JP2007071716A - 共焦点走査型顕微鏡 - Google Patents

共焦点走査型顕微鏡 Download PDF

Info

Publication number
JP2007071716A
JP2007071716A JP2005259463A JP2005259463A JP2007071716A JP 2007071716 A JP2007071716 A JP 2007071716A JP 2005259463 A JP2005259463 A JP 2005259463A JP 2005259463 A JP2005259463 A JP 2005259463A JP 2007071716 A JP2007071716 A JP 2007071716A
Authority
JP
Japan
Prior art keywords
refractive index
data
sample
confocal
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005259463A
Other languages
English (en)
Inventor
Takahiko Kakemizu
孝彦 掛水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2005259463A priority Critical patent/JP2007071716A/ja
Publication of JP2007071716A publication Critical patent/JP2007071716A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

【課題】試料の屈折率の影響を受けずに正確な共焦点画像データを取得すること。
【解決手段】ユーザインタフェース17からインプットされた試料Sの屈折率データに基づいてデータ補正演算部19により赤外共焦点走査型顕微鏡1により取得された共焦点画像データの高さ位置の座標データZを補正する。
【選択図】図1

Description

本発明は、例えば波長900nm以上の赤外レーザビームを対物レンズを通して試料に走査し、この試料からの反射レーザビームを検出して試料内部の共焦点画像データを取得する共焦点走査型顕微鏡に関する。
試料として例えばFCB(Flip Chip Bonding)後のICチップ、又はMEMS(Micro Electro Mechanical System:微小電子機械システム)構造体に対して赤外領域の波長の光(以下、赤外光)、すなわちシリコン内を透過する赤外光を用いてICチップ、MEMS構造体を観察する技術がある。このような技術は、例えば特許文献1、2に開示されている。特許文献1には、シリコン薄膜の表面に向って、0.9μm以上の波長を有する赤外線を照射し、シリコン薄膜の表面による反射光とシリコン薄膜の裏面による反射光との干渉結果に基づいて、シリコン薄膜の膜厚を測定することが開示されている。
特許文献2には、通常の赤外線顕微鏡を用いてフリップチップIC裏面のバンプ接合部の位置を検出する技術であって、先ずフリップチップICの裏面で接合部の上部に当たる位置の高さをレーザフォーカス変位計を用いて測定し、次に接合部に最も近い位置の回路基板面の高さを測定し、これらの接合点の測定結果に基づいてフリップチップICの片側が浮いているオープン不良の判定を行うことが開示されている。
特開2002−28420号公報 特許第3599986号公報
特許文献1、2では、赤外光を用いてシリコン薄膜の膜厚やフリップチップICのオープン不良の判定などを行っているが、赤外光がシリコン中を透過するときには当該シリコンの屈折率の影響を受ける。特許文献1、2では、シリコンの屈折率の影響を考慮する技術手段については何ら開示されておらず、このうち特許文献1では、ICチップやMEMS構造体を観察する場合、シリコンの屈折率の影響を受けて正確に実装部品の位置ずれの計測、シリコン裏面のパターンの傷、バンプの欠損の判断ができないおそれがある。さらに、特許文献2では、シリコンの屈折率の影響を受けて正確な測定結果を得られないおそれがあるので、当該測定結果に基づいてボンディングの接合具合や加圧条件の設定などを精度高く行うことができず、さらに例えば測定結果に基づいて正確な面粗さの解析を行うこともできない。
本発明は、対物レンズを通して測定光を試料に走査し、試料からの反射光を検出し試料における少なくとも1つの高さ位置の共焦点画像データを取得する共焦点走査型顕微鏡において、少なくとも試料の屈折率データを入力する屈折率データ入力部と、屈折率データ入力部から入力された屈折率データに基づいて共焦点画像データの試料の高さ方向に対する補正を行うデータ補正演算部と、データ補正演算部により試料の高さ方向に対する補正を行った共焦点画像データを保存する画像データ保存部とを具備する共焦点走査型顕微鏡である。
本発明は、試料の屈折率の影響を受けずに正確な共焦点画像データを取得できる共焦点走査型顕微鏡を提供できる。
以下、本発明の第1の実施の形態について図面を参照して説明する。
図1は赤外共焦点走査型顕微鏡の構成図を示す。試料Sは、例えばFCB後のICチップ又はMEMS構造体であり、その観察部位は、かかるICチップ又はMEMS構造体の内部に位置している。この観察部位は、例えばICチップのパターン状態又はMEMS構造体内のギャップ等の空間である。これらICチップ及びMEMS構造体は、それぞれシリコンを主材料として形成されている。図2は光の波長に対するシリコンの透過率特性を示す。シリコンは、約1.1μm以下の波長領域の光を殆ど透過しないが、1.1μm以上の波長領域の光を比較的よく透過する。
かかる赤外共焦点走査型顕微鏡1は、赤外光のレーザビーム2を射出する光源部3を備えている。この光源部3は、上記シリコンの透過率特性に従って当該シリコンを透過し得る波長の光、例えば1.1μm以上の波長領域の光を射出する。この光源部3から射出される赤外光のレーザビーム2は、直線偏光となっている。
当該赤外共焦点走査型顕微鏡1により得られる共焦点画像は、赤外光のレーザビーム2の波長が短い程分解能が高くなる。これにより、光源部2は、好ましくは1.1μmに近い波長で、かつシリコンに対する透過率が50%程度有し、さらには入手性がよく、安価で1.3μmの波長の赤外光のレーザビーム2を射出するものがよい。
光源部3から射出される赤外光のレーザビーム2の光軸上には、二次元走査機構4と、瞳投影レンズ5と、結像レンズ6と、1/4波長板7と、対物レンズ8とが設けられている。このうち二次元走査機構4は、光源部3から射出される赤外光のレーザビーム2をXY平面で二次元的に走査する。この二次元走査機構4は、例えば2つのガルバノミラーを組み合わせて構成される。この二次元走査機構4は、対物レンズ8の瞳位置と共役な位置に設けられている。
対物レンズ8は、二次元走査機構4により二次元的に走査される赤外光のレーザビーム2を収束して試料Sの内部に光スポットを形成する。この対物レンズ8は、試料S内のシリコンの厚さによる収差を補正されたものを使用するのがよい。
対物レンズ移動機構9は、対物レンズ8を光軸に沿ってZ方向に移動させる。この対物レンズ移動機構9には、Zスケール10が設けられている。このZスケール10は、対物レンズ8を光軸に沿ったZ方向への移動距離を計測する。
光源部3と二次元走査機構4との間の光軸上には、偏光ビームスプリッタ(以下、PBSと称する)11が設けられている。このPBS11は、1/4波長板7と共働して試料Sからの反射赤外光のレーザビームを分離する。すなわち、PBS11は、光源部3から射出されて試料Sに向う赤外光のレーザビーム2も透過するので、この赤外光のレーザビーム2と試料Sからの反射赤外光のレーザビームとを各偏光に基づいて当該反射赤外光のレーザビームを検出光ビーム12として分離する。なお、光源部3から射出される赤外光のレーザビーム2は直線偏光であり、試料Sで反射された赤外光のレーザビームすなわち反射赤外光のレーザビームは、光源部3から射出された直後の赤外光のレーザビーム2の直線偏光に対して直交する。
PBS11により分離された検出光ビーム12の光軸上には、収束レンズ13と、光検出器14とが設けられている。収束レンズ13は、PBS11により分離された検出光ビーム12を収束する。光検出器14は、収束レンズ13により収束された検出光ビーム12を受光し、受光した光強度に対応した電気信号を出力する。この光検出器14は、実質的に微小開口として機能する大きさに形成された受光面を有している。この受光面は、試料Sの内部に形成される光スポットに対して共役な位置に設けられている。しかるに、赤外共焦点走査型顕微鏡1の光学系は、共焦点光学系を構成している。
制御部15は、二次元走査機構4に対して走査制御信号を送出し、対物レンズ移動機構9に対してZ方向駆動制御信号を送出し、かつ光検出器14から出力される電気信号を入力し、二次元走査機構4に対して送出する走査制御信号から求められる試料S中の光スポットの位置情報と光検出器14から出力される電気信号とに基づいて試料Sの共焦点画像データを取得する。
この制御部15には、モニタ装置16と、ユーザインタフェース17とが接続されている。この制御部15は、当該赤外共焦点走査型顕微鏡1により取得した共焦点画像データをモニタ装置16に表示出力する。ユーザインタフェース17は、例えばキーボードやマウス等を有する。このユーザインタフェース17は、ユーザの操作を受け、例えば試料Sの屈折率データをインプットする屈折率データ入力部の一部を構成する。
具体的に制御部15は、屈折率データ入力部18と、データ補正演算部19と、データ解析部20と、表示制御部21と、共焦点画像データを保存する画像データ保存部としての第1のメモリ22と、屈折率データ保存部としての第2のメモリ23とを有する。
屈折率データ入力部18は、ユーザインタフェース17から試料Sの屈折率データをインプットする指示があると、図3に示すようにモニタ装置16の表示画面16a上に試料Sの屈折率データをインプットするための屈折率インプット用ウィンドウ24を表示する。この屈折率データ入力部18は、屈折率インプット用ウィンドウ24内に試料Sの屈折率データがインプットされると、このインプットされた試料Sの屈折率データをデータ補正演算部19に送る。なお、屈折率データ入力部18は、屈折率インプット用ウィンドウ24内にインプットされた各種試料Sに対応した複数の屈折率データを第2のメモリ23に予め保存させておいてもよい。
データ補正演算部19は、ユーザインタフェース17からインプットされた試料Sの屈折率データに基づいて共焦点画像データの試料Sの高さ方向に対する補正を行う。共焦点画像データは、Zスケール10により計測された対物レンズ8を光軸に沿ったZ方向への移動距離、すなわちZ方向である高さ位置の座標データを有している。従って、データ補正演算部19は、高さ位置の座標データを試料Sの屈折率データに基づいて補正し、この補正した共焦点画像データ3次元座標は、各輝度情報と共に第1のメモリ22に保存される。
データ解析部20は、データ補正演算部19により試料Sの屈折率データに基づいて補正された共焦点画像データを解析し、試料Sにおける所定部位の厚み、面積、体積、面粗さ、断面形状又は各所定部位間の間隔のうち少なくとも1つを求める。
表示制御部21は、第1のメモリ22に保存されている屈折率データに基づいて補正された試料Sの共焦点画像データをモニタ装置16に表示したり、データ解析部20の解析結果である試料Sにおける所定部位の厚み、面積、体積、面粗さ、断面形状又は各所定部位間の間隔などをモニタ装置16に表示する。
次に、上記の如く構成された顕微鏡の動作について説明する。
光源部3から直線偏光で赤外光のレーザビーム2が射出されると、この赤外光のレーザビーム2は、PBS11を透過し、二次元走査機構4に入射する。この二次元走査機構4は、入射した赤外光のレーザビーム2を二次元的に走査する。この二次元的に走査された赤外光のレーザビーム2は、瞳投影レンズ5、結像レンズ6を経て1/4波長板7に入射し、この1/4波長板7により円偏光に変換され、この後、対物レンズ8によって試料Sの内部に収束され、光スポットに形成される。この光スポットは、二次元走査機構4による二次元走査により試料Sの内部において対物レンズ8の光軸に対して直交するXY平面内で二次元走査される。
試料Sからの反射赤外光のレーザビームは、対物レンズ8を通って1/4波長板7に入射し、この1/4波長板7により円偏光から直線偏光に変換される。この変換された直線偏光は、光源部3から射出された直後の赤外光のレーザビーム2の直線偏光に対して直交する。この試料Sからの反射赤外光のレーザビームは、1/4波長板7により直線偏光に変換された後、結像レンズ6、瞳投影レンズ5、二次元走査機構4を経てPBS11に入射する。
このPBS11は、試料Sからの反射赤外光のレーザビームを偏光し、光源部3から射出された直後の赤外光のレーザビーム2から選択的に分離し、検出光ビーム12として出射する。この分離された検出光ビーム12は、収束レンズ13により収束されて光検出器14に入射する。この光検出器14は、収束レンズ13により収束された検出光ビーム12を受光し、受光した光強度に対応した電気信号を出力する。
制御部15は、二次元走査機構4に対して送出する走査制御信号から求められる試料S中の光スポットの位置情報と光検出器14から出力される電気信号とに基づいて試料S内における光スポットが二次元走査されたXY平面上での共焦点画像データを取得し、この共焦点画像データを第1のメモリ22に保存する。この制御部15の表示制御部21は、第1のメモリ22に保存されている試料Sの共焦点画像データをモニタ装置16に表示する。
ここで、図4は対物レンズ8と試料Sとの間のZ方向の相対位置(デフォーカス位置)に対する光検出器14で受光される光強度の関係を示す。これらデフォーカス位置と光強度との関係は、一般にI−Zカーブと呼ばれ、Z座標対光強度のグラフを示す。なお、同I−Zカーブには、比較のために通常の非共焦点顕微鏡におけるZ座標対光強度も示す。
同図に示すように非共焦点顕微鏡では、合焦位置での試料Sからの反射光の強度だけでなく、合焦位置から外れたZ位置における試料Sからの反射光の強度も高い。このため、Z位置によっては、合焦位置から外れたZ位置からの反射光の強度の方が合焦位置での反射光の強度よりも高い場合もある。このようなZ座標対光強度を示すことから非共焦点顕微鏡では、所望しないノイズ光が多く、赤外光のビームが観察対象の試料Sに合焦していても、試料Sの鮮明な画像を取得することは難しい。
これに対して共焦点顕微鏡では、合焦位置での試料Sからの反射光の強度のみが高く、合焦位置から外れたZ位置での試料Sからの反射光の強度は極端に小さくなる。これにより、共焦点顕微鏡では、ノイズ光が少なく、合焦面すなわちスポット光が二次元走査されたXY平面上で鮮明な画像を取得できる。
しかるに、当該赤外共焦点走査型顕微鏡1であれば、光検出器14で検出される光強度が最大となるように対物レンズ移動機構9の動作により対物レンズ8を光軸によってZ方向に上下移動させ、対物レンズ8と試料Sとの間隔を調整する。これにより、光スポットの光軸に沿った位置すなわち合焦位置は、試料S内において所望の観察位置に合わせることが可能となる。
すなわち、制御部15は、対物レンズ移動機構9に対してZ方向駆動制御信号を送出して対物レンズ移動機構9を動作させて対物レンズ8を光軸に沿ってZ方向に上下移動させ、かつ二次元走査機構4に対して走査制御信号を送出して試料S内において所望の観察位置のXY平面上でスポット光を二次元走査させ、これと共に光検出器14からの電気信号を入力し、この電気信号に基づいて例えば図5に示すような試料S内における所望の観察位置での共焦点画像データDを取得する。この共焦点画像データDには、試料S内の基板25中にシリコンパターン26が形成されている。この共焦点画像データDは、コントラストの高い鮮明な画像としてモニタ装置16に表示される。
試料Sには、例えば図6に示すようなパンプ接合部27がある。このパンプ接合部27は、下層基板28と上層基板29とをバンプ30により接続している。このようなパンプ接合部27に対しては、例えば、先ず対物レンズ移動機構9を動作させて対物レンズ8をZ方向に上下移動させ、かつ二次元走査機構4により試料S内の下層基板28の下面に対応する観察位置AのXY平面上でスポット光を二次元走査させる。これにより、試料S内の観察位置Aでの第1の共焦点画像データD10が取得される。この第1の共焦点画像データD10は、試料S内の観察位置AでのZ方向である高さ位置の座標データZを有している。
次に、上記同様に、対物レンズ移動機構9と二次元走査機構4との各動作により試料S内の下層基板28の上面に対応する観察位置AのXY平面上でスポット光を二次元走査させる。これにより、試料S内の観察位置Aでの第2の共焦点画像データD11が取得される。この第2の共焦点画像データD11は、試料S内の観察位置AでのZ方向である高さ位置の座標データZを有している。以下、上記同様に、対物レンズ移動機構9と二次元走査機構4との各動作により試料S内の上層基板29の下面、上面に対応する各観察位置A、AのXY平面上でスポット光を二次元走査させる。これにより、試料S内の各観察位置A、Aでの第3、第4の共焦点画像データD12、D13が取得される。これら第3、第4の共焦点画像データD12、D13は、試料S内の各観察位置A、AでのZ方向である高さ位置の座標データZ、Zを有している。
又、制御部15は、対物レンズ移動機構9に対してZ方向駆動制御信号を送出して対物レンズ移動機構9を動作させて対物レンズ8を光軸に沿ってZ方向に所定間隔毎に上下移動させ、かつ二次元走査機構4に対して走査制御信号を送出して試料S内において所定間隔毎の複数の観察位置の各XY平面上でそれぞれスポット光を二次元走査させる。これと共に、制御部15は、複数の観察位置でスポット光を二次元走査させる毎に、光検出器14からの電気信号を入力し、この電気信号に基づいて図7に示すような試料S内における複数の観察位置に対応する複数の共焦点画像データD20〜Dnを取得する。これら共焦点画像データD20〜Dnも試料S内の各観察位置でのZ方向である高さ位置の座標データZ20〜Znを有している。制御部15は、これら共焦点画像データD20〜Dnを重ね合わせて(合成して)それぞれ異なる高さ位置で合焦している1枚の画像(エクステンド像)データを作成する。
次に、データ補正演算部19は、ユーザインタフェース17からインプットされた試料Sの屈折率データに基づいて共焦点画像データの試料Sの高さ方向に対する補正を行う。すなわち、ユーザインタフェース17から試料Sの屈折率データをインプットする指示があると、屈折率データ入力部18は、図3に示すようにモニタ装置16の表示画面16a上に屈折率インプット用ウィンドウ24を表示する。ユーザがユーザインタフェース17を操作し、試料Sの屈折率データが屈折率インプット用ウィンドウ24内にインプットされると、屈折率データ入力部18は、インプットされた試料Sの屈折率データをデータ補正演算部19に送る。
このデータ補正演算部19は、ユーザインタフェース17にインプットされた試料Sの屈折率データを受け取り、試料Sの屈折率データに基づいて共焦点画像データの高さ位置の座標データZを補正する。この補正は、例えば高さ位置の座標データZと試料Sの屈折率データとの積算により求められる。屈折率データに基づいて補正された共焦点画像データの3次元座標は、各輝度情報と共に第1のメモリ22に保存される。
例えば、上記図5に示すように試料S内における所望の観察位置での共焦点画像データDを取得した場合、データ補正演算部19は、当該共焦点画像データDの所望の観察位置の座標データZとユーザインタフェース17にインプットされた試料Sの屈折率データとを積算し、共焦点画像データDの所望の観察位置の座標データZを補正する。この補正された共焦点画像データDの次元座標は、各輝度情報と共に第1のメモリ22に保存される。
しかる後、データ解析部20は、データ補正演算部19により試料Sの屈折率データに基づいて補正された共焦点画像データを解析し、図5に示すように試料Sにおける例えば基板25中にシリコンパターン26の各間隔W、W、Wを求める。表示制御部21は、データ解析部20の解析結果である試料Sにおける基板25中にシリコンパターン26の各間隔W、W、Wなどをモニタ装置16に表示する。
又、例えば、上記図6に示すようにパンプ接合部27における試料S内の各観察位置A〜Aでの第1〜第4の共焦点画像データD10〜D13を取得した場合、データ補正演算部19は、第1〜第4の共焦点画像データD10〜D13の各所望の観察位置の座標データZ〜Zと、ユーザインタフェース17にインプットされた試料Sの各屈折率データとを積算し、第1〜第4の共焦点画像データD10〜D13の各所望の観察位置の座標データZ〜Zを補正する。これら屈折率データに基づいて補正された第1〜第4の共焦点画像データD10〜D13は、各輝度情報と共に、それぞれ第1のメモリ22に保存される。
しかる後、データ解析部20は、データ補正演算部19により試料Sの各屈折率データに基づいて補正された第1〜第4の共焦点画像データD10〜D13の各所望の観察位置の座標データZ〜Zを解析し、例えば試料S内の下層基板28の下面と上層基板29の上面との正確な間隔Lを求める。具体的に、試料S内の下層基板28と上層基板29との各屈折率をns、下層基板28と上層基板29との間の空間の屈折率をn=1、補正前の下層基板28の下面と上層基板29の上面との間隔をd、下層基板28の上面と上層基板29の下面との間隔をd、上層基板29の上面と上層基板29の上面との間隔をdとすると、当該間隔Lは、
L=(ns・d)+(n・d)+(ns・d
=(d+d)・ns+n・d
=(d+d)・ns+d
により正確に求められる。
表示制御部21は、データ解析部20の解析結果である例えば試料S内の下層基板28の下面と上層基板29の上面との間隔Lなどをモニタ装置16に表示する。
又、上記図7に示すように試料S内における複数の観察位置に対応する複数の共焦点画像データD20〜Dnを取得した場合、データ補正演算部19は、各共焦点画像データD20〜Dnの各観察位置の座標データZ20〜Znとユーザインタフェース17からインプットされた試料Sの屈折率データとを積算し、これら共焦点画像データD20〜Dnの各観察位置の座標データZ20〜Znを補正する。これら屈折率データに基づいて補正された共焦点画像データD20〜Dnの3次元の座標データZ20〜Znは、各輝度情報と共に第1のメモリ22に保存される。
しかる後、データ解析部20は、データ補正演算部19により試料Sの屈折率データに基づいて補正された共焦点画像データD20〜Dnを解析し、例えば各観察位置における基板中にシリコンパターンの各間隔を求める。表示制御部21は、データ解析部20の解析結果である試料S中の各観察位置における基板中にシリコンパターンの各寸法やパターン間隔などをモニタ装置16に表示する。
なお、データ解析部20は、データ補正演算部19により試料Sの屈折率データに基づいて補正された共焦点画像データを解析し、試料Sにおける所定部位の厚み、面積、体積、面粗さ、断面形状又は各所定部位間の間隔などを求める。
このように上記第1の実施の形態によれば、ユーザインタフェース17からインプットされた試料Sの屈折率データに基づいてデータ補正演算部19により赤外共焦点走査型顕微鏡1により取得された共焦点画像データの高さ位置の座標データZを補正するので、試料Sの屈折率、例えばFCB後のICチップ、又はMEMS構造体におけるシリコン薄膜の屈折率nsの影響を受けずに、正確な共焦点画像データを取得でき、又補正に基づいた共焦点画像を表示することができる。これにより、例えばシリコン薄膜の膜厚やフリップチップICのオープン不良の判定、実装部品の位置ずれの計測、シリコン裏面のパターンの傷、バンプの欠損、さらには、図5に示すような試料Sにおける基板25中にシリコンパターン26の各間隔W、W、W、図6に示すような試料Sにおける下層基板28と上層基板29との間隔L、図7に示すエクステンド像から試料S中の各観察位置における基板中にシリコンパターンの各寸法やパターン間隔、さらには試料Sにおける所定部位の厚み、面積、体積、面粗さ、断面形状又は各所定部位間の間隔などを精度高く求めることができる。
この場合、補正された共焦点画像データの高さ位置の座標データZは、第1のメモリ22に保存されるので、試料Sにおける下層基板28と上層基板29との間隔Lや、シリコンパターンの各寸法やパターン間隔、試料Sにおける所定部位の厚み、面積、体積、面粗さ、断面形状又は各所定部位間の間隔などをそれぞれ演算する毎に屈折率データを用いて補正することもない。
又、補正された共焦点画像データ(三次元画像)が表示画面上に表示されるので、視覚的にも正確な試料形状を認識できる。
さらに、補正前の共焦点画像データを保存するメモリを設けて補正前の共焦点画像データを保存しておけば、補正前の共焦点画像データと、補正後の共焦点画像データとをそれぞれのメモリから呼び出し、同一画面上又はこれらの画像を重ねて表示したり、又補正前の共焦点画像データと補正後の共焦点画像データとの表示方法を異ならせて表示することができる。このように表示することで、補正の有無、補正の影響度、補正の適正度等を視覚的に認識できる。なお、異なる表示方法としては、線種を変更したり、線の色を変えたりする方法がある。
次に、本発明の第2の実施の形態について説明する。なお、赤外共焦点走査型顕微鏡の構成は、上記第1の実施の形態と同一である。
制御部15は、二次元走査機構4に対して走査制御信号を送出し、例えば図8に示すように試料S内においてスポット光をX方向に一次元走査させる。これと共に制御部15は、対物レンズ移動機構9に対してZ方向駆動制御信号を送出し、対物レンズ8を光軸に沿ってZ方向に所定間隔毎に移動させる。制御部15は、スポット光を一次元走査させ、かつ対物レンズ8を光軸に沿ってZ方向に所定間隔毎に移動させ毎に、光検出器14からの電気信号を入力し、この電気信号に基づいて試料S内における断面形状Fの断面画像データを取得する。この断面形状Fの断面画像データには、Zスケール10により計測されたZ方向である高さ位置の座標データを有している。
一方、ユーザインタフェース17から試料Sの屈折率データをインプットする指示があると、屈折率データ入力部18は、上記図3に示すようにモニタ装置16の表示画面16a上に屈折率インプット用ウィンドウ24を表示し、この屈折率インプット用ウィンドウ24内にユーザの操作によって試料Sの屈折率データが屈折率インプット用ウィンドウ24内にインプットされると、屈折率データ入力部18は、インプットされた試料Sの屈折率データをデータ補正演算部19に送る。
このデータ補正演算部19は、ユーザインタフェース17にインプットされた試料Sの屈折率データを受け取り、試料Sの屈折率データに基づいて図8に示す断面形状Fの断面画像データに有する高さ位置の座標データZを補正する。この補正は、上記同様に、例えば高さ位置の座標データZと試料Sの屈折率データとの積算により求められる。補正した共焦点画像データの3次元座標は、各輝度情報と共に第1のメモリ22に保存される。
データ解析部20は、第1のメモリ22に保存された補正済みの試料Sにおける断面形状Fの共焦点画像データを解析し、この試料Sにおける例えばZ方向の各部位の間隔、所定部位の厚みなどを求める。
このように上記第2の実施の形態によれば、試料Sの屈折率の影響を受けずに、正確な試料Sにおける断面形状Fの断面画像データを取得でき、試料Sにおける例えばZ方向の各部位の間隔、所定部位の厚みなどを高精度に求めることができる。
次に、本発明の第3の実施の形態について説明する。なお、赤外共焦点走査型顕微鏡の構成は、上記第1の実施の形態と同一である。
試料Sの観察前に、ユーザインタフェース17によって図3に示す屈折率インプット用ウィンドウ24内に仮の屈折率データ、例えば空気の屈折率データ「n=1」がインプットされると、屈折率データ入力部18は、インプットされた試料Sの屈折率データをデータ補正演算部19に送る。このデータ補正演算部19は、屈折率データ入力部18からインプットされた仮の屈折率データを第2のメモリ23に予め保存する。
この状態で、制御部15は、上記同様に、対物レンズ移動機構9を動作させて対物レンズ8を光軸に沿ってZ方向に上下移動させ、かつ二次元走査機構4により試料S内において所望の観察位置のXY平面上でスポット光を二次元走査させ、これと共に光検出器14からの電気信号に基づいて例えば図5に示すような試料S内における所望の観察位置での共焦点画像データDを取得する。
データ補正演算部19は、第2のメモリ23に予め保存されている例えば空気の屈折率データ「n=1」を読み出し、この空気の屈折率データ「n=1」に基づいて共焦点画像データの高さ位置の座標データZを補正する。補正した共焦点画像データの3次元座標は、各輝度情報と共に第1のメモリ22に保存される。
次に、後処理において、ユーザインタフェース17によって図3に示す屈折率インプット用ウィンドウ24内に試料Sの屈折率データ、例えばシリコンの屈折率データnsがインプットされると、屈折率データ入力部18は、インプットされた試料Sの屈折率データをデータ補正演算部19に送る。
このデータ補正演算部19は、第1のメモリ22に保存されている共焦点画像データを読み出し、この共焦点画像データの観察位置の座標データZとユーザインタフェース17からインプットされた試料Sの屈折率データとを積算し、共焦点画像データの観察位置の座標データZを補正する。試料Sの屈折率データにより補正した共焦点画像データは、各輝度情報と共に3次元座標で第1のメモリ22に保存される。
このように上記第3の実施の形態によれば、予め例えば空気の屈折率データ「n=1」を保存し、この空気の屈折率データ「n=1」に基づいて共焦点画像データの高さ位置の座標データZを補正し、この後、試料Sの屈折率データをインプットして共焦点画像データの高さ位置の座標データZを補正するので、試料Sの屈折率が観察時に不明な場合でも、共焦点画像データを取得した後に、試料Sの正確な屈折率データをインプットすることで、試料Sの屈折率の影響を受けずに、正確な試料Sの共焦点画像データを取得でき、試料Sにおける例えばZ方向の各部位の間隔、所定部位の厚みなどを高精度に求めることができる。
又、ユーザインタフェース17によってインプットする屈折率データは、任意に変更可能であるので、他の各種材料に変更した場合における所定部位の厚み、面積、体積、面粗さ、断面形状又は各所定部位間の間隔などを求めるときのシミュレーションが可能になる。
又、試料の屈折率データは不明であるが、試料の所定部位の厚みが既知である場合、仮の屈折率データを入力しておき、試料の所定部位を測定し、この測定結果が既知の値になるように屈折率データを算出するようにすれば、不明であった試料の屈折率データを求めることもできる。
次に、本発明の第4の実施の形態について説明する。なお、赤外共焦点走査型顕微鏡の構成は、上記第1の実施の形態と同一である。
上記図7に示すように制御部15は、複数の観察位置でスポット光を二次元走査させる毎に、光検出器14からの電気信号を入力し、この電気信号に基づいて試料S内におけるZ方向に高さの異なる複数の観察位置に対応する複数の共焦点画像データD20〜Dnを取得する。制御部15は、これら共焦点画像データD20〜Dnを重ね合わせて(合成して)それぞれ異なる高さ位置で合焦している1枚の画像(エクステンド像)データを作成する。
制御部15は、例えば1枚のエクステンド画像データから図8に示すような試料S内における断面形状Fの断面画像データを取得する。表示制御部21は、かかる断面形状Fの断面画像データをモニタ装置16に表示する。図9はモニタ装置16に表示された断面画像データの一例を示す。この断面画像データは、試料Sの各部分S、S、Sにおいてそれぞれ各輝度値が異なっている。制御部15は、断面画像データに対して予め設定された各閾値により2値化又は多値化し、試料Sの各部分S、S、Sをそれぞれ区分する。
ここで、ユーザインタフェース17に対するユーザの操作によって試料Sの各部分S、S、Sをそれぞれ選択する。例えば、試料Sの部分Sが選択された状態で、ユーザインタフェース17に対するユーザの操作によって図3に示す屈折率インプット用ウィンドウ24内に試料Sの部分Sの屈折率データがインプットされると、屈折率データ入力部18は、試料Sの部分Sの屈折率データとしてデータ補正演算部19に送る。同様に、試料Sの各部分S、Sの各屈折率データがインプットされると、屈折率データ入力部18は、試料Sの各部分S、Sの各屈折率データとしてデータ補正演算部19に送る。
このデータ補正演算部19は、試料Sの部分Sの断面画像データの座標データZと当該部分Sの屈折率データとを積算し、試料Sの部分Sの断面画像データの座標データZを補正する。同様に、データ補正演算部19は、試料Sの各部分S、Sの各断面画像データの各座標データZと当該各部分S、Sの各屈折率データとをそれぞれ積算し、試料Sの各部分S、Sの断面画像データの各座標データZを補正する。試料Sの各部分S、S、Sの各屈折率データによりそれぞれ補正した各共焦点画像データの3次元座標は、各輝度情報と共に第1のメモリ22に保存される。
このように上記第4の実施の形態によれば、モニタ装置16に表示されている試料S内における断面形状Fの断面画像データを輝度値に基づいて試料Sを各部分S、S、Sの区分し、これら区分された各部分S、S、Sの画像領域毎にそれぞれ各屈折率データをインプットし、これら屈折率データに基づいて各部分S、S、S毎にそれぞれ断面画像データの各座標データZを補正するので、試料S中における各種材料の異なる各部分S、S、S毎に各屈折率データの影響を受けない正確な試料S内における断面形状Fの断面画像データを取得できる。
なお、試料Sの各部分S、S、Sを2値化又は多値化処理により自動的に区分するようにしているが、ユーザがモニタ16に表示される断面画像データの各輝度値の違いにより試料Sの各部分を判断し、例えばマウス等の入力手段で直接断面画像データを直線又は矩形、円形等の任意の形状で指示して区分するようにしてもよい。
次に、本発明の第5の実施の形態について説明する。なお、赤外共焦点走査型顕微鏡の構成は、上記第1の実施の形態と同一である。
本実施の形態は、ユーザインタフェース17による屈折率データのインプットの各方法を示す。
屈折率データ入力部18は、図10に示すようにモニタ装置16の表示画面16aに、複数の屈折率データに対応する複数の選択端、例えばシリコン、空気等の各アイコン31−1、31−2、…、31−mを表示する。屈折率データ入力部18は、シリコン、空気等の各屈折率データns、n=1を予め記憶する。ユーザインタフェース17に対するユーザの操作によって例えばアイコン31−1が操作されると、屈折率データ入力部18は、シリコンの屈折率データnsを読み出し、このシリコンの屈折率データnsをデータ補正演算部19に送る。
又、屈折率データ入力部18は、図11に示すようにモニタ装置16の表示画面16aに、バー状のライン32に沿って屈折率の各数値を付して表示すると共に、屈折率を選択指示するためのスライダ33をライン32上に沿って移動可能に表示する。ユーザインタフェース17に対するユーザの操作によってスライダ33をライン32上に沿って移動させ、試料Sの屈折率を選択する。なお、図11ではスライダ33によって試料Sの屈折率「3.3」が選択されている。屈折率データ入力部18は、スライダ33によって選択指示された試料Sの屈折率、例えば試料Sの屈折率「3.3」をデータ補正演算部19に送る。バー状のライン32に沿って屈折率の各数値が所定間隔毎に付されているが、ライン32上の屈折率の数値は、連続している。これにより、例えばライン32上の屈折率「3.0」と「3.1」との中間にスライダ33が配置されると、屈折率データ入力部18は、屈折率「3.05」として読み取る。
このように上記第5の実施の形態によれば、ユーザが試料Sの屈折率の数値を正確に覚える必要はなく、試料Sの屈折率データをインプットできる。
なお、本発明は、上記各実施の形態に限定されるものではなく、次のように変形してもよい。
例えば、上記各実施の形態は、例えば波長900nm以上の赤外光のレーザビーム2を用いた赤外共焦点走査型顕微鏡1に適用した場合について説明したが、これに限らず、NipkowDISK等を用いたディスク走査型共焦点顕微鏡にも適用可能であり、他の共焦点効果を得られる顕微鏡であれば適用可能である。
屈折率データのインプット方法は、アイコン31−1、31−2、…、31−m又はスライダ33をライン32上に沿って移動させて選択するのに限らず、例えば操作盤上に各屈折率に対応した複数のスイッチ等を設けてもよい。
本発明に係る赤外共焦点走査型顕微鏡の第1の実施の形態を示す構成図。 同顕微鏡の観察対象である試料を形成するシリコンの光の波長に対する透過率特性を示す図。 同顕微鏡のモニタ装置に表示される屈折率インプット用ウィンドウを示す図。 同顕微鏡における対物レンズと試料との間のZ方向の相対位置に対する光検出器で受光される光強度の関係を示す図。 同顕微鏡の観察対象となる試料内における所望の観察位置での共焦点画像データを示す模式図。 同顕微鏡の観察対象となる試料中のパンプ接合部を示す図。 同顕微鏡によりエクステンド像を作成するために取得された各共焦点画像データを示す模式図。 本発明に係る赤外共焦点走査型顕微鏡の第2の実施の形態により取得される試料の断面形状のデータを示す図。 本発明に係る赤外共焦点走査型顕微鏡の第4の実施の形態においてモニタ装置に表示された断面画像データの一例を示す模式図。 本発明に係る赤外共焦点走査型顕微鏡の第5の実施の形態におけるモニタ装置の表示画面に表示された屈折率データ選択用のアイコンを示す図。 同顕微鏡におけるモニタ装置の表示画面に表示された屈折率データ選択用のバー表示を示す図。
符号の説明
S:試料、1:赤外共焦点走査型顕微鏡、2:レーザビーム、3:光源部、4:二次元走査機構、5:瞳投影レンズ、6:結像レンズ、7:1/4波長板、8:対物レンズ、9:対物レンズ移動機構、10:Zスケール、11:偏光ビームスプリッタ(PBS)、12:検出光ビーム、13:収束レンズ、14:光検出器、15:制御部、16:モニタ装置、16a:表示画面、17:ユーザインタフェース、18:屈折率データ入力部、19:データ補正演算部、20:データ解析部、21:表示制御部、22:第1のメモリ、23:第2のメモリ、24:屈折率インプット用ウィンドウ、25:基板、26:シリコンパターン、27:パンプ接合部、28:下層基板、29:上層基板、30:バンプ、31−1,31−2,…,31−m:アイコン、32:バー状のライン、33:スライダ。

Claims (15)

  1. 対物レンズを通して測定光を試料に走査し、前記試料からの反射光を検出し前記試料における少なくとも1つの高さ位置の共焦点画像データを取得する共焦点走査型顕微鏡において、
    少なくとも前記試料の屈折率データを入力する屈折率データ入力部と、
    前記屈折率データ入力部から入力された前記屈折率データに基づいて前記共焦点画像データの前記試料の高さ方向に対する補正を行うデータ補正演算部と、
    前記データ補正演算部により前記試料の高さ方向に対する補正を行った前記共焦点画像データを保存する画像データ保存部と、
    を具備したことを特徴とする共焦点走査型顕微鏡。
  2. 前記測定光として赤外領域の波長のレーザビームを前記試料に走査することを特徴とする請求項1記載の共焦点走査型顕微鏡。
  3. 前記屈折率データ入力部は、ユーザインタフェースを有することを特徴とする請求項1記載の共焦点走査型顕微鏡。
  4. モニタ装置を有し、
    前記屈折率データ入力部は、入力指示があると、前記モニタ装置の表示画面に前記屈折率データを入力するためのウィンドウを表示し、前記入力された前記屈折率データを前記データ補正演算部に送る、
    ことを特徴とする請求項1記載の共焦点走査型顕微鏡。
  5. モニタ装置を有し、
    前記屈折率データ入力部は、複数の前記屈折率データに対応する複数の選択部を前記モニタ装置の表示画面に表示し、当該表示画面上で選択操作された前記選択部に対応する前記屈折率データを前記データ補正演算部に送る、
    ことを特徴とする請求項1記載の共焦点走査型顕微鏡。
  6. モニタ装置を有し、
    前記屈折率データ入力部は、ライン状に配列された前記屈折率の各数値を前記モニタ装置の表示画面に表示し、当該表示画面上で選択操作された前記選択部に対応する前記屈折率データを前記データ補正演算部に送る、
    ことを特徴とする請求項1記載の共焦点走査型顕微鏡。
  7. 前記屈折率データ入力部から入力された前記屈折率データを保存する屈折率データ保存部を有することを特徴とする請求項1記載の共焦点走査型顕微鏡。
  8. 前記共焦点画像データは、前記高さ位置の座標データを有し、
    前記データ補正演算部は、前記共焦点画像データに有する前記高さ位置の座標データを前記屈折率データに基づいて補正することを特徴とする請求項1記載の共焦点走査型顕微鏡。
  9. 前記画像データ保存部は、前記高さ位置座標データを前記屈折率データに基づいて補正された前記共焦点画像データの3次元座標を、前記共焦点画像データの各輝度情報と共に保存することを特徴とする請求項8記載の共焦点走査型顕微鏡。
  10. 前記屈折率データ保存部は、複数の前記試料に応じた複数の前記屈折率データを保存することを特徴とする請求項7記載の共焦点走査型顕微鏡。
  11. モニタ装置と、
    前記データ補正演算部により前記試料の高さ方向に対する補正を行った前記共焦点画像データを前記モニタ装置に表示させる表示制御部を有し、
    前記屈折率データ入力部は、前記モニタ装置に表示されている前記共焦点画像データの画像を複数に区分し、これら区分された複数の画像領域毎にそれぞれ前記各屈折率データを設定し、
    前記データ補正演算部は、前記屈折率データ入力部から設定された前記各画像領域毎の前記各屈折率データに基づいて前記各画像領域毎にそれぞれ前記共焦点画像データの前記試料の高さ方向に対する補正を行うことを特徴とする請求項1記載の共焦点走査型顕微鏡。
  12. 前記データ補正演算部により補正された前記共焦点画像データに基づいて前記試料における所定部位の厚み、面積、体積、面粗さ、断面形状又は前記各所定部位間の間隔のうち少なくとも1つを解析するデータ解析部を有することを特徴とする請求項1記載の共焦点走査型顕微鏡。
  13. モニタ装置と、
    前記画像データ保存部に保存されている前記屈折率データに基づいて補正された前記共焦点画像データを前記モニタ装置に表示することを特徴とする請求項8記載の共焦点走査型顕微鏡。
  14. モニタ装置と、
    前記画像データ保存部に保存されている前記屈折率データに基づいて補正された前記共焦点画像データと、前記屈折率データに基づいて補正されていない前記共焦点画像データとを前記モニタ装置に表示することを特徴とする請求項8記載の共焦点走査型顕微鏡。
  15. 前記屈折率データに基づいて補正された前記共焦点画像データと補正されていない前記共焦点画像データとは、前記モニタ装置に重ね合わされて表示されることを特徴とする請求項14記載の共焦点走査型顕微鏡。
JP2005259463A 2005-09-07 2005-09-07 共焦点走査型顕微鏡 Withdrawn JP2007071716A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005259463A JP2007071716A (ja) 2005-09-07 2005-09-07 共焦点走査型顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005259463A JP2007071716A (ja) 2005-09-07 2005-09-07 共焦点走査型顕微鏡

Publications (1)

Publication Number Publication Date
JP2007071716A true JP2007071716A (ja) 2007-03-22

Family

ID=37933276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259463A Withdrawn JP2007071716A (ja) 2005-09-07 2005-09-07 共焦点走査型顕微鏡

Country Status (1)

Country Link
JP (1) JP2007071716A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009258192A (ja) * 2008-04-14 2009-11-05 Olympus Corp 走査型レーザ顕微鏡
JP2013104869A (ja) * 2011-11-11 2013-05-30 Sentekku:Kk 樹脂硬化収縮測定器
CN107782697A (zh) * 2017-09-27 2018-03-09 北京理工大学 宽波段共焦红外透镜元件折射率测量方法与装置
JP2019158811A (ja) * 2018-03-16 2019-09-19 株式会社ディスコ 非破壊検出方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009258192A (ja) * 2008-04-14 2009-11-05 Olympus Corp 走査型レーザ顕微鏡
JP2013104869A (ja) * 2011-11-11 2013-05-30 Sentekku:Kk 樹脂硬化収縮測定器
CN107782697A (zh) * 2017-09-27 2018-03-09 北京理工大学 宽波段共焦红外透镜元件折射率测量方法与装置
JP2019158811A (ja) * 2018-03-16 2019-09-19 株式会社ディスコ 非破壊検出方法
CN110270769A (zh) * 2018-03-16 2019-09-24 株式会社迪思科 非破坏检测方法
KR20190109264A (ko) * 2018-03-16 2019-09-25 가부시기가이샤 디스코 비파괴 검출 방법
JP7256604B2 (ja) 2018-03-16 2023-04-12 株式会社ディスコ 非破壊検出方法
TWI814791B (zh) * 2018-03-16 2023-09-11 日商迪思科股份有限公司 非破壞性檢測方法
KR102666255B1 (ko) 2018-03-16 2024-05-14 가부시기가이샤 디스코 비파괴 검출 방법

Similar Documents

Publication Publication Date Title
US9891418B2 (en) Apparatus for imaging a sample surface
CN110214290B (zh) 显微光谱测量方法和***
KR101106852B1 (ko) 광학식 3차원 계측 장치 및 필터 처리 방법
EP2977720A1 (en) A method for measuring a high accuracy height map of a test surface
JP6811950B2 (ja) 走査型共焦点顕微鏡装置、走査制御方法、及び、プログラム
US20210215923A1 (en) Microscope system
JP4700299B2 (ja) 共焦点走査型顕微鏡
JP4526988B2 (ja) 微小高さ測定方法及びそれに用いる微小高さ測定装置並びに変位ユニット
JP2013113650A (ja) トレンチ深さ測定装置及びトレンチ深さ測定方法並びに共焦点顕微鏡
KR101652356B1 (ko) 광학적 웨이퍼 검사 장치
JPH08210818A (ja) 膜厚測定機能付光学顕微鏡
JP2007071716A (ja) 共焦点走査型顕微鏡
JP6363477B2 (ja) 3次元形状測定装置
JP2014081417A (ja) レーザー走査顕微鏡装置
JP4725967B2 (ja) 微小高さ測定装置及び変位計ユニット
JP4650107B2 (ja) 共焦点光学系を有した測定装置
JP4410335B2 (ja) 共焦点顕微鏡
JP2002228421A (ja) 走査型レーザ顕微鏡
JP3847422B2 (ja) 高さ測定方法及びその装置
JP2002323659A (ja) 共焦点光学系及びこれを用いた走査型共焦点顕微鏡
JP2004069795A (ja) 共焦点顕微鏡システム及びパラメータ設定用コンピュータプログラム
JP2005331487A (ja) 拡大観察装置、拡大画像観察方法、拡大観察用操作プログラムおよびコンピュータで読み取り可能な記録媒体または記録した機器
JP2007286147A (ja) 赤外顕微鏡
JP2911283B2 (ja) 非接触段差測定方法及びその装置
JP2004170509A (ja) 測定反復モードを有する共焦点顕微鏡システム

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202