JP2007090794A - Tubular member made from fiber reinforced resin and manufacturing method of it - Google Patents

Tubular member made from fiber reinforced resin and manufacturing method of it Download PDF

Info

Publication number
JP2007090794A
JP2007090794A JP2005286007A JP2005286007A JP2007090794A JP 2007090794 A JP2007090794 A JP 2007090794A JP 2005286007 A JP2005286007 A JP 2005286007A JP 2005286007 A JP2005286007 A JP 2005286007A JP 2007090794 A JP2007090794 A JP 2007090794A
Authority
JP
Japan
Prior art keywords
resin
tubular member
fiber reinforced
reinforced resin
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005286007A
Other languages
Japanese (ja)
Other versions
JP4732103B2 (en
Inventor
Ryoji Higuchi
良司 樋口
Makoto Hirose
誠 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizuno Technics Corp
Original Assignee
Mizuno Technics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizuno Technics Corp filed Critical Mizuno Technics Corp
Priority to JP2005286007A priority Critical patent/JP4732103B2/en
Publication of JP2007090794A publication Critical patent/JP2007090794A/en
Application granted granted Critical
Publication of JP4732103B2 publication Critical patent/JP4732103B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily molding a tubular member with a light weight and a high stiffness made from a fiber reinforced resin and to provide the tubular member. <P>SOLUTION: The tubular member made from the fiber reinforced resin is composed of a fiber reinforced resin layer 1a wherein at least a large number of reinforcing long fibers are arranged in the same direction, the tubular member 1 above described has a cross section with an approximately oval shape and the outer peripheral surface is divided into four plane regions, namely an upper face 2 and a lower face 3 as a plane part 1b, and a left side face 4 and a light side face 5 as a curved part 1c and a resin content in the plane part 1b above described is constructed as 3-30% lower than the resin content in the curved part 1c. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、軽量で高強度、高弾性が要求される構造材や高速車体等へ、繊維強化樹脂材料を適用するための繊維強化樹脂製の管状部材およびその製造方法に関するものである。   The present invention relates to a fiber reinforced resin tubular member for applying a fiber reinforced resin material to a structural material, a high-speed vehicle body, and the like that are lightweight and require high strength and high elasticity, and a manufacturing method thereof.

比強度、比剛性が優れた繊維強化樹脂材料は、軽量で機械的強度が高いという理由から、航空用、宇宙用素材からスポーツ用素材等の材料として、多く利用されている。これらの材料は、高い強度と適度な撓み性を有し、かつ軽量であるため、目的に合わせた機能を有する様々なタイプの管状部材が提案されている。   Fiber reinforced resin materials having excellent specific strength and specific rigidity are widely used as materials for aviation and space materials to sports materials because they are lightweight and have high mechanical strength. Since these materials have high strength, moderate flexibility, and are light in weight, various types of tubular members have been proposed that have functions tailored to the purpose.

ところで、上記のような繊維強化樹脂製の管状部材として従来採用されているものとしては、その断面として、真円形や角形のものである。   By the way, as a thing conventionally employ | adopted as a tubular member made from the above fiber reinforced resin, it is a perfect circle or a square thing as the cross section.

例えば、前記角形の管状部材の製造方法において、特許文献1では、マンドレルに繊維の巻き付けを行い、この繊維の外周面を角形の4辺に対して各々平坦な平板で押圧した状態で加熱、硬化する方法が開示されている。   For example, in the method for manufacturing a rectangular tubular member, in Patent Document 1, a fiber is wound around a mandrel, and the outer peripheral surface of the fiber is heated and cured in a state where each of the four sides of the fiber is pressed with a flat flat plate. A method is disclosed.

一方、前記真円形の管状部材は、強度その他の特性上断面構成として方向性がないから、この意味からは好ましいものと言える。しかし、前記真円形の管状のFRP成形体は、その断面容積に対する厚さ(径)の割合が最大状態であるから、限定された空隙に対し適切な配設をなすことができない。また、より大径の管を用いることが補強目的においては好ましいとしても採用され得る径に制限がある。また、前記のような断面真円形の管は、ビス止めなどのための孔あけ加工ないし扁平化などの加工の加工が容易でない。
特開平9−216296号公報
On the other hand, the true circular tubular member is preferable in this sense because it has no directionality as a cross-sectional configuration in terms of strength and other characteristics. However, since the ratio of the thickness (diameter) to the cross-sectional volume of the FRP molded body having a perfect circular shape is at a maximum state, it cannot be appropriately disposed in a limited gap. In addition, there is a limit to the diameter that can be employed even if it is preferable to use a larger diameter pipe for the purpose of reinforcement. In addition, a pipe having a true circular cross section as described above is not easy to drill or flatten for screwing or the like.
JP-A-9-216296

しかし、前記特許文献1に開示されている角形の管状部材の製造方法においては、樹脂の加熱・硬化時には角形の4辺をそれぞれ別々の平坦な平板で押さえるため、押さえる力を均一にするのが難しく、板厚が変動し、得られるパイプの密度、品質にむらが生じる。
また、角形の管状部材は、成形する工程において、角形のマンドレルに繊維を巻き付ける場合、繊維はマンドレルの角部に強く接触するので繊維にかかる張力が不均一となり、また、繊維の折り返し部では繊維が滑りやすく、正確な巻き付け角度の維持が難しいという問題がある。成形品の外形状が四角形(多角形)でなくなってしまい、使用用途によっては、障害となる。
However, in the method of manufacturing the rectangular tubular member disclosed in Patent Document 1, the four sides of the square are pressed by separate flat plates when the resin is heated and cured, so that the pressing force is uniform. Difficult, plate thickness fluctuates, resulting in uneven pipe density and quality.
In addition, when a fiber is wound around a square mandrel in the forming process, the square tubular member is in strong contact with the corner of the mandrel, so that the tension applied to the fiber becomes non-uniform. Are slippery and it is difficult to maintain an accurate winding angle. The outer shape of the molded product is no longer square (polygon), which may be an obstacle depending on the intended use.

また、このような上記従来の繊維強化樹脂製の管状部材は、炭素繊維等の強化繊維にエポキシ樹脂等の合成樹脂を含浸させたプリプレグをマンドレルに巻き付け、加圧加熱して成形されている。軽量で高強度な管状体を作製するには、強化繊維の含有量を高めるため、樹脂含有率が小さいプリプレグが用いられている。上記樹脂含有率が小さいプリプレグを用いると、繊維分が多いため剛性を高めることができると共に軽量化を実現できるが、その反面、樹脂分が少ないためプリプレグの巻き付けにくく且つ成形性が悪くなる問題がある。
また、プリプレグの巻回層の境界において密着性が悪くなり境界にボイド(空隙)が発生し、強度が低下しやすいという問題がある。
In addition, such a conventional tubular member made of fiber reinforced resin is formed by winding a prepreg obtained by impregnating a reinforcing fiber such as carbon fiber with a synthetic resin such as an epoxy resin around a mandrel, and applying pressure and heating. In order to produce a lightweight and high-strength tubular body, a prepreg having a low resin content is used in order to increase the content of reinforcing fibers. When a prepreg having a low resin content is used, the rigidity can be increased and the weight can be reduced because of a large amount of fiber, but on the other hand, there is a problem that the prepreg is difficult to wind and the moldability is deteriorated because the resin content is small. is there.
In addition, there is a problem that the adhesion is deteriorated at the boundary of the winding layer of the prepreg, voids (voids) are generated at the boundary, and the strength is easily lowered.

一方、樹脂含有率が大きいプリプレグを用いると、樹脂分が多いためプリプレグが巻き付けやすく成形性が良くなるが、その反面、繊維強化樹脂製の管状部材の質量が重くなり、また、管状部材の繊維体積含有率(以下Vfと省略する)が上がらないため、FRP成形体の物性が低くなる傾向があった。それに伴って、FRP成形体の剛性を上げるために強化繊維基材層の積層枚数を増やさざるを得ず、FRP成形体の質量がさらに重くなるという問題があった。
また、繊維が存在しない又は繊維の存在が極端に少なく樹脂溜りとなる部分が形成され、層間剥離やクラックが生じやすいという問題がある。
On the other hand, when a prepreg having a high resin content is used, the prepreg is easy to wind and the moldability is improved because of a large amount of resin. Since the volume content (hereinafter abbreviated as Vf) does not increase, the physical properties of the FRP molded product tend to be low. Along with this, the number of laminated reinforcing fiber base layers has to be increased in order to increase the rigidity of the FRP molded body, and there is a problem that the mass of the FRP molded body becomes heavier.
In addition, there is a problem that there is no fiber or a portion where the presence of fiber is extremely small and a resin pool is formed, and delamination or cracks are likely to occur.

そこで、本発明は、上記した問題に鑑みてなされたものであり、軽量であり剛性が高い繊維強化樹脂製の管状部材を容易に得ることができ、成形性に優れた繊維強化樹脂製の管状部材および製造方法を提供することにある。   Accordingly, the present invention has been made in view of the above-described problems, and a fiber-reinforced resin tubular member that is lightweight and has high rigidity can be easily obtained, and is made of a fiber-reinforced resin excellent in moldability. It is in providing a member and a manufacturing method.

上記目的を達成するために、本発明の請求項1に係る繊維強化樹脂製の管状部材は、強化繊維と熱硬化性樹脂とからなる繊維強化樹脂層が積層された繊維強化樹脂製の管状部材であって、該管状部材は、断面が略小判形状であり、その外周面は、平面部である上面部および下面部と曲面部である左側面部及び右側面部に形成され、前記平面部の樹脂含有量の値は、前記曲面部の樹脂含有量の値と比べて3%〜20%少ないことを特徴とする繊維強化樹脂製の管状部材である。   In order to achieve the above object, a fiber reinforced resin tubular member according to claim 1 of the present invention is a fiber reinforced resin tubular member in which a fiber reinforced resin layer composed of a reinforced fiber and a thermosetting resin is laminated. The tubular member has a substantially oval cross section, and the outer peripheral surfaces thereof are formed on the upper surface portion and the lower surface portion, which are flat portions, and the left side surface portion and the right side surface portion, which are curved portions, and the resin of the flat portion The value of the content is a tubular member made of fiber reinforced resin characterized by being 3% to 20% less than the value of the resin content of the curved surface portion.

本発明の請求項2に係る繊維強化樹脂製の管状部材の製造方法は、マンドレルの外周に強化繊維と熱硬化性樹脂とからなる繊維強化樹脂層を積層して管状の予備成形体を形成する工程と、前記予備成形体の外周をラッピングテープにより加圧する工程と、熱硬化性樹脂の硬化温度未満で加熱しながら予備成形体の上面部および下面部を押圧させて該予備成形体中の樹脂を流動させる押圧転制御工程と、前記樹脂含有量が制御された予備成形体を、押圧中又は押圧後に前期熱硬化性樹脂の硬化温度以上で加熱して硬化させる工程とからなることを特徴とする繊維強化樹脂製の管状部材の製造方法である。   In the method for manufacturing a tubular member made of fiber reinforced resin according to claim 2 of the present invention, a tubular preform is formed by laminating a fiber reinforced resin layer made of reinforced fiber and thermosetting resin on the outer periphery of a mandrel. A step of pressurizing the outer periphery of the preform with a wrapping tape, and pressing the upper surface portion and the lower surface portion of the preform while heating at a temperature lower than the curing temperature of the thermosetting resin. And a step of controlling the pre-molded body in which the resin content is controlled to be heated and cured at a temperature equal to or higher than the curing temperature of the previous thermosetting resin during or after pressing. It is the manufacturing method of the tubular member made from fiber reinforced resin.

本発明の請求項3に係る繊維強化樹脂製の管状部材の製造方法は、請求項2に記載の繊維強化樹脂製の管状部材の製造方法であって、前記予備成形体は、マンドレルに強化繊維と熱硬化性樹脂を含浸させたプリプレグを複数層巻回すことにより形成され、前記複数のプリプレグは、樹脂含有量が同等のものを用いることを特徴とする繊維強化樹脂製の管状部材の製造方法である。   The method for producing a tubular member made of fiber reinforced resin according to claim 3 of the present invention is the method for producing a tubular member made of fiber reinforced resin according to claim 2, wherein the preform is a reinforcing fiber on a mandrel. And a prepreg impregnated with a thermosetting resin is wound by a plurality of layers, and the plurality of prepregs having the same resin content are used. It is.

本発明の請求項4に係る繊維強化樹脂製の管状部材の製造方法は、請求項2または3に記載の繊維強化樹脂製の管状部材の製造方法であって、前記マンドレルは、前記予備成形体の繊維強化樹脂材料より熱膨張率が大きい金属又は樹脂からなることを特徴とする繊維強化樹脂製の管状部材の製造方法である。   The method for producing a tubular member made of fiber reinforced resin according to claim 4 of the present invention is the method for producing a tubular member made of fiber reinforced resin according to claim 2 or 3, wherein the mandrel is the preform. It is a manufacturing method of the tubular member made from a fiber reinforced resin characterized by consisting of a metal or a resin whose thermal expansion coefficient is larger than that of the fiber reinforced resin material.

本発明による繊維強化樹脂製の管状部材および製造方法によれば、平面部の上面および下面は、質量増を招く樹脂分が削られて質量を減少できると同時に繊維分は削られないため、剛性を低下させることなく軽量化を実現することができる。結果的に上面および下面の繊維体積含有率(Vf)を高くすることができ、曲面部の左側面及び右側面は、管状部材の強度低下の原因となる樹脂溜りやボイドの発生も防止することができ、高強度とすることができる。   According to the tubular member and the manufacturing method of the fiber reinforced resin according to the present invention, the upper surface and the lower surface of the flat portion can be reduced in mass because the resin component that causes an increase in mass can be reduced and the mass can be decreased. It is possible to reduce the weight without lowering. As a result, the fiber volume content (Vf) of the upper surface and the lower surface can be increased, and the left side surface and the right side surface of the curved surface portion can prevent the occurrence of resin pools and voids that cause a decrease in strength of the tubular member. And high strength.

以下、本発明の繊維強化樹脂製の管状部材及びその製造方法について、図面に示す具体的な実施例にもとづいて詳細に説明する。   Hereinafter, the tubular member made of fiber-reinforced resin and the manufacturing method thereof according to the present invention will be described in detail based on specific examples shown in the drawings.

図1は、本発明の繊維強化樹脂製の管状部材を示す全体斜視図、図2〜図5は、この発明にかかる繊維強化樹脂製の管状部材の製造工程を示す説明図である。   FIG. 1 is an overall perspective view showing a tubular member made of fiber reinforced resin according to the present invention, and FIGS. 2 to 5 are explanatory views showing a manufacturing process of the tubular member made of fiber reinforced resin according to the present invention.

本発明の繊維強化樹脂製の管状部材は、少なくとも長繊維状の多数本の強化繊維が同一方向に配列された繊維強化樹脂層1aから構成されていることを特徴とするものであり、前記管状部材1は、図1に示すように、断面が略小判形状であり、その外周面は、4つの面領域、即ち、平面部1bである上面2および下面3と曲面部1dである左側面4及び右側面5に区分されており、前記平面部1cの前記上面2及び下面3の樹脂含有量の値は、前記曲面部1cの左側面4及び右側面5の樹脂含有量の値と比べ3%〜20%少ない構成としている。   The tubular member made of fiber reinforced resin according to the present invention is characterized in that it is composed of a fiber reinforced resin layer 1a in which at least a large number of long-fiber reinforced fibers are arranged in the same direction. As shown in FIG. 1, the member 1 has a substantially oval cross section, and its outer peripheral surface has four surface regions, that is, an upper surface 2 and a lower surface 3 as a flat surface portion 1b, and a left side surface 4 as a curved surface portion 1d. And the value of the resin content of the upper surface 2 and the lower surface 3 of the flat surface portion 1c is 3 compared with the value of the resin content of the left surface 4 and the right surface 5 of the curved surface portion 1c. % To 20% less composition.

前記3%以下では、管状部材1の質量が重くなり、また、Vfが上がらないため、物性が低くなる傾向がある。一方、前記20%以上では、繊維強化樹脂層の巻回層の境界において密着性が悪くなり境界にボイド(空隙)が発生し、強度が低下しやすいという問題がある。   If it is 3% or less, the mass of the tubular member 1 becomes heavy, and Vf does not increase, so that the physical properties tend to be low. On the other hand, when the content is 20% or more, there is a problem in that the adhesion is deteriorated at the boundary of the wound layer of the fiber reinforced resin layer, voids (voids) are generated at the boundary, and the strength is easily lowered.

上記のような前記管状部材とすることで、後述する製造方法により、上面2および下面3は、質量増を招く樹脂分が削られて質量を減少できると同時に繊維分は削られないため、剛性を低下させることなく軽量化を実現することができる。結果的に上面2および下面のVfを高くすることができ、Vfは、例えば60〜75%の範囲とされる。さらに、曲面部である左側面4及び右側面5は、管状部材の強度低下の原因となる樹脂溜りやボイドの発生も防止することができ、高強度とすることができる。   By using the tubular member as described above, the upper surface 2 and the lower surface 3 can be reduced in mass by reducing the resin component that causes an increase in mass and at the same time the fiber component is not scraped. It is possible to reduce the weight without lowering. As a result, Vf of the upper surface 2 and the lower surface can be increased, and Vf is, for example, in the range of 60 to 75%. Furthermore, the left side surface 4 and the right side surface 5 which are curved surfaces can prevent the occurrence of resin pools and voids that cause a decrease in strength of the tubular member, and can have high strength.

なお、本発明の上記繊維強化樹脂層を積層した管状部材の形成工程はシートワインディング法で形成しても良いし、フィラメントワインディング法で形成してもよい。好ましくは、上記予備成形体は、マンドレルに強化繊維に熱硬化性樹脂を含浸させたプリプレグを複数層巻き回すことにより形成した方法が採用できる。   In addition, the formation process of the tubular member which laminated | stacked the said fiber reinforced resin layer of this invention may be formed by the sheet winding method, and may be formed by the filament winding method. Preferably, the preform may be formed by winding a prepreg in which a mandrel is impregnated with a thermosetting resin in a reinforcing fiber and wound around a plurality of layers.

上記複数のプリプレグは、本実施の形態において、樹脂含有率が略同等のものを用いている。本発明では、樹脂含有率が同等のプリプレグを用いても後述する製造方法により、管状部材1中の樹脂含有率の制御が可能であるため、樹脂含有率の異なる複数のプリプレグを準備する必要がなく、材料種を削減することができ、材料コストの低下および製造効率が向上する。また、樹脂含有率の大きいプリプレグを用いた場合でも、面領域の樹脂量を大とするため、高剛性で軽量化を実現できる樹脂含有率の小さい管状体を成形することができる。なお、製造する管状部材の要求性能等に応じて樹脂含有量の異なるプリプレグを用いても良いことは言うまでもない。   In the present embodiment, the plurality of prepregs having substantially the same resin content are used. In the present invention, even if prepregs having the same resin content are used, the resin content in the tubular member 1 can be controlled by the manufacturing method described later. Therefore, it is necessary to prepare a plurality of prepregs having different resin contents. Therefore, the material type can be reduced, and the material cost is reduced and the manufacturing efficiency is improved. Even when a prepreg having a high resin content is used, the amount of resin in the surface region is increased, so that a tubular body with a low resin content that can achieve high rigidity and light weight can be formed. It goes without saying that prepregs having different resin contents may be used according to the required performance of the tubular member to be manufactured.

また、前記プリプレグは、軸線方向に対し繊維角度を10度〜70度としたバイアス層、0度〜10度としたストレート層、70度〜90度としたフープ層等のプリプレグを組み合わせて用いることができ、強化繊維の繊維角度や、各層の配置位置、長さ、幅、厚み等の積層構成は管状体の要求性能に応じて設定することができる。軸方向の全長に渡るプリプレグと、部分的に配置されるプリプレグを組み合わせても良い。   Further, the prepreg is used in combination with a prepreg such as a bias layer having a fiber angle of 10 to 70 degrees with respect to the axial direction, a straight layer having a fiber angle of 0 to 10 degrees, and a hoop layer having a fiber angle of 70 to 90 degrees. The fiber configuration of the reinforcing fibers, the laminated position such as the arrangement position, length, width, and thickness of each layer can be set according to the required performance of the tubular body. You may combine the prepreg over the full length of an axial direction, and the prepreg arrange | positioned partially.

前記プリプレグの厚みは、0.01mm〜0.3mm、さらには0.05mm〜0.15mmが好ましく、プリプレグの弾性率は5ton/mm2〜100ton/mm2が好ましい。また、軸方向に対して0度での曲げ強度は100kgf/mm2〜300kgf/mm2が好ましく、プリプレグの樹脂目付量は5g/m2〜500g/m2、炭素繊維目付量は5g/m2〜300g/m2が好ましい。   The thickness of the prepreg is preferably 0.01 mm to 0.3 mm, more preferably 0.05 mm to 0.15 mm, and the elastic modulus of the prepreg is preferably 5 ton / mm2 to 100 ton / mm2. The bending strength at 0 degrees with respect to the axial direction is preferably 100 kgf / mm2 to 300 kgf / mm2, the resin basis weight of the prepreg is 5 g / m2 to 500 g / m2, and the carbon fiber basis weight is 5 g / m2 to 300 g / m2. Is preferred.

また、前記プリプレグの樹脂含有率は10重量%〜50重量%が好ましい。この範囲より小さいと、タック性が小さくプリプレグの巻き付けが困難になるためであり、この範囲より大きいと研磨量が多くなり生産性が悪くなると共に軽量化を実現しにくいためである。更に好ましくは20重量%〜40重量%、より好ましくは20重量%〜30重量%である。   The resin content of the prepreg is preferably 10% by weight to 50% by weight. This is because if the thickness is smaller than this range, the tackiness is small and it is difficult to wind the prepreg, and if it is larger than this range, the polishing amount increases, the productivity is deteriorated, and the weight reduction is difficult to realize. More preferably, it is 20 to 40 weight%, More preferably, it is 20 to 30 weight%.

強化繊維の繊維としては、カーボン繊維、ガラス繊維、各種セラミックス繊維、ボロン繊維、銅,ステンレス等の金属繊維、アモルファス繊維、芳香族ポリアミド等の有機繊維(例えば、ケブラー繊維、チラノ繊維)、それらの混織物等を用いることができる。中でも、カーボン繊維、ガラス繊維が好ましく、カーボン繊維が特に好ましい。強化繊維は、単一方向、ランダム方向、シート状、マット状、織物(クロス)状、組み紐状等のいずれの形状・配列でも使用可能である。   Examples of reinforcing fibers include carbon fibers, glass fibers, various ceramic fibers, boron fibers, metal fibers such as copper and stainless steel, amorphous fibers, organic fibers such as aromatic polyamides (for example, Kevlar fibers, Tyranno fibers), and the like. A mixed fabric or the like can be used. Among these, carbon fiber and glass fiber are preferable, and carbon fiber is particularly preferable. The reinforcing fibers can be used in any shape / arrangement such as a single direction, a random direction, a sheet shape, a mat shape, a woven (cross) shape, a braided shape, and the like.

熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ビニルエステル樹脂、ポリエステル樹脂、不飽和ポリエステル樹脂等を用いることができ、比重の大きいものが好ましい。中でもエポキシ樹脂、フェノール樹脂が好ましく、特にエポキシ樹脂が好ましい。   As the thermosetting resin, an epoxy resin, a phenol resin, a vinyl ester resin, a polyester resin, an unsaturated polyester resin, or the like can be used, and a resin having a large specific gravity is preferable. Of these, epoxy resins and phenol resins are preferable, and epoxy resins are particularly preferable.

また、上記のように、本発明の管状部材は、断面略小判形の形状としていることで、断面真円の管と同断面積の場合は断面真円の管よりも断面2次モーメントを大きくでき、曲げ吸収エネルギーを大きくできる。更に、上記のような形状としているため、省スペースが図られ、限定された空隙に対し適切な配設をなすことができると共に取付けのため管端に対し更に孔あけなどの加工をなすことが容易とすることができる。   In addition, as described above, the tubular member of the present invention has a substantially oval cross-sectional shape, so that when the cross-sectional area is the same as that of a perfectly circular tube, the secondary moment of section can be made larger than that of a perfectly circular tube. Can increase bending absorption energy. Furthermore, since the shape is as described above, space can be saved, and appropriate arrangement can be made for a limited gap, and further processing such as drilling can be performed on the pipe end for mounting. Can be easy.

以下、本発明の実施形態として繊維強化樹脂製の管状部材の製造方法について図面を参照して説明する。   Hereinafter, the manufacturing method of the tubular member made from a fiber reinforced resin is demonstrated with reference to drawings as embodiment of this invention.

まず、予備成形体の形成工程で、強化繊維と熱硬化性樹脂とを備えた繊維強化樹脂の積
層体からなる予備成形体10を形成する。
First, in the preforming process, a preformed body 10 made of a fiber reinforced resin laminate including reinforced fibers and a thermosetting resin is formed.

予備成形体10は、図2、図3に示すように、強化繊維に熱硬化性樹脂を含浸させたプリプレグ20〜23をマンドレル11に複数層巻き回して形成している。
マンドレル11は、管状部材の略小判型形状に対応させた形状であり、この場合、図2に示すように、マンドレル11の外周面は、平面部11bの上面2b、下面3b、曲面部11cの左側面4b及び右側面5bに区分されている。
As shown in FIGS. 2 and 3, the preform 10 is formed by winding a plurality of layers of prepregs 20 to 23 in which reinforcing fibers are impregnated with a thermosetting resin around the mandrel 11.
The mandrel 11 has a shape corresponding to the substantially oval shape of the tubular member. In this case, as shown in FIG. 2, the outer peripheral surface of the mandrel 11 has an upper surface 2b, a lower surface 3b, and a curved surface portion 11c of the flat surface portion 11b. It is divided into a left side surface 4b and a right side surface 5b.

また、前記マンドレル11は、ある程度の剛性を有し、管状部材を成形する際の所謂中型として機能すべく、加熱工程における加熱温度以下では変形しない性質を有し、且つ上記繊維強化樹脂材料より熱膨張率が大きい金属又は樹脂を用いて矩形状断面とされており、加熱硬化後の予備成形体(管状部材)から容易に抜き取れる材質のものを使用する。
例えば、マンドレルの材質としては、例えば、アルミニウム、鉄、ステンレス等の金属や、ナイロン、シリコン、テフロン(登録商標)、ポリブチレンテレフタレート、ポリアセタール、ポリプロピレン、ポリイミド、ポリアミドイミド、ポリカーボネート、ポリフェニレンサルファイト等の樹脂が適する。
前記金属や樹脂等は、繊維強化樹脂材料より熱膨張率が大きい為、加熱後の冷却により収縮し、抜き取り容易となる。又、必要に応じ、マンドレルの表面に離型材を施してもよい。離型材としては、スプレー、はけ塗り等による薬剤(例えば、界面活性剤等)の塗布、或いはテフロン(登録商標)シート等の離形シートの使用など何れの方法でもよい。
In addition, the mandrel 11 has a certain degree of rigidity, has a property of not deforming below the heating temperature in the heating step so as to function as a so-called middle mold when the tubular member is molded, and is more heated than the fiber reinforced resin material. A material having a rectangular cross section using a metal or a resin having a large expansion coefficient and having a material that can be easily extracted from a pre-formed body (tubular member) after heat curing is used.
For example, as the material of the mandrel, for example, metals such as aluminum, iron, and stainless steel, nylon, silicon, Teflon (registered trademark), polybutylene terephthalate, polyacetal, polypropylene, polyimide, polyamideimide, polycarbonate, polyphenylene sulfite, etc. Resin is suitable.
Since the metal, the resin, and the like have a higher coefficient of thermal expansion than the fiber reinforced resin material, the metal, the resin, and the like are shrunk by cooling after heating and are easily extracted. Moreover, you may give a mold release material to the surface of a mandrel as needed. The release material may be any method such as application of a drug (for example, a surfactant) by spraying or brushing, or the use of a release sheet such as a Teflon (registered trademark) sheet.

前記プリプレグ20〜23の強化繊維は例として、いずれも炭素繊維を用い、マトリクス樹脂としてエポキシ樹脂を用いている。
例えば、本実施の形態のプリプレグ20は、強化繊維が軸線方向に対してなす繊維角度を0°とし、3周巻きとしている。プリプレグ21、22は、強化繊維が軸線方向に対してなす繊維角度を各々+45°、−45°(アングル層)とし、各々3周巻きとしている。プリプレグ23は、強化繊維F11が軸線方向に対してなす繊維角度を0°(ストレート層)とし、3周巻きとしている。プリプレグの巻き数は先端から後端まで共通としている。各プリプレグ20〜23の樹脂含有率はいずれも30重量%とし、厚みは0.2mmとし、弾性率は30ton/mm2としている。
For example, carbon fibers are used as the reinforcing fibers of the prepregs 20 to 23, and an epoxy resin is used as the matrix resin.
For example, in the prepreg 20 of the present embodiment, the fiber angle formed by the reinforcing fibers with respect to the axial direction is set to 0 °, and the winding is performed three times. In the prepregs 21 and 22, the fiber angles formed by the reinforcing fibers with respect to the axial direction are + 45 ° and −45 ° (angle layer), respectively, and the prepregs 21 and 22 each have three turns. The prepreg 23 has a fiber angle of 0 ° (straight layer) formed by the reinforcing fibers F11 with respect to the axial direction and is wound three times. The number of windings of the prepreg is common from the front end to the rear end. Each prepreg 20-23 has a resin content of 30% by weight, a thickness of 0.2 mm, and an elastic modulus of 30 ton / mm 2.

具体的には、マンドレル11の外周に、内層側から順にプリプレグ20〜23を巻き付けて積層し、略小判形形状の管状の予備成形体10を形成する。
予備成形体10は、図2に示すように軸方向の一端から他端を同形状し、一端から他端に向かい一定に積層されることで厚みは一定とし、外周面は、平面部10bの上面2a、下面3a、曲面部10cの左側面4a及び右側面5aに区分されている。
Specifically, the prepregs 20 to 23 are wound around the outer periphery of the mandrel 11 in order from the inner layer side and laminated to form a substantially oval tubular preform 10.
As shown in FIG. 2, the preform 10 has the same shape from one end to the other end in the axial direction, and is uniformly laminated from one end to the other end, and the outer peripheral surface is the flat portion 10b. It is divided into an upper surface 2a, a lower surface 3a, a left side surface 4a and a right side surface 5a of the curved surface portion 10c.

なお、後述する押圧制御工程の前状態として前記予備成形体10の樹脂含有量は、該予備成形体の全体にわたり均一で、樹脂分と繊維分との割合は一定となっている。   In addition, the resin content of the preform 10 is uniform throughout the preform as a state before the press control step described later, and the ratio of the resin component and the fiber component is constant.

次に、図4に示すように、上記したプリプレグを用いたシートワインディング製法により予備成形体10を成形した後、予備成形体10の外周を加圧するための加圧工程として、該予備成形体10の外周にラッピングテープ12を、一定の張力をかけながら数mmピッチで巻きつけてラッピングし、予備成形体10を外周側から加圧する。   Next, as shown in FIG. 4, after forming the preform 10 by the sheet winding method using the above-described prepreg, as a pressurizing step for pressurizing the outer periphery of the preform 10, the preform 10 The wrapping tape 12 is wrapped around the outer periphery of the wrapping tape at a pitch of several mm while applying a certain tension, and the preformed body 10 is pressed from the outer peripheral side.

尚、前記ラッピングテープ12は、加熱によって収縮する特性を有するものとするものとすることで、前記、前記繊維強化樹脂材料を加熱硬化すると同時に、前記前記繊維強化樹脂材料に対して加圧が可能となるため製造効率がよい。前記ラッピングテープ12の材料としては、PVC樹脂、PET樹脂、ポリプロピレン樹脂、ポリエチレン樹脂等のオレフィン系の樹脂、フッ素樹脂等から適宜選択され用いられる。   In addition, the said wrapping tape 12 shall have the characteristic which shrinks by heating, and can pressurize with respect to the said fiber reinforced resin material simultaneously with the said heat curing of the said fiber reinforced resin material Therefore, manufacturing efficiency is good. The material of the wrapping tape 12 is appropriately selected from PVC resin, PET resin, polypropylene resin, olefin resin such as polyethylene resin, fluororesin, and the like.

次に、図5に示すように、押圧制御工程として、ラッツピングテープ12が巻着されたままの状態で、予備成形体10の上面2a及び下面3aを外型30で上下より押圧させる。
この時、熱硬化性樹脂を硬化温度未満で流動性を保持した状態で加熱保持し、上面2a及び下面3bを外型30で上下より押圧させる。
この押圧及びラッツピングテープによる加圧で、繊維強化樹脂中で繊維分よりも比重の大きな樹脂分が、繊維分に対して相対的に曲面部10b(左側面、右側面)および外周面側に流動し、これにより樹脂含有率を制御している。
Next, as shown in FIG. 5, as the pressing control step, the upper surface 2 a and the lower surface 3 a of the preformed body 10 are pressed from above and below with the outer mold 30 while the rattling tape 12 is still wound.
At this time, the thermosetting resin is heated and held in a state where the fluidity is maintained at a temperature lower than the curing temperature, and the upper surface 2 a and the lower surface 3 b are pressed from above and below by the outer mold 30.
By this pressing and pressing with a lapping tape, a resin component having a specific gravity larger than the fiber component in the fiber reinforced resin is relatively placed on the curved surface portion 10b (left side surface, right side surface) and the outer peripheral surface side with respect to the fiber component. It flows and this controls the resin content.

具体的に本実施形態では、前記押圧制御工程として、予備成形体10は、マンドレル11と共に、図示しないプレス機にセットされて、平面部10a(上面、下面)が加圧加温される。例えば、圧力と共に加熱を行い、30分間で75℃まで昇温させ、その後30分間75℃を維持し、樹脂の流動性を保持して押圧に伴う圧力(1cm2あたり1.0Mpa)で樹脂分を曲面部10b(左側面、右側面)および外周側へ流動させている。   Specifically, in the present embodiment, as the pressing control step, the preformed body 10 is set together with the mandrel 11 in a press machine (not shown), and the flat surface portion 10a (upper surface, lower surface) is pressurized and heated. For example, heating is performed together with pressure, the temperature is raised to 75 ° C. in 30 minutes, and then maintained at 75 ° C. for 30 minutes, and the resin content is reduced with pressure (1.0 MPa per cm 2) while maintaining the fluidity of the resin. It is made to flow to the curved surface part 10b (left side surface, right side surface) and the outer peripheral side.

前記平面部の圧力は、1cm2あたり0.5Mpa〜2.0Mpa程度が好適とされる。前記0.5Mpaでは、圧力が低いために、樹脂が流動しにくくなり、平面部の樹脂含有量に変化がなく、管状部材としての質量が重く、物性が低くなる。一方前記2.0Mpaでは、圧力が高くため、樹脂が流動しすぎてしまい、平面部の肉厚は薄くなり、強度が低下してしまう。   The pressure of the flat portion is preferably about 0.5 to 2.0 MPa per cm2. At 0.5 Mpa, since the pressure is low, the resin does not flow easily, the resin content in the flat portion does not change, the mass of the tubular member is heavy, and the physical properties are low. On the other hand, at 2.0 MPa, since the pressure is high, the resin flows too much, the thickness of the flat surface portion becomes thin, and the strength decreases.

また、前記熱硬化性樹脂を流動させる押圧制御工程での加熱温度は、使用樹脂の硬化温度未満で、かつ、使用樹脂の粘度が低くなる温度が好ましい。例えば、熱硬化性樹脂がエポキシ樹脂の場合は、樹脂温度が30℃〜110℃、好ましくは60℃〜80℃の状態で加熱するのが良い。   In addition, the heating temperature in the pressure control step for causing the thermosetting resin to flow is preferably lower than the curing temperature of the resin used and the temperature at which the viscosity of the resin used decreases. For example, when the thermosetting resin is an epoxy resin, the resin temperature is 30 ° C to 110 ° C, preferably 60 ° C to 80 ° C.

その後、硬化工程で樹脂を硬化温度まで上昇させて硬化させ、樹脂含有量が調整された予備成形体10を、押圧させながら熱硬化性樹脂の硬化温度以上で加熱硬化させる。   Thereafter, in the curing step, the resin is raised to the curing temperature and cured, and the preformed body 10 having the adjusted resin content is heated and cured at a temperature equal to or higher than the curing temperature of the thermosetting resin.

常温まで降温した後、加熱硬化された管状部材1からラッピングテープを剥がし取る。その後、硬化された管状部材をマンドレル11から抜き取り、図1に示す管状部材1を得る。   After the temperature is lowered to room temperature, the wrapping tape is peeled off from the heat-cured tubular member 1. Thereafter, the cured tubular member is extracted from the mandrel 11 to obtain the tubular member 1 shown in FIG.

上記のように、樹脂含有率が均一である予備成形体10を、上記前記押圧制御工程による加熱しながら押圧させることで樹脂分が曲面部および外周側に流動され、この状態で硬化された管状部材1の平面部1b(上面部2及び下面部3)の樹脂含有量の値は、押圧制御工程前に比べ、曲面部1c(左側面4及び右側面部5)の樹脂含有量の値に対して3%〜20%少なくなっている。   As described above, the preform 10 having a uniform resin content is pressed while being heated in the pressing control step, so that the resin component flows to the curved surface portion and the outer peripheral side, and is cured in this state. The value of the resin content of the flat surface portion 1b (upper surface portion 2 and lower surface portion 3) of the member 1 is compared with the value of the resin content of the curved surface portion 1c (left side surface 4 and right side surface portion 5) as compared to before the pressing control step. 3% to 20% less.

以下、本発明の管状部材の実施例、比較例について詳述する。   Hereinafter, the Example of the tubular member of this invention and a comparative example are explained in full detail.

(実施例)
上記実施形態と同様の方法で、予備成形体の樹脂含有率を調整して略小判形状の管状部材を製造した。
(Example)
A substantially oval tubular member was produced by adjusting the resin content of the preform by the same method as in the above embodiment.

(比較例)
押圧制御工程を行わずに、予備成形体のプリプレグの積層状態のままで加熱硬化し、その他は実施例1と同様とした。
(Comparative example)
Without performing the pressure control step, the prepreg of the preform was cured by heating in the laminated state, and the others were the same as in Example 1.

図3に示す前記プリプレグ20〜23の強化繊維はいずれも炭素繊維を用い、マトリクス樹脂としてエポキシ樹脂を用いた。
プリプレグ20は、図3に示すように強化繊維が軸線方向に対してなす繊維角度を0°とし、3周巻きとしている。プリプレグ21,22は、強化繊維が軸線方向に対してなす繊維角度を各々+45°、−45°(アングル層)とし、各々3周巻きとした。プリプレグ23は、強化繊維F11が軸線方向に対してなす繊維角度を0°(ストレート層)とし、3周巻きとした。プリプレグの巻き数は先端から後端まで共通としている。各プリプレグ20〜23の樹脂含有率はいずれも35重量%とし、厚みは0.2mmとし、弾性率は30ton/mm2とした。
The reinforcing fibers of the prepregs 20 to 23 shown in FIG. 3 are all carbon fibers, and an epoxy resin is used as a matrix resin.
As shown in FIG. 3, the prepreg 20 has a fiber angle formed by the reinforcing fibers with respect to the axial direction of 0 ° and is wound three times. In the prepregs 21 and 22, the fiber angles formed by the reinforcing fibers with respect to the axial direction were + 45 ° and −45 ° (angle layer), respectively, and each was wound three times. In the prepreg 23, the fiber angle formed by the reinforcing fiber F11 with respect to the axial direction was 0 ° (straight layer), and the prepreg 23 was wound three times. The number of windings of the prepreg is common from the front end to the rear end. The resin content of each of the prepregs 20 to 23 was 35% by weight, the thickness was 0.2 mm, and the elastic modulus was 30 ton / mm 2.

加熱硬化後、図6に示す管状部材の長さLを1500mm、厚みTは一定で2.4mm、高さHが24mm、幅Wが50mmとした。   After heat curing, the length L of the tubular member shown in FIG. 6 was 1500 mm, the thickness T was constant 2.4 mm, the height H was 24 mm, and the width W was 50 mm.

管状部材1の平面部1bである上面2、下面3と、曲面部1cである左側面4、右側面5の位置における樹脂含有量を測定し、加熱成形前と加熱成形後で比較し表1に記載した。   The resin content at the positions of the upper surface 2 and the lower surface 3 as the flat surface portion 1b of the tubular member 1 and the left side surface 4 and the right side surface 5 as the curved surface portion 1c is measured, and compared before and after heat molding. It was described in.

Figure 2007090794
Figure 2007090794

(3点曲げ強度の測定)
熱硬化後の管状部材の3点曲げ強度を測定した。
図7示すように、3点で管状部材の平面部を支え、上方から荷重圧子40により荷重Fを加え、管状部材が破断した時の荷重値(ピーク値)を測定した。
測定点は、管状部材1の一端から750mmの平面部1bの上面2の位置について行った。2ヵ所の支持点41のスパンを750mmとした。荷重圧子40の先端半径は100mm、支持点41の先端半径は20mmとし、荷重圧子は支持点の中心位置で管状部材に荷重Fを加えた。
(Measurement of 3-point bending strength)
The three-point bending strength of the tubular member after thermosetting was measured.
As shown in FIG. 7, the flat part of the tubular member was supported at three points, a load F was applied from above by a load indenter 40, and a load value (peak value) when the tubular member was broken was measured.
The measurement point was performed about the position of the upper surface 2 of the flat part 1b of 750 mm from the end of the tubular member 1. The span of the two support points 41 was 750 mm. The tip radius of the load indenter 40 was 100 mm, the tip radius of the support point 41 was 20 mm, and the load indenter applied a load F to the tubular member at the center position of the support point.

測定の結果、実施例は、512Nで、比較例は、482Nであった。   As a result of measurement, the example was 512N and the comparative example was 482N.

表1及び強度測定結果に示すように、実施例の管状部材は、平面部の樹脂含有率の制御を行ったため、平面部の樹脂含有量の値が曲面部の樹脂含有量の値より小さくなっており、剛性や強度の低下が生じないことが確認できた。   As shown in Table 1 and the strength measurement results, in the tubular member of the example, since the resin content rate of the flat part was controlled, the resin content value of the flat part becomes smaller than the resin content value of the curved part. It was confirmed that there was no decrease in rigidity or strength.

一方、比較例は、プリプレグを巻き付けた状態のままで加熱硬化されているため、管
状体中の樹脂含有量が一定であり、実施例の管状部材と比較すると剛性や強度が低下することが確認できた。
On the other hand, since the comparative example is heat-cured while the prepreg is wound, the resin content in the tubular body is constant, and it is confirmed that the rigidity and strength are reduced as compared with the tubular member of the example. did it.

繊維強化樹脂製の管状部材を示す説明図。Explanatory drawing which shows the tubular member made from fiber reinforced resin. 繊維強化樹脂製の管状部材の製造工程を示す説明図。Explanatory drawing which shows the manufacturing process of the tubular member made from fiber reinforced resin. 繊維強化樹脂製の管状部材の製造工程を示す説明図。Explanatory drawing which shows the manufacturing process of the tubular member made from fiber reinforced resin. 繊維強化樹脂製の管状部材の製造工程を示す説明図。Explanatory drawing which shows the manufacturing process of the tubular member made from fiber reinforced resin. 繊維強化樹脂製の管状部材の製造工程を示す説明図。Explanatory drawing which shows the manufacturing process of the tubular member made from fiber reinforced resin. 実施例の管状部材の説明図。Explanatory drawing of the tubular member of an Example. 3点曲げ強度の測定を説明する図。The figure explaining the measurement of 3 point | piece bending strength.

符号の説明Explanation of symbols

1 管状部材
1a 繊維強化樹脂層
1b 平面部
1c 曲面部
2 上面
2a 上面
2b 上面
3 下面
3a 上面
3b 下面
4 左側面
4a 左側面
5 右側面
5a 右側面
5b 右側面
10 予備成形体
10a 平面部
10b 曲面部
11 マンドレル
11a 平面部
11b 曲面部
12 ラッピングテープ
20 プリプレグ
21 プリプレグ
22 プリプレグ
23 プリプレグ
30 外型
40 荷重圧子
41 支持点
DESCRIPTION OF SYMBOLS 1 Tubular member 1a Fiber reinforced resin layer 1b Flat surface part 1c Curved surface part 2 Upper surface 2a Upper surface 2b Upper surface 3 Lower surface 3a Upper surface 3b Lower surface 4 Left side surface 4a Left side surface 5 Right side surface 5a Right side surface 5b Right side surface 10 Preliminary body 10a Flat surface portion 10b Curved surface Part 11 Mandrel 11a Flat part 11b Curved part 12 Wrapping tape 20 Pre-preg 21 Pre-preg 22 Pre-preg 23 Pre-preg 30 Outer mold 40 Load indenter 41 Support point

Claims (4)

強化繊維と熱硬化性樹脂とからなる繊維強化樹脂層が積層された繊維強化樹脂製の管状部材であって、該管状部材は、断面が略小判形状であり、その外周面は、平面部である上面部および下面部と曲面部である左側面部及び右側面部に形成され、前記平面部の樹脂含有量の値は、前記曲面部の樹脂含有量の値と比べて3%〜20%少ないことを特徴とする繊維強化樹脂製の管状部材。   A tubular member made of fiber reinforced resin in which fiber reinforced resin layers made of reinforced fiber and thermosetting resin are laminated, and the tubular member has a substantially oval cross section, and its outer peripheral surface is a flat portion. It is formed on a certain upper surface portion and lower surface portion and curved surface portions on the left side surface portion and right side surface portion, and the value of the resin content of the flat surface portion is 3% to 20% less than the value of the resin content of the curved surface portion. A tubular member made of fiber-reinforced resin characterized by the above. マンドレルの外周に強化繊維と熱硬化性樹脂とからなる繊維強化樹脂層を積層して管状の予備成形体を形成する工程と、前記予備成形体の外周をラッピングテープにより加圧する工程と、熱硬化性樹脂の硬化温度未満で加熱しながら予備成形体の上面部および下面部を押圧させて該予備成形体中の樹脂を流動させる押圧転制御工程と、前記樹脂含有量が制御された予備成形体を、押圧中又は押圧後に前期熱硬化性樹脂の硬化温度以上で加熱して硬化させる工程とからなることを特徴とする繊維強化樹脂製の管状部材の製造方法。   A step of forming a tubular preform by laminating a fiber reinforced resin layer composed of reinforcing fibers and a thermosetting resin on the outer periphery of the mandrel, a step of pressing the outer periphery of the preform with a wrapping tape, and thermosetting A press roll control step of causing the resin in the preform to flow by pressing the upper surface portion and the lower surface portion of the preform while heating at a temperature lower than the curing temperature of the functional resin, and the preform with the resin content controlled A method for producing a tubular member made of fiber-reinforced resin, comprising: heating and curing at a temperature equal to or higher than the curing temperature of the thermosetting resin during or after pressing. 前記予備成形体は、マンドレルに強化繊維と熱硬化性樹脂を含浸させたプリプレグを複数層巻回すことにより形成され、前記複数のプリプレグは、樹脂含有量が同等のものを用いることを特徴とする請求項2に記載の繊維強化樹脂製の管状部材の製造方法。   The preform is formed by winding a plurality of layers of a prepreg in which a mandrel is impregnated with reinforcing fibers and a thermosetting resin, and the plurality of prepregs having the same resin content are used. The manufacturing method of the tubular member made from fiber reinforced resin of Claim 2. 前記マンドレルは、前記予備成形体の繊維強化樹脂材料より熱膨張率が大きい金属又は樹脂からなることを特徴とする請求項2、又は3に記載の繊維強化樹脂製の管状部材の製造方法。
The method for producing a tubular member made of fiber reinforced resin according to claim 2 or 3, wherein the mandrel is made of a metal or a resin having a larger coefficient of thermal expansion than the fiber reinforced resin material of the preform.
JP2005286007A 2005-09-30 2005-09-30 Manufacturing method of tubular member made of fiber reinforced resin Expired - Fee Related JP4732103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005286007A JP4732103B2 (en) 2005-09-30 2005-09-30 Manufacturing method of tubular member made of fiber reinforced resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005286007A JP4732103B2 (en) 2005-09-30 2005-09-30 Manufacturing method of tubular member made of fiber reinforced resin

Publications (2)

Publication Number Publication Date
JP2007090794A true JP2007090794A (en) 2007-04-12
JP4732103B2 JP4732103B2 (en) 2011-07-27

Family

ID=37977034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005286007A Expired - Fee Related JP4732103B2 (en) 2005-09-30 2005-09-30 Manufacturing method of tubular member made of fiber reinforced resin

Country Status (1)

Country Link
JP (1) JP4732103B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166444A (en) * 2008-01-21 2009-07-30 Sri Sports Ltd Tubular body manufacturing method and tubular body
JP2009202516A (en) * 2008-02-29 2009-09-10 Sri Sports Ltd Manufacturing method of tube and tube
JP2010035600A (en) * 2008-07-31 2010-02-18 Globeride Inc Angle pipe
JP2010035599A (en) * 2008-07-31 2010-02-18 Globeride Inc Angle pipe
JP2011226602A (en) * 2010-04-21 2011-11-10 Nippon Steel Materials Co Ltd Hollow pipe
JP2012177294A (en) * 2011-01-31 2012-09-13 Katekkusu:Kk Underground buried material
KR101434150B1 (en) * 2012-08-17 2014-09-24 삼성중공업 주식회사 Cryogenic liquid storage tank with composite material reinforcement, composite material reinforcement and fabrication method of composite material reinforcement
CN107443616A (en) * 2017-07-26 2017-12-08 河南科技大学 Pipe 3 D weaving preform, braiding compound circular tube and both forming methods
CN114147996A (en) * 2021-11-24 2022-03-08 航天特种材料及工艺技术研究所 Composite material structure containing internal channel with large slenderness ratio and preparation method thereof
KR102472505B1 (en) * 2021-07-02 2022-12-01 한국항공우주산업 주식회사 Method for manufacturing composite material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102412926B1 (en) * 2022-05-17 2022-06-23 정영봉 The manufacturing apparatus and method for dust collecting plate bundle of electrostatic precipitator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03187725A (en) * 1989-12-18 1991-08-15 Yokohama Rubber Co Ltd:The Preparation of fiber-reinforced plastic pipe
JPH09295351A (en) * 1996-04-30 1997-11-18 Hamaguchi Keiki Kogyo Kk Profile thickness non-uniform frp pipe and its production
JP2000301612A (en) * 1999-04-20 2000-10-31 Toho Rayon Co Ltd Production of cylindrical body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03187725A (en) * 1989-12-18 1991-08-15 Yokohama Rubber Co Ltd:The Preparation of fiber-reinforced plastic pipe
JPH09295351A (en) * 1996-04-30 1997-11-18 Hamaguchi Keiki Kogyo Kk Profile thickness non-uniform frp pipe and its production
JP2000301612A (en) * 1999-04-20 2000-10-31 Toho Rayon Co Ltd Production of cylindrical body

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166444A (en) * 2008-01-21 2009-07-30 Sri Sports Ltd Tubular body manufacturing method and tubular body
JP2009202516A (en) * 2008-02-29 2009-09-10 Sri Sports Ltd Manufacturing method of tube and tube
JP2010035600A (en) * 2008-07-31 2010-02-18 Globeride Inc Angle pipe
JP2010035599A (en) * 2008-07-31 2010-02-18 Globeride Inc Angle pipe
JP2011226602A (en) * 2010-04-21 2011-11-10 Nippon Steel Materials Co Ltd Hollow pipe
JP2012177294A (en) * 2011-01-31 2012-09-13 Katekkusu:Kk Underground buried material
KR101434150B1 (en) * 2012-08-17 2014-09-24 삼성중공업 주식회사 Cryogenic liquid storage tank with composite material reinforcement, composite material reinforcement and fabrication method of composite material reinforcement
CN107443616A (en) * 2017-07-26 2017-12-08 河南科技大学 Pipe 3 D weaving preform, braiding compound circular tube and both forming methods
KR102472505B1 (en) * 2021-07-02 2022-12-01 한국항공우주산업 주식회사 Method for manufacturing composite material
CN114147996A (en) * 2021-11-24 2022-03-08 航天特种材料及工艺技术研究所 Composite material structure containing internal channel with large slenderness ratio and preparation method thereof
CN114147996B (en) * 2021-11-24 2024-01-09 航天特种材料及工艺技术研究所 Composite material structure containing internal channel with large slenderness ratio and preparation method thereof

Also Published As

Publication number Publication date
JP4732103B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP4732103B2 (en) Manufacturing method of tubular member made of fiber reinforced resin
JP5315692B2 (en) Manufacturing method of fiber reinforced plastic
JP5292972B2 (en) Manufacturing method of fiber reinforced plastic
JP2009286817A (en) Laminated substrate, fiber-reinforced plastic, and methods for producing them
JP2009062474A (en) Molding material, fiber-reinforced plastic, and manufacturing method for them
JP6902753B2 (en) Manufacturing method of carbon fiber reinforced resin member
JP5950149B2 (en) A method for producing a fiber-reinforced resin structure.
TW201920398A (en) Prepreg laminate, method for manufacturing fiber-reinforced plastic using prepreg laminate, and fiber-reinforced plastic
JP2008286297A (en) High-pressure tank manufacturing method
KR20200133203A (en) Manufacturing method of fiber reinforced resin
JP6804240B2 (en) A method for manufacturing a hollow tubular body, a tubular molded body having a bent portion, and a tubular molded body having a bent portion.
JP2007146151A (en) Prepreg substrate material, laminated substrate material and fiber-reinforced plastic
US20060218873A1 (en) Composite architectural column
JP4330977B2 (en) Method for manufacturing tubular body
JP2008238809A (en) Method of manufacturing laminate
KR20140068914A (en) Mandrel with sliding exterior projection
JP2007216554A (en) Fiber-reinforced synthetic resin pipe
JP2008093944A (en) Method for manufacturing tubular body made of fiber-reinforced resin
JP2008295940A (en) Manufacturing method of golf club shaft and golf club shaft
KR102202377B1 (en) Fiber reinforced composite material and methode for manufacturing the same
JP2013010346A (en) Method of manufacturing fiber reinforced resin made support bar for substrate storage cassette
JP3278097B2 (en) Tubular body
KR100959389B1 (en) Prepreg sheet having many axes and the manufacturing method
JP2004338270A (en) Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material
JP4088093B2 (en) Molding method of fiber reinforced resin molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees