a crucible (boat). However, there is a disadvantage that only a wafer having a shape dependent on the crucible shape (kamaboko shape) can be obtained.

以上のようなHB法およびLEC法のそれぞれの短所を補い、それぞれの長所を活かした結晶製造方法として、垂直グラジェントフリージング(VGF)法や垂直ブリッジマン(VB)法がある。これらVGF法やVB法によれば、有底円筒形のるつぼの使用により円形のウェハーが得られる、結晶成長方向の温度勾配が小さいため低転位密度化が容易である、さらに液体封止剤(B23)を使用すれば、石英アンプルからの珪素の混入を防いでアンドープの半絶縁性GaAs単結晶を成長させることができる、という利点が得られる。 There are vertical gradient freezing (VGF) method and vertical Bridgman (VB) method as a crystal manufacturing method that compensates for the respective disadvantages of the HB method and the LEC method as described above and takes advantage of the respective advantages. According to these VGF method and VB method, a round wafer can be obtained by using a bottomed cylindrical crucible, and since the temperature gradient in the crystal growth direction is small, a low dislocation density is easy. If B 2 O 3 ) is used, there is an advantage that an undoped semi-insulating GaAs single crystal can be grown while preventing silicon contamination from the quartz ampule.

VGF法によるGaAs単結晶の育成方法には、るつぼに入れた原料および添加物を加熱して石英アンプル中で溶解し、それを所定の温度勾配下で徐々に冷却して結晶を育成する方法と、石英アンプルのリザーバ部にAsを入れてAs圧の制御を行ないながら上記方法と同様にして結晶育成を行なう方法と、さらにB23で原料融液の表面を封止しながら上記2つの方法と同様にして結晶育成を行なう方法とがある。 A method for growing a GaAs single crystal by the VGF method includes heating a raw material and an additive contained in a crucible and dissolving them in a quartz ampule, and gradually cooling them under a predetermined temperature gradient to grow a crystal; The crystal growth is performed in the same manner as described above while As is controlled by putting As in the reservoir of the quartz ampule, and the above two methods are performed while sealing the surface of the raw material melt with B 2 O 3 . There is a method of crystal growth similar to the method.

23で封止しながらLEC法により結晶育成を行なう方法では、B23やその中の水分から酸素が遊離し、その酸素と育成炉中のグラファイトとが反応してCO(一酸化炭素)ガスが生成され、そのCOガスがB23中に溶解し、原料融液中のGaやH2Oとのバランスにより還元されC(炭素)となって原料融液中に混入する、との報告がされている(非特許文献1参照)。
6th Conf. on Semi-insulating III-V Materials, Toronto(1990)211-218, Journal of Crystal Growth 134(1993)97-104
In the method of crystal growth by the LEC method while sealing with B 2 O 3 , oxygen is liberated from B 2 O 3 and moisture therein, and the oxygen reacts with graphite in the growth furnace to produce CO (one Carbon oxide) gas is generated, and the CO gas dissolves in B 2 O 3 and is reduced by the balance with Ga and H 2 O in the raw material melt to become C (carbon) and mixed in the raw material melt. Has been reported (see Non-Patent Document 1).
6th Conf. On Semi-insulating III-V Materials, Toronto (1990) 211-218, Journal of Crystal Growth 134 (1993) 97-104

本来、炭素の偏析係数が1.4であるため、育成結晶中の炭素濃度は減少する傾向にあるが、B23で原料融液の表面を封止しながらVGF法やVB法により石英アンプル中で結晶育成を行なった場合には、融液中の炭素は前記のようにB23中の水分と反応しCOガスとなるので炭素濃度はB23中の水分濃度に大きく依存する。結晶育成が進むに連れてB23中の水分の量が次第に減少していくので、実際には、得られた結晶の種結晶側から単結晶の尾部にかけて炭素濃度が増加する傾向にある。したがって、結晶の全域にわたって炭素濃度を一定に制御することは非常に困難であり、得られた結晶は、その全域にわたって抵抗率が一定にならず、FETやIC作製用の基板として用いることはできないという問題点があった。また、B23中から発生した水分が、アンプル内の炭素と反応しCOガスを発生させるが、その蒸発量はB23中の水分含有量や温度に依存するので常に一定のCO圧とするのは困難であった。 Originally, since the segregation coefficient of carbon is 1.4, the carbon concentration in the grown crystal tends to decrease. However, while sealing the surface of the raw material melt with B 2 O 3 , quartz is obtained by the VGF method or VB method. When crystal growth is performed in an ampoule, the carbon in the melt reacts with the water in B 2 O 3 to become CO gas as described above, so the carbon concentration is large compared to the water concentration in B 2 O 3. Dependent. As the crystal growth proceeds, the amount of water in B 2 O 3 gradually decreases, so in practice, the carbon concentration tends to increase from the seed crystal side of the obtained crystal to the tail of the single crystal. . Therefore, it is very difficult to control the carbon concentration uniformly over the entire area of the crystal, and the obtained crystal does not have a constant resistivity over the entire area, and cannot be used as a substrate for manufacturing an FET or an IC. There was a problem. In addition, water generated from B 2 O 3 reacts with carbon in the ampoule to generate CO gas, but the amount of evaporation depends on the water content and temperature in B 2 O 3 , so it is always constant CO. It was difficult to make pressure.

本発明は、上記問題点を解決するためになされたもので、VGF法およびVB法により、結晶成長方向の炭素濃度が一定な半絶縁性GaAs単結晶を得ることを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to obtain a semi-insulating GaAs single crystal having a constant carbon concentration in the crystal growth direction by the VGF method and the VB method.

上記目的を達成するために、本発明者らは、石英アンプル中に、Ga23、As23や一酸化炭素、二酸化炭素などの酸素化合物よりなる酸素供給源を入れ、それによって結晶育成中に、石英アンプル中のCO圧を制御することを考えた。 In order to achieve the above object, the present inventors put an oxygen supply source made of an oxygen compound such as Ga 2 O 3 , As 2 O 3 , carbon monoxide, carbon dioxide in a quartz ampule, thereby forming a crystal. During the growth, it was considered to control the CO pressure in the quartz ampule.

本発明は、上記着眼に基づきなされたもので、気密容器内に、少なくともGaAs原料を入れたるつぼと、酸素化合物よりなる酸素供給源とを封入した後、その気密容器を縦型の加熱炉内に設置して前記原料をヒータにより加熱融解し、原料融液を所定の温度勾配下で徐々に冷却して固化させることによりGaAs単結晶を成長させるようにしたものである。   The present invention has been made based on the above-mentioned viewpoint. After sealing a crucible containing at least a GaAs raw material and an oxygen supply source made of an oxygen compound in an airtight container, the airtight container is placed in a vertical heating furnace. And the raw material melt is heated and melted by a heater, and the raw material melt is gradually cooled and solidified under a predetermined temperature gradient to grow a GaAs single crystal.

この発明において、前記るつぼ内に、GaAs原料とともにB23等の封止剤を入れるようにしてもよい。 In the present invention, a sealing agent such as B 2 O 3 may be put in the crucible together with the GaAs raw material.

また、前記酸素化合物は、加熱により前記気密容器内の炭素含有物質と反応してCO圧を発生するに十分な酸素を解離することができる酸素化合物であり、Ga23、As23よりなる群から選ばれた1または2以上の化合物、あるいは一酸化炭素、二酸化炭素よりなる群から選ばれた1または2以上の化合物であってもよい。 The oxygen compound is an oxygen compound that can dissociate sufficient oxygen to generate a CO pressure by reacting with the carbon-containing substance in the hermetic container by heating, and Ga 2 O 3 , As 2 O 3. 1 or 2 or more compounds selected from the group which consists of, or 1 or 2 or more compounds selected from the group which consists of carbon monoxide and a carbon dioxide may be sufficient.

上記発明によれば、結晶育成中、石英アンプル中のCOガス濃度が一定に制御される。また、B23を用いることにより、育成結晶中に双晶が発生したり、育成結晶が多結晶化したりするのを防ぐことができるので、単結晶化率が低下するのを防ぐことができる。 According to the above invention, the CO gas concentration in the quartz ampule is controlled to be constant during crystal growth. In addition, by using B 2 O 3 , it is possible to prevent twin crystals from being generated in the grown crystal and the grown crystal to be polycrystallized, so that it is possible to prevent the single crystallization rate from being lowered. it can.

本発明によれば、気密容器内に、少なくともGaAs原料を入れたるつぼと、酸素化合物よりなる酸素供給源とを封入した後、その気密容器を縦型の加熱炉内に設置して前記原料をヒータにより加熱融解し、原料融液を所定の温度勾配下で徐々に冷却して固化させることによりGaAs単結晶を成長させるようにしたため、結晶育成中の気密容器内のCOガス濃度を制御することができるので、育成結晶中の炭素濃度を制御しながら結晶育成を行なうことができ、炭素濃度の均一な半絶縁性GaAs単結晶を高歩留まりで得ることができる。   According to the present invention, after enclosing a crucible containing at least a GaAs raw material and an oxygen supply source made of an oxygen compound in an airtight container, the airtight container is placed in a vertical heating furnace and the raw material is placed in the airtight container. The GaAs single crystal is grown by heating and melting with a heater and gradually cooling and solidifying the raw material melt under a predetermined temperature gradient, so that the CO gas concentration in the hermetic vessel during crystal growth is controlled. Therefore, crystal growth can be performed while controlling the carbon concentration in the grown crystal, and a semi-insulating GaAs single crystal having a uniform carbon concentration can be obtained with a high yield.

まず、本発明者らは、B23で封止しながら結晶育成を行なう場合、酸素と炭素とから生成されたCOガスがB23中に溶解し、それが還元されてCが原料融液中に混入するとの上記報告に基づき、熱力学的な計算を行なった。その計算内容について説明する。 First, when performing crystal growth while sealing with B 2 O 3 , the present inventors dissolve CO gas generated from oxygen and carbon in B 2 O 3 and reduce it to reduce C. Based on the above report that it was mixed in the raw material melt, a thermodynamic calculation was performed. The calculation contents will be described.

原料のチャージ時は、系内には、酸素供給源であるたとえばAs23(固体)、H2Oを含んだB23(固体)、GaAs(固体)、As(固体)、C(固体)以外はないと考える。系内の昇温によって、反応
As23→1/2As46→2AsO+1/2O2
が進行する。発生したAs46やAsOやO2は炭素と反応し、COガスまたはCO2ガスを発生するが、GaAsの融点(1238℃)では殆どがCOガスであると考えてよいので、
As46+6C→2As2+6CO
AsO+C→1/2As2+CO
2+C→2CO
となる。
When charging the raw material, the system is supplied with oxygen sources such as As 2 O 3 (solid), H 2 O containing B 2 O 3 (solid), GaAs (solid), As (solid), C I think there is nothing but (solid). As the temperature rises in the system, the reaction As 2 O 3 → 1 / 2As 4 O 6 → 2AsO + 1 / 2O 2
Progresses. The generated As 4 O 6 , AsO or O 2 reacts with carbon to generate CO gas or CO 2 gas, but at the melting point of GaAs (1238 ° C.), it can be considered that most is CO gas.
As 4 O 6 + 6C → 2As 2 + 6CO
AsO + C → 1 / 2As 2 + CO
O 2 + C → 2CO
It becomes.

ここで、B23中から蒸発したH2Oが、炭素と反応しCOガスを発生することが考えられるが、H2Oの蒸発は徐々に生じるので、B23中から蒸発したH2Oと炭素により発生したCOガスの圧力は、As23により発生したCOガスよりも小さい圧力と考えられる。したがって、GaAsが融解した時点での初期のCO圧はAs23量に依存すると考えられるが、以下の計算によって、As23により発生するCOガスとB23中のH2Oの蒸発によって発生するCOガスとの関係を求めた。 Here, it is considered that H 2 O evaporated from B 2 O 3 reacts with carbon to generate CO gas. However, since H 2 O is gradually evaporated, it is evaporated from B 2 O 3 . The pressure of the CO gas generated by H 2 O and carbon is considered to be smaller than the CO gas generated by As 2 O 3 . Therefore, the initial CO pressure at the time the GaAs had melted is believed to depend on the As 2 O 3 amount, but by the following calculation, H 2 O of CO gas and B in 2 O 3 generated by As 2 O 3 The relationship with the CO gas generated by the evaporation of was determined.

次の(1)式の反応において、B23から蒸発するH2Oの量をxモル、酸素供給源であるAs23等により生成されるCOの量をyモル、H2OとCの反応によって生成されるH2およびCOの量をそれぞれxαモルとする。なお、αは、平衡時のH2Oのモル数を初期のH2Oのモル数で割った値である。 In the reaction of the following formula (1), the amount of H 2 O evaporated from B 2 O 3 is x mol, the amount of CO produced by As 2 O 3 as an oxygen supply source is y mol, H 2 O The amounts of H 2 and CO produced by the reaction of C and C are each xα mol. Α is a value obtained by dividing the number of moles of H 2 O at equilibrium by the number of moles of initial H 2 O.

Figure 2007106669
Figure 2007106669

2O、H2およびCOのそれぞれについて、初期および平衡時のモル数は表1のようになる。 For each of H 2 O, H 2, and CO, the number of moles at the initial and equilibrium times is as shown in Table 1.

Figure 2007106669
Figure 2007106669

2O、H2およびCOのそれぞれについて、平衡状態における分圧PH2O、PH2およびPCOは、全圧をPとすると、次の(2)式で表される。 For each of H 2 O, H 2 and CO, the partial pressures PH 2 O, PH 2 and PCO in the equilibrium state are expressed by the following equation (2), where P is the total pressure.

Figure 2007106669
Figure 2007106669

平衡定数をKとすると、平衡時には次の(3)式が成立する。   When the equilibrium constant is K, the following equation (3) is established at the time of equilibrium.

Figure 2007106669
Figure 2007106669

したがって、(3)式に(2)式を代入すると、次の(4)式が得られる。   Therefore, the following equation (4) is obtained by substituting the equation (2) into the equation (3).

Figure 2007106669
Figure 2007106669

気体の状態方程式より、全圧Pは次の(5)式より求められる。   From the gas equation of state, the total pressure P can be obtained from the following equation (5).

Figure 2007106669
Figure 2007106669

(4)式に(5)式を代入すると、次の(6)式のようにαの2次式が得られる。   Substituting equation (5) into equation (4) yields a quadratic equation for α as in equation (6) below.

Figure 2007106669
Figure 2007106669

(6)式をαについて解くと、次の(7)式が得られる。   When the equation (6) is solved for α, the following equation (7) is obtained.

Figure 2007106669
Figure 2007106669

ここで、温度Tを1500K(ケルビン)、容積Vを1リットル、平衡定数を612、B23を40g、B23中のH2O量を90ppmとし、B23からH2Oが全量蒸発すると、0.0002モルのH2Oが蒸発することになる。これらの数値と上記(7)式に基づき、初期のCO圧値をパラメータとして、B23中のH2Oの蒸発量とH2O圧、H2圧およびCO圧との関係を求めた。その結果をそれぞれ図2、図3および図4に示す。 Here, the temperature T 1500 K (Kelvin), 1 liter volume V, and the 612, B 2 O 3 equilibrium constants 40 g, of H 2 O content in the B 2 O 3 and 90 ppm, B 2 O 3 from H 2 When the entire amount of O evaporates, 0.0002 mol of H 2 O will evaporate. Based on these values and the equation (7), the initial CO pressure value as a parameter, the amount of evaporation of H 2 O in B 2 O 3 and H 2 O pressure, the relationship of H 2 pressure and CO pressures determined It was. The results are shown in FIGS. 2, 3 and 4, respectively.

図4より、B23中の水分の蒸発量によらず、石英アンプル内のCO圧を略一定に制御することができることがわかる。そして、そのCO圧の値は、CO圧の初期値に依存していることがわかる。つまり、CO圧の初期値は、酸素供給源であるAs23等のチャージ量によって決まり、初期のCO圧が育成中も維持される。したがって、結晶成長方向の炭素濃度が一定な半絶縁性GaAs単結晶を得ることができる。 FIG. 4 shows that the CO pressure in the quartz ampoule can be controlled to be substantially constant regardless of the amount of water evaporated in B 2 O 3 . It can be seen that the value of the CO pressure depends on the initial value of the CO pressure. That is, the initial value of the CO pressure is determined by the charge amount of As 2 O 3 or the like that is an oxygen supply source, and the initial CO pressure is maintained even during the growth. Therefore, a semi-insulating GaAs single crystal having a constant carbon concentration in the crystal growth direction can be obtained.

次に、本発明の好適な実施形態について説明する。図1には、本発明をVGF法に適用した際に使用される結晶成長炉の概略が示されている。   Next, a preferred embodiment of the present invention will be described. FIG. 1 shows an outline of a crystal growth furnace used when the present invention is applied to the VGF method.

本発明に係る単結晶製造方法では、図1に示すように、結晶育成部1a、蒸気圧制御部(砒素だめ)1b、酸素供給源設置部1cおよび封止用キャップ1dからなる気密容器(石英アンプル)1を使用し、該気密容器1内でGaAs単結晶の育成を行なう。   In the single crystal manufacturing method according to the present invention, as shown in FIG. 1, an airtight container (quartz) composed of a crystal growth unit 1a, a vapor pressure control unit (arsenic reservoir) 1b, an oxygen supply source installation unit 1c, and a sealing cap 1d. Ampule) 1 is used to grow a GaAs single crystal in the hermetic vessel 1.

使用する縦型加熱炉のヒータ2は、少なくとも結晶育成部加熱用ヒータ2a、種結晶部加熱用ヒータ2bおよび蒸気圧制御部加熱用ヒータ2dを有する円筒状の多段構成のものである。図1に示す炉では、酸素供給源設置部加熱用ヒータ2cが設けられており、酸素供給源設置部1cの温度を独立して制御することができるようになっている。   The heater 2 of the vertical heating furnace to be used has a cylindrical multistage configuration including at least a crystal growth part heating heater 2a, a seed crystal part heating heater 2b, and a vapor pressure control part heating heater 2d. In the furnace shown in FIG. 1, the heater 2c for heating an oxygen supply source installation part is provided, and the temperature of the oxygen supply source installation part 1c can be controlled independently.

結晶育成を行なうにあたっては、まず、るつぼ3の種結晶設置部3a内に種結晶4を入れ、るつぼ3内にGaAs原料5と封止剤(B23)6を入れる。また、気密容器1の蒸気圧制御部1b内に蒸気圧制御用の砒素7を入れるとともに、酸素供給源設置部1cに酸素化合物(As23等)よりなる酸素供給源8を置く。さらに、気密容器1の結晶育成部1a内のたとえばグラファイト製のサセプタ9上にるつぼ3を設置し、気密容器1内を真空排気してキャップ1dにより封止する。 In carrying out the crystal growth, first, the seed crystal 4 is put in the seed crystal installation portion 3 a of the crucible 3, and the GaAs raw material 5 and the sealing agent (B 2 O 3 ) 6 are put in the crucible 3. Further, arsenic 7 for controlling the vapor pressure is placed in the vapor pressure control unit 1b of the hermetic container 1, and an oxygen supply source 8 made of an oxygen compound (As 2 O 3 or the like) is placed in the oxygen supply source installation unit 1c. Further, the crucible 3 is placed on the susceptor 9 made of graphite, for example, in the crystal growing part 1a of the hermetic container 1, and the inside of the hermetic container 1 is evacuated and sealed with a cap 1d.

その気密容器1を縦型加熱炉の所定位置に設置し、ヒータ2により加熱して原料5および封止剤6を融解させる。各ヒータ2a,2b,2c,2dの出力を調整して、種結晶4側から原料融液5の上方に向かって徐々に高温となるような所定の温度勾配を維持しつつ徐々に原料融液5を下部から融点以下の温度に冷却することにより単結晶10を上方に向かって成長させる。その際、蒸気圧制御部加熱用ヒータ2dの出力調整によりAsの蒸気圧制御を行なう。   The hermetic container 1 is placed at a predetermined position in the vertical heating furnace and heated by the heater 2 to melt the raw material 5 and the sealant 6. The output of each heater 2a, 2b, 2c, 2d is adjusted, and the raw material melt is gradually maintained while maintaining a predetermined temperature gradient that gradually increases from the seed crystal 4 side toward the upper side of the raw material melt 5. The single crystal 10 is grown upward by cooling 5 from the bottom to a temperature below the melting point. At that time, the vapor pressure control of As is performed by adjusting the output of the heater 2d for heating the vapor pressure control unit.

上記実施形態によれば、気密容器1内に、GaAs原料5およびB236を入れたるつぼ並びに蒸気圧制御用のAsとともに、As23等の酸素供給源8を封入することにより、気密容器1中のCOガス濃度を制御しながら結晶成長を行なうようにしたので、育成結晶中の炭素濃度を制御しながら結晶育成を行なうことができ、炭素濃度の均一な半絶縁性GaAs単結晶が高歩留まりで得られる。 According to the above embodiment, by enclosing the oxygen supply source 8 such as As 2 O 3 together with the crucible containing the GaAs raw material 5 and B 2 O 3 6 and As for vapor pressure control in the hermetic container 1. Since the crystal growth is performed while controlling the CO gas concentration in the hermetic vessel 1, the crystal growth can be performed while controlling the carbon concentration in the grown crystal, and the semi-insulating GaAs single layer having a uniform carbon concentration can be obtained. Crystals are obtained with a high yield.

なお、酸素供給源は、加熱により前記気密容器内の炭素含有物質(たとえばグラファイト製のサセプタ9)と反応して、GaAs単結晶中の目標C濃度を達成できるCO圧を発生するに十分な酸素を解離することができる酸素化合物であり、As23に限らず、Ga23、As23よりなる群から選ばれた1または2以上の化合物、あるいは一酸化炭素、二酸化炭素よりなる群から選ばれた1または2以上の化合物であってもよい。すなわち、容易に酸素を解離し易く、かつ育成結晶に混入してもGaAs単結晶の結晶性および電気的な特性に悪影響を及ぼさないような材料であれば、いかなるものでもよい。特に、GaAsの構成元素であるGa23、As23が好ましい。 Note that the oxygen supply source reacts with the carbon-containing substance (for example, the susceptor 9 made of graphite) in the hermetic container by heating to generate oxygen pressure sufficient to generate a CO pressure that can achieve the target C concentration in the GaAs single crystal. an oxygen compound capable of dissociating, not limited to As 2 O 3, Ga 2 O 3, As 2 O 3 1 or 2 or more compounds selected from the group consisting of, or carbon monoxide, than carbon dioxide One or two or more compounds selected from the group may be used. That is, any material can be used as long as it is easily dissociated from oxygen and does not adversely affect the crystallinity and electrical characteristics of the GaAs single crystal even if mixed into the grown crystal. In particular, Ga 2 O 3 and As 2 O 3 which are constituent elements of GaAs are preferable.

上記実施の形態においては本発明をVGF法に適用した場合について説明したが、本発明はVB法にも適用可能である。   Although the case where the present invention is applied to the VGF method has been described in the above embodiment, the present invention can also be applied to the VB method.

(実施例)
直径約3インチで厚さ3mmのpBN製るつぼの種結晶設置部に種結晶を入れ、さらにるつぼ内に約3kgのGaAs多結晶と40gのB23(含有水分量:90ppm)を入れた。続いて、石英アンプルの蒸気圧制御部に2gのAsを入れるとともに、酸素供給源設置部にAs23を28.2gチャージした。そして、原料および封止剤を入れたるつぼを石英アンプル内のサセプタ上に設置した後、石英アンプルをキャップにより真空封止した。その真空封止した気密容器を4段ヒータ構成の縦型加熱炉内に設置した。なお、酸素供給源設置部を特別に設けずに、As23をるつぼの傍に置いてもよい。また、高圧炉を用いる場合は、原料としてGaAs多結晶を用いるかわりに、るつぼにGaとAsを入れてそれらを直接合成させるようにしてもよい。
(Example)
A seed crystal was put in a seed crystal installation portion of a pBN crucible having a diameter of about 3 inches and a thickness of 3 mm, and further about 3 kg of GaAs polycrystal and 40 g of B 2 O 3 (content of water: 90 ppm) were put in the crucible. . Subsequently, 2 g of As was placed in the vapor pressure control section of the quartz ampule, and 28.2 g of As 2 O 3 was charged in the oxygen supply source installation section. Then, after placing the crucible containing the raw material and the sealing agent on the susceptor in the quartz ampule, the quartz ampule was vacuum sealed with a cap. The vacuum-sealed hermetic container was placed in a vertical heating furnace having a four-stage heater configuration. Incidentally, the oxygen source installation part without providing a special, may put As 2 O 3 near the crucible. Moreover, when using a high pressure furnace, you may make it synthesize | combine them directly by putting Ga and As into a crucible instead of using GaAs polycrystal as a raw material.

結晶育成部加熱用ヒータおよび種結晶部加熱用ヒータにより、種結晶の上端と原料が1238℃〜1255℃の温度となるようにるつぼを加熱して原料および封止剤を融解させるとともに、蒸気圧制御部加熱用ヒータにより蒸気圧制御部を605℃となるように加熱した。   The crucible is heated by the crystal growth part heating heater and the seed crystal part heating heater so that the upper end of the seed crystal and the raw material are at a temperature of 1238 ° C. to 1255 ° C. to melt the raw material and the sealant, and the vapor pressure The vapor pressure control unit was heated to 605 ° C. by the control unit heating heater.

この状態で、結晶の育成速度が毎時2mmとなるように加熱炉の設定温度を連続的に下げて結晶の育成を開始した。結晶育成中、蒸気圧制御部の温度が一定になるように保持するようにヒータの出力を制御した。   In this state, the crystal growth was started by continuously lowering the set temperature of the heating furnace so that the crystal growth rate was 2 mm per hour. During crystal growth, the output of the heater was controlled so that the temperature of the vapor pressure control unit was kept constant.

結晶育成開始から約30時間経過した時点で原料融液はすべて固化した。その後、加熱炉全体を毎時100℃の降温速度で冷却し、室温近くまで冷えた時点で加熱炉内から気密容器を取り出し、その気密容器を壊して結晶を取り出した。   When about 30 hours passed from the start of crystal growth, all of the raw material melt was solidified. Thereafter, the entire heating furnace was cooled at a temperature drop rate of 100 ° C. per hour, and when it was cooled to near room temperature, the airtight container was taken out from the heating furnace, and the airtight container was broken to take out crystals.

得られた結晶は直径約3インチで全長約12cmのGaAs単結晶であり、その結晶性を調べたところ双晶や多結晶は全く発生していなかった。この単結晶インゴットを切断して転位密度を調べたところ、結晶のどの領域においても転位密度は2000cm-2以下であった。また、得られた結晶の炭素濃度は結晶全域で約1×1016cm-3であった。さらに、抵抗率は3.2×108Ωcm〜4.0×108Ωcmであった。 The obtained crystal was a GaAs single crystal having a diameter of about 3 inches and a total length of about 12 cm. When the crystallinity was examined, no twins or polycrystals were generated. When this single crystal ingot was cut and the dislocation density was examined, the dislocation density was 2000 cm −2 or less in any region of the crystal. The carbon concentration of the obtained crystal was about 1 × 10 16 cm −3 throughout the crystal. Furthermore, the resistivity was 3.2 × 10 8 Ωcm~4.0 × 10 8 Ωcm.

上記実施例と同一の条件でGaAsの単結晶成長を10回行なったところ、10回とも炭素濃度が略(1±0.1)×1016cm-3であり、抵抗率が3.0×108Ωcm〜4.0×108ΩcmのGaAs単結晶が得られた。 When GaAs single crystal growth was performed 10 times under the same conditions as in the above example, the carbon concentration was approximately (1 ± 0.1) × 10 16 cm −3 and the resistivity was 3.0 ×. 10 8 Ωcm~4.0 × of 10 8 [Omega] cm GaAs single crystal was obtained.

(比較例1)
気密容器内にAs23をチャージしない以外は、上記実施例と同じ条件でGaAs単結晶の育成を行なった。
(Comparative Example 1)
A GaAs single crystal was grown under the same conditions as in the above example except that As 2 O 3 was not charged in the hermetic vessel.

得られた結晶は直径約3インチで全長約12cmのGaAs単結晶であり、その結晶性を調べたところ双晶や多結晶は全く発生していなかった。この単結晶インゴットを切断して転位密度を調べたところ、結晶のどの領域においても転位密度は、2000cm-3以下であった。また、得られた結晶の炭素濃度は結晶全域で約0.5×1016cm-3〜1.5×1016cm-3であった。さらに、抵抗率は1.0×108Ωcm〜5.0×108Ωcmであった。 The obtained crystal was a GaAs single crystal having a diameter of about 3 inches and a total length of about 12 cm. When the crystallinity was examined, no twins or polycrystals were generated. When this single crystal ingot was cut and the dislocation density was examined, the dislocation density was 2000 cm −3 or less in any region of the crystal. The carbon concentration of the obtained crystal was about 0.5 × 10 16 cm −3 to 1.5 × 10 16 cm −3 over the entire crystal. Furthermore, the resistivity was 1.0 × 10 8 Ωcm~5.0 × 10 8 Ωcm.

この比較例1と同一の条件でGaAsの単結晶成長を10回行なったところ、10回とも炭素濃度が約0.5×1016cm-3〜1.5×1016cm-3であり、抵抗率が1.0×108Ωcm〜5.0×108ΩcmのGaAs単結晶が得られた。 When GaAs single crystal growth was performed 10 times under the same conditions as in Comparative Example 1, the carbon concentration was about 0.5 × 10 16 cm −3 to 1.5 × 10 16 cm −3 in all 10 times. A GaAs single crystal having a resistivity of 1.0 × 10 8 Ωcm to 5.0 × 10 8 Ωcm was obtained.

本発明は、たとえばGaAsの原料融液を冷却して垂直方向に単結晶を成長させる垂直グラジェントフリージング(VGF)法や垂直ブリッジマン(VB)法に特に有利に適用され得る。   The present invention can be applied particularly advantageously to the vertical gradient freezing (VGF) method and the vertical Bridgman (VB) method in which, for example, a GaAs raw material melt is cooled to grow a single crystal in the vertical direction.

本発明をVGF法に適用した際に使用される結晶成長炉の概略図である。It is the schematic of the crystal growth furnace used when this invention is applied to the VGF method. 本発明者らの行なった熱力学的な計算結果に基づくB23中のH2Oの蒸発量とH2O圧との関係を表す特性図である。Is a characteristic diagram showing the relationship between the present inventors of performing thermodynamic evaporation amount of of H 2 O being calculated based on a result B 2 O 3 and H 2 O pressure. 本発明者らの行なった熱力学的な計算結果に基づくB23中のH2Oの蒸発量とH2圧との関係を表す特性図である。It is a characteristic diagram showing the relationship between the present inventors of performing thermodynamic calculations of H 2 O based on a result B in 2 O 3 evaporation and H 2 pressure. 本発明者らの行なった熱力学的な計算結果に基づくB23中のH2Oの蒸発量とCO圧との関係を表す特性図である。It is a characteristic diagram showing the relationship between the present inventors of performing thermodynamic calculations based on a result B 2 O 3 in of H 2 O evaporation and CO pressure.

符号の説明Explanation of symbols

1 気密容器、1c 酸素供給源設置部、2 ヒータ、3 るつぼ、5 GaAs原料、6 B23(封止剤)、8 As23(酸素供給源)、10 GaAs単結晶。 1 airtight container, 1c oxygen source installation part, second heater, 3 crucible, 5 GaAs raw material, 6 B 2 O 3 (sealant), 8 As 2 O 3 (oxygen source), 10 GaAs single crystal.

Claims (14)

気密容器内に、少なくともGaAs原料を入れたるつぼと、酸素化合物よりなる酸素供給源とを封入した後、その気密容器を縦型の加熱炉内に設置して前記原料をヒータにより加熱融解し、原料融液を所定の温度勾配下で徐々に冷却して固化させることによりGaAs単結晶を成長させることを特徴とする半絶縁性GaAs単結晶の製造方法。   After sealing a crucible containing at least a GaAs raw material and an oxygen supply source made of an oxygen compound in an airtight container, the airtight container is placed in a vertical heating furnace and the raw material is heated and melted by a heater, A method for producing a semi-insulating GaAs single crystal, comprising growing a GaAs single crystal by gradually cooling and solidifying a raw material melt under a predetermined temperature gradient. 前記るつぼ内に、GaAs原料とともに封止剤を入れることを特徴とする請求項1記載の半絶縁性GaAs単結晶の製造方法。   2. The method for producing a semi-insulating GaAs single crystal according to claim 1, wherein a sealing agent is put together with the GaAs raw material in the crucible. 前記封止剤は、B23であることを特徴とする請求項2記載の半絶縁性GaAs単結晶の製造方法。 3. The method for producing a semi-insulating GaAs single crystal according to claim 2 , wherein the sealant is B2O3. 前記酸素化合物は、加熱により前記気密容器内の炭素含有物質と反応してCO圧を発生するに十分な酸素を解離することができる酸素化合物であることを特徴とする請求項1、2または3記載の半絶縁性GaAs単結晶の製造方法。   The oxygen compound is an oxygen compound capable of dissociating oxygen sufficient to react with a carbon-containing substance in the hermetic vessel by heating to generate CO pressure. A method for producing the semi-insulating GaAs single crystal as described. 前記酸素化合物は、Ga23、As23よりなる群から選ばれた1または2以上の化合物であることを特徴とする請求項4記載の半絶縁性GaAs単結晶の製造方法。 The oxygen compounds, Ga 2 O 3, As 2 method for producing a semi-insulating GaAs single crystal according to claim 4, wherein the O 3 is one or more compounds selected from the group consisting of. 前記酸素化合物は、二酸化炭素、一酸化炭素よりなる群から選ばれた1または2以上の化合物であることを特徴とする請求項4記載の半絶縁性GaAs単結晶の製造方法。   5. The method for producing a semi-insulating GaAs single crystal according to claim 4, wherein the oxygen compound is one or more compounds selected from the group consisting of carbon dioxide and carbon monoxide. 炭素含有物質を前記気密容器の下方領域に設けることを特徴とする請求項1〜6のいずれか記載の半絶縁性GaAs単結晶の製造方法。   The method for producing a semi-insulating GaAs single crystal according to any one of claims 1 to 6, wherein a carbon-containing substance is provided in a lower region of the hermetic container. 前記炭素含有物質を、前記GaAs原料を収容した前記るつぼと前記気密容器との間に設置することを特徴とする請求項7記載の半絶縁性GaAs単結晶の製造方法。   The method for producing a semi-insulating GaAs single crystal according to claim 7, wherein the carbon-containing material is placed between the crucible containing the GaAs raw material and the hermetic container. 前記炭素含有物質がグラファイトであることを特徴とする請求項7または8記載の半絶縁性GaAs単結晶の製造方法。   9. The method for producing a semi-insulating GaAs single crystal according to claim 7, wherein the carbon-containing material is graphite. 気密容器内に、少なくともGaAs原料を入れたるつぼと、前記気密容器の下方領域に設置した炭素含有物質とを封入した後、その気密容器を縦型の加熱炉内に設置して前記原料をヒータにより加熱融解し、原料融液を所定の温度勾配下で徐々に冷却して固化させることによりGaAs単結晶を成長させることを特徴とする半絶縁性GaAs単結晶の製造方法。   After sealing a crucible containing at least a GaAs raw material and a carbon-containing material installed in a lower region of the hermetic container in an airtight container, the hermetic container is placed in a vertical heating furnace to heat the raw material. A method for producing a semi-insulating GaAs single crystal, wherein the GaAs single crystal is grown by heating and melting, and gradually cooling and solidifying the raw material melt under a predetermined temperature gradient. 前記るつぼ内に、GaAs原料とともに封止剤を入れることを特徴とする請求項10記載の半絶縁性GaAs単結晶の製造方法。   The method for producing a semi-insulating GaAs single crystal according to claim 10, wherein a sealing agent is put together with the GaAs raw material in the crucible. 前記封止剤は、B23であることを特徴とする請求項11記載の半絶縁性GaAs単結晶の製造方法。 The method for producing a semi-insulating GaAs single crystal according to claim 11, wherein the sealant is B 2 O 3 . 前記炭素含有物質を、前記GaAs原料を収容した前記るつぼと前記気密容器との間に設置することを特徴とする請求項10〜12のいずれか記載の半絶縁性GaAs単結晶の製造方法。   The method for producing a semi-insulating GaAs single crystal according to any one of claims 10 to 12, wherein the carbon-containing substance is placed between the crucible containing the GaAs raw material and the hermetic container. 前記炭素含有物質がグラファイトであることを特徴とする請求項10〜13のいずれか記載の半絶縁性GaAs単結晶の製造方法。   The method for producing a semi-insulating GaAs single crystal according to any one of claims 10 to 13, wherein the carbon-containing substance is graphite.
JP2006289021A 2006-10-24 2006-10-24 METHOD FOR MANUFACTURING SEMI-INSULATING GaAs SINGLE CRYSTAL Pending JP2007106669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006289021A JP2007106669A (en) 2006-10-24 2006-10-24 METHOD FOR MANUFACTURING SEMI-INSULATING GaAs SINGLE CRYSTAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006289021A JP2007106669A (en) 2006-10-24 2006-10-24 METHOD FOR MANUFACTURING SEMI-INSULATING GaAs SINGLE CRYSTAL

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33235696A Division JP4120016B2 (en) 1996-12-12 1996-12-12 Method for producing semi-insulating GaAs single crystal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009244669A Division JP2010059052A (en) 2009-10-23 2009-10-23 METHOD AND APPARATUS FOR PRODUCING SEMI-INSULATING GaAs SINGLE CRYSTAL

Publications (1)

Publication Number Publication Date
JP2007106669A true JP2007106669A (en) 2007-04-26

Family

ID=38032819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006289021A Pending JP2007106669A (en) 2006-10-24 2006-10-24 METHOD FOR MANUFACTURING SEMI-INSULATING GaAs SINGLE CRYSTAL

Country Status (1)

Country Link
JP (1) JP2007106669A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100945668B1 (en) * 2008-12-11 2010-03-05 (주)포티조 A method of growth for gaas single crystal by vgf
CN102732951A (en) * 2012-06-25 2012-10-17 中国科学院上海技术物理研究所 Method for solidifying gallium-rich gallium arsenide melt used for liquid phase epitaxy
CN103820771A (en) * 2013-12-31 2014-05-28 电子科技大学 Method for preparing GaAs film material
EP2978882A4 (en) * 2013-03-27 2016-11-30 Beijing Tongmei Xtal Technology Co Ltd Controllable oxygen concentration in semiconductor substrate
CN110629289A (en) * 2019-11-01 2019-12-31 中国电子科技集团公司第四十六研究所 Preparation method of low-brightness dark-spot 4 and 6-inch semi-insulating gallium arsenide polished wafer
CN114635180A (en) * 2022-05-19 2022-06-17 山西中科晶电信息材料有限公司 Semi-insulating gallium arsenide monocrystal, preparation method and growth device thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100945668B1 (en) * 2008-12-11 2010-03-05 (주)포티조 A method of growth for gaas single crystal by vgf
CN102732951A (en) * 2012-06-25 2012-10-17 中国科学院上海技术物理研究所 Method for solidifying gallium-rich gallium arsenide melt used for liquid phase epitaxy
EP2978882A4 (en) * 2013-03-27 2016-11-30 Beijing Tongmei Xtal Technology Co Ltd Controllable oxygen concentration in semiconductor substrate
CN103820771A (en) * 2013-12-31 2014-05-28 电子科技大学 Method for preparing GaAs film material
CN110629289A (en) * 2019-11-01 2019-12-31 中国电子科技集团公司第四十六研究所 Preparation method of low-brightness dark-spot 4 and 6-inch semi-insulating gallium arsenide polished wafer
CN110629289B (en) * 2019-11-01 2021-02-23 中国电子科技集团公司第四十六研究所 Preparation method of low-brightness dark-spot 4 and 6-inch semi-insulating gallium arsenide polished wafer
CN114635180A (en) * 2022-05-19 2022-06-17 山西中科晶电信息材料有限公司 Semi-insulating gallium arsenide monocrystal, preparation method and growth device thereof
WO2023221667A1 (en) * 2022-05-19 2023-11-23 山西中科晶电信息材料有限公司 Semi-insulating gallium arsenide single crystal, preparation method therefor, and device for growing same

Similar Documents

Publication Publication Date Title
KR101979130B1 (en) Method for growing beta phase of gallium oxide (β-Ga2O3) single crystals from the melt contained within a metal crucible
JPS5914440B2 (en) Method for doping boron into CaAs single crystal
JP2007106669A (en) METHOD FOR MANUFACTURING SEMI-INSULATING GaAs SINGLE CRYSTAL
KR100961416B1 (en) Production process of periodic table group 13 metal nitride crystal and production method of semiconductor device using the same
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
JP2010059052A (en) METHOD AND APPARATUS FOR PRODUCING SEMI-INSULATING GaAs SINGLE CRYSTAL
JPH10259100A (en) Production of garium-arsenic single crystal
JP2000256091A (en) LIQUID PHASE GROWTH METHOD FOR SINGLE CRYSTAL SiC
JP2003206200A (en) p-TYPE GaAs SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME
JP4248276B2 (en) Group III nitride crystal manufacturing method
JPH1087392A (en) Production of compound semiconductor single crystal
JPH10218699A (en) Growth of compound semiconductor single crystal
JP2001192289A (en) Method of producing compound semiconductor single crystal
JPH11147785A (en) Production of single crystal
JPH11268998A (en) Gallium arsenic single crystal ingot, its production, and gallium arsenic single crystal wafer using the same
JP5172881B2 (en) Compound semiconductor single crystal manufacturing apparatus and manufacturing method thereof
JP2000327496A (en) Production of inp single crystal
RU2818932C1 (en) Method of producing gallium arsenide (gaas) monocrystals
JP2010030868A (en) Production method of semiconductor single crystal
JP3806793B2 (en) Method for producing compound semiconductor single crystal
JPH10212200A (en) Production of semi-insulating gallium arsenide single crystal
JP2004203721A (en) Apparatus and method for growing single crystal
JP5392317B2 (en) Crystal manufacturing method and crystal growth rate control method
JP2887978B2 (en) Method for synthesizing III-V compound semiconductor composition
JPH06329492A (en) Production of gaas compound semiconductor crystal

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20090825

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

A02 Decision of refusal

Effective date: 20100316

Free format text: JAPANESE INTERMEDIATE CODE: A02