JP2007092016A - Ground improving additive for jet grout method of construction and ground improving cement composition using the same - Google Patents

Ground improving additive for jet grout method of construction and ground improving cement composition using the same Download PDF

Info

Publication number
JP2007092016A
JP2007092016A JP2006028721A JP2006028721A JP2007092016A JP 2007092016 A JP2007092016 A JP 2007092016A JP 2006028721 A JP2006028721 A JP 2006028721A JP 2006028721 A JP2006028721 A JP 2006028721A JP 2007092016 A JP2007092016 A JP 2007092016A
Authority
JP
Japan
Prior art keywords
component
mass
ground improvement
ground
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006028721A
Other languages
Japanese (ja)
Other versions
JP4878857B2 (en
Inventor
Hiroyoshi Kato
弘義 加藤
Katsuya Yanagihara
勝也 柳原
Hiroyuki Doi
宏行 土井
Kazuhiro Yoshioka
一弘 吉岡
Shinji Tamaki
伸二 玉木
Mitsuo Kinoshita
光男 木之下
Kazumi Meguro
一三 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
Tokuyama Corp
Original Assignee
Takemoto Oil and Fat Co Ltd
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd, Tokuyama Corp filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP2006028721A priority Critical patent/JP4878857B2/en
Publication of JP2007092016A publication Critical patent/JP2007092016A/en
Application granted granted Critical
Publication of JP4878857B2 publication Critical patent/JP4878857B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a ground improving additive simultaneously satisfying (1) assurance of sufficient workability by improving flowability of slime, (2) reduction of amount of generation of construction sludge to large extent by reducing an infusion rate and (3) assurance of a necessary predetermined early strength in a process for rotatively jetting compressed air with cement milk into the ground under super high pressure and cutting and mixing the ground in a short time by jet grout method of construction and provide a ground improving cement using the same. <P>SOLUTION: The ground improving additive for jet grout method of construction contains the following A component and B component and comprises 10-95 mass% A component and 5-90 mass% B component (the sum total is 100 mass%): the A component is a water soluble vinyl copolymer prepared by alkali hydrolyzing a copolymer of a 3-8C olefin with maleic anhydride and having 2000-50000 mass average molecular weight; the B component is one or more species of sodium salts selected from sodium sulfite and sodium nitrite. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

軟弱地盤改良工事において、地盤の崩落を防止するために地盤を硬化させる、強度を増加させる、透水性を減少させる等の地盤の安定化を図るための地盤改良工法として、セメントミルクを地中深く高圧噴射し、土と混合する高圧噴流注入工法が採用されている。この工法はジェットグラウト工法と呼ばれ、地中に多重管を挿入し、管を回転させながら、これらの管先端付近からセメントミルクを地中に高圧噴射し、地中の土を切削すると同時に、切削された土とセメントミルクが混合されたソイルセメントスラリー(以下、スライムという)を地上に排出しながら、地中をスライムで置換して硬化させ、地盤を安定化させる工法である。かかる工法では、セメントミルクを高圧噴射して粘土質を多く含む粘性土や土砂を混合した際に、土粒子とセメントが凝集して流動性を失い、粘度が大きく上昇して注入が不完全となり、地盤を切削した際に発生するスライムが地上に排出されず、地盤改良工事に支障を来すという問題があった。また、スライムが地上に上昇し易いように水を添加したり、或いは、地中へのセメントミルクの注入率を高くしたりすると、建設汚泥としてスライムの量が増加し、処理費用が増加するという問題もあった。したがって、スライムに流動性を付与することによりスライムの粘度を低下させ、セメントミルクの注入率を低く抑える方法が求められている。本発明はかかる要求に応えることができるジェットグラウト工法用地盤改良添加剤及びそれを用いた地盤改良セメント組成物に関する。   In soft ground improvement work, cement milk is used as a ground improvement method to stabilize the ground, such as hardening the ground to prevent ground collapse, increasing strength, and reducing water permeability. A high-pressure jet injection method that uses high-pressure jetting and mixing with soil is adopted. This method is called the jet grout method, and multiple pipes are inserted into the ground, and while rotating the pipes, cement milk is injected into the ground at high pressure from the vicinity of these pipe tips, and at the same time cutting the soil in the ground, The soil cement slurry (hereinafter referred to as slime) in which the cut soil and cement milk are mixed is discharged to the ground, and the ground is replaced with slime and hardened to stabilize the ground. In such a construction method, when cement milk is injected at high pressure to mix clayey soil or sand containing a large amount of clay, the soil particles and cement aggregate to lose fluidity, resulting in a significant increase in viscosity and incomplete injection. There is a problem that the slime generated when cutting the ground is not discharged to the ground, which hinders the ground improvement work. Also, if water is added so that the slime can rise easily on the ground, or if the injection rate of cement milk into the ground is increased, the amount of slime will increase as construction sludge and processing costs will increase. There was also a problem. Therefore, there is a demand for a method of reducing the viscosity of the slime by imparting fluidity to the slime and keeping the cement milk injection rate low. The present invention relates to a ground improvement additive for a jet grout method capable of meeting such a demand and a ground improvement cement composition using the same.

従来、スライムの粘度を低下させる技術として、各種の添加剤を添加する方法が知られている(例えば特許文献1〜7参照)。しかし、これらの従来法では、高圧噴流注入工法における前記した要求に充分に応えることができないという問題がある。   Conventionally, as a technique for reducing the viscosity of slime, a method of adding various additives is known (see, for example, Patent Documents 1 to 7). However, these conventional methods have a problem that they cannot sufficiently meet the above-described requirements in the high-pressure jet injection method.

特開平6−127993号公報JP-A-6-127993 特開平10−212482号公報Japanese Patent Laid-Open No. 10-212482 特開2000−169209号公報JP 2000-169209 A 特開2001−172629号公報JP 2001-172629 A 特開2004−43275号公報JP 2004-43275 A 特開2004−143041号公報JP 2004-143041 A 特開2004−175989号公報Japanese Patent Laid-Open No. 2004-175989

本発明が解決しようとする課題は、ジェットグラウト工法によって、超高圧で圧縮空気とセメントミルクを地盤中に回転しながら噴射して、短時間で地盤を切削し混合するプロセスにおいて、1)スライムの流動性を向上させて十分な作業性を確保すること、2)注入率を下げることによって建設汚泥の発生量を大幅に減らこと、3)必要とされる所定の早期強度を確保すること、を同時に充足させる地盤改良添加剤及びそれを用いた地盤改良セメント組成物を提供する処にある。   The problems to be solved by the present invention are as follows: 1) In the process of cutting and mixing the ground in a short time by jetting the compressed air and cement milk while rotating into the ground with ultra high pressure by the jet grout method. To improve fluidity to ensure sufficient workability, 2) to greatly reduce the amount of construction sludge generated by lowering the injection rate, and 3) to ensure the required early strength. It is in the place of providing the ground improvement additive which satisfies simultaneously, and the ground improvement cement composition using the same.

しかして本発明者らは、前記の課題を解決すべく研究した結果、特定の2成分を所定割合で含有するジェットグラウト工法用地盤改良添加剤、そして、それを用いた地盤改良セメント組成物が正しく好適であることを見出した。   As a result, the present inventors have studied to solve the above-mentioned problems. As a result, a ground improvement additive for a jet grout method containing two specific components in a predetermined ratio and a ground improvement cement composition using the same are disclosed. It was found to be correct and suitable.

さらに、上記2成分に第3成分を添加することにより、より好適なジェットグラウト工法用地盤改良添加剤及びそれを用いた地盤改良セメント組成物が得られることを見出した。   Furthermore, it has been found that by adding the third component to the two components, a more suitable ground improvement additive for jet grouting and a ground improvement cement composition using the same can be obtained.

すなわち本発明は、下記のA成分及びB成分を含有し、A成分10〜95質量%、B成分5〜90質量%の割合(合計100質量%)から成ることを特徴とするジェットグラウト工法用地盤改良添加剤及びそれを用いた地盤改良セメント組成物に係る。   That is, this invention contains the following A component and B component, and consists of the ratio of A component 10-95 mass% and B component 5-90 mass% (total 100 mass%), The jet grout construction method characterized by the above-mentioned The present invention relates to a ground improvement additive and a ground improvement cement composition using the same.

A成分:炭素数3〜8のオレフィンと無水マレイン酸との共重合物をアルカリ加水分解した質量平均分子量2000〜50000の水溶性ビニル共重合体
B成分:亜硫酸ナトリウム及び亜硝酸ナトリウムの中から選ばれる少なくとも1種以上のナトリウム塩
さらに、C成分を含有し、A成分とB成分の合計70〜99.9質量%、C成分0.1〜30質量%の割合(合計100質量%)から成ることを特徴とするジェットグラウト工法用地盤改良添加剤及びそれを用いた地盤改良セメント組成物に係る。
Component A: Water-soluble vinyl copolymer having a weight average molecular weight of 2,000 to 50,000 obtained by alkaline hydrolysis of a copolymer of olefin having 3 to 8 carbon atoms and maleic anhydride Component B: selected from sodium sulfite and sodium nitrite Furthermore, it contains C component, and consists of a ratio of 70 to 99.9% by mass of A component and B component, and 0.1 to 30% by mass of C component (100% by mass in total). The present invention relates to a ground improvement additive for jet grouting and a ground improvement cement composition using the same.

C成分:オキシカルボン酸及び/又はその塩、及びオキシカルボン酸誘導体及び/又はその塩の中から選ばれる少なくとも1種以上の化合物     Component C: at least one compound selected from oxycarboxylic acid and / or salt thereof, and oxycarboxylic acid derivative and / or salt thereof

以上説明した本発明に係る地盤改良添加剤及びそれを用いた地盤改良セメント組成物は、特に地盤の土粒子径が75μm以下の細粒分を50質量%以上含むか、5μm以下の粘土分やシルト分を20質量%以上含むような細粒分の多い土壌、すなわち、高粘性の土壌に対して顕著な流動性を付与することができる。その結果、地中へのセメントミルクの注入率を下げることができ、建設汚泥となるスライムの発生量を抑えることができると同時に、セメントミルクと土壌との均一混合性を促すことができるため、作業性確保に必要な地盤改良土の初期強度と長期強度を十分に発現することができるという効果がある。   The ground improvement additive and the ground improvement cement composition using the same according to the present invention described above include 50% by mass or more of fine particles having a soil particle diameter of 75 μm or less, or a clay content of 5 μm or less. Remarkable fluidity can be imparted to a soil having a large amount of fine particles containing 20% by mass or more of silt, that is, a highly viscous soil. As a result, the injection rate of cement milk into the ground can be reduced, the amount of slime that becomes construction sludge can be suppressed, and at the same time, uniform mixing of cement milk and soil can be promoted. There is an effect that the initial strength and the long-term strength of the ground improvement soil necessary for ensuring workability can be sufficiently expressed.

本発明の地盤改良添加剤はA成分とB成分から成るものである。A成分は、炭素数3〜8のオレフィンと無水マレイン酸との共重合物をアルカリ加水分解した水溶性ビニル共重合体である。炭素数3〜8のオレフィンとしては、例えば、プロピレン、n−ブテン、イソブチレン、n−ペンテン、シクロペンテン、2−メチル−1−ブテン、n−ヘキセン、2−メチル−1−ペンテン、3−メチル−1−ペンテン、4−ブチル−1−ペンテン、2−エチル−1−ブテン、1−オクテン、ジイソブチレン及びこれらの混合物が挙げられるが、なかでも炭素数4のオレフィンが好ましく、特にイソブチレンが好ましい。   The ground improvement additive of the present invention comprises an A component and a B component. Component A is a water-soluble vinyl copolymer obtained by alkaline hydrolysis of a copolymer of olefin having 3 to 8 carbon atoms and maleic anhydride. Examples of the olefin having 3 to 8 carbon atoms include propylene, n-butene, isobutylene, n-pentene, cyclopentene, 2-methyl-1-butene, n-hexene, 2-methyl-1-pentene and 3-methyl- Examples thereof include 1-pentene, 4-butyl-1-pentene, 2-ethyl-1-butene, 1-octene, diisobutylene, and mixtures thereof, among which olefins having 4 carbon atoms are preferable, and isobutylene is particularly preferable.

炭素数3〜8のオレフィンと無水マレイン酸との共重合物は、公知の方法で得ることができる。例えば、溶媒としてエチルベンゼン、無水マレイン酸、ラジカル連鎖移動剤及びラジカル開始剤をオートクレーブに仕込み、反応系を窒素置換した後、炭素数3〜8のオレフィンを圧入し温度60〜120℃で圧力0.2〜0.5N/mmの条件下に2〜10時間ラジカル共重合反応させて、共重合物を沈殿物として得ることができる。 The copolymer of a C3-C8 olefin and maleic anhydride can be obtained by a known method. For example, ethylbenzene, maleic anhydride, a radical chain transfer agent, and a radical initiator are charged in an autoclave as a solvent, and the reaction system is purged with nitrogen. Then, an olefin having 3 to 8 carbon atoms is injected, and the pressure is set at 60 to 120 ° C. and a pressure of 0. The copolymer can be obtained as a precipitate by carrying out radical copolymerization reaction for 2 to 10 hours under the condition of 2 to 0.5 N / mm 2 .

所望の共重合物を得るためには、ラジカル開始剤やラジカル連鎖移動剤の種類及び使用量、溶媒の種類及び使用量、重合温度、重合時間等を適宜選択する。ここで用いるラジカル開始剤としては、アゾビスイソブチロニトリル、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)等のアゾ系開始剤、過酸化ベンゾイル、過酸化ラウロイル、クメンハイドロパーオキサイド等の非水系の開始剤等が挙げられる。   In order to obtain a desired copolymer, the type and amount of radical initiator and radical chain transfer agent, the type and amount of solvent, polymerization temperature, polymerization time and the like are appropriately selected. Examples of the radical initiator used here include azo initiators such as azobisisobutyronitrile and 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), benzoyl peroxide, lauroyl peroxide, Non-aqueous initiators such as cumene hydroperoxide are listed.

炭素数3〜8のオレフィンと無水マレイン酸との共重合物において、双方の共重合比率は、炭素数3〜8のオレフィン/無水マレイン酸=45〜55/55〜45(モル比)となるようにするのが好ましく、50/50(モル比)に近い比率となるようにするのがより好ましい。   In the copolymer of olefin having 3 to 8 carbon atoms and maleic anhydride, the copolymerization ratio of both is olefin having 3 to 8 carbon atoms / maleic anhydride = 45 to 55/55 to 45 (molar ratio). Preferably, the ratio is close to 50/50 (molar ratio).

A成分の水溶性ビニル共重合体は、以上説明した炭素数3〜8のオレフィンと無水マレイン酸との共重合物をアルカリ加水分解したものである。炭素数3〜8のオレフィンと無水マレイン酸との共重合物をアルカリ加水分解するときのアルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属水酸化物が好ましく、更にはかかるアルカリ金属水酸化物の水溶液がより好ましく、工業的見地から安価な水酸化ナトリウム水溶液が特に好ましい。A成分としての水溶性ビニル共重合体は、炭素数3〜8のオレフィンと無水マレイン酸との共重合物のアルカリ加水分解による部分中和物であっても或いは完全中和物であってもよい。   The water-soluble vinyl copolymer of component A is obtained by alkaline hydrolysis of the copolymer of olefin having 3 to 8 carbon atoms and maleic anhydride described above. As an alkali when alkali-hydrolyzing a copolymer of olefin having 3 to 8 carbon atoms and maleic anhydride, alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide are preferable. Such an aqueous solution of an alkali metal hydroxide is more preferable, and an aqueous sodium hydroxide solution is particularly preferable from an industrial standpoint. The water-soluble vinyl copolymer as the component A may be a partially neutralized product or a completely neutralized product obtained by alkaline hydrolysis of a copolymer of olefin having 3 to 8 carbon atoms and maleic anhydride. Good.

A成分としての水溶性ビニル共重合体は、質量平均分子量が2000〜50000の水溶性のものであるが、3000〜35000のものとするのが好ましい。ここで質量平均分子量は、ゲル浸透クロマトグラフ法(以下単にGPC法という)で測定したプルラン換算の質量平均分子量を意味する。   The water-soluble vinyl copolymer as the component A is a water-soluble one having a mass average molecular weight of 2000 to 50000, but preferably 3000 to 35000. Here, the mass average molecular weight means a pullulan-converted mass average molecular weight measured by gel permeation chromatography (hereinafter simply referred to as GPC method).

B成分は、亜硫酸ナトリウム及び亜硝酸ナトリウムの中から選ばれる少なくとも1種以上のナトリウム塩である。なかでも亜硫酸ナトリウムが好ましい。これらのナトリウム塩は単独で用いることもできるし、混合して用いることもできる。   Component B is at least one sodium salt selected from sodium sulfite and sodium nitrite. Of these, sodium sulfite is preferable. These sodium salts can be used alone or in combination.

本発明のジェットグラウト工法用地盤改良添加剤はA成分及びB成分を、A成分10〜95質量%、B成分5〜90質量%の割合(合計100重量%)で含有するが、A成分20〜80質量%、B成分20〜80質量%の割合(合計100重量%)で含有することが好ましい。   The ground improvement additive for jet grouting method of the present invention contains the A component and the B component in a proportion of 10 to 95% by mass of the A component and 5 to 90% by mass of the B component (total 100% by weight). It is preferable to contain in the ratio (total 100 weight%) of -80 mass% and B component 20-80 mass%.

本発明のジェットグラウト工法用地盤改良添加剤においては、上記A成分とB成分のほかにC成分として、オキシカルボン酸及び/又はその塩、及びオキシカルボン酸誘導体及び/又はその塩の中から選ばれる少なくとも1種以上の化合物を含有させることが好ましい。オキシカルボン酸としては、グルコン酸、グリコール酸、クエン酸、リンゴ酸、乳酸、酒石酸などが挙げられ、その塩としては、ナトリウム、カリウム、リチウムなどのアルカリ金属塩、或いは、マグネシウム、カルシウムなどのアルカリ土類金属塩が挙げられる。なかでも、グルコン酸、クエン酸、酒石酸及び/又はそのアルカリ金属塩が好適に用いられ、グルコン酸ナトリウムがより好ましい。   In the ground improvement additive for jet grouting method of the present invention, in addition to the A component and the B component, the C component is selected from oxycarboxylic acid and / or salt thereof, and oxycarboxylic acid derivative and / or salt thereof. It is preferable to contain at least one compound. Examples of the oxycarboxylic acid include gluconic acid, glycolic acid, citric acid, malic acid, lactic acid, and tartaric acid. Examples of the salt include alkali metal salts such as sodium, potassium, and lithium, or alkalis such as magnesium and calcium. Examples include earth metal salts. Among these, gluconic acid, citric acid, tartaric acid and / or alkali metal salts thereof are preferably used, and sodium gluconate is more preferable.

オキシカルボン酸誘導体及び/又はその塩としては、グルコン酸ナトリウムのエチレンオキサイド付加物及びグルコン酸のエチレンオキサイド付加物のナトリウム塩から選ばれる一つ又は二つ以上が好適に用いられる。この場合、グルコン酸ナトリウムのエチレンオキサイド付加物としては、グルコン酸ナトリウム1モル当たり、エチレンオキサイドが1〜15モルの割合で付加したものが好ましく、エチレンオキサイドが1〜10モルの割合で付加したものがより好ましい。また、グルコン酸のエチレンオキサイド付加物のナトリウム塩としては、グルコン酸1モル当たり、エチレンオキサイドが1〜15モルの割合で付加したもののナトリウム塩が好ましく、エチレンオキサイドが1〜10モルの割合で付加したもののナトリウム塩がより好ましい。   As the oxycarboxylic acid derivative and / or salt thereof, one or more selected from sodium gluconate ethylene oxide adduct and sodium salt of gluconic acid ethylene oxide adduct are preferably used. In this case, the ethylene oxide adduct of sodium gluconate is preferably one in which ethylene oxide is added at a rate of 1 to 15 mol, and ethylene oxide is added at a rate of 1 to 10 mol per mol of sodium gluconate. Is more preferable. Moreover, as a sodium salt of the ethylene oxide adduct of gluconic acid, the sodium salt of what added ethylene oxide in the ratio of 1-15 mol per mol of gluconic acid is preferable, and ethylene oxide is added in the ratio of 1-10 mol. More preferred is the sodium salt.

グルコン酸ナトリウムのエチレンオキサイド付加物及びグルコン酸のエチレンオキサイド付加物のナトリウム塩それ自体は、公知の方法で合成できる。   The ethylene oxide adduct of sodium gluconate and the sodium salt of the ethylene oxide adduct of gluconic acid can be synthesized by known methods.

C成分の添加はスライムの粘度を低下させる効果を有するが、粘性低減効果に加えて初期の強度発現性を改善するためにはオキシカルボン酸誘導体及び/又はその塩を用いるのが好適である。   The addition of component C has the effect of reducing the viscosity of the slime, but it is preferable to use an oxycarboxylic acid derivative and / or a salt thereof in order to improve the initial strength development in addition to the viscosity reducing effect.

本発明のジェットグラウト工法用地盤改良添加剤は、C成分を、上記説明した含有割合であるA成分とB成分の合計70〜99.9質量%にC成分0.1〜30質量%の割合(合計100質量%)となるように含有していることが好ましい。   In the ground improvement additive for jet grouting method of the present invention, the C component is a ratio of 0.1 to 30% by mass of the C component to 70 to 99.9% by mass in total of the A component and the B component as described above. It is preferable to contain so that it may become (total 100 mass%).

また、A成分、B成分及びC成分の含有割合は、以上のような含有割合の範囲内にて、該地盤改良添加剤を使用する土壌の性状との関係で適宜選択するのがより好ましい。   Moreover, it is more preferable that the content ratios of the A component, the B component, and the C component are appropriately selected in relation to the properties of the soil in which the ground improvement additive is used within the range of the content ratio as described above.

本発明に係る地盤改良添加剤の使用に際しては、合目的的に他の剤を併用することができる。かかる他の剤としては、消泡剤、防腐剤、凝結促進剤、防水剤等が挙げられる。   When using the ground improvement additive which concerns on this invention, another agent can be used together purposefully. Examples of such other agents include antifoaming agents, preservatives, setting accelerators, waterproofing agents and the like.

本発明の地盤改良セメント組成物は、セメント系固化材と、このセメント系固化材100質量部に対し、前記した本発明の地盤改良用添加剤を0.5〜20質量部の割合で含有するものである。本発明の地盤改良用添加剤の配合量は0.5質量部未満の場合には流動性が不足し、逆に20質量部を越えると、凝結遅延により初期強度発現が低下して、目的とする十分な効果が得られない。本発明のセメント組成物は、セメント系固化材100質量部に対し、本発明の地盤改良用添加剤を2〜15質量部の割合で含有させて用いるのがより好ましい。   The ground improvement cement composition of the present invention contains 0.5 to 20 parts by mass of the above-described ground improvement additive of the present invention with respect to 100 parts by mass of the cement-based solidified material and the cement-based solidified material. Is. When the blending amount of the ground improvement additive of the present invention is less than 0.5 parts by mass, the fluidity is insufficient. On the contrary, when it exceeds 20 parts by mass, the initial strength expression decreases due to the setting delay, A sufficient effect cannot be obtained. It is more preferable that the cement composition of the present invention contains 2 to 15 parts by mass of the ground improvement additive of the present invention with respect to 100 parts by mass of the cement-based solidified material.

本発明に使用するセメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメントなどの各種ポルトランドセメント、高炉セメント、フライアッシュセメント、シリカセメントなどの混合セメント等が挙げられ、限定するものではないが、多くの場合、通常は普通ポルトランドセメント及び/又は高炉セメントB種が使用される。   Examples of the cement used in the present invention include ordinary portland cement, early-strength portland cement, ultra-early strong portland cement, various portland cements such as moderately hot portland cement, mixed cements such as blast furnace cement, fly ash cement, and silica cement. In many cases, usually, but not limited to Portland cement and / or blast furnace cement type B is used.

また、本発明に係る地盤改良セメント組成物のセメント系固化材としては、各種ポルトランドセメントの70質量%以下の範囲内で、高炉スラグ微粉末、フライアッシュ、シリカヒューム、石灰石微粉末、石膏、ベントナイトなどの微粉末混和材料を含有させて用いてもよい。   In addition, the cement-based solidified material of the ground improvement cement composition according to the present invention includes blast furnace slag fine powder, fly ash, silica fume, limestone fine powder, gypsum, bentonite within a range of 70% by mass or less of various Portland cements. A fine powder admixture such as, for example, may be used.

本発明のジェットグラウト工法用地盤改良添加剤は、各成分を所定の割合になるようミキサー等で混合することにより製造することができる。また、その性状は水溶液であっても、粉末状であっても良い。   The ground improvement additive for jet grouting method of the present invention can be produced by mixing each component with a mixer or the like so as to have a predetermined ratio. The property may be an aqueous solution or a powder.

本発明において、本発明の地盤改良添加剤及びそれを用いた地盤改良セメント組成物の使用方法について説明する。すなわち、本発明の地盤改良添加剤を所定割合で含有する地盤改良セメント組成物を、或いは、地盤改良添加剤とセメント系固化材が所定割合になるようにして、ミキサーを用いて、その質量の50〜250%、好ましくは70〜180%の混練水と混合して地盤改良セメント組成物セメントミルクを調製し、該セメントミルクを改良すべき地盤中に注入・混合し、硬化させる方法が基本である。ジェットグラウト工法では通常、改良すべき対象土壌容積の0.1〜1.5倍の容積、好ましくは、0.3〜1.0倍の容積のセメントミルクが高圧ポンプを用いて地盤中に注入・噴射混合されて使用される。   In this invention, the ground improvement additive of this invention and the usage method of the ground improvement cement composition using the same are demonstrated. That is, the ground improvement cement composition containing the ground improvement additive of the present invention at a predetermined ratio, or the ground improvement additive and the cement-based solidifying material at a predetermined ratio, using a mixer, the mass of Basically, the ground improvement cement composition cement milk is prepared by mixing with 50 to 250%, preferably 70 to 180% kneading water, and the cement milk is poured into the ground to be improved, mixed, and cured. is there. In the jet grouting method, usually, cement milk having a volume of 0.1 to 1.5 times, preferably 0.3 to 1.0 times the volume of the target soil to be improved is injected into the ground using a high-pressure pump.・ Used after being jetted and mixed.

以下、本発明の構成及び効果をより具体的にするため、実施例等を挙げるが、本発明が該実施例に限定されるというものではない。なお、以下の実施例等において、別に記載しない限り、%は質量%を、また部は質量部を意味する。   Hereinafter, in order to make the configuration and effects of the present invention more specific, examples and the like will be described. However, the present invention is not limited to the examples. In the following examples and the like, unless otherwise indicated,% means mass%, and part means mass part.

(1)試験区分1(A成分としての水溶性ビニル共重合体の合成)
<水溶性ビニル共重合体(a−1)の合成>
無水マレイン酸98g(1モル)及び溶媒としてエチルベンゼン640g、分子量調節剤として3−メルカプトプロピオン酸0.6g、重合開始剤としてアゾビスイソブチロニトリル2gを2リットル容量のオートクレーブに仕込み、攪拌しながら均一に溶解したのち雰囲気を窒素置換した。次に、イソブチレン59g(1.05モル)を圧入したのち、反応系の温度を85℃まで加温し、85℃に保ちながらラジカル重合反応を6時間継続して反応を完結した。重合反応終了後、反応系の温度を室温まで冷却し、脱気後、攪拌を止めて沈殿したポリマーを取り出し濾過乾燥して淡黄色粉末状のポリマー141gを得た。分析したところ、無水マレイン酸/イソブチレン=50/50(モル比)の組成割合から成るイソブチレンと無水マレイン酸共重合物であった。
(1) Test Category 1 (Synthesis of water-soluble vinyl copolymer as component A)
<Synthesis of water-soluble vinyl copolymer (a-1)>
A 2-liter autoclave was charged with 98 g (1 mol) of maleic anhydride, 640 g of ethylbenzene as a solvent, 0.6 g of 3-mercaptopropionic acid as a molecular weight regulator, and 2 g of azobisisobutyronitrile as a polymerization initiator while stirring. After uniformly dissolving, the atmosphere was replaced with nitrogen. Next, after 59 g (1.05 mol) of isobutylene was injected, the temperature of the reaction system was heated to 85 ° C., and the radical polymerization reaction was continued for 6 hours while maintaining the temperature at 85 ° C. to complete the reaction. After the completion of the polymerization reaction, the temperature of the reaction system was cooled to room temperature, and after deaeration, stirring was stopped and the precipitated polymer was taken out, filtered and dried to obtain 141 g of a light yellow powdery polymer. As a result of analysis, it was an isobutylene and maleic anhydride copolymer having a composition ratio of maleic anhydride / isobutylene = 50/50 (molar ratio).

次に、この共重合物50g、30%水酸化ナトリウム水溶液51g、水道水102gを攪拌装置及び冷却コンデンサーのついたフラスコに入れ、攪拌ながら加温して均一溶解し、イソブチレンと無水マレイン酸共重合物のアルカリ加水分解物の塩(a−1)からなる固形分濃度30重量%の水溶性ビニル共重合体を得た。これをGPCで分子量を測定したところ、質量平均分子量が19500(プルラン換算)であった。   Next, 50 g of this copolymer, 51 g of 30% sodium hydroxide aqueous solution, and 102 g of tap water are placed in a flask equipped with a stirrer and a cooling condenser, heated with stirring to dissolve uniformly, and copolymerized with isobutylene and maleic anhydride. A water-soluble vinyl copolymer having a solid content concentration of 30% by weight comprising a salt (a-1) of an alkali hydrolyzate of the product was obtained. When the molecular weight of this was measured by GPC, the mass average molecular weight was 19500 (in pullulan conversion).

<水溶性ビニル共重合体(a−2)〜(a−4)及び(ar−1)〜(ar−3)の合成>
前記(a−1)の合成と同様にして、水溶性ビニル共重合体(a−2)〜(a−4)及び(ar−1)〜(ar−3)を合成した。以上で合成した水溶性ビニル共重合体の内容を表1に示した。
<Synthesis of water-soluble vinyl copolymers (a-2) to (a-4) and (ar-1) to (ar-3)>
In the same manner as in the synthesis of (a-1), water-soluble vinyl copolymers (a-2) to (a-4) and (ar-1) to (ar-3) were synthesized. The contents of the water-soluble vinyl copolymer synthesized above are shown in Table 1.

Figure 2007092016
Figure 2007092016

表1において、
*1:構成単位を形成することとなる単量体の種類
*2:イソブチレン
*3:イソブチレン/1−ペンテン=60/40(モル比)の混合物
*4:ジイソブチレン
In Table 1,
* 1: Type of monomer that forms the structural unit * 2: Isobutylene * 3: Mixture of isobutylene / 1-pentene = 60/40 (molar ratio) * 4: Diisobutylene

(2)試験区分2(C成分としてのグルコン酸ナトリウムのエチレンオキサイド付加物の合成)
<グルコン酸ナトリウムのエチレンオキサイド付加物(c−4)の合成>
グルコン酸ナトリウム218g(1モル)、水350g及び水酸化ナトリウムの30%水溶液7gを2リットル容量のオートクレーブに仕込み、攪拌しながら均一に溶解したのち雰囲気を窒素置換した。反応系の温度を80℃に保ちながら、エチレンオキサイド132g(3モル)を0.2〜0.5N/mmの加圧下で付加反応した。反応終了後、酢酸の80%水溶液4gを加えてアルカリ触媒を中和し、グルコン酸ナトリウムのエチレンオキサイド3モル付加物を含有する反応液を得た。この反応液をC成分(c−4)とした。
(2) Test category 2 (synthesis of ethylene oxide adduct of sodium gluconate as component C)
<Synthesis of sodium gluconate ethylene oxide adduct (c-4)>
218 g (1 mol) of sodium gluconate, 350 g of water, and 7 g of a 30% aqueous solution of sodium hydroxide were charged into a 2 liter autoclave and dissolved uniformly with stirring, and the atmosphere was replaced with nitrogen. While maintaining the temperature of the reaction system at 80 ° C., 132 g (3 mol) of ethylene oxide was subjected to addition reaction under a pressure of 0.2 to 0.5 N / mm 2 . After completion of the reaction, 4 g of an 80% aqueous solution of acetic acid was added to neutralize the alkali catalyst, and a reaction solution containing an ethylene oxide 3 mol adduct of sodium gluconate was obtained. This reaction solution was designated as component C (c-4).

<グルコン酸ナトリウムのエチレンオキサイド付加物(c−5)の合成>
前記(c−4)の調製と同様にして、グルコン酸ナトリウムのエチレンオキサイド5モル付加物を含有する反応液を得た。この反応液をC成分(c−5)とした。
<Synthesis of Sodium Gluconate Ethylene Oxide Adduct (c-5)>
In the same manner as in the preparation of (c-4) above, a reaction solution containing an ethylene oxide 5 mol adduct of sodium gluconate was obtained. This reaction solution was designated as component C (c-5).

<グルコン酸のエチレンオキサイド付加物のナトリウム塩(c−6)の合成>
グルコン酸196g(1モル)、水350g及び水酸化ナトリウムの30%水溶液7gを2リットル容量のオートクレーブに仕込み、攪拌しながら均一に溶解したのち雰囲気を窒素置換した。反応系の温度を80℃に保ちながら、エチレンオキサイド264g(6モル)を0.2〜0.5N/mmの加圧下で付加反応した。反応終了後、水酸化ナトリウムの30%水溶液126gを加えて完全中和塩としグルコン酸のエチレンオキサイド6モル付加物のナトリウム塩を含有する反応液を得た。この反応液をC成分(c−6)とした。
<Synthesis of sodium salt of ethylene oxide adduct of gluconic acid (c-6)>
196 g (1 mol) of gluconic acid, 350 g of water and 7 g of a 30% aqueous solution of sodium hydroxide were charged into a 2 liter autoclave and dissolved uniformly with stirring, and the atmosphere was replaced with nitrogen. While maintaining the temperature of the reaction system to 80 ° C., ethylene oxide 264 g (6 moles) was added the reaction under a pressure of 0.2~0.5N / mm 2. After completion of the reaction, 126 g of a 30% aqueous solution of sodium hydroxide was added to obtain a completely neutralized salt, thereby obtaining a reaction solution containing a sodium salt of an ethylene oxide 6 mol adduct of gluconic acid. This reaction solution was designated as component C (c-6).

(3)試験区分3(地盤改良添加剤の調製)
<製造例1>地盤改良添加剤(S−1)の調製
A成分として試験区分1で合成した水溶性ビニル共重合体(a−1)の30%水溶液30部、B成分として亜硫酸ナトリウムの30%水溶液70部を混合して、地盤改良添加剤(S−1)の30%水溶液を調製した。
(3) Test Category 3 (Preparation of ground improvement additive)
<Production Example 1> Preparation of ground improvement additive (S-1) 30 parts of a 30% aqueous solution of water-soluble vinyl copolymer (a-1) synthesized in Test Category 1 as component A, and 30 of sodium sulfite as component B A 70% aqueous solution was mixed to prepare a 30% aqueous solution of ground improvement additive (S-1).

<製造例2〜14及び比較製造例1〜12>地盤改良添加剤(S−2)〜(S−14)及び(R−1)〜(R−12)の調製
製造例1の地盤改良添加剤(S−1)の調製と同様にして、製造例2〜18及び比較製造例1〜12の地盤改良添加剤(S−2)〜(S−14)及び(R−1)〜(R−12)を調製した。
<Production Examples 2 to 14 and Comparative Production Examples 1 to 12> Preparation of Ground Improvement Additives (S-2) to (S-14) and (R-1) to (R-12) Ground Improvement Addition of Production Example 1 In the same manner as the preparation of the agent (S-1), the ground improvement additives (S-2) to (S-14) and (R-1) to (R) of Production Examples 2 to 18 and Comparative Production Examples 1 to 12 -12) was prepared.

以上の各例で調製した地盤改良添加剤の内容を表2にまとめて示した。   The contents of the ground improvement additive prepared in each of the above examples are summarized in Table 2.

Figure 2007092016
Figure 2007092016

表2において、
a−1〜a−4,ar−1〜ar−3:試験区分1で合成した水溶性ビニル重合体等
b−1:亜硫酸ナトリウム
b−2:亜硝酸ナトリウム
b−3:硫酸ナトリウム
c−1:グルコン酸ナトリウム
c−2:クエン酸ナトリウム
c−3:酒石酸ナトリウム
c−4〜c−6:試験区分2で合成したグルコン酸ナトリウムのエチレンオキサイド付加物等
In Table 2,
a-1 to a-4, ar-1 to ar-3: water-soluble vinyl polymer synthesized in test category 1 b-1: sodium sulfite b-2: sodium nitrite b-3: sodium sulfate c-1 : Sodium gluconate c-2: Sodium citrate c-3: Sodium tartrate c-4 to c-6: Ethylene oxide adduct of sodium gluconate synthesized in test category 2

(4)試験区分4(地盤改良セメント組成物スラリーの流動性付与びその評価)
試験区分3で調製した地盤改良添加剤を用いて次のように地盤改良セメント組成物スラリーを調製し、評価した。
<比較例1>地盤改良添加剤を使用しないで注入率を高くした、表3に記載の配合No.1による地盤改良セメント組成物スラリーの調製
普通ポルトランドセメント(密度=3.16g/cm、以下同じ)30質量%と高炉セメントB種(密度=3.04g/cm、以下同じ)70質量%(合計100質量%)の混合物388g及び水874gをホバートミキサーに入れて均一に混合し、セメントミルクを調製した。このセメントミルクに表4に記載の物性値を有する掘削土1630gを加えて混合し、地盤改良セメント組成物スラリーを調製した。調製した地盤改良セメント組成物スラリーについて、該スラリーの粘度、及び該スラリーの硬化物の一軸圧縮強度を測定し、結果を表5に示した。
(4) Test category 4 (Providing fluidity of ground improvement cement composition slurry and its evaluation)
Using the ground improvement additive prepared in Test Category 3, a ground improvement cement composition slurry was prepared and evaluated as follows.
<Comparative example 1> Mixing No. of Table 3 which made the injection rate high without using a ground improvement additive. Preparation of ground improvement cement composition slurry according to No. 1 Normal Portland cement (density = 3.16 g / cm 3 , hereinafter the same) 30 mass% and blast furnace cement B type (density = 3.04 g / cm 3 , the same below) 70 mass% Cement milk was prepared by putting 388 g of the mixture (total 100% by mass) and 874 g of water in a Hobart mixer and mixing uniformly. To this cement milk, 1630 g of excavated soil having the physical properties shown in Table 4 was added and mixed to prepare a ground improved cement composition slurry. About the prepared ground improvement cement composition slurry, the viscosity of this slurry and the uniaxial compressive strength of the hardened | cured material of this slurry were measured, and the result was shown in Table 5.

<実施例1〜17及び比較例2〜14>地盤改良添加剤を使用して注入率を低くした、表3に記載の配合No.2による地盤改良セメント組成物スラリーの調製
普通ポルトランドセメント30質量%と高炉セメントB種70質量%(合計100質量%)の混合物274g、水411g及び表5に記載の使用量(セメント100質量部に対し、地盤改良添加剤を1〜20質量部の割合の範囲で含有する量)となる量の地盤改良添加剤をホバートミキサーに入れて均一に混合し、セメントミルクを調製した。このセメントミルクに表4に記載の物性値を有する掘削土(大阪海成粘土)1630gを加えて混合し、地盤改良セメント組成物スラリーを調製した。
<Examples 1 to 17 and Comparative Examples 2 to 14> Blending Nos. Listed in Table 3 in which the ground improvement additive was used to lower the injection rate. Preparation of ground improvement cement composition slurry according to No. 2 274 g of a mixture of 30% by mass of ordinary Portland cement and 70% by mass of Blast Furnace Cement B (100% by mass in total), 411 g of water and the usage amount shown in Table 5 (to 100 parts by mass of cement On the other hand, a ground improvement additive in an amount of 1 to 20 parts by mass of the ground improvement additive) was put in a Hobart mixer and mixed uniformly to prepare cement milk. To this cement milk, 1630 g of excavated soil (Osaka Marine Clay) having physical properties shown in Table 4 was added and mixed to prepare a ground improved cement composition slurry.

調製した地盤改良セメント組成物スラリーについて、該スラリーの粘度、及び該スラリーの硬化物の一軸圧縮強度を測定し、結果を表5に示した。   About the prepared ground improvement cement composition slurry, the viscosity of this slurry and the uniaxial compressive strength of the hardened | cured material of this slurry were measured, and the result was shown in Table 5.

<実施例18〜21及び比較例15〜19>地盤改良添加剤を使用して注入率を低くした、表3に記載の配合No.3による地盤改良セメント組成物スラリーの調製
普通ポルトランドセメント30質量%と高炉セメントB種70質量%(合計100質量%)の混合物274g、水356g及び表5に記載の使用量(セメント100質量部に対し、地盤改良添加剤を1〜20質量部の割合の範囲で含有する量)となる量の地盤改良添加剤をホバートミキサーに入れて均一に混合し、セメントミルクを調製した。このセメントミルクに表4に記載の物性値を有する掘削土1630gを加えて混合し、地盤改良セメント組成物スラリーを調製した。調製した地盤改良セメント組成物スラリーについて、該スラリーの粘度、及び該スラリーの硬化物の一軸圧縮強度を測定し、結果を表6に示した。
<Examples 18 to 21 and Comparative Examples 15 to 19> Mixing Nos. Listed in Table 3 in which the ground improvement additive was used to lower the injection rate. 3. Preparation of ground improvement cement composition slurry according to No. 3 274 g of a mixture of 30% by mass of ordinary Portland cement and 70% by mass of Blast Furnace Cement B (100% by mass in total), 356 g of water and the usage amount shown in Table 5 (in 100 parts by mass of cement On the other hand, a ground improvement additive in an amount of 1 to 20 parts by mass of the ground improvement additive) was put in a Hobart mixer and mixed uniformly to prepare cement milk. To this cement milk, 1630 g of excavated soil having the physical properties shown in Table 4 was added and mixed to prepare a ground improved cement composition slurry. About the prepared ground improvement cement composition slurry, the viscosity of this slurry and the uniaxial compressive strength of the hardened | cured material of this slurry were measured, and the result was shown in Table 6.

Figure 2007092016
Figure 2007092016

Figure 2007092016
Figure 2007092016

表4において、
*1:粒子径5μm未満の細粒分粒子
*2:粒子径5μm〜75mm未満のシルト分粒子
*3:粒子径75μm〜2mmの砂分粒子
In Table 4,
* 1: Fine particle particles with a particle size of less than 5 μm * 2: Silt particle particles with a particle size of 5 μm to less than 75 mm * 3: Sand particles with a particle size of 75 μm to 2 mm

(5)地盤改良セメント組成物スラリーの物性評価
地盤改良セメント組成物スラリーの粘度、該スラリーの硬化物の一軸圧縮強度はつぎのようにして求めた。
(5) Physical property evaluation of ground improved cement composition slurry The viscosity of the ground improved cement composition slurry and the uniaxial compressive strength of the cured product of the slurry were determined as follows.

・粘度:B型粘度計を用い、練り混ぜ直後と30分後に、20℃にて粘度を測定した。測定値が小さいほど粘度が小さく、流動性が優れていることを示す。   Viscosity: Using a B-type viscometer, the viscosity was measured at 20 ° C. immediately after kneading and after 30 minutes. The smaller the measured value, the smaller the viscosity and the better the fluidity.

・一軸圧縮強度試験:JIS−A1108に準拠し、直径50mm×高さ100mmの型枠を用いて成形した成型品について、材齢1日、7日及び28日の圧縮強度(kN/m2)を測定した。 -Uniaxial compressive strength test: Compressive strength (kN / m 2 ) of materials 1 day, 7 days and 28 days for molded products formed using a mold with a diameter of 50 mm and a height of 100 mm in accordance with JIS-A1108 Was measured.

Figure 2007092016
Figure 2007092016

表5において、
*1:土壌1m当たりの使用した地盤改良添加剤の固形分換算値(kg)
*2:セメント100質量部当たりに換算した地盤改良添加剤の質量部
*3:固まってなかったので測定できなかった。
In Table 5,
* 1: in terms of solid content of the soil improvement additives used per soil 1 m 3 (kg)
* 2: Part by mass of ground improvement additive converted to 100 parts by mass of cement * 3: Measurement could not be performed because it was not solidified.

Figure 2007092016
Figure 2007092016

表6において、
*1:土壌1m当たりの使用した地盤改良添加剤の固形分換算値(kg)
*2:セメント100質量部当たりに換算した地盤改良添加剤の質量部
*3:固まってなかったので測定できなかった。
In Table 6,
* 1: in terms of solid content of the soil improvement additives used per soil 1 m 3 (kg)
* 2: Part by mass of ground improvement additive converted to 100 parts by mass of cement * 3: Measurement could not be performed because it was not solidified.

Claims (9)

下記のA成分及びB成分を含有し、A成分10〜95質量%、B成分5〜90質量%の割合(合計100質量%)から成ることを特徴とするジェットグラウト工法用地盤改良添加剤。
A成分:炭素数3〜8のオレフィンと無水マレイン酸との共重合物をアルカリ加水分解した質量平均分子量2000〜50000の水溶性ビニル共重合体
B成分:亜硫酸ナトリウム及び亜硝酸ナトリウムの中から選ばれる少なくとも1種以上のナトリウム塩
A ground improvement additive for a jet grout method, comprising the following A component and B component, and comprising a proportion of A component of 10 to 95% by mass and B component of 5 to 90% by mass (total of 100% by mass).
Component A: Water-soluble vinyl copolymer having a weight average molecular weight of 2,000 to 50,000 obtained by alkaline hydrolysis of a copolymer of olefin having 3 to 8 carbon atoms and maleic anhydride Component B: selected from sodium sulfite and sodium nitrite At least one sodium salt
A成分、B成分及び下記のC成分を含有し、A成分とB成分の合計70〜99.9質量%、C成分0.1〜30質量%の割合(合計100質量%)から成ることを特徴とする請求項1記載のジェットグラウト工法用地盤改良添加剤。
C成分:オキシカルボン酸及び/又はその塩、及びオキシカルボン酸誘導体及び/又はその塩の中から選ばれる少なくとも1種以上の化合物
It contains A component, B component and the following C component, and consists of a total of 70 to 99.9% by mass of A component and B component, and a proportion of C component of 0.1 to 30% by mass (total of 100% by mass). The ground improvement additive for jet grouting method according to claim 1 characterized by the above-mentioned.
Component C: at least one compound selected from oxycarboxylic acid and / or salt thereof, and oxycarboxylic acid derivative and / or salt thereof
C成分が、グルコン酸ナトリウムのエチレンオキサイド付加物及びグルコン酸のエチレンオキサイド付加物のナトリウム塩から選ばれる少なくとも1種以上の化合物である請求項2記載のジェットグラウト工法用地盤改良添加剤。   The ground improvement additive for jet grout method according to claim 2, wherein the component C is at least one compound selected from an ethylene oxide adduct of sodium gluconate and a sodium salt of an ethylene oxide adduct of gluconic acid. C成分が、グルコン酸ナトリウム1モル当たりエチレンオキサイドが1〜15モルの割合で付加したもの、又は、グルコン酸のエチレンオキサイド付加物のナトリウム塩が、グルコン酸1モル当たりエチレンオキサイドが1〜15モルの割合で付加したもののナトリウム塩である請求項2又は3に記載のジェットグラウト工法用地盤改良添加剤。   C component added with 1 to 15 mol of ethylene oxide per mol of sodium gluconate, or sodium salt of ethylene oxide adduct of gluconic acid with 1 to 15 mol of ethylene oxide per mol of gluconic acid The ground improvement additive for jet grout method according to claim 2 or 3, which is a sodium salt added at a ratio of 炭素数3〜8のオレフィンが炭素数4のオレフィンである請求項1又は2に記載のジェットグラウト工法用地盤改良添加剤。   The ground improvement additive for jet grout method according to claim 1 or 2, wherein the olefin having 3 to 8 carbon atoms is an olefin having 4 carbon atoms. 炭素数4のオレフィンがイソブチレンである請求項5に記載のジェットグラウト工法用地盤改良添加剤。   The ground improvement additive for jet grout method according to claim 5, wherein the olefin having 4 carbon atoms is isobutylene. A成分の水溶性ビニル共重合体の質量平均分子量が3000〜35000である請求項1又は2に記載のジェットグラウト工法用地盤改良添加剤。   The ground improvement additive for jet grout method according to claim 1 or 2, wherein the water-soluble vinyl copolymer of component A has a mass average molecular weight of 3000 to 35000. セメント系固化材100質量部に対し、請求項1〜7のいずれかに記載のジェットグラウト工法用地盤改良用添加剤を0.5〜20質量部の割合で含有するジェットグラウト工法用地盤改良セメント組成物。   The ground improvement cement for jet grouting methods which contains the additive for ground improvement for jet grouting methods in any one of Claims 1-7 in the ratio of 0.5-20 mass parts with respect to 100 mass parts of cementitious solidification materials. Composition. セメント系固化材として普通ポルトランドセメント及び/又は高炉セメントを使用する請求項8記載のジェットグラウト工法用地盤改良セメント組成物。
The ground improved cement composition for jet grout method according to claim 8, wherein ordinary portland cement and / or blast furnace cement is used as the cement-based solidifying material.
JP2006028721A 2005-08-31 2006-02-06 Ground improvement additive for jet grout method and ground improvement cement composition using the same Expired - Fee Related JP4878857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006028721A JP4878857B2 (en) 2005-08-31 2006-02-06 Ground improvement additive for jet grout method and ground improvement cement composition using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005252003 2005-08-31
JP2005252003 2005-08-31
JP2006028721A JP4878857B2 (en) 2005-08-31 2006-02-06 Ground improvement additive for jet grout method and ground improvement cement composition using the same

Publications (2)

Publication Number Publication Date
JP2007092016A true JP2007092016A (en) 2007-04-12
JP4878857B2 JP4878857B2 (en) 2012-02-15

Family

ID=37978081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006028721A Expired - Fee Related JP4878857B2 (en) 2005-08-31 2006-02-06 Ground improvement additive for jet grout method and ground improvement cement composition using the same

Country Status (1)

Country Link
JP (1) JP4878857B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136700A (en) * 2011-12-28 2013-07-11 Ohbayashi Corp Grouting material kneaded and mixed with seawater, and method for improving ground
KR101671126B1 (en) * 2015-12-11 2016-10-31 박인준 Deep soil mixing method using polymer coagulant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748158A (en) * 1993-07-29 1995-02-21 Nippon Zeon Co Ltd Superretarder for cement-based grout material
JPH07206495A (en) * 1994-01-07 1995-08-08 Denki Kagaku Kogyo Kk Cement admixture for grouting method and its grouting method
JPH09241641A (en) * 1996-03-13 1997-09-16 Fujisawa Pharmaceut Co Ltd Water-reducing agent for ultrahigh-pressure jet grouting construction
JP2004175989A (en) * 2002-11-28 2004-06-24 Sumitomo Osaka Cement Co Ltd Additive for foundation-improving cement composition, foundation-improving cement composition produced by using the additive and foundation improving method
JP2005170710A (en) * 2003-12-09 2005-06-30 Denki Kagaku Kogyo Kk Cement composition for grout and mortar composition for grout and grout material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748158A (en) * 1993-07-29 1995-02-21 Nippon Zeon Co Ltd Superretarder for cement-based grout material
JPH07206495A (en) * 1994-01-07 1995-08-08 Denki Kagaku Kogyo Kk Cement admixture for grouting method and its grouting method
JPH09241641A (en) * 1996-03-13 1997-09-16 Fujisawa Pharmaceut Co Ltd Water-reducing agent for ultrahigh-pressure jet grouting construction
JP2004175989A (en) * 2002-11-28 2004-06-24 Sumitomo Osaka Cement Co Ltd Additive for foundation-improving cement composition, foundation-improving cement composition produced by using the additive and foundation improving method
JP2005170710A (en) * 2003-12-09 2005-06-30 Denki Kagaku Kogyo Kk Cement composition for grout and mortar composition for grout and grout material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136700A (en) * 2011-12-28 2013-07-11 Ohbayashi Corp Grouting material kneaded and mixed with seawater, and method for improving ground
KR101671126B1 (en) * 2015-12-11 2016-10-31 박인준 Deep soil mixing method using polymer coagulant

Also Published As

Publication number Publication date
JP4878857B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP5545678B2 (en) Slurry composition for ground improvement using blast furnace cement and method for preparing soil cement slurry using the same
JP4579772B2 (en) Cement admixture and super fast cement
WO2000032534A1 (en) Process for producing dispersant for powdery hydraulic composition
JP6057126B2 (en) Powdered water reducing agent for premix cement and method for producing the same
JP2011026167A (en) Fluidizing agent for preparing high strength soil cement slurry and method for preparing high strength soil cement slurry
JP2006199953A (en) Admixture for fly ash containing high concentration of unburned carbon and concrete
JP2017186232A (en) Manufacturing method of water-reducing agent for hydraulic material
JP4878857B2 (en) Ground improvement additive for jet grout method and ground improvement cement composition using the same
JP3443454B2 (en) Cement additive for grouting method
JP5403813B2 (en) Fluidization method of soil cement slurry
JPH09309756A (en) Powdery admixture for cement
JP4439816B2 (en) Concrete admixture
JP4271676B2 (en) Premix powder cement composition for ground improvement
JP2014108911A (en) Blast-furnace slag-containing cement slurry composition and method for preparing soil cement slurry
JP2017109901A (en) Spray concrete composition and manufacturing method therefor
JP5868188B2 (en) Additive for high salinity cement composition and high salinity cement composition
JP2009035453A (en) Method for fluidizing soil cement slurry
JP4889311B2 (en) Ground improvement additive for jet grout method and ground improvement cement composition using the same
JP4046720B2 (en) Fluidization method of soil cement slurry
JP5189272B2 (en) Ground stabilization admixture, ground stabilization material and ground stabilization method using the same
JP2010285466A (en) Ground-improving slurry composition using blast furnace slag composition and method for preparing soil cement slurry using the same
JPS6071559A (en) Manufacture of mortar blend
JP7148170B2 (en) ADDITIVE FOR HYDRAULIC COMPOSITION AND HYDRAULIC COMPOSITION
JPH06256056A (en) Bleeding-reducing agent for cement-based grout
JPH09309755A (en) Concrete admixture capable of reducing white wash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111129

R150 Certificate of patent or registration of utility model

Ref document number: 4878857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees