JP2007078049A - Heating tube for lng vaporizer and lng vaporizer using the heating tube - Google Patents

Heating tube for lng vaporizer and lng vaporizer using the heating tube Download PDF

Info

Publication number
JP2007078049A
JP2007078049A JP2005265667A JP2005265667A JP2007078049A JP 2007078049 A JP2007078049 A JP 2007078049A JP 2005265667 A JP2005265667 A JP 2005265667A JP 2005265667 A JP2005265667 A JP 2005265667A JP 2007078049 A JP2007078049 A JP 2007078049A
Authority
JP
Japan
Prior art keywords
lng
alloy
heat transfer
panel
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005265667A
Other languages
Japanese (ja)
Other versions
JP4773780B2 (en
Inventor
Atsushi Kato
淳 加藤
Wataru Urushibara
亘 漆原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005265667A priority Critical patent/JP4773780B2/en
Priority to EP06291353A priority patent/EP1762639A1/en
Priority to TW095131788A priority patent/TW200720617A/en
Publication of JP2007078049A publication Critical patent/JP2007078049A/en
Application granted granted Critical
Publication of JP4773780B2 publication Critical patent/JP4773780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/04Distributing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating tube for an LNG vaporizer having excellent corrosion and damage prevention effect and erosion-resistant characteristic on the surface of an Al alloy heating tube even when it is disposed on the lower part of a panel or on a lower header on which oxide film is hard to be formed due to its increased cooling load and an vaporizer using the heating tube. <P>SOLUTION: In this heating tube 3a for the LNG vaporizer on which an Al alloy corrosive film is formed, an LNG flows therein, seawater is supplied onto the outer surface thereof, and the seawater exchanges heat with the LNG to vaporize the LNG. The Al alloy film containing 0.3 to 3.0 mass% Zn and/or Mn, 0.3 to 3.0 mass% Zn + Mn, and 0.3 to 5 mass% Mg is formed as the corrosive film. A sacrificing corrosion prevention effect with excellent erosion-resistant characteristic and well durability can be provided to the outer surface of the heating tube on the lower side of the panel U and the outer surface of the lower header 2 where corrosive damage tends to occur in a low temperature range. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、防食効果に優れたLNG(液化天然ガス)気化器用伝熱管およびこの伝熱管を用いたLNG気化器に関する。   The present invention relates to a heat transfer tube for an LNG (liquefied natural gas) vaporizer having an excellent anticorrosion effect, and an LNG vaporizer using the heat transfer tube.

液化天然ガス(以下LNGと記す)は、通常、低温高圧の液状で移送あるいは貯蔵され、使用される前に気化される。この気化には、大量のLNGを気化させることができるオープンラックベーパライザ(以下ORVと記す)と称される気化器が用いられる。図1は、このORVの一例を示したもので、ORVは、海水との熱交換によってLNGを加熱して気化させる熱交換器の一種である(例えば、特許文献1参照)。海水は、海水ヘッダー6から散水ノズル7を経てトラフ8に溜められ、トラフ8の側縁部から溢流、伝熱管3aをカーテン状に配列して形成されたパネル3の外面を濡らしながら垂下する。一方、LNGは、LNGマニホールド1に導入されてパネル3の下部に連結されたLNGが流通する下部ヘッダー2に送られ、海水との熱交換によって加熱されてパネル3の各伝熱管3a内で気化して上昇し、気化した天然ガス(NG)は、上部ヘッダー4、4からNGマニホールド5へ導出される。   Liquefied natural gas (hereinafter referred to as LNG) is usually transported or stored in a liquid at a low temperature and high pressure, and is vaporized before being used. For this vaporization, a vaporizer called an open rack vaporizer (hereinafter referred to as ORV) capable of vaporizing a large amount of LNG is used. FIG. 1 shows an example of this ORV. The ORV is a kind of heat exchanger that heats and vaporizes LNG by heat exchange with seawater (see, for example, Patent Document 1). Seawater is accumulated in the trough 8 from the seawater header 6 through the watering nozzle 7, overflows from the side edge of the trough 8, and hangs down while wetting the outer surface of the panel 3 formed by arranging the heat transfer tubes 3a in a curtain shape. . On the other hand, the LNG is introduced into the LNG manifold 1 and sent to the lower header 2 through which the LNG connected to the lower portion of the panel 3 circulates. The LNG is heated by heat exchange with the seawater and air is passed through each heat transfer tube 3 a of the panel 3. The natural gas (NG) that has risen and vaporized is discharged from the upper headers 4 and 4 to the NG manifold 5.

前記パネル3を形成する伝熱管3aの材質として、熱伝導性が良好であること、およびパネル3として要求される複雑な形状に加工しやすいことなどの観点から、通常アルミニウム合金が使用されている。アルミニウム合金は、海水に浸漬された状態では腐食しやすく、一旦腐食し始めると、腐食部分が集中的に侵食され、孔があく孔食を受けやすい欠点がある。このため、海水に浸漬されるなどの用途に用いられるアルミニウム合金については、防食処理が盛んに研究され、現在、犠牲防食作用を利用した防食処理が主流となっている。前記特許文献1では、前記LNG気化器で、パネル3の外面を濡らしながら垂下した海水が溜まった海水ポンド中に浸漬したLNGが流通する下部ヘッダー2に、パネル3(伝熱管3a)の材質であるアルミニウム合金よりも腐食されやすい亜鉛(Zn)などの金属、すなわちイオン化傾向の大きい金属または合金バルク(図示省略)を電気的に接続して犠牲陽極とし、この犠牲陽極が電気化学的に溶解して消耗することにより、対極となる下部ヘッダー2およびパネル3の表面を防食する防食処理法が開示されている。しかし、LNG気化器では、パネル3を構成する伝熱管3aの表面にトラフ8の側縁部から溢流した海水が直接当たるため、前記犠牲陽極を設けていても、いわゆるエロージョン・コロージョンによる腐食の発生は避けがたい。このため、海水が直接接触しないように、また、被覆合金が局部的に剥がれた場合でも、その防食作用によって伝熱管表面の腐食が防止されるように、伝熱管3aの表面に、その材質のアルミニウム合金よりもイオン化傾向の大きい合金(以下被覆合金と記す)を被覆することが望ましい。従来、このような犠牲防食作用を有する合金としてAl−Zn合金がよく知られ、Al−2%Zn合金、またはAl−15%Zn合金などがよく使用されている。この被覆合金を溶射して伝熱管表面に皮膜を形成することにより、腐食が有効に防止される。   As a material of the heat transfer tube 3a forming the panel 3, an aluminum alloy is usually used from the viewpoints of good thermal conductivity and easy processing into a complicated shape required for the panel 3. . Aluminum alloys are easily corroded when immersed in seawater, and once corroded, the corroded portion is eroded intensively and is susceptible to pitting corrosion. For this reason, with respect to aluminum alloys used for applications such as being immersed in seawater, anticorrosion treatment has been actively studied, and at present, anticorrosion treatment using sacrificial anticorrosive action has become mainstream. In Patent Document 1, the material of the panel 3 (heat transfer tube 3a) is provided on the lower header 2 in which the LNG immersed in the seawater pond in which the drooped seawater is accumulated while wetting the outer surface of the panel 3 with the LNG vaporizer. A metal, such as zinc (Zn), that is more susceptible to corrosion than an aluminum alloy, that is, a metal or alloy bulk (not shown) that has a high tendency to ionize, is electrically connected to form a sacrificial anode. An anticorrosion treatment method is disclosed in which the surfaces of the lower header 2 and the panel 3 serving as counter electrodes are anticorrosive by being consumed. However, in the LNG vaporizer, since the seawater overflowing from the side edge of the trough 8 directly hits the surface of the heat transfer tube 3a constituting the panel 3, even if the sacrificial anode is provided, corrosion caused by so-called erosion / corrosion is caused. Occurrence is inevitable. For this reason, the surface of the heat transfer tube 3a is made of the material so that the seawater is not in direct contact and the corrosion of the heat transfer tube surface is prevented by the anticorrosion action even when the coating alloy is locally peeled off. It is desirable to coat an alloy having a higher ionization tendency than an aluminum alloy (hereinafter referred to as a coating alloy). Conventionally, an Al—Zn alloy is well known as an alloy having such sacrificial anticorrosive action, and an Al-2% Zn alloy, an Al-15% Zn alloy, or the like is often used. Corrosion is effectively prevented by spraying this coating alloy to form a film on the surface of the heat transfer tube.

前記伝熱管表面に形成する皮膜の防食性にさらに向上させるために、例えば、特許文献2では、アルミニウムまたはアルミニウム合金の伝熱管(押出管材)の表面に、第1層として、電気化学的に犠牲層として働くZnを被覆し、熱交換器製造時のろう付けによるZnの蒸発を防止するために、第1層の上に、AlまたはAl−Ca、Al−Zn−Ca系等のAl合金を溶射して耐食性を改善したアルミニウム製熱交換器用管材が開示されている。また、特許文献3では、伝熱管表面に、Al−Zn合金層を形成し、さらにその表面にIn,Sn、HgおよびCdから選ばれる1種または2種以上の元素を含むAl−Zn合金層を形成して高い耐食性を有するようにしたAl合金製伝熱管が開示されている。一方、特許文献4では、Al合金母材管の表面に、Al−Zn合金材をクラッドして厚膜の犠牲陽極被膜を形成したORV型気化器用のフィンチューブ(フィン型伝熱管)が開示されている。
特開平9−178391号公報 特開平1−114698号公報 特公平7−1157号公報 特開平5−164496号公報
In order to further improve the corrosion resistance of the film formed on the surface of the heat transfer tube, for example, in Patent Document 2, the surface of the heat transfer tube (extruded tube material) of aluminum or aluminum alloy is electrochemically sacrificed as a first layer. In order to coat Zn acting as a layer and prevent evaporation of Zn due to brazing at the time of manufacturing a heat exchanger, Al or Al-Ca, Al-Zn-Ca-based Al alloy or the like is formed on the first layer. An aluminum heat exchanger tube with improved corrosion resistance by thermal spraying is disclosed. In Patent Document 3, an Al—Zn alloy layer is formed on the surface of the heat transfer tube, and further, an Al—Zn alloy layer containing one or more elements selected from In, Sn, Hg, and Cd on the surface thereof. A heat transfer tube made of an Al alloy is disclosed which has a high corrosion resistance by forming the structure. On the other hand, Patent Document 4 discloses a fin tube (fin type heat transfer tube) for an ORV type vaporizer in which a thick sacrificial anode coating is formed by cladding an Al—Zn alloy material on the surface of an Al alloy base tube. ing.
JP-A-9-178391 Japanese Patent Laid-Open No. 1-114698 Japanese Patent Publication No.7-1157 Japanese Patent Laid-Open No. 5-16496

しかし、ORVのパネル3の下部および下部ヘッダー2は、液体状態の天然ガスであるLNGが流通するため、氷点下まで冷却されている。このようなORVの低温領域で溢流垂下する海水に接触する状態では、伝熱管母材のアルミニウム合金表面に酸化皮膜が形成されにくくなり、Al合金からなる伝熱管母材の電極電位が、特許文献1〜4に記載されたAl−Zn合金皮膜の電極電位よりも低くなり、Al−Zn合金皮膜の犠牲防食作用が発揮されなくなり、伝熱管母材が保護されない虞がある。例えば、海水温度が高い場合、または前記パネルのLNG流通による冷却負荷が大きい場合などの環境条件によっては、Al−Zn合金皮膜の高い電位にアルミ合金伝熱管母材が引っ張られて、伝熱管母材がガルバニック腐食される虞がある。   However, the lower and lower headers 2 of the ORV panel 3 are cooled to below freezing point because LNG, which is a natural gas in liquid state, circulates. In the state of contact with seawater overflowing and dripping in such a low temperature region of ORV, it is difficult to form an oxide film on the aluminum alloy surface of the heat transfer tube base material, and the electrode potential of the heat transfer tube base material made of Al alloy is patented. There is a possibility that the electrode potential of the Al—Zn alloy film described in Literatures 1 to 4 is lower, the sacrificial anticorrosive action of the Al—Zn alloy film is not exhibited, and the heat transfer tube base material is not protected. For example, depending on the environmental conditions such as when the seawater temperature is high or when the cooling load due to LNG circulation of the panel is large, the aluminum alloy heat transfer tube base material is pulled to the high potential of the Al-Zn alloy film, and the heat transfer tube mother There is a risk of galvanic corrosion of the material.

前記伝熱管表面に形成する皮膜には、防食性に加えて耐久性が要求される。Al合金伝熱管母材に対する犠牲防食能力に優れていても、腐食速度が速く、皮膜としての耐久性に劣る場合には、結局は伝熱管母材の損傷を来たすことになる。また、LNG気化器では、前述のように、パネル3を構成する伝熱管3aの表面にトラフ8の側縁部から溢流した海水が直接当たるため、エロージョン・コロージョンに対する対策も必要である。   The film formed on the surface of the heat transfer tube is required to have durability in addition to anticorrosion. Even if the sacrificial anticorrosive ability for the Al alloy heat transfer tube base material is excellent, if the corrosion rate is high and the durability as a film is inferior, the heat transfer tube base material is eventually damaged. In the LNG vaporizer, as described above, since the seawater overflowing from the side edge of the trough 8 directly hits the surface of the heat transfer tube 3a constituting the panel 3, measures against erosion and corrosion are also necessary.

この発明は、このような問題点に鑑みてなされたものであり、その課題は、冷却負荷が大きいため、表面に酸化皮膜が形成されにくいパネル下部側や下部ヘッダーに配置しても、Al合金母材表面の腐食損傷を防止する効果および耐久性に優れたLNG気化器用伝熱管と、この伝熱管を用いたLNG気化器を提供することである。   The present invention has been made in view of such problems, and the problem is that even if it is arranged on the lower panel side or the lower header where the oxide film is difficult to be formed on the surface because the cooling load is large, the Al alloy An object of the present invention is to provide an LNG vaporizer heat transfer tube excellent in the effect of preventing corrosion damage on the base metal surface and durability, and an LNG vaporizer using the heat transfer tube.

前記の課題を解決するために、この発明では以下の構成を採用したのである。   In order to solve the above problems, the present invention employs the following configuration.

即ち、請求項1に係るLNG気化器用伝熱管は、内部にLNGが流通し、外表面に海水が供給され、この海水と前記LNGとが熱交換してLNGを気化させる、外表面に防食皮膜が形成されたAl合金からなるLNG気化器用伝熱管であって、前記防食皮膜が、Znおよび/またはMnと、Mgを含有するAl合金皮膜であり、このAl合金皮膜中の、Zn+Mnの含有量、もしくはZnまたはMnの含有量が、それぞれ0.3〜3.0質量%の範囲にあり、かつMgの含有量が0.3〜5.0質量%の範囲にあることを特徴とする。   That is, the heat transfer tube for an LNG vaporizer according to claim 1 has an anticorrosive coating on the outer surface, in which LNG circulates and seawater is supplied to the outer surface, and the seawater and the LNG exchange heat to vaporize LNG. A heat transfer tube for an LNG vaporizer made of an Al alloy in which the anticorrosion coating is an Al alloy coating containing Zn and / or Mn and Mg, and the content of Zn + Mn in the Al alloy coating Alternatively, the Zn or Mn content is in the range of 0.3 to 3.0% by mass, and the Mg content is in the range of 0.3 to 5.0% by mass.

前述のように、伝熱管のアルミニウム合金母材表面に酸化皮膜が形成されにくい環境条件下では、これらの母材合金よりもZnの自然電極電位が高くなるため、Al−Zn溶射皮膜の方が伝熱管または下部ヘッダーの母材合金よりも電位が高くなり、犠牲防食効果が得られなくなる。このため、前記アルミニウム合金表面に酸化皮膜が形成されにくい環境条件下でも、犠牲防食作用を発揮させるためには、熱力学的にAlよりも電位が低い金属の、例えば溶射加工による皮膜を形成する必要がある。このような金属としては、Mgが最適であり、Mgを含有する合金皮膜で、前記伝熱管や下部ヘッダーの材質として用いられるAl合金母材よりも「卑」な皮膜であれば、犠牲防食皮膜として良好に適用できる。なお、熱力学的にAlよりも電位が低い金属としては、Mgの他に、Hf(ハフニウム)、Ti(チタン)、Be(ベリリウム)がある。この中、Ti、Beの酸化皮膜はAlの酸化皮膜よりも強固であり、これらの金属が熱力学的にAlよりも「卑」な金属であっても、LNG気化器が運転される環境を考えると、実質的にAlよりも「貴」な金属となる。また、HfやTiを含有する金属は伸線性が著しくわるく、皮膜形成手段であるフレーム溶射に用いる溶射材に加工することも困難である。したがって、Hf、Tiを犠牲防食用皮膜に適用することはできない。一方、Beには毒性があるため、皮膜形成作業時の危険性やORV運転時の海洋汚染の問題があり、また、非常に高価な材料であるため、犠牲防食用皮膜としては不適である。   As described above, since the natural electrode potential of Zn is higher than that of the base metal alloy under an environmental condition in which an oxide film is not easily formed on the surface of the aluminum alloy base material of the heat transfer tube, the Al-Zn sprayed coating is more preferable. The potential becomes higher than the base metal alloy of the heat transfer tube or the lower header, and the sacrificial anticorrosive effect cannot be obtained. For this reason, in order to exert a sacrificial anticorrosive action even under an environmental condition where it is difficult to form an oxide film on the surface of the aluminum alloy, a film of a metal having a lower thermodynamic potential than Al, for example, by thermal spraying is formed. There is a need. As such a metal, Mg is the most suitable, and if it is an alloy film containing Mg and is a "base" film than the Al alloy base material used as the material of the heat transfer tube and the lower header, a sacrificial anticorrosive film Can be applied as well. In addition to Mg, there are Hf (hafnium), Ti (titanium), and Be (beryllium) as thermodynamically lower metals than Al. Among these, Ti and Be oxide films are stronger than Al oxide films, and even if these metals are thermodynamically “base” metals than Al, the environment in which the LNG vaporizer is operated When considered, the metal is substantially more noble than Al. Moreover, the metal containing Hf and Ti has remarkably poor drawability, and it is difficult to process it into a thermal spray material used for flame spraying as a film forming means. Therefore, Hf and Ti cannot be applied to the sacrificial anticorrosive film. On the other hand, since Be is toxic, there is a risk of film formation work and marine pollution during ORV operation, and it is a very expensive material, so it is not suitable as a sacrificial anticorrosive film.

一方、エロージョン対策としては、伝熱管のAl合金母材で、Alに固溶して母相を強化する元素を添加することが有効であり、また、この元素が化合物として析出した場合に、Al合金皮膜の電極電位を伝熱管のAl合金母材の電極電位よりも貴にしないことが必要である。前記強化元素としては、Zn、Nb、Mn、Zr、Tiなどの元素が挙げられるが、Nb、Zr、TiはAl以上に強固な酸化皮膜を形成するほかに、非常に高価な元素であり、Alとの合金化も難しいなど点から、添加元素としては不適当である。したがって、エロージョン対策としては、Znおよび/またはMnを添加元素とすることが好適である。Znおよび/またはMnは、Al合金母相に固溶している方が望ましいが、それらの添加量等によって、Zn−Mg、Mn−Mg、またはZn−Mn−Mgなど、Mgとの化合物が生成すれば、Al合金母材よりも卑な電極電位が維持される。   On the other hand, as an erosion countermeasure, it is effective to add an element that strengthens the parent phase by dissolving in Al with an Al alloy base material of a heat transfer tube, and when this element precipitates as a compound, It is necessary not to make the electrode potential of the alloy film nobler than the electrode potential of the Al alloy base material of the heat transfer tube. Examples of the reinforcing element include elements such as Zn, Nb, Mn, Zr, and Ti. Nb, Zr, and Ti are very expensive elements in addition to forming a stronger oxide film than Al. Since it is difficult to alloy with Al, it is unsuitable as an additive element. Therefore, as an erosion countermeasure, it is preferable to use Zn and / or Mn as additive elements. Zn and / or Mn are preferably dissolved in the Al alloy matrix, but depending on the amount of addition, etc., a compound with Mg such as Zn—Mg, Mn—Mg, or Zn—Mn—Mg may be present. If generated, a lower electrode potential than the Al alloy base material is maintained.

Zn+Mnの含有量、もしくはZnまたはMnの含有量が0.3%未満では、固溶強化が不十分であり、必要な耐エロージョン特性が得られず、また、3.0質量%を超えるとAl合金母相の強化効果が飽和し、Al合金皮膜中に偏析して耐エロージョン特性に悪影響を及ぼす虞があり、好ましくない。また、Mg含有量が0.3%未満では、皮膜成形条件によらず、Mgがほぼ全てAl母相中に固溶するため、Al合金皮膜の電極電位をAl合金の伝熱管母相の電極電位に比べて十分に卑にする効果が得られない。また、Mg含有量が5質量%を超えると、使用環境によっては必要以上にAl合金皮膜の電極電位が卑になり、溶出するMg量が増大して腐食速度が過大になる危険性があり、好ましくない。   When the content of Zn + Mn, or the content of Zn or Mn is less than 0.3%, the solid solution strengthening is insufficient, and the required erosion resistance characteristics cannot be obtained. The strengthening effect of the alloy matrix is saturated, and segregates in the Al alloy film, which may adversely affect the erosion resistance. In addition, when the Mg content is less than 0.3%, Mg is almost completely dissolved in the Al matrix regardless of the film forming conditions, so the electrode potential of the Al alloy film is the electrode of the Al alloy heat transfer tube matrix. Compared to the potential, the effect of making it sufficiently low cannot be obtained. In addition, if the Mg content exceeds 5% by mass, the electrode potential of the Al alloy film becomes lower than necessary depending on the usage environment, and there is a risk that the amount of Mg eluted increases and the corrosion rate becomes excessive, It is not preferable.

請求項2に係るLNG気化器は、上記Al合金皮膜が形成された伝熱管を複数カーテン状に配列したパネルと、このパネルの上部および下部にそれぞれ連結された気化ガス排出用の上部ヘッダーおよびLNG供給用の下部ヘッダーとからなるパネルユニットを備え、前記パネルユニットの上部からパネルの表面に沿って流下させた海水と前記伝熱管内を下部ヘッダー側から上部ヘッダー側へ流通するLNGとの熱交換により、LNGを気化させるようにしたLNG気化器である。   An LNG vaporizer according to claim 2 is a panel in which a plurality of heat transfer tubes on which the Al alloy film is formed are arranged in a curtain shape, an upper header for discharging vaporized gas connected to the upper and lower portions of the panel, and an LNG Heat exchange between seawater flown along the surface of the panel from the upper part of the panel unit and LNG flowing from the lower header side to the upper header side in the heat transfer pipe, comprising a panel unit comprising a lower header for supply Thus, the LNG vaporizer is configured to vaporize LNG.

請求項3に係るLNG気化器は、前記伝熱管のAl合金皮膜が、少なくともパネル下部および下部ヘッダーの外表面に形成されたLNG気化器である。   The LNG vaporizer which concerns on Claim 3 is an LNG vaporizer by which the Al alloy film of the said heat exchanger tube was formed in the panel lower surface and the outer surface of the lower header at least.

前述のように、この種のLNG気化器では、下部ヘッダーおよびパネル下部ではLNGが液体状態であるため、氷点下まで冷却されており、このような低温領域で溢流垂下する海水に接触する状態では、伝熱管母材のアルミニウム合金表面に酸化皮膜が形成されにくくなる。このため、少なくともこの低温域のパネル下部および下部ヘッダーに上述のAl合金皮膜を伝熱管に被覆しておくと、耐久性に優れた良好な防食効果が得られる。   As described above, in this type of LNG vaporizer, since LNG is in a liquid state in the lower header and the lower part of the panel, it is cooled to below freezing point, and in a state where it contacts seawater that overflows in such a low temperature region. Further, an oxide film is hardly formed on the surface of the aluminum alloy of the heat transfer tube base material. For this reason, if the above-mentioned Al alloy film is coated on the heat transfer tube at least at the lower part and lower part of the panel in this low temperature region, a good anticorrosive effect with excellent durability can be obtained.

この発明では、LNG気化器用伝熱管の表面に、耐エロージョン特性の向上のため、伝熱管母材の固溶強化元素としてZnおよび/またはMnを添加し、熱力学的にAlよりも電位が低い金属であるMgを含有するAl合金皮膜を形成したので、低温領域で海水に接触して酸化皮膜が形成されにくい使用環境下にあり、腐食損傷が発生しやすいLNG気化器のパネル下部側の伝熱管外表面および下部ヘッダー外表面に対しても、耐エロージョン特性に優れ、耐久性の良好な犠牲防食効果が得られる。それにより、伝熱管の腐食損傷が回避されてLNG気化器の操業効率および耐用年数が向上する。   In the present invention, Zn and / or Mn is added to the surface of the heat transfer tube for LNG vaporizer as a solid solution strengthening element of the heat transfer tube base material in order to improve the erosion resistance, and the potential is thermodynamically lower than that of Al. Since an Al alloy film containing Mg, which is a metal, is formed, it is in a use environment where it is difficult to form an oxide film by contact with seawater in a low temperature region, and the transmission of the lower part of the LNG vaporizer panel where corrosion damage is likely to occur. A sacrificial anticorrosive effect with excellent erosion resistance and good durability can also be obtained on the outer surface of the heat pipe and the outer surface of the lower header. Thereby, the corrosion damage of the heat transfer tube is avoided, and the operation efficiency and the service life of the LNG vaporizer are improved.

以下に、この発明の実施形態を添付の図1に基づいて説明する。   Embodiments of the present invention will be described below with reference to FIG.

図1は、実施形態の伝熱管が組み込まれたLNG気化器を示したもので、複数の伝熱管3aをカーテン状に配列したパネル3と、このパネル3の上部および下部にそれぞれ連結したLNG供給用の下部ヘッダー2および気化ガス(NG)排出用の上部ヘッダー4とからなるAl合金(例えば、A3203などのAl−Mn系合金、A5083などのAl−Mg系合金、A6063などのAl−Mg−Si系合金)製の複数のパネルユニットUが並列に配置されている。前記下部ヘッダー2および上部ヘッダー4は、それぞれ下部のLNGマニホールド1および上部のNGマニホールド5に接続されている。各パネルユニットUのパネル3間の上方には、LNGを気化させる熱源としての海水を流下させるトラフ8がそれぞれ配置されている。LNGは、下部のLNGマニホールド1から下部ヘッダー2に送られ、パネル3の各伝熱管3a内を上昇する過程で前記海水と熱交換して気化し、上部ヘッダー4から上部のNGマニホールド5を経て、ガスライン(図示省略)に供給される。   FIG. 1 shows an LNG vaporizer in which the heat transfer tube of the embodiment is incorporated. A panel 3 in which a plurality of heat transfer tubes 3a are arranged in a curtain shape, and an LNG supply connected to the upper and lower portions of the panel 3, respectively. Al alloy composed of a lower header 2 for gas and an upper header 4 for discharging vaporized gas (NG) (for example, Al—Mn alloy such as A3203, Al—Mg alloy such as A5083, Al—Mg— such as A6063) A plurality of panel units U made of (Si-based alloy) are arranged in parallel. The lower header 2 and the upper header 4 are connected to a lower LNG manifold 1 and an upper NG manifold 5, respectively. Above each panel unit U of the panel units U, troughs 8 are provided for flowing down seawater as a heat source for vaporizing LNG. The LNG is sent from the lower LNG manifold 1 to the lower header 2 and is vaporized by exchanging heat with the seawater in the process of rising in the heat transfer tubes 3a of the panel 3, and from the upper header 4 through the upper NG manifold 5. , Supplied to a gas line (not shown).

前記伝熱管3aと下部ヘッダー2のそれぞれの外表面には、Mg含有量が0.3〜5質量%、好ましくは2〜4質量%で、(Zn+Mn)含有量が0.3〜3質量%のAl−Zn−Mn−Mg合金皮膜が、溶射加工により、100〜1000μmの範囲の膜厚に形成されている。この溶射加工によるAl−Zn−Mn−Mg合金皮膜の伝熱管3aおよび下部ヘッダー2、すなわちAl合金母材への密着性を向上させるために、溶射加工による皮膜形成の前処理として、細粒のブラスト剤を用いて、前記Al合金母材の外表面に、ブラスト粗面処理が施され、溶射皮膜とAl合金母材の界面の凹凸が調整される。この界面の凹凸は、ブラスト処理の代わりに機械加工により付与することも可能である。前記Al合金皮膜は、Al−Zn−Mg合金皮膜またはAl−Mn−Mg合金皮膜であってもよい。この場合、Zn含有量またはMg含有量は、いずれも0.3〜3質量%の範囲内である。そして、この伝熱管3aへの前記Al合金皮膜の被覆は、必ずしも、伝熱管3aの全表面に施す必要はなく、少なくともパネル3の下部1m程度までの被覆でよい。なお、溶射膜形成後、Al−Mg合金皮膜への浸透性に優れた、例えば、高分子エポキシ樹脂を溶射膜表面に少なくとも1回塗布する封孔処理を施すことが望ましい。また、この封孔処理の前または/および後に、溶射皮膜表層に存在する気孔欠陥を除去するために、グラインダー研削やショットピーニングなどの機械加工を施すことがより望ましい。   On the outer surfaces of the heat transfer tube 3a and the lower header 2, the Mg content is 0.3 to 5% by mass, preferably 2 to 4% by mass, and the (Zn + Mn) content is 0.3 to 3% by mass. The Al—Zn—Mn—Mg alloy film is formed to a thickness of 100 to 1000 μm by thermal spraying. In order to improve the adhesion of the Al—Zn—Mn—Mg alloy film to the heat transfer tube 3 a and the lower header 2, that is, the Al alloy base material by this thermal spraying, A blast roughening treatment is applied to the outer surface of the Al alloy base material using a blasting agent to adjust the unevenness of the interface between the thermal spray coating and the Al alloy base material. The unevenness of the interface can be given by machining instead of blasting. The Al alloy film may be an Al—Zn—Mg alloy film or an Al—Mn—Mg alloy film. In this case, the Zn content or Mg content is in the range of 0.3 to 3% by mass. The heat transfer tube 3a is not necessarily coated with the Al alloy film on the entire surface of the heat transfer tube 3a, but may be at least about 1 m below the panel 3. In addition, after forming the sprayed film, it is desirable to perform a sealing treatment that is excellent in permeability to the Al—Mg alloy film, for example, applying a polymer epoxy resin to the surface of the sprayed film at least once. In addition, before or after this sealing treatment, it is more desirable to perform machining such as grinder grinding or shot peening in order to remove pore defects existing in the surface layer of the sprayed coating.

LNG気化器(ORV)のパネル3と下部ヘッダー2(図1参照)付近の環境を模擬するため、まず、直径16mm、厚さ4mmのアルミニウム合金A5083の円板を準備し、この円板の中心を通る直線を境界として、一方の領域表面に、表1に示す各種組成の溶射皮膜を300μmの厚さで成膜し、溶射後は特に何の処理も施さずに、供試材とした。そして、この供試材の、溶射加工を施していない他方の領域裏面に、ペルチェ素子を密着させることにより、前記供試材の円板裏面を氷点下20℃まで冷却した、溶射皮膜が成膜された一方の領域表面を前記氷点下20℃の温度状態で、30℃の市販の人工海水(富田製薬製「マリンアートハイ」)に流速1m/sで20時間曝した後、腐食により形成された前記円板素地のくぼみ量、および溶射皮膜のくぼみ量を表面粗さ計で測定した。測定結果を表1に示す。   In order to simulate the environment near the panel 3 of the LNG vaporizer (ORV) and the lower header 2 (see FIG. 1), first, a disk made of aluminum alloy A5083 having a diameter of 16 mm and a thickness of 4 mm was prepared. A thermal spray coating of various compositions shown in Table 1 was formed on the surface of one region at a thickness of 300 μm with the straight line passing through the boundary as a test material without any particular treatment after the thermal spraying. And the thermal spray coating which cooled the disk back surface of the said test material to 20 degreeC below freezing by making a Peltier device closely_contact | adhere to the other area | region back surface which has not performed thermal spraying processing of this test material is formed into a film. The surface of the other region was exposed to 30 ° C. commercial artificial seawater (“Marine Art High” manufactured by Tomita Pharmaceutical Co., Ltd.) at a flow rate of 1 m / s for 20 hours at a temperature of 20 ° C. below the freezing point. The amount of indentation in the disk substrate and the amount of indentation in the sprayed coating were measured with a surface roughness meter. The measurement results are shown in Table 1.

表1から、従来のAl−Zn系溶射皮膜(NO.1、NO.2)の場合は、溶射皮膜のくぼみ量は1〜2μmと少なく、一方円板素地のくぼみ量は8μm程度と多く、前記海水暴露環境では溶射皮膜の犠牲防食効果があまり発揮されていないことがわかる。また、Zn、Mn、Mgの合金元素が本発明の範囲外のNO.3、NO.4、NO.5の試験片では、溶射皮膜のくぼみ量がAl合金母材(円形素地)のくぼみ量よりもやや少なく、溶射皮膜の犠牲防食効果が発揮されているとはいえない。これに対し、本発明の合金組成を有する溶射皮膜では、溶射皮膜のくぼみ量が5〜10μm程度となって、Al合金母材のくぼみ量(4.5μm以下)よりも大きく、犠牲防食効果が発現されており、かつ溶射皮膜のくぼみ量が比較的小さいことから、溶射皮膜の耐久性も良好に維持されていることがわかる。とくに、供試材NO.10〜13のように、Mg含有量が〜24質量%、Zn+Mnの含有量が1.5〜2.5質量%の場合には、Al合金母材のくぼみ量が1.5μm以下となって防食効果が極めて良好であることがわかる。また、供試材No.16〜19は、Zn、Mn、Zn+Mn、Mgの合金元素が本発明の範囲外であり、見かけ上は犠牲防食効果が認められるが、前述のように、合金元素含有量が増加することによる溶射皮膜中での偏析や腐食速度が過大になるなどの問題点があり、実用に適さない。   From Table 1, in the case of the conventional Al-Zn-based thermal spray coating (NO.1, NO.2), the amount of indentation of the thermal spray coating is as small as 1-2 μm, while the amount of indentation of the disk substrate is as large as about 8 μm, It can be seen that the sacrificial anticorrosive effect of the thermal spray coating is not sufficiently exhibited in the seawater exposure environment. In addition, in the specimens of NO.3, NO.4, and NO.5 where the alloying elements of Zn, Mn, and Mg are outside the scope of the present invention, the amount of indentation of the spray coating is the amount of indentation of the Al alloy base material (circular substrate). The sacrificial anticorrosive effect of the thermal spray coating is not exhibited slightly. On the other hand, in the thermal spray coating having the alloy composition of the present invention, the indentation amount of the thermal spray coating is about 5 to 10 μm, which is larger than the indentation amount (4.5 μm or less) of the Al alloy base material, and has a sacrificial anticorrosive effect. Since it is expressed and the amount of dents in the sprayed coating is relatively small, it can be seen that the durability of the sprayed coating is maintained well. In particular, when the Mg content is ˜24 mass% and the Zn + Mn content is 1.5 to 2.5 mass% as in the test materials No. 10 to 13, the amount of depression of the Al alloy base material is It can be seen that the anticorrosion effect is extremely good when the thickness is 1.5 μm or less. In addition, specimens Nos. 16 to 19 are Zn, Mn, Zn + Mn, Mg alloy elements are outside the scope of the present invention, and apparently sacrificial anticorrosive effect is recognized, but as described above, alloy element containing There are problems such as segregation in the thermal spray coating due to the increase of the amount and excessive corrosion rate, which is not suitable for practical use.

Figure 2007078049
Figure 2007078049

LNG気化器の斜視図である。It is a perspective view of an LNG vaporizer.

符号の説明Explanation of symbols

1・・・LNGマニホールド
2・・・下部ヘッダー
3・・・パネル
3a・・・伝熱管
4・・・上部ヘッダー
5・・・NGマニホールド
6・・・海水ヘッダー
7・・・散水ノズル
8・・・トラフ
U・・・パネルユニット





















DESCRIPTION OF SYMBOLS 1 ... LNG manifold 2 ... Lower header 3 ... Panel 3a ... Heat transfer pipe 4 ... Upper header 5 ... NG manifold 6 ... Seawater header 7 ... Sprinkling nozzle 8 ...・ Trough U ・ ・ ・ Panel unit





















Claims (3)

内部にLNGが流通し、外表面に海水が供給され、この海水と前記LNGとが熱交換してLNGを気化させる、外表面に防食皮膜が形成されたAl合金からなるLNG気化器用伝熱管であって、前記防食皮膜が、Znおよび/またはMnと、Mgを含有するAl合金皮膜であり、このAl合金皮膜中の、Zn+Mnの含有量、もしくはZnまたはMnの含有量が、それぞれ0.3〜3.0質量%の範囲にあり、かつMgの含有量が0.3〜5.0質量%の範囲にあることを特徴とする請求項1に記載のLNG気化器用伝熱管。   An LNG vaporizer heat transfer tube made of an Al alloy with an anti-corrosion coating formed on the outer surface, in which LNG circulates inside, seawater is supplied to the outer surface, and the seawater and the LNG exchange heat to vaporize LNG. The anticorrosion film is an Al alloy film containing Zn and / or Mn and Mg, and the content of Zn + Mn or the content of Zn or Mn in the Al alloy film is 0.3 respectively. The heat transfer tube for an LNG vaporizer according to claim 1, wherein the heat transfer tube is in the range of -3.0 mass% and the Mg content is in the range of 0.3-5.0 mass%. 請求項1に記載の溶射皮膜が形成された伝熱管を複数カーテン状に配列したパネルと、このパネルの上部および下部にそれぞれ連結された気化ガス排出用の上部ヘッダーおよびLNG供給用の下部ヘッダーとからなるパネルユニットを備え、前記パネルユニットの上部からパネルの表面に沿って流下させた海水と前記伝熱管内を下部ヘッダー側から上部ヘッダー側へ流通するLNGとの熱交換により、LNGを気化させるようにしたLNG気化器。   A panel in which a plurality of heat transfer tubes formed with the thermal spray coating according to claim 1 are arranged in a curtain shape, an upper header for discharging vaporized gas, and a lower header for supplying LNG connected to the upper and lower portions of the panel, respectively LNG is vaporized by heat exchange between seawater that has flowed down from the top of the panel unit along the surface of the panel and LNG that flows through the heat transfer pipe from the lower header side to the upper header side. LNG vaporizer made. 前記伝熱管のAl合金皮膜が、少なくともパネル下部および下部ヘッダーの外表面に形成された請求項2に記載のLNG気化器。   The LNG vaporizer according to claim 2, wherein the Al alloy film of the heat transfer tube is formed at least on an outer surface of a lower part of the panel and a lower header.
JP2005265667A 2005-09-13 2005-09-13 Heat transfer tube for LNG vaporizer and LNG vaporizer using the same Active JP4773780B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005265667A JP4773780B2 (en) 2005-09-13 2005-09-13 Heat transfer tube for LNG vaporizer and LNG vaporizer using the same
EP06291353A EP1762639A1 (en) 2005-09-13 2006-08-24 Heat transfer tube for LNG vaporizer, its production method, and LNG vaporizer using such heat transfer tubes
TW095131788A TW200720617A (en) 2005-09-13 2006-08-29 Heat transfer tube for LNG vaporizer, its production method, and LNG vaporizer using such heat transfer tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005265667A JP4773780B2 (en) 2005-09-13 2005-09-13 Heat transfer tube for LNG vaporizer and LNG vaporizer using the same

Publications (2)

Publication Number Publication Date
JP2007078049A true JP2007078049A (en) 2007-03-29
JP4773780B2 JP4773780B2 (en) 2011-09-14

Family

ID=37938589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005265667A Active JP4773780B2 (en) 2005-09-13 2005-09-13 Heat transfer tube for LNG vaporizer and LNG vaporizer using the same

Country Status (1)

Country Link
JP (1) JP4773780B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053932A (en) * 2008-08-27 2010-03-11 Kobe Steel Ltd Vaporizer for low temperature liquefied gas
JP2012177535A (en) * 2011-02-04 2012-09-13 Kobe Steel Ltd Corrosion-resistant aluminum alloy member, and heat transfer pipe or header pipe for open rack vaporizer
WO2017203805A1 (en) * 2016-05-25 2017-11-30 株式会社神戸製鋼所 Member formed from aluminum alloy and lng vaporizer
JP2020148448A (en) * 2019-03-11 2020-09-17 株式会社神戸製鋼所 Vaporization device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499022A (en) * 1978-01-21 1979-08-04 Mitsubishi Aluminium Aluminium alloy for anode
JPS604912B2 (en) * 1978-01-18 1985-02-07 日立電線株式会社 Seawater corrosion protection method for structures
JPH05164496A (en) * 1991-12-17 1993-06-29 Tokyo Gas Co Ltd Fin tube for open rack type carburetor
JPH0829095A (en) * 1994-07-08 1996-02-02 Sumitomo Precision Prod Co Ltd Open rack type carburetor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604912B2 (en) * 1978-01-18 1985-02-07 日立電線株式会社 Seawater corrosion protection method for structures
JPS5499022A (en) * 1978-01-21 1979-08-04 Mitsubishi Aluminium Aluminium alloy for anode
JPH05164496A (en) * 1991-12-17 1993-06-29 Tokyo Gas Co Ltd Fin tube for open rack type carburetor
JPH0829095A (en) * 1994-07-08 1996-02-02 Sumitomo Precision Prod Co Ltd Open rack type carburetor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053932A (en) * 2008-08-27 2010-03-11 Kobe Steel Ltd Vaporizer for low temperature liquefied gas
JP2012177535A (en) * 2011-02-04 2012-09-13 Kobe Steel Ltd Corrosion-resistant aluminum alloy member, and heat transfer pipe or header pipe for open rack vaporizer
WO2017203805A1 (en) * 2016-05-25 2017-11-30 株式会社神戸製鋼所 Member formed from aluminum alloy and lng vaporizer
JP2017211141A (en) * 2016-05-25 2017-11-30 株式会社神戸製鋼所 Aluminum alloy member and LNG vaporizer
JP2020148448A (en) * 2019-03-11 2020-09-17 株式会社神戸製鋼所 Vaporization device
JP7242481B2 (en) 2019-03-11 2023-03-20 株式会社神戸製鋼所 Vaporizer

Also Published As

Publication number Publication date
JP4773780B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP4796362B2 (en) Heat transfer tube for LNG vaporizer and method for manufacturing the same
JPS61184395A (en) Corrosion preventive process for aluminum heat exchanger
US10774429B2 (en) Anti-corrosion nanoparticle compositions
JP4773780B2 (en) Heat transfer tube for LNG vaporizer and LNG vaporizer using the same
WO2017159054A1 (en) Member formed from aluminum alloy and lng vaporizer
EP1762639A1 (en) Heat transfer tube for LNG vaporizer, its production method, and LNG vaporizer using such heat transfer tubes
CN104204711B (en) The sacrifice aluminum fin-stock that failure mode for aluminum heat exchanger is protected
WO2017203805A1 (en) Member formed from aluminum alloy and lng vaporizer
KR20010105359A (en) Article exhibiting improved resistance to galvanic corrosion
JP5144629B2 (en) Heat transfer tube and header tube of open rack type vaporizer
EP0950127B1 (en) Advanced galvanic corrosion protection
JP5383981B2 (en) Surface protection method for open rack type vaporizer
US6578628B1 (en) Article exhibiting increased resistance to galvanic corrosion
JP5336797B2 (en) Manufacturing method of heat transfer tube and header tube of open rack type vaporizer
JP5206964B2 (en) Surface protection method for open rack type vaporizer
JPS61149794A (en) Heat exchanger with treatment of inner surface
KR100865212B1 (en) Heat transfer tube for lng vaporizer, its production method, and lng vaporizer using such heat transfer tubes
JP4464762B2 (en) Al alloy member for liquefied gas vaporizer with excellent corrosion resistance and liquefied gas vaporizer
JP4398784B2 (en) Heat transfer tube for open rack type vaporizer
JP3151152B2 (en) Evaporator with excellent corrosion resistance
JPH0460393A (en) Heat transfer tube for lng vaporizer
JP2010014334A (en) Heat transfer pipe and heat exchanger using the same
JP2010096412A (en) Durable member
JPH01217197A (en) Heat exchanger made of aluminum
JPH1129835A (en) Brazing-type zinc-coated aluminum extruded tube for heat exchanger, excellent in corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4773780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150