JP2007092609A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2007092609A
JP2007092609A JP2005282085A JP2005282085A JP2007092609A JP 2007092609 A JP2007092609 A JP 2007092609A JP 2005282085 A JP2005282085 A JP 2005282085A JP 2005282085 A JP2005282085 A JP 2005282085A JP 2007092609 A JP2007092609 A JP 2007092609A
Authority
JP
Japan
Prior art keywords
exhaust purification
purification catalyst
catalyst
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005282085A
Other languages
English (en)
Inventor
Takashi Nishigori
貴志 錦織
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005282085A priority Critical patent/JP2007092609A/ja
Publication of JP2007092609A publication Critical patent/JP2007092609A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】 フューエルカット制御実行の際に、排気浄化触媒の劣化を抑制するとともに硫黄臭の発生を抑制することができる内燃機関の制御装置を提供すること。
【解決手段】 本内燃機関の制御装置は、フューエルカット制御を実行する際に排気浄化触媒が硫黄臭を発生する状態にある場合には、迅速に排気浄化触媒の雰囲気をリーン空燃比状態にして且つ排気浄化触媒を所定温度に冷却させるように、内燃機関がアイドリング状態にある時の吸入空気流量よりも大きな空気流量で排気浄化触媒に空気が流入するように制御し、フューエルカット制御を実行する際に排気浄化触媒が硫黄臭を発生する状態にない場合には、内燃機関がアイドリング状態にある時の吸入空気流量よりも小さな空気流量でしか排気浄化触媒に空気が流入しないように制御する。
【選択図】 図1

Description

本発明は、フューエルカット制御が実行される内燃機関であって排気系に排気浄化触媒が配置された内燃機関の制御装置に関する。
従来より、燃費や排気エミッションの向上等を目的として、例えば車両が減速走行状態にあり該車両の搭載している内燃機関への燃料供給の必要がない場合等に、該内燃機関への燃料の供給を停止する所謂フューエルカット(以下、F/Cとも称する)制御を実行する内燃機関の制御装置が公知である。内燃機関の機関出力軸が回転している状態で燃料供給を停止すべく燃料噴射が停止されると、内燃機関において混合気の生成および混合気の燃焼が実行されることはなく、内燃機関に取り込まれた吸入空気はそのままの状態で排出されることになり、よって、燃費の向上や排気エミッションの向上を図ることができる。
一方で、このようなフューエルカット制御は、内燃機関の排気系に配置された排気浄化触媒、例えば触媒担体の表面に白金(Pt)、パラジウム(Pd)、ロジウム(Rh)等の貴金属触媒を担持する排気浄化触媒を劣化させる一要因となることが知られている。フューエルカット制御中に内燃機関に取り込まれる吸入空気は、燃焼室内で燃焼に関与することなくそのままの状態で排気されるため、フューエルカット制御中の排気はリーン空燃比状態すなわち酸素濃度が高い状態にある。車両の速度が高速域にある時等のような排気浄化触媒の温度が高い状態においてフューエルカット制御がなされると、排気浄化触媒雰囲気は高温且つ酸素濃度が高い状態とされ、このことが排気浄化触媒の劣化を促進する。
例えば、アルミナ等の触媒担体の表面に白金が担持された排気浄化触媒が使用される場合、触媒担体の表面に担持された白金は、高温で酸素が共存する雰囲気下においては、PtO2となり、気相移動により拡散、凝縮が促進される。そのため、高温且つ酸素濃度が高いリーン空燃比雰囲気下に触媒担体に担持された白金が晒されると、シンタリングが生じ、排気と白金との接触する表面積が減少し、排気浄化作用の劣化がもたらされうる。
このようなフューエルカット制御に起因した排気浄化触媒の劣化を防止する一つの施策として、内燃機関運転状態やアクセル開度などの検出情報に基づいてフューエルカット制御の実行条件が成立しフューエルカット制御の実行がなされる際に、内燃機関の排気系に配置された排気浄化触媒に空気が流入しないようにし、排気浄化触媒雰囲気が酸素濃度過剰状態になることを防止して排気浄化触媒の劣化の抑制を図ることが知られている(特許文献1)。
特開2001−182570号公報
しかしながら、上記のようにフューエルカット制御の実行中における排気浄化触媒への空気の流入を停止するようにした場合には、排気浄化触媒の劣化の抑制は図れるものの、フューエルカット制御を実行する直前の内燃機関の運転状態によっては硫黄臭がもたらされうるという問題がある。この硫黄臭は、排気浄化触媒から生じる硫化水素(H2S)であり、その原因は、フューエルカット制御の実行中の排気浄化触媒への空気の流入を停止する結果、フューエルカット制御実行中に排気浄化触媒に酸素が供給されることはなく、フューエルカット制御が実行される直前の排気浄化触媒雰囲気がリッチ空燃比状態且つ高温状態にあった場合には、排気浄化触媒に吸着あるいは保持されていた硫黄酸化物(以下、SOxと称す)が脱離あるいは放出され排気浄化触媒雰囲気中の水素と反応して硫化水素となって外部へ放出されやすい状態となるためであることが考えられる。
本発明は上記課題に鑑み、燃費や排気エミッションの向上を図るべく車両に搭載された内燃機関への燃料の供給を停止するフューエルカット制御を実行する内燃機関の制御装置であって、内燃機関の排気系に配置された排気浄化触媒のフューエルカット制御に起因する劣化を抑制するとともに硫黄臭の発生を抑制することができる内燃機関の制御装置を提供することである。
請求項1の記載の発明によれば、排気系に排気浄化触媒が配置された内燃機関を制御する装置において、前記内燃機関への燃料の供給を停止するフューエルカット制御を実行するフューエルカット制御手段と、前記フューエルカット制御を実行する際に硫黄臭が発生する状態に前記排気浄化触媒があるか否かを判定する硫黄臭発生状態判定手段と、前記フューエルカット制御中の前記排気浄化触媒に流入する空気の流量を制御する触媒流入空気流量制御手段とを有し、前記触媒流入空気流量制御手段は、前記フューエルカット制御手段による前記フューエルカット制御を実行する際に前記硫黄臭発生状態判定手段により前記排気浄化触媒が硫黄臭を発生する状態にあると判定された場合には、迅速に前記排気浄化触媒の雰囲気をリーン空燃比状態にして且つ前記排気浄化触媒を所定温度に冷却させるように、前記内燃機関がアイドリング状態にある時の吸入空気流量よりも大きな空気流量で前記排気浄化触媒に空気が流入するように制御し、前記フューエルカット制御手段による前記フューエルカット制御を実行する際に前記硫黄臭発生状態判定手段により前記排気浄化触媒が硫黄臭を発生する状態にないと判定された場合には、前記内燃機関がアイドリング状態にある時の吸入空気流量よりも小さな空気流量でしか前記排気浄化触媒に空気が流入しないように制御する、ことを特徴とする内燃機関の制御装置が提供される。
すなわち、請求項1の発明では、内燃機関への燃料の供給を停止するフューエルカット制御を実行する際に、内燃機関の排気系に配置された排気浄化触媒が硫黄臭を発生する状態にある場合には、迅速に排気浄化触媒の雰囲気をリーン空燃比状態にして且つ排気浄化触媒を所定温度に冷却させるように、内燃機関に流入する空気流量を、内燃機関がアイドリング状態にある時の吸入空気流量よりも大きな空気流量に制御することで、排気浄化触媒からの硫黄臭の発生を抑制するとともに、排気浄化触媒の劣化を抑制することができ、更には、排気浄化触媒の過剰冷却を防止することでき、フューエルカット制御から通常運転復帰直後の排気エミッションの向上を図ることを可能とする。また、フューエルカット制御を実行する際に、排気浄化触媒が硫黄臭を発生する状態にない場合には、内燃機関がアイドリング状態にある時の吸入空気流量よりも小さな空気流量でしか排気浄化触媒に空気が流入しないように、排気浄化触媒に流入する空気流量を、内燃機関がアイドリング状態にある時の吸入空気流量よりも小さな空気流量に制御することで、排気浄化触媒の雰囲気がリーン空燃比状態となることを抑制することができ、フューエルカット制御に起因する排気浄化触媒の劣化を抑制することを可能とする。
請求項2の記載の発明によれば、前記フューエルカット制御手段による前記フューエルカット制御を実行する際に前記硫黄臭発生状態判定手段により前記排気浄化触媒が硫黄臭を発生する状態にあると判定された場合において、前記触媒流入空気流量制御手段は、前記排気浄化触媒の雰囲気をリーン空燃比状態にして且つ前記排気浄化触媒を前記所定温度に冷却させた後は、前記排気浄化触媒に流入する空気流量を、前記内燃機関がアイドリング状態にある時の吸入空気流量に減少させる、ことを特徴とする請求項1に記載の内燃機関の制御装置が提供される。
すなわち、請求項2の発明では、フューエルカット制御を実行する際に排気浄化触媒が硫黄臭を発生する状態にある場合において、排気浄化触媒雰囲気をリーン空燃比状態にして且つ排気浄化触媒を所定温度に冷却させた後は、排気浄化触媒に流入する空気流量を、内燃機関がアイドリング状態にある時の吸入空気流量に減少させることで、フューエルカット制御から通常運転復帰直後の、要求トルク以上のトルクの発生を抑制しドラビリショックを緩和することができ、運転性能の向上を図ることを可能とする。
請求項3の記載の発明によれば、前記排気浄化触媒は、流入する排気中の酸素濃度が過剰であるときには排気中の酸素を吸蔵し且つ排気中の酸素濃度が不足しているときには吸蔵している酸素を放出する酸素ストレージ能を有する排気浄化触媒であり、前記触媒流入空気流量制御手段は、前記フューエルカット制御手段による前記フューエルカット制御を実行する際に前記硫黄臭発生状態判定手段により前記排気浄化触媒が硫黄臭を発生する状態にあると判定された場合には、迅速に前記排気浄化触媒の雰囲気をリーン空燃比状態にして更に前記排気浄化触媒の酸素貯蔵量が前記排気浄化触媒の最大酸素貯蔵量に達するまで前記排気浄化触媒中に酸素を供給し且つ前記排気浄化触媒を前記所定温度に冷却させるように、前記内燃機関がアイドリング状態にある時の吸入空気流量よりも大きな空気流量で前記排気浄化触媒に空気が流入するように制御する、ことを特徴とする請求項1に記載の内燃機関の制御装置が提供される。
すなわち、請求項3の発明では、排気浄化触媒は、流入する排気中の酸素濃度が過剰であるときには排気中の酸素を吸蔵し且つ排気中の酸素濃度が不足しているときには吸蔵している酸素を放出する酸素ストレージ能を有する排気浄化触媒とされ、フューエルカット制御を実行する際に排気浄化触媒が硫黄臭を発生する状態にある場合には、迅速に排気浄化触媒の雰囲気をリーン空燃比状態にして更に排気浄化触媒の酸素貯蔵量が排気浄化触媒の最大酸素貯蔵量に達するまで排気浄化触媒中に酸素を供給し且つ排気浄化触媒を所定温度に冷却させるように、内燃機関がアイドリング状態にある時の吸入空気流量よりも大きな空気流量で排気浄化触媒に空気が流入するように制御することで、排気浄化触媒からの硫黄臭の発生を確実に防止するとともに、排気浄化触媒の劣化を抑制することができ、更には、排気浄化触媒の過剰冷却を防止することでき、フューエルカット制御から通常運転復帰直後の排気エミッションの向上を図ることを可能とする。
請求項4の記載の発明によれば、前記フューエルカット制御手段による前記フューエルカット制御を実行する際に前記硫黄臭発生状態判定手段により前記排気浄化触媒が硫黄臭を発生する状態にあると判定された場合において、前記触媒流入空気流量制御手段は、前記排気浄化触媒の雰囲気をリーン空燃比状態にして更に前記排気浄化触媒の酸素貯蔵量が前記排気浄化触媒の最大酸素貯蔵量に達するまで前記排気浄化触媒中に酸素を供給し且つ前記排気浄化触媒を前記所定温度に冷却させた後は、前記排気浄化触媒に流入する空気流量を、前記内燃機関がアイドリング状態にある時の吸入空気流量に減少させる、ことを特徴とする請求項3に記載の内燃機関の制御装置が提供される。
すなわち、請求項4の発明では、フューエルカット制御を実行する際に排気浄化触媒が硫黄臭を発生する状態にある場合において、排気浄化触媒の雰囲気をリーン空燃比状態にして更に排気浄化触媒の酸素貯蔵量が排気浄化触媒の最大酸素貯蔵量に達するまで排気浄化触媒中に酸素を供給し且つ排気浄化触媒を所定温度に冷却させた後は、排気浄化触媒に流入する空気流量を、内燃機関がアイドリング状態にある時の吸入空気流量に減少させることで、フューエルカット制御から通常運転復帰直後の、要求トルク以上のトルクの発生を抑制しドラビリショックを緩和することができ、運転性能の向上を図ることを可能とする。
請求項5の記載の発明によれば、前記硫黄臭発生状態判定手段は、前記排気浄化触媒の温度を検出する排気浄化触媒温度検出手段と、前記排気浄化触媒雰囲気の酸素濃度状態を検出する触媒雰囲気検出手段とを少なくとも有し、前記排気浄化触媒温度検出手段および前記触媒雰囲気検出手段の各検出情報に基づいて、硫黄臭が発生する状態に前記排気浄化触媒があるか否かを判定する、ことを特徴とする請求項1から請求項4のいずれか一つの請求項に記載の内燃機関の制御装置が提供される。
各請求項に記載の発明によれば、排気系に排気浄化触媒が配置された内燃機関において、燃費や排気エミッションの向上を図るべく内燃機関への燃料の供給を停止するフューエルカット制御を実行する際の、硫黄臭の発生を抑制するとともに排気浄化触媒の劣化を抑制することが可能となり、更には、フューエルカット制御から通常運転復帰直後の排気エミッションの向上を図ることが可能となる共通の効果を奏する。
以下、添付図面を参照して本発明に係る内燃機関の制御装置の一実施形態について説明する。
図1は、本発明に係る内燃機関の制御装置の一実施形態を示す概略構成図である。図1において、1は内燃機関本体、2は排気通路、3は三元触媒、4は吸気通路、5はエアフローメータ、6は電子スロットル弁、7は電子制御燃焼噴射制御装置(以下、EFI制御装置と称す)、8は電子制御装置(以下、ECUと称す)、9はアクセル開度検出手段、10は機関回転数検出手段、11は触媒温度検出手段、12は触媒雰囲気酸素濃度検出手段、13はSOx保持量検出手段、をそれぞれ示す。
内燃機関本体1の排気通路2には排気を浄化するための三元触媒3が配置されている。三元触媒3は、触媒雰囲気が理論空燃比のときにNOx、HCおよびCOを最大効率で浄化する役割を果すものである。また、三元触媒3は、酸素ストレージ能を促進する助触媒として触媒担体に例えばセリアなどが添加されており、流入する排気の空燃比に応じて酸素を吸蔵したり、放出したりする酸素ストレージ能を有している。具体的には、酸素ストレージ能を有する三元触媒3は、流入する排気の空燃比がリーン空燃比であるときに過剰分の酸素を吸蔵し、流入する排気の空燃比がリッチ空燃比であるときに不足分の酸素を放出することにより、排気を浄化する。
このような酸素ストレージ能を有する三元触媒3によれば、酸素ストレージ能の作用により、該三元触媒3がHC、COおよびNOxの三成分の全てを80%以上除去する理論空燃比近傍の空燃比幅(ウィンドウとも称す)を拡げることが可能となる。尚、本実施形態においては、内燃機関本体1の排気通路2に配置される排気浄化触媒として酸素ストレージ能を有する三元触媒3としたが、排気中のSOxに起因して硫黄臭がもたらされうるような他の排気浄化触媒が三元触媒3の代わりに使用されてもよい。
内燃機関本体1の吸気通路4には、スロットル弁開度が電子制御される電子スロットル弁6と、該電子スロットル弁6により調整された吸入空気流量を測定するエアフローメータ5とが配置されている。エアフローメータ5は、該エアフローメータ5の中を流れる空気の流量に基づいて内燃機関本体1に吸入される空気量を計測する役割を果すものであって、ポテンシオメータ等を内蔵して吸入空気流量に比例したアナログ電圧の出力信号を発生するものである。
内燃機関本体1には、EFI制御装置7が配置されている。EFI制御装置7は、燃料噴射する時期などを電子制御で行い、電磁噴射ノズルで燃料噴射するものであり、具体的には、エアフローメータ5で計測された吸入空気量に基づいて最適な燃料噴射量を決定し、所定の圧力で燃料を電磁噴射ノズルで噴射するものである。
ECU8は、CPU(中央演算装置)、RAM(ランダムアクセスメモリ)、ROM(リードオンリメモリ)、入出力ポートを双方向バスで接続した公知のデジタルコンピュータからなり、各種センサや駆動装置と信号をやり取りして内燃機関の回転数(以下、機関回転数とも称す)や吸入空気量などの制御に必要なパラメータを算出するとともに、算出されたパラメータに基づいて燃焼空燃比制御あるいは燃料噴射量制御や点火時期制御等の内燃機関の運転に関する種々の制御を行う役割を果すものである。尚、上述したエアフローメータ5および電子スロットル弁6もECU8に接続されており、エアフローメータ5からの検出情報をECU8に取り込むことができ、また、ECU8からの信号によって電子制御スロットル弁6のスロットル弁開度を電子制御することができるように構成されている。
更にECU8には、アクセル開度検出手段9、機関回転数検出手段10、触媒温度検出手段11、触媒雰囲気酸素濃度検出手段12およびSOx保持量検出手段13も接続されており、各検出手段からの検出情報をECU8に取り込むことができるように構成されている。
アクセル開度検出手段9は、内燃機関運転中のアクセル開度を検出する役割を果すものである。機関回転数検出手段10は、内燃機関の回転数を検出する役割を果すものであり、具体的には、内燃機関の出力軸の回転数を検出する回転速度センサを有して構成され、該回転速度センサにより内燃機関の回転数を検出するものである。
触媒温度検出手段11は、三元触媒3の温度を推定する機能を有する。三元触媒温度は、例えば、三元触媒3の内燃機関本体1に近い上流側あるいは内燃機関本体1から遠い下流側に配置された排気温度センサにより検出された温度情報に基づいて推定される。この場合、触媒温度検出手段11は、排気温度センサを主要素として構成されることになる。ただし、例えば、三元触媒3と排気温度センサとの間には多少の隔たりがあり、この隔たりにおける温度勾配等を推定すべく、回転負荷、空燃比、熱伝達係数、触媒反応速度等のパラメータを用いて補正が行われることになり、これらの各情報を検出する各要素もまた、当該触媒温度検出手段11の構成要素となる。
触媒雰囲気酸素濃度検出手段12は、三元触媒雰囲気の酸素濃度を検出する機能を有する。例えば、三元触媒雰囲気の酸素濃度は、三元触媒3の上流側および下流側の少なくとも一方に配置されたリニア空燃比センサあるいはO2センサにより検出された空燃比検出情報に基づいて推定される。リニア空燃比センサは、排気の空燃比にほぼ比例する出力特性を有するセンサであり、O2センサは、排気の空燃比が理論空燃比に対してリッチ側にあるか、あるいは、リーン側にあるかを検出する特性を有するセンサである。この場合、触媒雰囲気酸素濃度検出手段12は、リニア空燃比センサあるいはO2センサを主要素として構成されることになる。
SOx保持量検出手段13は、流入する排気により三元触媒3に吸着あるいは保持されたSOx量を推定する機能を有する。例えば、SOx保持量は、燃料中の硫黄成分の濃度および消費燃料量から推定されうる。この場合、SOx保持量検出手段13は、燃料中の硫黄成分の濃度および消費燃料量のそれぞれを検出する要素を主要素として構成されることになる。
本実施形態においては通常運転時においては、アクセル開度と機関回転数とから要求トルクが求められ、該要求トルクに応じた要求吸入空気量が決定され、該要求吸入空気量を実現するように、ECU8からの信号により電子スロットル弁6が駆動され、スロットル弁開度が制御される。そして、そのスロットル弁開度に伴う実吸入空気量に応じた燃料噴射量を実現するようにEFI制御装置7が制御される。
また、アクセル開度がゼロであるとともに車速がほぼゼロであるような内燃機関がアイドリング状態にある場合には、吸入空気量が予め定めたアイドリング時吸入空気量を実現すべく、スロットル弁開度が予め定めたアイドリング時スロットル弁開度とされる。また、燃料噴射量は、スロットル弁開度に伴う実吸入空気量に応じた燃料噴射量とされる。
更に、本実施形態においては、例えば内燃機関の運転状態がエンジンブレーキ状態のような車両が減速状態にある場合、内燃機関への燃料の供給を停止するフューエルカット制御が行われるようになっている。より詳細には、本実施形態では、車両が減速状態にあって、アクセル開度がゼロであり且つ機関回転数が所定回転数以上の時には原則としてフューエルカット制御が実施されるようになっている。このようなフューエルカット制御を実行することで、燃費や排気エミッションの向上を図るようになっている。
ところで、例えば排気系に排気浄化触媒が配置されている場合において上記のようなフューエルカット制御が実施された際、フューエルカット制御中に内燃機関に取り込まれた吸入空気は燃焼室内で燃焼に関与することなくそのままの状態で排気され排気系に配置された排気浄化触媒に流入するため、排気浄化触媒雰囲気がリーン空燃比状態あるいは排気浄化触媒が酸素過多の状態で且つ高温状態に置かれて劣化してしまう場合がある。そこで、フューエルカット制御の実行に伴う排気浄化触媒の劣化を抑制するために、フューエルカット制御実行中には排気浄化触媒へ空気を流入させないようにすることが提案されている。
しかしながら、フューエルカット制御実行中に排気浄化触媒への空気の流入を停止するようにした場合、排気浄化触媒の劣化の抑制は図れるものの、硫黄臭となる硫化水素(H2S)の発生がもたらされうるという問題があった。そしてこの硫化水素の発生の問題は以下のような理由で生じるものと考えられる。
内燃機関の排気系に配置された例えば三元触媒のような排気浄化触媒は、一般に、該排気浄化触媒に流入する排気の空燃比がリーン空燃比状態である場合には、燃料中の硫黄成分が燃焼して生じたSOxを同排気浄化触媒中に吸着あるいは保持する作用を有する。また、酸素ストレージ能を有するような排気浄化触媒は、該排気浄化触媒が酸化状態すなわち排気浄化触媒中に十分な酸素が保持あるいは吸蔵されている場合には、流入する排気の空燃比が理論空燃比である場合においても、排気中のSOxを同排気浄化触媒中に保持することができる。そして、このような作用により、燃焼空燃比すなわち燃焼室内における空燃比を理論空燃比として内燃機関が運転される通常運転時には、排気中のSOxは排気系に配置された排気浄化触媒に保持されることになる。
その一方で上記のような排気浄化触媒は、該排気浄化触媒が還元状態すなわち排気浄化触媒に十分な酸素が保持されていない場合においては、排気浄化触媒に流入する排気の空燃比がリッチ空燃比状態もしくは理論空燃比状態になると、それまで排気浄化触媒中に保持していたSOxを放出するという性質を有している。そしてこのように排気中に放出されたSOxは、燃料の燃焼過程で生じた水素と反応して硫化水素(H2S)となり、該硫化水素が外部へ放出された場合には硫黄臭をもたらすことになる。
フューエルカット制御実行中に排気浄化触媒への空気の流入を停止するようにした場合を考えてみると、排気浄化触媒への空気の流入が停止されるためにフューエルカット実行中に排気浄化触媒に酸素が十分に供給されず、結果として排気浄化触媒に吸着あるいは保持されていたSOxが硫化水素となって外部へ放出されやすい状態となる。例えば、フューエルカット制御の実行直前の内燃機関の運転状態が、出力増大や排気浄化触媒温度の低下を目的とした燃料の増量がなされ、排気空燃比がリッチ空燃比である運転状態であった場合には、排気浄化触媒に十分な酸素が保持されていないため、外部へ硫化水素が放出される可能性が高くなる。更に、車両速度が相当に低下した場合もしくは車両が停止状態になった場合には、排気の拡散が生じにくくなるために硫黄臭の問題が一層高くなる。
そこで、本発明に係る内燃機関の制御装置においては、フューエルカット中の排気浄化触媒の劣化の抑制を図りつつ硫黄臭の問題にも対応すべく、フューエルカット制御が実行される際において、排気浄化触媒雰囲気が硫黄臭発生状態にあると判断された場合には、迅速に排気浄化触媒雰囲気をリーン空燃比状態あるいは排気浄化触媒を酸化状態にして且つ排気浄化触媒を所定温度に冷却させるように、排気浄化触媒に流入させる空気流量を大きくするように制御する。一方で、排気浄化触媒雰囲気が硫黄臭発生状態にないと判断された場合には、排気浄化触媒に空気を極力流入させないように、排気浄化触媒に流入させる空気流量を小さくするように制御する。
このように制御することで、フューエルカット制御を実行するに際して排気浄化触媒雰囲気が硫黄臭発生状態に無い場合には、排気浄化触媒に流入する空気量を極めて小さくすることができ、排気浄化触媒雰囲気がリーン空燃比状態あるいは排気浄化触媒が酸化状態になることを抑制でき、排気浄化触媒の劣化を抑制することが可能となる。また、フューエルカット制御を実行するに際して排気浄化触媒雰囲気が硫黄臭発生状態にある場合にも、迅速に排気浄化触媒雰囲気をリーン空燃比状態あるいは排気浄化触媒を酸化状態にして且つ排気浄化触媒を所定温度に冷却することができ、硫黄臭の発生を抑制しつつ排気浄化触媒の劣化を抑制することが可能となるとともに、更に、フューエルカット制御から通常運転復帰直後の排気エミッションの向上を図ることが可能となる。
次に、上述した各構成要件を有する図1に示す実施形態の内燃機関の制御装置において実行される運転制御について、図2を参照しつつ、以下に説明する。図2は、本制御装置が適用された図1に示す内燃機関で実行される、フューエルカット制御が実行される際における内燃機関の運転制御の制御ルーチンの一実施形態を示すフローチャート図である。本制御ルーチンはECU8により一定時間毎の割り込みによって実施される。
図2に示す制御ルーチンでは、先ず、フューエルカット制御の実行条件が成立しているか否かの判定がなされる。フューエルカット制御の実行条件が成立していると判定されると、三元触媒3の触媒温度が検出され、該触媒温度に基づいて、三元触媒3を予め設定された所定温度に冷却するために必要な冷却時間(α)が算出される。次に、三元触媒雰囲気が硫黄臭の発生条件を満たすような状態にあるか否かの判定がなされる。三元触媒雰囲気が硫黄臭の発生状態にあると判定された場合には、三元触媒3に流入する空気流量を、内燃機関がアイドリング状態にある時の吸入空気流量よりも増量制御し、三元触媒雰囲気をリーン空燃比状態あるいは三元触媒3を酸化状態にするとともに、上記冷却時間(α)の間、増量された空気流量で三元触媒3に空気を流入させ、三元触媒3を予め設定された所定温度に冷却する。これにより、三元触媒3からの硫黄臭の発生を抑制するとともに、三元触媒3の劣化を抑制することができ、更には、三元触媒3の過剰冷却を防止することができ、フューエルカット制御から通常運転復帰直後の排気エミッションの向上を図ることを可能とする。尚、三元触媒3の所定温度への冷却が完了した後は、増量された三元触媒流入空気流量を、内燃機関がアイドル状態にある時の吸入空気流量に減少させる。これにより、フューエルカット制御から通常運転復帰時のドラビリショックを緩和することが可能となる。また、三元触媒雰囲気が硫黄臭の発生状態にないと判定された場合には、三元触媒3に流入する空気流量を、内燃機関がアイドリング状態にある時の吸入空気流量よりも減量制御し、三元触媒3に空気が極力流入しないようにする。これにより、排気浄化触媒雰囲気がリーン空燃比状態あるいは排気浄化触媒が酸化状態になることを抑制でき、三元触媒3の劣化を抑制することを可能とする。
以下に各ステップの詳細について説明する。
ステップ101においては、アクセル開度検出手段9および機関回転数検出手段10により検出されたアクセル開度および機関回転数の各情報に基づいて、ECU8により、フューエルカット制御の実行条件が成立しているか否かの判定がなされる。具体的には、車両が減速状態にあり且つアクセル開度がゼロであるような場合にフューエルカット制御の実行条件が成立していると判定される。フューエルカット制御の実行条件が成立していると判定されると、続くステップ102に進み、フューエルカット制御の実行条件が成立していないと判定されると、本制御ルーチンは終了される。
ステップ102においては、触媒温度検出手段11により三元触媒3の温度が検出され、ECU8に取り込まれる。そして、続く、ステップ103において、現状の三元触媒温度から三元触媒3を冷却する際の制御設定温度となる所定温度まで冷却するのに必要な冷却時間(α)がECU8により算出される。該冷却時間(α)は、本実施形態においては、フューエルカット制御実行直前の三元触媒温度に基づいて冷却時間(α)を算出するために作成されたマップを使用して算出される。
図3は、三元触媒を所定温度に冷却すべく、フューエルカット制御直前の三元触媒温度に基づいて設定される冷却時間(α)を算出するマップの一実施形態を示す図である。該マップは、三元触媒温度と冷却時間(α)との関係を把握するために予め実施される試験や解析等の結果データに基づいて作成され、例えばメモリーなどに記憶されてECU8に格納される。フューエルカット制御実行直前の三元触媒温度と冷却時間(α)との関係は、フューエルカット制御実行中において三元触媒3に空気を流入させる際の制御設定空気流量および三元触媒3を冷却させる際の制御設定温度により異なり、内燃機関運転状態や使用環境に応じて適当な制御設定空気流量や制御設定温度を選択可能にすべく、制御設定空気流量および制御設定温度をパラメータとした種々のマップや関係式等が予め作成され、メモリーなどに記憶されてECU8に格納されていることが好ましい。
尚、三元触媒3を冷却する際の制御設定温度となる所定温度は、三元触媒3の劣化の発生を抑制できる温度であって且つ三元触媒3の過剰冷却を防止できる温度に設定される。一般的に、三元触媒3などの排気浄化触媒の浄化機能は反応温度条件に大きく依存し、触媒温度が低い場合には、排気に対する浄化機能が十分に機能しないことが知られている。従って、フューエルカット制御中に三元触媒3が過剰に冷却されると、フューエルカット制御から通常運転復帰直後、三元触媒3が浄化機能を十分に発揮しうる温度に昇温されるまでの間、三元触媒3による排気浄化は十分になされずに、排気エミッションの悪化をもたらしうる。三元触媒3を冷却する際の制御設定温度となる所定温度を、三元触媒3の劣化の発生を抑制できる温度であって、三元触媒3の過剰冷却を防止できる温度に設定することで、三元触媒3の劣化の発生を抑制しつつ、三元触媒3の過剰冷却を防止し、排気エミッションの向上を図ることが可能となる。
上記のようにステップ103において、現状の三元触媒温度から所定温度まで冷却するのに必要な冷却時間(α)がECU8により算出されると、次にステップ104に進み、触媒温度検出手段11、触媒雰囲気酸素濃度検出手段12およびSOx保持量検出手段13の各検出情報に基づいて、三元触媒雰囲気が硫黄臭発生条件を満たしている状態にあるか否かの判定がなされる。具体的には、触媒温度検出手段11により検出された触媒温度、触媒雰囲気酸素濃度検出手段12により検出された三元触媒雰囲気状態、および、SOx保持量検出手段13により推定された触媒中のSOx保持量の各検出情報をECU8に取り込み、三元触媒雰囲気がリッチ空燃比状態且つ例えば約400℃〜500℃以上の高温状態にあり、三元触媒3中にSOxが存在する可能性があると推定された場合に、三元触媒雰囲気が硫黄臭を発生しうる状態すなわち三元触媒3から硫化水素が発生しうる条件が成立していると、ECU8により判定される。
尚、実施形態においては、三元触媒雰囲気が硫黄臭発生条件を満たしている状態にあるか否かの判定をする際に、触媒温度、三元触媒雰囲気状態および触媒中のSOx保持量の三つの検出情報を用いているが、触媒中のSOx保持量の推定精度が乏しいと考えられるような場合には、触媒温度および三元触媒雰囲気状態の二つの検出情報のみに基づいて、三元触媒雰囲気が硫黄臭発生条件を満たしている状態にあるか否かの判定がなされる。すなわち、三元触媒雰囲気が硫黄臭発生条件を満たしている状態にあるか否かの判定は、基本的には触媒温度および三元触媒雰囲気状態の二つの検出情報のみに基づいてなされることになる。
ステップ104において、三元触媒雰囲気が硫黄臭発生条件を満たしている状態にあると判定されると、続くステップ105からステップ107に進み、フューエルカット制御および触媒流入空気流量の増量制御の実行、更には、冷却時間タイマーのカウントの開始が略同時になされる。
ステップ105におけるフューエルカット制御は、内燃機関への燃料の供給を停止する制御であり、具体的には、ECU8からの信号によりEFI制御装置7により電磁噴射ノズルによる内燃機関への燃料噴射が停止されることで実行される。このようなフューエルカット制御を実行することで、例えば内燃機関の運転状態がエンジンブレーキ状態のような車両が減速状態にある場合などのように内燃機関への燃料の供給を必要としない際の、燃費の向上を図ることが可能となる。
ステップ106における触媒流入空気流量の増量制御は、三元触媒3に流入する空気の流量を、内燃機関がアイドリング状態にある時の吸入空気量よりも大きな所定流量に増量する制御であり、具体的には、ECU8からの信号により電子スロットル弁6の開度を制御し、三元触媒3に流入する空気の流量を所定流量に制御することで実行される。三元触媒3に流入する実空気量は、エアフローメータ5からの検出情報に基づいてECU8にて監視され、場合によっては電子スロットル弁6の開度がフィードバック制御される。尚、フューエルカット制御中に三元触媒3に空気を流入する際の制御設定空気流量となる所定流量は、フューエルカット実行時の内燃機関運転状態や三元触媒温度に応じて適当に決定される。
このような触媒流入空気流量の増量制御を実行することで、迅速に三元触媒雰囲気をリーン空燃比状態あるいは三元触媒3を酸化状態にして且つ三元触媒3を所定温度に冷却させることができ、フューエルカット中の排気硫黄臭の発生を抑制しつつ三元触媒3の劣化の抑制を図ることを可能とする。
ステップ107においては、ステップ106における触媒流入空気流量の増量制御の開始と同時に、ステップ103で算出された冷却時間(α)に対するタイマーのカウントがECU8により開始される。
ステップ107に続くステップ108においては、三元触媒雰囲気がリーン空燃比状態あるいは三元触媒3が酸化状態にあることを確実にするために、三元触媒3の酸化が完了したか否か、すなわち三元触媒3の酸素貯蔵量が三元触媒3の最大酸素貯蔵量に達するまで三元触媒3に酸素が供給されたか否かの判定がなされる。フューエルカット制御中に三元触媒3に酸素が供給され、三元触媒3の酸素吸蔵量が三元触媒3の最大酸素吸蔵量に達した時点での触媒雰囲気状態は、三元触媒雰囲気中の水素成分が全て排出され存在しない状態と考えられ、より確実に硫黄臭の発生を防止することが可能となる。三元触媒の酸化が完了したか否かを判定する手段には、種々の手段が考えられるが、以下に二つの具体的な方法について述べる。
第一の方法においては、三元触媒3に流入された空気量に基づいて三元触媒3の酸化完了を推定する。具体的には、現状の三元触媒3の酸素貯蔵量がゼロであると仮定して、三元触媒3に流入された空気量が、三元触媒3が有する当初の最大酸素吸蔵量に相当する酸素量を供給する空気量に達した時点で三元触媒3の酸化が完了したと判定する。この場合、三元触媒3に流入された空気量はエアフローメータ5により検出された空気流量に基づいてECU8により算出される。三元触媒3の最大酸素吸蔵量は、過酷な使用による劣化などに伴い変化するが、三元触媒3が有する当初の最大酸素吸蔵量に相当する酸素量を供給することで、確実に三元触媒3の酸素吸蔵量を三元触媒3の最大酸素吸蔵量にまで達成させることができる。
第二の方法においては、三元触媒3に流入する排気の酸素濃度および三元触媒3から流出する排気の酸素濃度に基づいて三元触媒3の酸化完了を推定する。三元触媒3の酸素吸蔵量が三元触媒3の最大酸素吸蔵量に達していない場合は、三元触媒3に流入する空気中の酸素は三元触媒3に吸蔵されることになり、三元触媒3に流入する排気の酸素濃度と三元触媒3から流出する排気の酸素濃度とは異なるが、三元触媒3の酸素吸蔵量が三元触媒3の最大酸素吸蔵量に達した場合には、三元触媒3に流入する排気の酸素濃度と三元触媒3から流出する排気の濃度とが同じとなること考えられる。そこで、三元触媒3に流入する排気の酸素濃度と三元触媒3から流出する排気の酸素濃度とが同じとなった時点で三元触媒3の酸化が完了したと判定することができる。この場合、三元触媒3の前後には酸素濃度センサが配置され、該酸素濃度センサの検出情報に基づいて、三元触媒3の酸化が完了したか否か、すなわち三元触媒3の酸素貯蔵量が三元触媒3の最大酸素貯蔵量に達するまで三元触媒3に酸素が供給されたか否かの判定がなされる。
ステップ108において、三元触媒3の酸化が完了し三元触媒雰囲気がリーン空燃比状態あるいは三元触媒3が酸化状態に確実にあると判定されると、続くステップ109に進み、三元触媒3の酸化が完了していないと判定された場合であって、フューエルカット制御実行中で三元触媒雰囲気が硫黄臭の発生条件を満たしている状態の場合には、ステップ106における触媒流入空気流量の増量制御が継続される。
ステップ109においては、ステップ107において開始された冷却時間タイマーのカウントが、ステップ103で算出された冷却時間(α)に達しているか否かの判定がECU8によりなされる。冷却時間タイマーのカウントが冷却時間(α)に達した時点で、三元触媒3の劣化の発生を抑制できる温度であって且つ三元触媒3の過剰冷却を防止できる温度となる所定温度に三元触媒3が冷却されたと推定され、続くステップ110に進む。また、タイマーのカウントが冷却時間(α)に達していない場合であって、フューエルカット制御実行中で三元触媒雰囲気が硫黄臭の発生条件を満たしている状態の場合には、ステップ106における触媒流入空気流量の増量制御が継続される。
ステップ110においては、ステップ106において増量された三元触媒3に流入する空気の流量が、フューエルカット制御中に、内燃機関がアイドリング状態にある時の吸入空気流量に減少される。具体的には、ECU8からの信号により電子スロットル弁6の開度を制御し、三元触媒3に流入する空気の流量を、内燃機関がアイドリング状態にある時の吸入空気流量に制御することで実行される。制御された空気流量は、エアフローメータ5から検出情報に基づいてECU8にて監視され、場合によっては電子スロットル弁6の開度がフィードバック制御される。
三元触媒3に流入する空気の流量が増量されたままの状態でフューエルカット制御が中止され内燃機関が通常運転に復帰されると、通常運転復帰直後は、増量された空気流量に基づいてECU8およびEFI制御装置7により最適な燃料噴射量が決定され所定の圧力で燃料が噴射されるため、通常運時において最適とされる燃料噴射量より多い燃料が噴射され、要求トルク以上のトルクが発生してしまう可能性があり、このことはドラビリショックとして現れ、運転性能の低下をもたらしうる。そこで、ステップ110においては、三元触媒雰囲気をリーン空燃比状態あるいは三元触媒3を酸化状態にして且つ三元触媒3を所定温度に冷却させた後は、三元触媒3に流入する空気の流量を、内燃機関がアイドリング状態にある時の吸入空気量に、フューエルカット制御実行中に減少させることで、要求トルク以上のトルクの発生を抑制することができ、ドラビリショックを緩和し運転性能の向上を図ることを可能とする。
尚、ステップ104において、三元触媒雰囲気が硫黄臭発生条件を満たしている状態にあると判定されると、ステップ111およびステップ112に進み、フューエルカット制御および触媒流入空気流量の減量制御の実行が略同時になされる。
ステップ111におけるフューエルカット制御は、ステップ105と同様の内容であり、ここでの説明は省略する。
ステップ112における触媒流入空気流量の減量制御は、三元触媒3に流入する空気の流量を、内燃機関がアイドリング状態にある時の吸入空気量よりも小さい流量に減量する制御であり、理想的には、三元触媒3に流入する空気の流量をゼロにする制御である。具体的には、ECU8からの信号により電子スロットル弁6の開度を制御し、三元触媒3に流入する空気の流量をゼロにするように制御することで実行される。制御された空気流量は、エアフローメータ5から検出情報に基づいてECU8にて監視され、場合によっては電子スロットル弁6の開度がフィードバック制御される。このような触媒流入空気流量減量制御を実行することで、排気浄化触媒雰囲気がリーン空燃比状態あるいは排気浄化触媒が酸化状態になることを抑制でき、排気浄化触媒の劣化を抑制することが可能となる。
一方で、触媒流入空気流量の減量制御により、内燃機関がアイドリング状態にある時の吸入空気流量でしか三元触媒3に空気が流入しないように制御されたとしても、フューエルカット制御が極めて長期間にわたり実行された場合などのような特殊な場合によっては、フューエルカット制御中に、三元触媒雰囲気がリーン空燃比状態あるいは三元触媒3が酸化状態になってしまう可能性はある。このことに鑑み、ステップ112に続く、ステップ113からステップ116においては、三元触媒3の酸素吸蔵量が最大酸素吸蔵量に達しているか否かを判定することで、三元触媒雰囲気がリーン空燃比状態あるいは三元触媒が酸化状態に確実にあるか否かを判定し、三元触媒雰囲気がリーン空燃比状態あるいは三元触媒3が酸化状態に確実にあると判定された場合には、三元触媒3に流入する空気の流量を、内燃機関がアイドリング状態にある時の吸入空気流量よりも大きな流量に制御する触媒流入空気流量増量制御が実行され、三元触媒3の劣化の発生を抑制できる温度であって且つ三元触媒3の過剰冷却を防止できる温度となる所定温度に三元触媒3が冷却される。該所定温度に三元触媒3が冷却された後は、フューエルカット制御実行中に、三元触媒3に流入する空気の流量が、内燃機関がアイドリング状態にある時の吸入空気流量とされるように制御される。このような制御内容およびその作用効果は、前述したステップ106からステップ110に対応し、ここでは、その説明を省略する。
尚、本実施形態においては、フューエルカット制御の実行において三元触媒3を制御設定温度となる所定温度に冷却する際に、三元触媒3の所定温度への冷却が完了したことを推定する判定要素に冷却時間を用いたが、三元触媒3に流入された空気量が判定要素とされてもよい。その場合、三元触媒3に流入された空気量はエアフローメータ5により検出された空気流量に基づいてECU8により算出される。また、三元触媒3を所定温度に冷却するのに必要な三元触媒3に流入させる制御設定空気量を決定すべく、フューエルカット制御直前の三元触媒温度に基づく制御設定空気量を算出するためのマップが、予め実施される試験や解析の結果データに基づいて作成されることになる。
また、本実施形態においては、内燃機関への燃料の供給を停止するフューエルカット制御手段は、アクセル開度検出手段9、機関回転数検出手段10、EFI制御装置7およびECU8を有して構成される。また、フューエルカット制御を実行する際に硫黄臭が発生する状態に三元触媒3があるか否かを判定する硫黄臭発生状態判定手段は、触媒温度検出手段11、触媒雰囲気酸素濃度検出手段12、SOx保持量検出手段13およびECU8を有して構成される。更に、フューエルカット制御中の三元触媒3に流入する空気の流量を制御する触媒流入空気量制御手段は、エアフローメータ5、電子スロットル弁5およびECU8を有して構成される。しかしながら、上記各手段の構成要素は、上記構成要素に限定されるものではなく、同様の機能を果しうるような構成要素が代替的に使用されてもよい。
本発明に係る内燃機関の制御装置の一実施形態を示す概略構成図である。 本制御装置が適用された図1に示す内燃機関で実行される、フューエルカット制御が実行される際における内燃機関の運転制御の制御ルーチンの一実施形態を示すフローチャート図である。 三元触媒温度を所定温度に冷却すべく、フューエルカット制御直前の三元触媒温度に基づいて設定される冷却時間(α)を算出するマップの一実施形態を示す図である。
符号の説明
1 内燃機関本体
2 排気通路
3 三元触媒
4 吸気通路
5 エアフローメータ
6 電子スロットル弁
7 EFI制御装置(電子制御燃焼噴射制御装置)
8 ECU(電子制御装置)
9 アクセル開度検出手段
10 機関回転数検出手段
11 触媒温度検出手段
12 触媒雰囲気酸素濃度検出手段
13 SOx保持量検出手段

Claims (5)

  1. 排気系に排気浄化触媒が配置された内燃機関を制御する装置において、
    前記内燃機関への燃料の供給を停止するフューエルカット制御を実行するフューエルカット制御手段と、前記フューエルカット制御を実行する際に硫黄臭が発生する状態に前記排気浄化触媒があるか否かを判定する硫黄臭発生状態判定手段と、前記フューエルカット制御中の前記排気浄化触媒に流入する空気の流量を制御する触媒流入空気流量制御手段とを有し、
    前記触媒流入空気流量制御手段は、
    前記フューエルカット制御手段による前記フューエルカット制御を実行する際に前記硫黄臭発生状態判定手段により前記排気浄化触媒が硫黄臭を発生する状態にあると判定された場合には、迅速に前記排気浄化触媒の雰囲気をリーン空燃比状態にして且つ前記排気浄化触媒を所定温度に冷却させるように、前記内燃機関がアイドリング状態にある時の吸入空気流量よりも大きな空気流量で前記排気浄化触媒に空気が流入するように制御し、
    前記フューエルカット制御手段による前記フューエルカット制御を実行する際に前記硫黄臭発生状態判定手段により前記排気浄化触媒が硫黄臭を発生する状態にないと判定された場合には、前記内燃機関がアイドリング状態にある時の吸入空気流量よりも小さな空気流量でしか前記排気浄化触媒に空気が流入しないように制御する、
    ことを特徴とする内燃機関の制御装置。
  2. 前記フューエルカット制御手段による前記フューエルカット制御を実行する際に前記硫黄臭発生状態判定手段により前記排気浄化触媒が硫黄臭を発生する状態にあると判定された場合において、
    前記触媒流入空気流量制御手段は、前記排気浄化触媒の雰囲気をリーン空燃比状態にして且つ前記排気浄化触媒を前記所定温度に冷却させた後は、前記排気浄化触媒に流入する空気流量を、前記内燃機関がアイドリング状態にある時の吸入空気流量に減少させる、
    ことを特徴とする請求項1に記載の内燃機関の制御装置。
  3. 前記排気浄化触媒は、流入する排気中の酸素濃度が過剰であるときには排気中の酸素を吸蔵し且つ排気中の酸素濃度が不足しているときには吸蔵している酸素を放出する酸素ストレージ能を有する排気浄化触媒であり、
    前記触媒流入空気流量制御手段は、
    前記フューエルカット制御手段による前記フューエルカット制御を実行する際に前記硫黄臭発生状態判定手段により前記排気浄化触媒が硫黄臭を発生する状態にあると判定された場合には、迅速に前記排気浄化触媒の雰囲気をリーン空燃比状態にして更に前記排気浄化触媒の酸素貯蔵量が前記排気浄化触媒の最大酸素貯蔵量に達するまで前記排気浄化触媒中に酸素を供給し且つ前記排気浄化触媒を前記所定温度に冷却させるように、前記内燃機関がアイドリング状態にある時の吸入空気流量よりも大きな空気流量で前記排気浄化触媒に空気が流入するように制御する、
    ことを特徴とする請求項1に記載の内燃機関の制御装置。
  4. 前記フューエルカット制御手段による前記フューエルカット制御を実行する際に前記硫黄臭発生状態判定手段により前記排気浄化触媒が硫黄臭を発生する状態にあると判定された場合において、
    前記触媒流入空気流量制御手段は、前記排気浄化触媒の雰囲気をリーン空燃比状態にして更に前記排気浄化触媒の酸素貯蔵量が前記排気浄化触媒の最大酸素貯蔵量に達するまで前記排気浄化触媒中に酸素を供給し且つ前記排気浄化触媒を前記所定温度に冷却させた後は、前記排気浄化触媒に流入する空気流量を、前記内燃機関がアイドリング状態にある時の吸入空気流量に減少させる、
    ことを特徴とする請求項3に記載の内燃機関の制御装置。
  5. 前記硫黄臭発生状態判定手段は、
    前記排気浄化触媒の温度を検出する排気浄化触媒温度検出手段と、前記排気浄化触媒雰囲気の酸素濃度状態を検出する触媒雰囲気検出手段とを少なくとも有し、
    前記排気浄化触媒温度検出手段および前記触媒雰囲気検出手段の各検出情報に基づいて、硫黄臭が発生する状態に前記排気浄化触媒があるか否かを判定する、
    ことを特徴とする請求項1から請求項4のいずれか一つの請求項に記載の内燃機関の制御装置。
JP2005282085A 2005-09-28 2005-09-28 内燃機関の制御装置 Pending JP2007092609A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005282085A JP2007092609A (ja) 2005-09-28 2005-09-28 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005282085A JP2007092609A (ja) 2005-09-28 2005-09-28 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2007092609A true JP2007092609A (ja) 2007-04-12

Family

ID=37978617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005282085A Pending JP2007092609A (ja) 2005-09-28 2005-09-28 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP2007092609A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144604A (ja) * 2008-12-18 2010-07-01 Toyota Motor Corp 排気ガス改質システム
WO2013035159A1 (ja) 2011-09-06 2013-03-14 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2014040821A (ja) * 2012-08-23 2014-03-06 Toyota Motor Corp 車両の制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144604A (ja) * 2008-12-18 2010-07-01 Toyota Motor Corp 排気ガス改質システム
WO2013035159A1 (ja) 2011-09-06 2013-03-14 トヨタ自動車株式会社 内燃機関の排気浄化装置
US9010093B2 (en) 2011-09-06 2015-04-21 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for an internal combustion engine
JP2014040821A (ja) * 2012-08-23 2014-03-06 Toyota Motor Corp 車両の制御装置
US9388752B2 (en) 2012-08-23 2016-07-12 Toyota Jidosha Kabushiki Kaisha Control system for vehicle for controlling an internal combustion engine during transmission gear shifting

Similar Documents

Publication Publication Date Title
JP6287989B2 (ja) NOx吸蔵還元型触媒の異常診断装置
JP4305643B2 (ja) 内燃機関の排気浄化装置
JP2008286042A (ja) NOx浄化システムの制御方法及びNOx浄化システム
JP2009062850A (ja) 内燃機関の排気浄化装置
JP5382129B2 (ja) 内燃機関の排気浄化装置及び排気浄化方法
JP2002038926A (ja) 内燃機関の排気浄化装置
JP3855920B2 (ja) 内燃機関の排気浄化装置
JP2015124683A (ja) エンジンの燃料噴射制御装置
JP2008240577A (ja) 酸化触媒の劣化診断装置及び劣化診断方法
JP6102908B2 (ja) 排気浄化装置の劣化診断装置
JP5811822B2 (ja) ディーゼルエンジンの排気ガス浄化方法及び排気ガス浄化システム
US10316776B2 (en) Control apparatus for an internal combustion engine
JP2007046494A (ja) 内燃機関の空燃比制御装置
JP4636273B2 (ja) 内燃機関の排気浄化装置
JP2007092609A (ja) 内燃機関の制御装置
JP4289033B2 (ja) 排気ガス浄化システム
JP2016109026A (ja) 内燃機関の排気浄化装置
JP2015148219A (ja) 排気浄化装置の異常検出装置
JP4093302B2 (ja) NOx浄化システムの触媒劣化判定方法及びNOx浄化システム
JP3838139B2 (ja) 内燃機関の排気浄化装置
JP6206314B2 (ja) 内燃機関の制御装置
JP3656496B2 (ja) 内燃機関の排気浄化装置
JP2008057486A (ja) 内燃機関の排気浄化装置
JP4311079B2 (ja) 内燃機関の排気浄化システム
JP2004232576A (ja) 内燃機関の排気浄化装置