JP2007103310A - Photoelectrode for dye-sensitized solar cell, dye-sensitized solar cell, and manufacturing method of photoelectrode for dye-sensitized solar cell - Google Patents

Photoelectrode for dye-sensitized solar cell, dye-sensitized solar cell, and manufacturing method of photoelectrode for dye-sensitized solar cell Download PDF

Info

Publication number
JP2007103310A
JP2007103310A JP2005295570A JP2005295570A JP2007103310A JP 2007103310 A JP2007103310 A JP 2007103310A JP 2005295570 A JP2005295570 A JP 2005295570A JP 2005295570 A JP2005295570 A JP 2005295570A JP 2007103310 A JP2007103310 A JP 2007103310A
Authority
JP
Japan
Prior art keywords
dye
solar cell
sensitized solar
oxide semiconductor
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005295570A
Other languages
Japanese (ja)
Other versions
JP4982067B2 (en
Inventor
Toshinori Okamoto
俊紀 岡本
Sadaichi Hirose
貞一 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP2005295570A priority Critical patent/JP4982067B2/en
Publication of JP2007103310A publication Critical patent/JP2007103310A/en
Application granted granted Critical
Publication of JP4982067B2 publication Critical patent/JP4982067B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectrode for a dye-sensitized solar cell, the dye-sensitized solar cell, and a manufacturing method of the photoelectrode for the dye-sensitized solar cell, wherein photoelectric conversion characteristics can be prevented from deteriorating while securing adhesiveness between a substrate and a metal oxide semiconductor porous layer in the photoelectrode for the dye-sensitized solar cell using a resin film substrate. <P>SOLUTION: After applying a dispersed liquid containing metal oxide semiconductor particulates and a binder resin to a transparent conductive layer of the resin film substrate on which the transparent conductive layer has been formed and after calcining the same, this photoelectrode for the dye-sensitized solar cell forms the metal semiconductor porous layer by degreasing the binder resin, and furthermore carries the dyes on the metal oxide semiconductor porous layer. As for the metal oxide semiconductor porous layer, the residual amount of organic matters derived from the binder resin is 0.5 to 1.0 wt.%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、樹脂フィルム基板を用いた色素増感太陽電池用光電極において、基板と金属酸化物半導体多孔質層との密着性を確保しつつ、光電変換特性の低下を防止することが可能な色素増感太陽電池用光電極、色素増感太陽電池及び色素増感太陽電池用光電極の製造方法に関する。 INDUSTRIAL APPLICABILITY In the photoelectrode for a dye-sensitized solar cell using a resin film substrate, it is possible to prevent deterioration in photoelectric conversion characteristics while ensuring adhesion between the substrate and the metal oxide semiconductor porous layer. The present invention relates to a dye-sensitized solar cell photoelectrode, a dye-sensitized solar cell, and a method for producing a dye-sensitized solar cell photoelectrode.

色素増感太陽電池は、身近な材料である金属酸化物半導体多孔膜を利用した太陽電池であり、シリコン太陽電池に比べて、高価な材料やプロセスを必要とせず、安価な太陽電池を実現できるデバイスとして実用化が期待されている。 A dye-sensitized solar cell is a solar cell that uses a metal oxide semiconductor porous film, which is a familiar material, and does not require expensive materials and processes compared to a silicon solar cell, and can realize an inexpensive solar cell. Practical use is expected as a device.

色素増感太陽電池は、通常、透明電極基板に金属酸化物半導体多孔質層を形成し色素を担持させた光電極と、基板に導電層を形成した正電極とを電解質層を介して挟み込んだ構成となっている。
このような色素増感太陽電池の基本原理は、特許文献1に開示されているように、以下の通りである。まず、色素増感太陽電池に光が照射されると、金属酸化物半導体多孔質層表面に吸着された増感色素が光を吸収し、色素分子内の電子が励起され、電子が半導体へ渡される。これにより、光電極側で電子が発生し、この電子が電気回路を通じて、正電極に移動する。そして、正電極に移動した電子は、電解質層を通じて光電極に戻る。このような過程が繰り返されることで、電気エネルギーが生じ、高い光電変換効率が実現されている。
In a dye-sensitized solar cell, a photoelectrode in which a metal oxide semiconductor porous layer is formed on a transparent electrode substrate to carry the dye and a positive electrode in which a conductive layer is formed on the substrate are usually sandwiched through an electrolyte layer. It has a configuration.
The basic principle of such a dye-sensitized solar cell is as follows, as disclosed in Patent Document 1. First, when the dye-sensitized solar cell is irradiated with light, the sensitizing dye adsorbed on the surface of the metal oxide semiconductor porous layer absorbs light, excites electrons in the dye molecule, and passes the electrons to the semiconductor. It is. Thereby, electrons are generated on the photoelectrode side, and the electrons move to the positive electrode through the electric circuit. Then, the electrons that have moved to the positive electrode return to the photoelectrode through the electrolyte layer. By repeating such a process, electric energy is generated and high photoelectric conversion efficiency is realized.

このうち、色素増感太陽電池の光電極の一部である金属酸化物半導体多孔質層を形成する方法としては、液相法や気相法等、多くの方法があるが、従来は金属酸化物半導体微粒子を溶媒に分散させた半導体多孔膜用分散液を基板に塗布した後、乾燥焼成して製膜する方法が一般的であった。 Among these, there are many methods such as a liquid phase method and a gas phase method for forming a metal oxide semiconductor porous layer that is a part of a photoelectrode of a dye-sensitized solar cell. A method of forming a film by applying a dispersion for a semiconductor porous film in which fine semiconductor particles are dispersed in a solvent to a substrate, followed by drying and baking is generally used.

一方、近年では、ガラス基板ではなく、基板として樹脂フィルムを用いた色素増感太陽電池が開発されている。これにより、軽量で柔軟性のある太陽電池を実現することができ、固定型だけでなく移動型の太陽電池としてモバイル用途への応用が期待されている。
しかしながら、基板として樹脂フィルムを用いた色素増感太陽電池を製造する場合は、基板の耐熱性が低いことにより、光電極を形成する際に、焼成温度を高くできず、金属酸化物半導体微粒子同士の結合を強くできないという問題があった。
また、焼成温度が低い場合には、製膜後も金属酸化物半導体多孔膜中に有機成分が残存するため、色素の担持性や電子伝導性を阻害して色素増感太陽電池の光電変換特性低下の原因となっていた。
On the other hand, in recent years, dye-sensitized solar cells using a resin film as a substrate instead of a glass substrate have been developed. Thereby, a lightweight and flexible solar cell can be realized, and application to mobile use is expected as a mobile solar cell as well as a stationary type.
However, when manufacturing a dye-sensitized solar cell using a resin film as a substrate, the baking temperature cannot be increased when forming a photoelectrode due to the low heat resistance of the substrate, and the metal oxide semiconductor fine particles There was a problem that the bond could not be strengthened.
In addition, when the firing temperature is low, organic components remain in the metal oxide semiconductor porous film even after the film formation, so that the dye carrying property and the electron conductivity are hindered and the photoelectric conversion characteristics of the dye-sensitized solar cell The cause of the decline.

このような問題に対して、特許文献2には、マイクロ波を利用して樹脂フィルム基板上の金属酸化物半導体の塗膜のみを加熱して焼成する方法が開示されており、特許文献3には、金属酸化物半導体膜の塗膜をプラズマ処理して塗膜のバインダー成分を除去する方法が開示されている。しかしながら、いずれも高価な装置を必要とするため、一般的に広く利用できる方法ではなかった。
特許第2664194号公報 特開2004−342319号公報 特開2003−308893号公報
For such a problem, Patent Document 2 discloses a method of heating and baking only a coating film of a metal oxide semiconductor on a resin film substrate using a microwave. Discloses a method of removing a binder component of a coating film by plasma treatment of the coating film of the metal oxide semiconductor film. However, these methods are not widely available because they require expensive equipment.
Japanese Patent No. 2664194 JP 2004-342319 A JP 2003-308893 A

本発明は、樹脂フィルム基板を用いた色素増感太陽電池用光電極において、基板と金属酸化物半導体多孔質層との密着性を確保しつつ、光電変換特性の低下を防止することが可能な色素増感太陽電池用光電極、色素増感太陽電池及び色素増感太陽電池用光電極の製造方法を提供する。 INDUSTRIAL APPLICABILITY In the photoelectrode for a dye-sensitized solar cell using a resin film substrate, it is possible to prevent deterioration in photoelectric conversion characteristics while ensuring adhesion between the substrate and the metal oxide semiconductor porous layer. Provided are a dye-sensitized solar cell photoelectrode, a dye-sensitized solar cell, and a method for producing a dye-sensitized solar cell photoelectrode.

本発明は、透明導電層が形成された樹脂フィルム基板の上記透明導電層上に金属酸化物半導体微粒子とバインダー樹脂とを含有する分散液を塗布、焼成した後、上記バインダー樹脂を脱脂して金属酸化物半導体多孔質層を形成し、更に、上記金属酸化物半導体多孔質層に色素を担持させてなる色素増感太陽電池用光電極であって、上記金属酸化物半導体多孔質層は、上記バインダー樹脂に由来する有機物残量が0.5〜1.0重量%である色素増感太陽電池用光電極である。 In the present invention, a dispersion containing metal oxide semiconductor fine particles and a binder resin is applied on the transparent conductive layer of the resin film substrate on which the transparent conductive layer is formed and baked, and then the binder resin is degreased to form a metal. A photoelectrode for a dye-sensitized solar cell, in which an oxide semiconductor porous layer is formed and a dye is supported on the metal oxide semiconductor porous layer, wherein the metal oxide semiconductor porous layer is It is a photoelectrode for a dye-sensitized solar cell in which the remaining amount of organic matter derived from the binder resin is 0.5 to 1.0% by weight.

本発明者らは鋭意検討した結果、樹脂フィルム基板を有する色素増感太陽電池用光電極において、金属酸化物半導体多孔質層のバインダー樹脂に由来する有機物残量を所定の範囲内とすることにより、色素増感太陽電池用光電極の基板として樹脂フィルムを用いる場合であっても、基板と金属酸化物半導体多孔質層との密着性を確保しつつ、得られる色素増感太陽電池の光電変換特性の低下を防止することが可能となることを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventors have determined that the remaining amount of organic matter derived from the binder resin of the metal oxide semiconductor porous layer is within a predetermined range in the photoelectrode for dye-sensitized solar cell having a resin film substrate. Even when a resin film is used as the substrate of the photoelectrode for the dye-sensitized solar cell, photoelectric conversion of the resulting dye-sensitized solar cell while ensuring adhesion between the substrate and the metal oxide semiconductor porous layer The inventors have found that it is possible to prevent deterioration of characteristics, and have completed the present invention.

本発明の色素増感太陽電池用光電極は、透明導電層が形成された樹脂フィルム基板を有する。 The photoelectrode for dye-sensitized solar cell of the present invention has a resin film substrate on which a transparent conductive layer is formed.

上記樹脂フィルム基板としては、入射する光を妨げず、適度の強度を有するものであれば特に限定されず、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリスルフォン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、環状ポリオレフィン等の耐熱性を有する透明性樹脂からものが挙げられる。
上記樹脂フィルム基板の厚みの好ましい下限は100μm、好ましい上限は3mmである。厚みを上記範囲内とすることで、適当な剛性と柔軟性をもたせることが可能となる。
The resin film substrate is not particularly limited as long as it does not block incident light and has an appropriate strength. For example, polyethylene terephthalate, polyethylene naphthalate, polysulfone, polycarbonate, polyethersulfone, polyarylate, cyclic Examples thereof include a heat-resistant transparent resin such as polyolefin.
The minimum with the preferable thickness of the said resin film board | substrate is 100 micrometers, and a preferable upper limit is 3 mm. By setting the thickness within the above range, appropriate rigidity and flexibility can be provided.

上記透明導電層としては、例えば、ITO、SnO、ZnO等からなるものが好ましく、なかでも、ITOからなるものが好ましい。 Examples of the transparent conductive layer, e.g., ITO, preferably made of SnO 2, ZnO and the like, among others, made of ITO are preferred.

本発明の色素増感太陽電池用光電極は、上記透明導電層上に金属酸化物半導体微粒子とバインダー樹脂とを含有する分散液を塗布、焼成した後、上記バインダー樹脂を脱脂することにより形成される金属酸化物半導体多孔質層を有する。 The photoelectrode for dye-sensitized solar cell of the present invention is formed by applying a dispersion liquid containing metal oxide semiconductor fine particles and a binder resin on the transparent conductive layer, baking it, and then degreasing the binder resin. A metal oxide semiconductor porous layer.

上記金属酸化物半導体多孔質層は、上記バインダー樹脂に由来する有機物残量が0.5〜1重量%である。
金属酸化物半導体多孔質層のバインダー樹脂に由来する有機物残量を上記範囲内とすることで、本発明の色素増感太陽電池用光電極は、基板と金属酸化物半導体多孔質層との密着性と、得られる色素増感太陽電池の良好な光電変換特性とを両立したものとなる。
なお、上記バインダー樹脂に由来する有機物残量は、金属酸化物半導体多孔質層から採取した試料について、熱重量分析(TGA)を行うことにより測定することができる。具体的には、金属酸化物半導体多孔質層から採取した試料を熱分解温度まで加熱して、300℃以上の温度での重量変化を測定し、初期重量からの変化率を求めることにより算出することができる。なお、図1に、TGAにより有機物残量の測定を行った際のチャートを示す。
In the metal oxide semiconductor porous layer, the remaining amount of organic matter derived from the binder resin is 0.5 to 1% by weight.
By making the remaining amount of the organic substance derived from the binder resin of the metal oxide semiconductor porous layer within the above range, the photoelectrode for dye-sensitized solar cell of the present invention adheres to the substrate and the metal oxide semiconductor porous layer. And good photoelectric conversion characteristics of the resulting dye-sensitized solar cell.
In addition, the organic substance residual amount derived from the said binder resin can be measured by performing a thermogravimetric analysis (TGA) about the sample extract | collected from the metal oxide semiconductor porous layer. Specifically, the sample collected from the porous metal oxide semiconductor layer is heated to the thermal decomposition temperature, the change in weight at a temperature of 300 ° C. or higher is measured, and the rate of change from the initial weight is calculated. be able to. In addition, in FIG. 1, the chart at the time of measuring the organic substance residual amount by TGA is shown.

上記金属酸化物半導体多孔質層のバインダー樹脂に由来する有機物残量の下限は0.5重量%、上限は1.0重量%である。0.5重量%未満であると、金属酸化物半導体微粒子同士や粒子と、樹脂フィルム基板との機械的な密着力が低下し、金属酸化物半導体多孔質層が剥離しやすくなる。また、1.0重量%を超えると、金属酸化物半導体微粒子の電気的な結合による電子伝導を阻害するために光電変換特性の低下が大きくなったり、色素の担持性が低下したりする。好ましい下限は0.6重量%、好ましい上限は0.9重量%である。 The lower limit of the remaining amount of organic matter derived from the binder resin of the metal oxide semiconductor porous layer is 0.5% by weight, and the upper limit is 1.0% by weight. If it is less than 0.5% by weight, the mechanical adhesion between the metal oxide semiconductor fine particles or particles and the resin film substrate is reduced, and the metal oxide semiconductor porous layer is easily peeled off. On the other hand, when the content exceeds 1.0% by weight, the electron conduction due to the electrical coupling of the metal oxide semiconductor fine particles is hindered, so that the photoelectric conversion characteristics are greatly deteriorated, and the supportability of the dye is decreased. A preferred lower limit is 0.6% by weight and a preferred upper limit is 0.9% by weight.

上記金属酸化物半導体微粒子としては、例えば、n型の半導体性を示すTiO、ZnO、SnO、WO等の金属酸化物半導体からなる粒子が挙げられる。これらのなかでは、TiO、ZnOからなる粒子が好ましい。 The metal oxide semiconductor fine particles, for example, TiO 2 illustrating the n-type semiconductor property, ZnO, particles made of a metal oxide semiconductor such as SnO 2, WO 3 and the like. Among these, particles made of TiO 2 and ZnO are preferable.

また、上記分散液には、金属酸化物半導体微粒子の凝集を防ぎ分散性を向上させることや、樹脂フィルム基板とのぬれ性を向上させ、塗布時のはじきを防止することを目的として、界面活性剤等の適当な添加剤を配合することが好ましい。また、金属酸化物半導体微粒子同士や金属酸化物半導体微粒子と樹脂フィルム基板との機械的な密着性を向上させるためにバインダー樹脂を添加してもよい。 In addition, the above-mentioned dispersion has a surface active property for the purpose of preventing aggregation of metal oxide semiconductor fine particles and improving dispersibility, improving wettability with a resin film substrate, and preventing repelling during coating. It is preferable to blend an appropriate additive such as an agent. Further, a binder resin may be added in order to improve the mechanical adhesion between the metal oxide semiconductor fine particles or between the metal oxide semiconductor fine particles and the resin film substrate.

上記金属酸化物半導体多孔質層の膜厚の好ましい下限は2μm、好ましい上限は15μmである。2μm未満であると、色素担持量が少なくなるとともに、得られる色素増感太陽電池の光電変換特性も低下することがあり、15μmを超えても、金属酸化物半導体多孔質層中の電子の拡散長が限られているために光電変換特性向上に寄与せず、逆に電解質液の金属酸化物半導体多孔質層への浸入が困難になることから光電変換特性が低下することがある。 The preferable lower limit of the film thickness of the metal oxide semiconductor porous layer is 2 μm, and the preferable upper limit is 15 μm. When the thickness is less than 2 μm, the amount of the dye supported decreases, and the photoelectric conversion characteristics of the resulting dye-sensitized solar cell may be deteriorated. Even if the thickness exceeds 15 μm, the diffusion of electrons in the metal oxide semiconductor porous layer Since the length is limited, it does not contribute to the improvement of the photoelectric conversion characteristics, and conversely, it becomes difficult for the electrolyte solution to enter the metal oxide semiconductor porous layer, so that the photoelectric conversion characteristics may be deteriorated.

上記分散液の塗布方法としては、特に限定されないが、例えば、印刷法、スプレー法、スピンコーティング法、ディップ法等が挙げられる。 The method for applying the dispersion is not particularly limited, and examples thereof include a printing method, a spray method, a spin coating method, and a dip method.

本発明では、上記分散液を焼成させる際の温度は、通常150℃以下である。
ガラス基板等を用いる場合は、450℃以上の温度まで加熱することにより、有機物を完全に分解して、金属酸化物半導体微粒子同士のネッキングにより強固な結合が形成することが可能となるのに対して、本発明のように樹脂フィルム基板を用いる場合には、基板の耐熱性が低いことから、150℃を超える温度で焼成することが困難である。従って、本発明では焼成後の金属酸化物半導体多孔質層中に有機物が残存し、金属酸化物半導体微粒子同士の結合を阻害するため、高温焼成の場合と比べて光電変換特性が低下するおそれがある。
しかしながら、本発明の色素増感太陽電池用光電極では、後工程において、金属酸化物半導体多孔質層中のバインダー樹脂を脱脂する工程を行うことから、低温で焼成した場合であっても、得られる色素増感太陽電池の光電変換特性が低下することがない。
In the present invention, the temperature at which the dispersion is fired is usually 150 ° C. or lower.
When using a glass substrate or the like, it is possible to completely decompose the organic matter by heating to a temperature of 450 ° C. or higher, and to form a strong bond by necking the metal oxide semiconductor fine particles. When a resin film substrate is used as in the present invention, it is difficult to fire at a temperature exceeding 150 ° C. because the heat resistance of the substrate is low. Therefore, in the present invention, the organic matter remains in the fired metal oxide semiconductor porous layer and inhibits the bonding between the metal oxide semiconductor fine particles, so that the photoelectric conversion characteristics may be reduced as compared with the case of high temperature firing. is there.
However, in the photoelectrode for dye-sensitized solar cell of the present invention, since the step of degreasing the binder resin in the metal oxide semiconductor porous layer is performed in the subsequent step, it can be obtained even when fired at a low temperature. The photoelectric conversion characteristics of the dye-sensitized solar cell to be produced do not deteriorate.

本発明では、上記分散液を塗布、焼成した後、上記バインダー樹脂を脱脂して金属酸化物半導体多孔質層を形成する。これにより、低温で焼成した場合であっても、得られる色素増感太陽電池の光電変換特性が低下することがなく、樹脂フィルム基板を用いる場合の問題点を解消することができる。 In the present invention, after applying and baking the dispersion, the binder resin is degreased to form a metal oxide semiconductor porous layer. Thereby, even if it is a case where it bakes at low temperature, the photoelectric conversion characteristic of the dye-sensitized solar cell obtained does not fall, and the trouble at the time of using a resin film board | substrate can be eliminated.

上記バインダー樹脂を脱脂する方法としては、例えば、紫外線照射、煮沸処理、プラズマ処理等が挙げられるが、これらのなかでは、紫外線を照射する方法が好ましい。上記紫外線を照射する方法は、ドライプロセスであることから、金属酸化物半導体多孔質層の損傷を防止することができる。更に、紫外線を照射する方法では、色素が担持しやすく、電解液が浸透しやすい表面部分の有機物残量が、樹脂フィルム基板との接触部付近の有機物残量よりも少なくなることから、金属酸化物半導体多孔質層中の有機物の濃度分布を制御することができ、その結果、色素担持性と樹脂フィルム基板に対する密着性とを両立させることが可能となる。 Examples of the method for degreasing the binder resin include ultraviolet irradiation, boiling treatment, plasma treatment, and the like. Among these, a method of irradiating with ultraviolet rays is preferable. Since the method of irradiating with ultraviolet rays is a dry process, damage to the metal oxide semiconductor porous layer can be prevented. Furthermore, in the method of irradiating with ultraviolet rays, the amount of organic matter remaining on the surface portion where the dye is easy to carry and the electrolyte solution penetrates is less than the amount of organic matter near the contact portion with the resin film substrate. It is possible to control the concentration distribution of the organic substance in the porous semiconductor layer, and as a result, it is possible to achieve both the dye-carrying property and the adhesion to the resin film substrate.

図2に、紫外線照射を行う前後における金属酸化物半導体多孔質層の状態を示す。図2(a)が紫外線照射前、図2(b)が紫外線照射後である。図2(a)に示すように、樹脂フィルム基板1上には、透明電極2及び金属酸化物半導体微粒子3が積層されており、紫外線照射前は、金属酸化物半導体微粒子3間の空隙部に、残留有機物4が多数残存している。
しかしながら、紫外線照射後は、紫外線照射を行った表面部に近い部分の残留有機物が除去されており、金属酸化物半導体微粒子3からなる金属酸化物半導体多孔質層全体の有機物残量も大幅に低下している。これにより、後の工程において色素担持性が向上させるだけでなく、得られる色素増感太陽電池の光電変換効率が大幅に向上する。
In FIG. 2, the state of the metal oxide semiconductor porous layer before and after performing ultraviolet irradiation is shown. FIG. 2A shows before ultraviolet irradiation, and FIG. 2B shows after ultraviolet irradiation. As shown in FIG. 2A, the transparent electrode 2 and the metal oxide semiconductor fine particles 3 are laminated on the resin film substrate 1, and before the ultraviolet irradiation, the voids between the metal oxide semiconductor fine particles 3 are formed. Many residual organic substances 4 remain.
However, after the ultraviolet irradiation, the residual organic matter in the portion close to the surface portion where the ultraviolet irradiation was performed has been removed, and the remaining amount of organic matter in the entire metal oxide semiconductor porous layer composed of the metal oxide semiconductor fine particles 3 is also greatly reduced. is doing. Thereby, not only the dye-carrying property is improved in a later step, but also the photoelectric conversion efficiency of the obtained dye-sensitized solar cell is greatly improved.

紫外線を照射する際の紫外線の波長としては、UV−Cといわれる253nm付近の波長が有機物の分解を促進するので好ましい。
また、紫外線の照射エネルギーの好ましい下限は1J/cm、好ましい上限は20J/cmである。1J/cm未満であると、有機物を充分に除去することができないことがあり、20J/cmを超えると、樹脂フィルム基板を劣化させることがある。
更に、紫外線照射条件は、紫外光照射強度:5〜10mW/cm、照射時間:300〜1000秒とすることが好ましく、上記紫外線の光源としては、その波長の発光効率の高い低圧水銀ランプを用いることができる。
As the wavelength of the ultraviolet rays when irradiating with ultraviolet rays, a wavelength around 253 nm called UV-C is preferable because it promotes the decomposition of organic substances.
Moreover, the preferable lower limit of the irradiation energy of ultraviolet rays is 1 J / cm 2, a preferred upper limit is 20 J / cm 2. If it is less than 1 J / cm 2 , the organic matter may not be sufficiently removed, and if it exceeds 20 J / cm 2 , the resin film substrate may be deteriorated.
Furthermore, ultraviolet irradiation conditions, ultraviolet light irradiation intensity: 5~10mW / cm 2, irradiation time: is preferably in the 300 to 1000 seconds, as the light source of the ultraviolet, a high pressure mercury lamp light emission efficiency of the wavelength Can be used.

このようにして得られた金属酸化物半導体多孔質層に色素を担持させることにより、光照射によって起電力を発生させる色素増感太陽電池用光電極として用いることができる。 By supporting the dye on the metal oxide semiconductor porous layer thus obtained, it can be used as a photoelectrode for a dye-sensitized solar cell that generates an electromotive force by light irradiation.

本発明の色素増感太陽電池用光電極に用いる色素としては、光エネルギーにより生じた電子を金属酸化物半導体多孔質層に送る機能を有するものであれば特に限定されないが、上記金属酸化物半導体多孔質層と強固に吸着させるための官能基を有するものが好ましい。上記官能基としては例えば、カルボン酸基、カルボン酸無水基、アルコキシ基、ヒドロキシル基、ヒドロキシアルキル基、スルホン酸基、エステル基、メルカプト基、ホスホニル基等が挙げられる。
具体的には、ルテニウム金属錯体系色素や各種の有機色素を使用することができ、例えば、エオシンY、フルオレセイン、エリスロシンB、フロキシンB、ローズベンガル、フルオレクソン、マーキュロクロム、ジブロモフルオレセイン、ピロガロールレッド等のキサンテン系色素;クマリン343等のクマリン系色素;ブロモフェノールブルー、ブロモチモールブルー、フェノールフタレイン等のトリフェニルメタン系色素;シアニン系色素、メロシアニン系色素、インジゴ系色素、オキソノール系色素、ポルフィリン系色素、フタロシアニン系色素、アゾ系色素、キノン系色素、キノンイミン系色素、スクアリリウム系色素、ペリレンテトラカルボン酸誘導体;Ru、Os等のポリピリジン錯体;アントシアニン、クチナシ色素、ウコン色素、ベニバナ色素、カロテノイド色素、コチニール色素、パプリカ色素等の天然色素等が挙げられる。
The dye used for the photoelectrode for the dye-sensitized solar cell of the present invention is not particularly limited as long as it has a function of sending electrons generated by light energy to the metal oxide semiconductor porous layer. What has a functional group for adsorb | sucking firmly with a porous layer is preferable. Examples of the functional group include a carboxylic acid group, a carboxylic anhydride group, an alkoxy group, a hydroxyl group, a hydroxyalkyl group, a sulfonic acid group, an ester group, a mercapto group, and a phosphonyl group.
Specifically, ruthenium metal complex dyes and various organic dyes can be used, such as eosin Y, fluorescein, erythrosin B, phloxine B, rose bengal, fluorexone, mercurochrome, dibromofluorescein, pyrogallol red, etc. Xanthene dyes; coumarin dyes such as coumarin 343; triphenylmethane dyes such as bromophenol blue, bromothymol blue, and phenolphthalein; cyanine dyes, merocyanine dyes, indigo dyes, oxonol dyes, porphyrin dyes Phthalocyanine dyes, azo dyes, quinone dyes, quinoneimine dyes, squarylium dyes, perylenetetracarboxylic acid derivatives; polypyridine complexes such as Ru and Os; anthocyanins, gardenia dyes, turmeric Arsenide, safflower pigment, carotenoid pigments, cochineal dyes, natural pigments, and the like, such as paprika pigment.

上記色素を担持させる方法としては、例えば、上記色素を含有する溶液に、上記金属酸化物半導体多孔質層が形成された樹脂フィルム基板を浸漬した後、乾燥を行う方法等が挙げられる。
上記色素を含有する溶液に用いる溶媒としては、色素を溶解することができ、基板フィルムを劣化させないものであれば特に限定されず、例えば、エタノール等のアルコール類、アセトン等のケトン類、ジエチルエーテル等のエーテル類、アセトニトリル等が挙げられる。
Examples of the method for supporting the dye include a method in which the resin film substrate on which the metal oxide semiconductor porous layer is formed is immersed in a solution containing the dye and then dried.
The solvent used in the solution containing the dye is not particularly limited as long as it can dissolve the dye and does not deteriorate the substrate film. For example, alcohols such as ethanol, ketones such as acetone, diethyl ether, and the like. And ethers such as acetonitrile and the like.

本発明の色素増感太陽電池用光電極は、例えば、透明導電層が形成された樹脂フィルム基板の上記透明導電層上に金属酸化物半導体微粒子とバインダー樹脂とを含有する分散液を塗布、焼成した後、上記バインダー樹脂を脱脂して金属酸化物半導体多孔質層を形成し、更に、上記金属酸化物半導体多孔質層に色素を担持させる色素増感太陽電池用光電極の製造方法であって、上記バインダー樹脂の脱脂を紫外線照射により行う方法を用いることにより製造することができる。このような色素増感太陽電池用光電極の製造方法もまた、本発明の1つである。 The photoelectrode for dye-sensitized solar cell of the present invention is obtained by, for example, applying and baking a dispersion containing metal oxide semiconductor fine particles and a binder resin on the transparent conductive layer of the resin film substrate on which the transparent conductive layer is formed. Then, the binder resin is degreased to form a metal oxide semiconductor porous layer, and further, a method for producing a photoelectrode for a dye-sensitized solar cell in which a dye is supported on the metal oxide semiconductor porous layer. The binder resin can be produced by using a method of degreasing the resin by ultraviolet irradiation. Such a method for producing a dye-sensitized solar cell photoelectrode is also one aspect of the present invention.

なお、上記分散液を塗布、焼成する方法、バインダー樹脂を脱脂する方法、色素を担持する方法については、上述した本発明の色素増感太陽電池用光電極の場合と同様であるため、その詳しい説明を省略する。 The method for applying and baking the dispersion, the method for degreasing the binder resin, and the method for supporting the dye are the same as those for the photoelectrode for dye-sensitized solar cell of the present invention described above. Description is omitted.

本発明の色素増感太陽電池用光電極と、電解質層と、正電極とをこの順で積層することにより、色素増感太陽電池を製造することができる。このような色素増感太陽電池もまた、本発明の1つである。具体的には例えば、電解質を含有する溶液を本発明の色素増感太陽電池用光電極上に塗工し、電解質層を形成した後、正電極を積層する方法や、色素増感太陽電池用光電極と電解質溶液注入口を有する正電極とを積層した後、上記電解質溶液注入口から電解質溶液を注入する方法等により製造することができる。 A dye-sensitized solar cell can be produced by laminating the photoelectrode for dye-sensitized solar cell of the present invention, the electrolyte layer, and the positive electrode in this order. Such a dye-sensitized solar cell is also one aspect of the present invention. Specifically, for example, a solution containing an electrolyte is coated on the photoelectrode for dye-sensitized solar cell of the present invention, an electrolyte layer is formed, and then a positive electrode is laminated, or light for dye-sensitized solar cell After the electrode and the positive electrode having the electrolyte solution injection port are stacked, it can be manufactured by a method of injecting the electrolyte solution from the electrolyte solution injection port.

上記電解質層は、電解質溶液からなるものであってもよく、電解質溶液をゲル化剤によって半固体化したものであってもよい。また、上記電解質層としては、電子、ホール、イオン等を輸送できる物質であれば特に限定されず、例えば、CuI、CuSCN、NiO、CuO、KI等のp型半導体固体ホール輸送材料、ヨウ素/ヨウ化物、臭素/臭化物等の酸化還元電解質を有機溶媒に溶解した溶液を用いることができる。
上記有機溶媒としては、例えば、ニトリル系のアセトニトリル、メトキシプロピオニトリルや炭化水素系のプロピレンカルボナート、ジエチルカルボナート、γ―ブチロラクタンやポリエチレングリコール等の多価アルコールが挙げられる。
これらの中では、嵩高く、金属酸化物半導体多孔質層に吸着させた色素が脱離しにくいことから、酸化還元電解質を有機溶媒に溶解した溶液が好ましい。
The electrolyte layer may be composed of an electrolyte solution, or may be a semi-solidified electrolyte solution with a gelling agent. The electrolyte layer is not particularly limited as long as it is a substance that can transport electrons, holes, ions, and the like. For example, a p-type semiconductor solid hole transport material such as CuI, CuSCN, NiO, Cu 2 O, and KI, iodine A solution in which a redox electrolyte such as / iodide and bromine / bromide is dissolved in an organic solvent can be used.
Examples of the organic solvent include polyhydric alcohols such as nitrile acetonitrile, methoxypropionitrile, hydrocarbon propylene carbonate, diethyl carbonate, γ-butyrolactan, and polyethylene glycol.
In these, since the pigment | dye adsorb | sucked to the metal oxide semiconductor porous layer is bulky and it is hard to remove | eliminate, the solution which melt | dissolved the oxidation reduction electrolyte in the organic solvent is preferable.

上記正電極としては特に限定されず、例えば、本発明の色素増感太陽電池用光電極と同様の樹脂フィルム基板や透明導電層からなるものを用いることができる。
なお、上記正電極の基板及び導電層には、本発明の色素増感太陽電池用光電極に使用する樹脂フィルム基板や透明導電層と異なり、必ずしも透明性は必要とされない。
It does not specifically limit as said positive electrode, For example, what consists of a resin film board | substrate similar to the photoelectrode for dye-sensitized solar cells of this invention and a transparent conductive layer can be used.
The positive electrode substrate and the conductive layer are not necessarily required to be transparent, unlike the resin film substrate and the transparent conductive layer used in the photoelectrode for dye-sensitized solar cell of the present invention.

本発明では、樹脂フィルム基板を有する色素増感太陽電池用光電極において、金属酸化物半導体多孔質層のバインダー樹脂に由来する有機物残量を所定の範囲内とすることにより、色素増感太陽電池用光電極の基板として樹脂フィルムを用いる場合であっても、基板と金属酸化物半導体多孔質層との密着性を確保しつつ、得られる色素増感太陽電池の光電変換特性の低下を防止することが可能となる。また、本発明の色素増感太陽電池用光電極の製造方法を用いることにより、基板と金属酸化物半導体多孔質層との密着性に優れ、得られる色素増感太陽電池が充分な光電変換特性を有する色素増感太陽電池用光電極を好適に製造することができる。 In the present invention, in the photoelectrode for a dye-sensitized solar cell having a resin film substrate, the remaining amount of organic matter derived from the binder resin of the metal oxide semiconductor porous layer is within a predetermined range, whereby the dye-sensitized solar cell Even when a resin film is used as a substrate for a photoelectrode for an automobile, it is possible to prevent deterioration in photoelectric conversion characteristics of the resulting dye-sensitized solar cell while ensuring adhesion between the substrate and the metal oxide semiconductor porous layer It becomes possible. In addition, by using the method for producing a photoelectrode for a dye-sensitized solar cell of the present invention, excellent adhesion between the substrate and the metal oxide semiconductor porous layer, and the resulting dye-sensitized solar cell has sufficient photoelectric conversion characteristics. The photoelectrode for dye-sensitized solar cells having the above can be preferably produced.

(実施例1)
(チタニア多孔膜の形成)
PETフィルムにITO膜を製膜した透明電極基板にマスキングを施し、酸化チタンナノ粒子を水系溶媒に分散した塗料(昭和電工社製、SP210)をスピンコータ(回転数:1000rpm)で塗布し、120℃で60分間乾燥焼成させた後、マスキングを剥離し、10×20mmの矩形パターンからなるチタニア多孔膜を製膜した。
その後、基板上のチタニア多孔膜に、低圧水銀ランプを用いて紫外線を10分間照射した。なお、紫外光強度は7mW/cm、照射エネルギーは4.2J/cmであった。
Example 1
(Formation of titania porous film)
A transparent electrode substrate formed by forming an ITO film on a PET film is masked, and a paint (SP210, manufactured by Showa Denko KK) in which titanium oxide nanoparticles are dispersed in an aqueous solvent is applied with a spin coater (rotation speed: 1000 rpm) at 120 ° C. After drying and baking for 60 minutes, the masking was peeled off to form a titania porous film having a rectangular pattern of 10 × 20 mm.
Thereafter, the titania porous film on the substrate was irradiated with ultraviolet rays for 10 minutes using a low-pressure mercury lamp. Incidentally, the ultraviolet light intensity is 7 mW / cm 2, the irradiation energy was 4.2 J / cm 2.

(評価)
(1)有機物残存量の測定
紫外線照射後のチタニア多孔膜について、有機物残存量の測定及び透明電極基板との密着性の評価を行った。
有機物残存量の測定は、チタニア多孔膜から削り落としたチタニアからなる試料について、熱重量変化(TGA)測定を行い、300℃以上での重量減少から求めた。その結果、有機物残存量は0.9%であった。
(Evaluation)
(1) Measurement of residual amount of organic matter The titania porous film after irradiation with ultraviolet rays was measured for the residual amount of organic matter and evaluated for adhesion to the transparent electrode substrate.
The amount of organic matter remaining was determined by measuring the thermogravimetric change (TGA) of a titania sample scraped from the titania porous membrane and determining the weight loss at 300 ° C. or higher. As a result, the remaining amount of organic matter was 0.9%.

(2)密着強度
チタニア多孔膜に碁盤目状のマス目を入れ、テープ剥離試験後に残ったチタニア多孔膜のマスの割合を計測する碁盤目試験により、チタニア多孔膜の密着強度を評価した。その結果、剥離試験後に残ったチタニア多孔膜のマスの割合は99%であり、充分な密着強度を有することがわかった。
(2) Adhesion Strength The adhesion strength of the titania porous film was evaluated by a cross-cut test in which a grid-like cell was put in the titania porous film and the proportion of the titania porous film remaining after the tape peeling test was measured. As a result, the ratio of the mass of the titania porous film remaining after the peel test was 99%, and it was found that it had sufficient adhesion strength.

(色素増感太陽電池セルの作製)
上述の方法により作製したチタニア多孔膜を形成した基板を、ルテニウム色素N719を3×10−4mol/L、溶媒としてアセトニトリルとt−ブタノールの容積比1:1を含有する色素溶液に一晩浸漬することにより、チタニア多孔膜の表面に増感色素を担持させ、光電極基板を作製した。
(Preparation of dye-sensitized solar cell)
The substrate on which the titania porous film produced by the above method is formed is immersed in a dye solution containing 3 × 10 −4 mol / L of ruthenium dye N719 and a volume ratio of 1: 1 of acetonitrile and t-butanol as a solvent overnight. As a result, a sensitizing dye was supported on the surface of the titania porous film to produce a photoelectrode substrate.

得られた光電極基板と、PETフィルムに透明導電膜であるITO膜と白金膜をスパッタ法で積層した正電極基板と重ねて、セル周辺をアイオノマー樹脂フィルムで熱溶着して空セルを作製した。この空セルに電解液(ヨウ素0.01mol/L、ヨウ化リチウム0.1mol/L、DMP0.1mol/L、溶媒:プロピレンカルボナート)を注入し、UV硬化樹脂で注入口を封止して、色素増感太陽電池セルを作製した。 The obtained photoelectrode substrate and a positive electrode substrate obtained by laminating an ITO film, which is a transparent conductive film, and a platinum film on a PET film by a sputtering method were stacked, and the cell periphery was thermally welded with an ionomer resin film to produce an empty cell. . An electrolytic solution (iodine 0.01 mol / L, lithium iodide 0.1 mol / L, DMP 0.1 mol / L, solvent: propylene carbonate) was injected into this empty cell, and the injection port was sealed with a UV curable resin. A dye-sensitized solar cell was prepared.

(実施例2)
実施例1と同様にして、PETフィルムにITO膜を製膜した透明電極基板に10×20mmの矩形パターンでチタニア多孔膜を製膜した。次いで、実施例1と同様の条件で紫外線照射を40分間行った。
その後、実施例1と同様の方法でチタニア膜中の有機物残存量を測定したところ、0.5%であった。また、チタニア多孔膜と透明基板との密着強度を確認したところ、剥離試験後に残ったチタニア多孔膜のマスの割合は92%であり、密着強度は、やや低下したが使用可能なレベルであった。次いで、実施例1と同様の方法を行うことにより、色素増感太陽電池セルを得た。
(Example 2)
In the same manner as in Example 1, a titania porous film was formed in a rectangular pattern of 10 × 20 mm on a transparent electrode substrate obtained by forming an ITO film on a PET film. Next, ultraviolet irradiation was performed for 40 minutes under the same conditions as in Example 1.
Then, when the residual amount of organic matter in the titania film was measured by the same method as in Example 1, it was 0.5%. Further, when the adhesion strength between the titania porous film and the transparent substrate was confirmed, the proportion of the mass of the titania porous film remaining after the peel test was 92%, and the adhesion strength was slightly reduced but usable. . Subsequently, the same method as Example 1 was performed to obtain a dye-sensitized solar cell.

(比較例1)
紫外線照射処理を行わなかった以外は、実施例1と同様にして、PETフィルムにITO膜を製膜した透明電極基板に10×20mmの矩形パターンでチタニア多孔膜を製膜した。
その後、実施例1と同様の方法でチタニア膜中の有機物残存量を測定したところ、1.7%であった。また、チタニア多孔膜と透明基板との密着強度を確認したところ、剥離試験後に残ったチタニア多孔膜のマスの割合は100%であった。次いで、実施例1と同様の方法を行うことにより、色素増感太陽電池セルを得た。
(Comparative Example 1)
A titania porous film having a rectangular pattern of 10 × 20 mm was formed on a transparent electrode substrate obtained by forming an ITO film on a PET film in the same manner as in Example 1 except that the ultraviolet irradiation treatment was not performed.
Then, when the residual amount of organic matter in the titania film was measured by the same method as in Example 1, it was 1.7%. Further, when the adhesion strength between the titania porous film and the transparent substrate was confirmed, the mass ratio of the titania porous film remaining after the peel test was 100%. Subsequently, the same method as Example 1 was performed to obtain a dye-sensitized solar cell.

(比較例2)
実施例1と同様にして、PETフィルムにITO膜を製膜した透明電極基板に10×20mmの矩形パターンでチタニア多孔膜を製膜し、紫外線照射処理は、実施例1と同条件で紫外線照射を2分間行った。
その後、実施例1と同様の方法でチタニア膜中の有機物残存量を測定したところ、1.5%であった。また、チタニア多孔膜と透明基板との密着強度を確認したところ、剥離試験後に残ったチタニア多孔膜のマスの割合は100%であった。次いで、実施例1と同様の方法を行うことにより、色素増感太陽電池セルを得た。
(Comparative Example 2)
As in Example 1, a titania porous film was formed in a 10 × 20 mm rectangular pattern on a transparent electrode substrate obtained by forming an ITO film on a PET film, and the ultraviolet irradiation treatment was performed under the same conditions as in Example 1. For 2 minutes.
Then, when the residual amount of organic matter in the titania film was measured by the same method as in Example 1, it was 1.5%. Further, when the adhesion strength between the titania porous film and the transparent substrate was confirmed, the mass ratio of the titania porous film remaining after the peel test was 100%. Subsequently, the same method as Example 1 was performed to obtain a dye-sensitized solar cell.

(比較例3)
実施例1と同様にして、PETフィルムにITO膜を製膜した透明電極基板に10×20mmの矩形パターンでチタニア多孔膜を製膜し、紫外線照射処理は、実施例1と同条件で紫外線照射を80分間行った。
その後、実施例1と同様の方法でチタニア膜中の有機物残存量を測定したところ、0.4%であった。また、チタニア多孔膜と透明基板との密着強度を確認したところ、剥離試験後に残ったチタニア多孔膜のマスの割合は78%であり、大きく低下していた。
次いで、実施例1と同様の方法を行うことにより、色素増感太陽電池セルを得た。
(Comparative Example 3)
As in Example 1, a titania porous film was formed in a 10 × 20 mm rectangular pattern on a transparent electrode substrate obtained by forming an ITO film on a PET film, and the ultraviolet irradiation treatment was performed under the same conditions as in Example 1. For 80 minutes.
Then, when the residual amount of organic matter in the titania film was measured by the same method as in Example 1, it was 0.4%. Further, when the adhesion strength between the titania porous film and the transparent substrate was confirmed, the mass ratio of the titania porous film remaining after the peel test was 78%, which was greatly reduced.
Subsequently, the same method as Example 1 was performed to obtain a dye-sensitized solar cell.

(比較例4)
実施例1と同様にして、PETフィルムにITO膜を製膜した透明電極基板に10×20mmの矩形パターンでチタニア多孔膜を製膜した。その後、この基板を沸騰水に浸漬し、膜を10分間煮沸処理した。なお、煮沸処理後のチタニア多孔膜には、その一部に剥離が見られた。
その後、実施例1と同様の方法でチタニア膜中の有機物残存量を測定したところ、0.2%であった。また、チタニア多孔膜と透明基板との密着強度を確認したところ、剥離試験後に残ったチタニア多孔膜のマスの割合は65%であり大きく低下した。
次いで、実施例1と同様の方法を行うことにより、色素増感太陽電池セルを得た。
(Comparative Example 4)
In the same manner as in Example 1, a titania porous film was formed in a rectangular pattern of 10 × 20 mm on a transparent electrode substrate obtained by forming an ITO film on a PET film. Thereafter, the substrate was immersed in boiling water, and the film was boiled for 10 minutes. In addition, peeling was seen in the titania porous film after the boiling treatment.
Then, when the residual amount of organic matter in the titania film was measured by the same method as in Example 1, it was 0.2%. Further, when the adhesion strength between the titania porous film and the transparent substrate was confirmed, the proportion of the mass of the titania porous film remaining after the peel test was 65%, which was greatly reduced.
Subsequently, the same method as Example 1 was performed to obtain a dye-sensitized solar cell.

(評価)
(3)光電変換特性
実施例1、2及び比較例1〜4で得られた色素増感太陽電池セルについて、光源強度が1SUN(100mW/cm)であるソーラーシミュレータを用い、光電変換効率を測定した。結果を表1に示した。
(Evaluation)
(3) Photoelectric conversion characteristics For the dye-sensitized solar cells obtained in Examples 1 and 2 and Comparative Examples 1 to 4, using a solar simulator with a light source intensity of 1 SUN (100 mW / cm 2 ), the photoelectric conversion efficiency is It was measured. The results are shown in Table 1.

Figure 2007103310
Figure 2007103310

表1に示すように、実施例1、2で得られた色素増感太陽電池セルは、光電変換効率が高く、比較例1のように紫外線を照射していないものと比較しても、光電変換効率が向上していた。これに対して、比較例2で得られた色素増感太陽電池セルは、比較例1に比べて良い結果が得られたが、充分と言えるものではなく、光電変換効率の向上も見られなかった。また、比較例3で得られた色素増感太陽電池セルは、紫外線を照射したにもかかわらず、チタニア多孔膜と基板との密着性低下に起因する光電変換特性の低下が見られた。更に、比較例4で得られた色素増感太陽電池セルは、チタニア多孔膜と基板との密着性低下に起因する光電変換特性の低下が見られた。 As shown in Table 1, the dye-sensitized solar cells obtained in Examples 1 and 2 have high photoelectric conversion efficiency, and even when compared with those not irradiated with ultraviolet rays as in Comparative Example 1, Conversion efficiency was improved. On the other hand, the dye-sensitized solar cell obtained in Comparative Example 2 gave better results than Comparative Example 1, but it was not sufficient and no improvement in photoelectric conversion efficiency was observed. It was. Moreover, although the dye-sensitized solar cell obtained in Comparative Example 3 was irradiated with ultraviolet rays, a decrease in photoelectric conversion characteristics due to a decrease in adhesion between the titania porous film and the substrate was observed. Furthermore, the dye-sensitized solar cell obtained in Comparative Example 4 showed a decrease in photoelectric conversion characteristics due to a decrease in adhesion between the titania porous film and the substrate.

本発明によれば、樹脂フィルム基板を用いた色素増感太陽電池用光電極において、基板と金属酸化物半導体多孔質層との密着性を確保しつつ、光電変換特性の低下を防止することが可能な色素増感太陽電池用光電極、色素増感太陽電池及び色素増感太陽電池用光電極の製造方法を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, in the photoelectrode for dye-sensitized solar cells using a resin film board | substrate, it can prevent the fall of a photoelectric conversion characteristic, ensuring the adhesiveness of a board | substrate and a metal oxide semiconductor porous layer. It is possible to provide a dye-sensitized solar cell photoelectrode, a dye-sensitized solar cell, and a method for producing a dye-sensitized solar cell photoelectrode.

有機物残量の測定におけるTGA(熱重量分析)のグラフである。It is a graph of TGA (thermogravimetric analysis) in the measurement of organic substance residual amount. 紫外線照射の前後における金属酸化物半導体多孔質層の状態を示す模式図である。It is a schematic diagram which shows the state of the metal oxide semiconductor porous layer before and after ultraviolet irradiation.

符号の説明Explanation of symbols

1 樹脂フィルム基板
2 透明電極
3 金属酸化物半導体微粒子
4 残留有機物
1 Resin film substrate 2 Transparent electrode 3 Metal oxide semiconductor fine particles 4 Residual organic matter

Claims (3)

透明導電層が形成された樹脂フィルム基板の前記透明導電層上に金属酸化物半導体微粒子とバインダー樹脂とを含有する分散液を塗布、焼成した後、前記バインダー樹脂を脱脂して金属酸化物半導体多孔質層を形成し、更に、前記金属酸化物半導体多孔質層に色素を担持させてなる色素増感太陽電池用光電極であって、
前記金属酸化物半導体多孔質層は、前記バインダー樹脂に由来する有機物残量が0.5〜1.0重量%である
ことを特徴とする色素増感太陽電池用光電極。
A dispersion containing metal oxide semiconductor fine particles and a binder resin is applied on the transparent conductive layer of the resin film substrate on which the transparent conductive layer is formed and baked, and then the binder resin is degreased to remove the porous metal oxide semiconductor. A photoelectrode for a dye-sensitized solar cell, further comprising forming a porous layer, and further supporting a dye on the metal oxide semiconductor porous layer,
The metal oxide semiconductor porous layer is a photoelectrode for a dye-sensitized solar cell, wherein a remaining amount of organic matter derived from the binder resin is 0.5 to 1.0% by weight.
請求項1記載の色素増感太陽電池用光電極と、電解質層と、正電極とがこの順に積層されていることを特徴とする色素増感太陽電池。 A dye-sensitized solar cell, wherein the photoelectrode for a dye-sensitized solar cell according to claim 1, an electrolyte layer, and a positive electrode are laminated in this order. 透明導電層が形成された樹脂フィルム基板の前記透明導電層上に金属酸化物半導体微粒子とバインダー樹脂とを含有する分散液を塗布、焼成した後、前記バインダー樹脂を脱脂して金属酸化物半導体多孔質層を形成し、更に、前記金属酸化物半導体多孔質層に色素を担持させる色素増感太陽電池用光電極の製造方法であって、
前記バインダー樹脂の脱脂を紫外線照射により行う
ことを特徴とする色素増感太陽電池用光電極の製造方法。

A dispersion containing metal oxide semiconductor fine particles and a binder resin is applied on the transparent conductive layer of the resin film substrate on which the transparent conductive layer is formed and baked, and then the binder resin is degreased to remove the porous metal oxide semiconductor. Forming a porous layer, and further, a method for producing a photoelectrode for a dye-sensitized solar cell in which a dye is supported on the metal oxide semiconductor porous layer,
A method for producing a photoelectrode for a dye-sensitized solar cell, wherein the binder resin is degreased by ultraviolet irradiation.

JP2005295570A 2005-10-07 2005-10-07 Method for producing photoelectrode for dye-sensitized solar cell Expired - Fee Related JP4982067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005295570A JP4982067B2 (en) 2005-10-07 2005-10-07 Method for producing photoelectrode for dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005295570A JP4982067B2 (en) 2005-10-07 2005-10-07 Method for producing photoelectrode for dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2007103310A true JP2007103310A (en) 2007-04-19
JP4982067B2 JP4982067B2 (en) 2012-07-25

Family

ID=38030041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005295570A Expired - Fee Related JP4982067B2 (en) 2005-10-07 2005-10-07 Method for producing photoelectrode for dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP4982067B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116511A1 (en) * 2008-03-19 2009-09-24 シャープ株式会社 Photosensitizing element and solar battery using the photosensitizing element
JP2010073495A (en) * 2008-09-18 2010-04-02 Nippon Steel Chem Co Ltd Dye-sensitized solar battery
EP2256763A2 (en) 2009-05-27 2010-12-01 TDK Corporation Metal oxide electrode for dye-sensitized solar cell, dye-sensitized solar cell, and manufacturing method of metal oxide electrode
EP2317563A2 (en) * 2008-08-08 2011-05-04 Dongjin Semichem Co., Ltd. Production method for dye-sensitized solar cell
CN102394178A (en) * 2011-11-08 2012-03-28 南京大学 Method of improving conversion efficiency of dye sensitization solar cell by utilizing ultraviolet radiation photoelectrode
KR101219330B1 (en) 2011-11-30 2013-01-22 현대자동차주식회사 Dye-sensitized solar cell module and method for manufacturing the same
JPWO2014083884A1 (en) * 2012-11-27 2017-01-05 積水化学工業株式会社 Method for producing porous titanium oxide laminate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117912A (en) * 2000-10-11 2002-04-19 Seiko Epson Corp Semiconductor electrode, manufacturing method for semiconductor electrode and solar cell
JP2004234988A (en) * 2003-01-30 2004-08-19 Sony Corp Photoelectric conversion element and its manufacturing method, electronic device and its manufacturing method, and semiconductor layer and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117912A (en) * 2000-10-11 2002-04-19 Seiko Epson Corp Semiconductor electrode, manufacturing method for semiconductor electrode and solar cell
JP2004234988A (en) * 2003-01-30 2004-08-19 Sony Corp Photoelectric conversion element and its manufacturing method, electronic device and its manufacturing method, and semiconductor layer and its manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116511A1 (en) * 2008-03-19 2009-09-24 シャープ株式会社 Photosensitizing element and solar battery using the photosensitizing element
JP5285062B2 (en) * 2008-03-19 2013-09-11 シャープ株式会社 Photosensitizer and solar cell using the same
EP2317563A2 (en) * 2008-08-08 2011-05-04 Dongjin Semichem Co., Ltd. Production method for dye-sensitized solar cell
JP2011530783A (en) * 2008-08-08 2011-12-22 東進セミケム株式会社 Method for producing dye-sensitized solar cell
EP2317563A4 (en) * 2008-08-08 2012-09-12 Dongjin Semichem Co Ltd Production method for dye-sensitized solar cell
JP2010073495A (en) * 2008-09-18 2010-04-02 Nippon Steel Chem Co Ltd Dye-sensitized solar battery
EP2256763A2 (en) 2009-05-27 2010-12-01 TDK Corporation Metal oxide electrode for dye-sensitized solar cell, dye-sensitized solar cell, and manufacturing method of metal oxide electrode
CN102394178A (en) * 2011-11-08 2012-03-28 南京大学 Method of improving conversion efficiency of dye sensitization solar cell by utilizing ultraviolet radiation photoelectrode
KR101219330B1 (en) 2011-11-30 2013-01-22 현대자동차주식회사 Dye-sensitized solar cell module and method for manufacturing the same
JPWO2014083884A1 (en) * 2012-11-27 2017-01-05 積水化学工業株式会社 Method for producing porous titanium oxide laminate

Also Published As

Publication number Publication date
JP4982067B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP5192154B2 (en) Method for producing dye-sensitized solar cell
Kim et al. Curcumin dye extracted from Curcuma longa L. used as sensitizers for efficient dye-sensitized solar cells
JP4982067B2 (en) Method for producing photoelectrode for dye-sensitized solar cell
JP5191647B2 (en) Titanium oxide film, titanium oxide film electrode film structure, and dye-sensitized solar cell
Hossain et al. Efficiency enhancement of natural dye sensitized solar cell by optimizing electrode fabrication parameters
JP2005222942A (en) Dye sensitized solar cell with optical absorption wavelength band extended, and its manufacturing method
JP2008130553A (en) Dye-sensitized solar battery and manufacturing method of dye-sensitized solar battery
JP4999294B2 (en) Dye-sensitized solar cell and method for producing porous semiconductor layer for dye-sensitized solar cell
JP2008186752A (en) Photoelectric conversion element and solar cell
JP4312991B2 (en) Method for producing dye-sensitized solar cell
JP2010118158A (en) Paste composition for photoelectric conversion element, manufacturing method of porous membrane for photoelectric conversion element, and photoelectric conversion element
WO2004068627A1 (en) Photoelectric conversion element and process for fabricating the same, electronic apparatus and process for fabricating the same, and semiconductor layer and process for forming the same
JP5122605B2 (en) Dye-sensitive solar cell dye and dye-sensitized solar cell manufactured using the same
JP5189870B2 (en) Electrolytic solution and dye-sensitized solar cell
CN104185886B (en) The manufacture method of dye-sensitized solar cell and dye-sensitized solar cell
JP5181550B2 (en) Photoelectric conversion element
JP5636736B2 (en) Photoelectric conversion device and manufacturing method thereof
JP4149714B2 (en) Dye-sensitized solar cell and method for producing the same
JP2010277762A (en) Metal oxide electrode for dye-sensitized solar cell, dye-sensitized solar cell, and manufacturing method of metal oxide electrode
JP5075354B2 (en) Photoelectrode for dye-sensitized solar cell and dye-sensitized solar cell
JP5337423B2 (en) Dye-sensitized solar cell and method for producing dye-sensitized solar cell
JP2004047264A (en) Dye-sensitized solar cell and its manufacturing method
JP2007179822A (en) Electrode and dye-sensitized solar cell using it for counter electrode
JP2007299671A (en) Dye-sensitized solar cell
JP2006339074A (en) Manufacturing method for dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4982067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees