JP2007070163A - Method for producing silica-based oxide particle - Google Patents

Method for producing silica-based oxide particle Download PDF

Info

Publication number
JP2007070163A
JP2007070163A JP2005259232A JP2005259232A JP2007070163A JP 2007070163 A JP2007070163 A JP 2007070163A JP 2005259232 A JP2005259232 A JP 2005259232A JP 2005259232 A JP2005259232 A JP 2005259232A JP 2007070163 A JP2007070163 A JP 2007070163A
Authority
JP
Japan
Prior art keywords
silica
particles
stirring
based oxide
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005259232A
Other languages
Japanese (ja)
Other versions
JP4895556B2 (en
Inventor
Makoto Kameda
誠 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2005259232A priority Critical patent/JP4895556B2/en
Publication of JP2007070163A publication Critical patent/JP2007070163A/en
Application granted granted Critical
Publication of JP4895556B2 publication Critical patent/JP4895556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently producing a silica-based oxide particle which is useful for a precise gap material useful for a liquid crystal display and the like, a film, an adhesive, a semiconductor sealing agent and the like and which has a large particle diameter and high mono-dispersibility. <P>SOLUTION: A reaction apparatus comprises an agitator having a rotary agitating blade, for example a full-zone blade, and a reaction vessel. The reaction apparatus where a dimensionless mixing time nθ m is within the range of 1-50 when agitation is performed in the state that water is introduced in the reaction vessel to be 50% of its maximum volume is used. The silica-based oxide particle is produced by the hydrolysis and polycondensation of a metal alkoxide after the mixed liquid of water and an organic solvent and the metal alkoxide are mixed under the existence of a catalyst in the reaction vessel at the apparatus. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は粒子径が非常に揃った、単分散性の高いシリカ系酸化物粒子を製造する方法に関する。   The present invention relates to a method for producing highly monodispersed silica-based oxide particles having a very uniform particle diameter.

球状のシリカ系酸化物粒子の中でも特に単分散性の高いものは、液晶ディスプレイや有機ELディスプレイのギャップ材、プリズムや光学レンズなどの精密光学部品の接着剤用の添加材として極めて有用である。さらに、半導体用の封止剤向け充填材や光拡散フィルムや反射防止膜を製造するためのフィルム用添加材として、1μm以上、好ましくは2μm以上といった大きな平均粒子径を有する単分散粒子が望まれるようになっている。   Among the spherical silica-based oxide particles, those having particularly high monodispersibility are extremely useful as additives for adhesives for precision optical components such as gap materials for liquid crystal displays and organic EL displays, prisms and optical lenses. Furthermore, monodisperse particles having a large average particle size of 1 μm or more, preferably 2 μm or more are desired as fillers for semiconductor encapsulants, light diffusion films, and film additives for producing antireflection films. It is like that.

シリカ系酸化物粒子は、テトラエトキシシランなどの金属アルコキシドを、水及び触媒を含む有機溶媒中において加水分解、重縮合させる、いわゆるゾルゲル法により製造されている。そして該方法においては、反応を行なう際の反応条件を制御することにより生成粒子の平均粒子径や粒度分布をある程度制御できることが知られている。しかしながら、該方法により単分散性が高く平均粒子径が大きな粒子を効率良く得ることは一般に容易ではない。例えば、大きな平均粒子径を有する単分散シリカを得るために特定の動力で特定のレイノルズ数以上の撹拌条件で反応を行なう方法が提案されているが、この方法で得られる粒子の平均粒子径は1μm以下である(特許文献1参照)。   Silica-based oxide particles are produced by a so-called sol-gel method in which a metal alkoxide such as tetraethoxysilane is hydrolyzed and polycondensed in an organic solvent containing water and a catalyst. In this method, it is known that the average particle diameter and particle size distribution of the produced particles can be controlled to some extent by controlling the reaction conditions during the reaction. However, it is generally not easy to efficiently obtain particles having a high monodispersibility and a large average particle size by this method. For example, in order to obtain monodispersed silica having a large average particle size, a method of performing a reaction under a stirring condition having a specific power and a specific Reynolds number is proposed. The average particle size of particles obtained by this method is 1 μm or less (see Patent Document 1).

特開平2−120221号公報JP-A-2-120221

2μmを越えるような大きな平均粒子径を有する単分散シリカを得る方法としては、種となる粒子を分散させた水及び触媒を含む有機溶媒中に金属アルコキシドを添加してこれを加水分解、重縮合させ、種粒子の外側に重縮合物を堆積させることにより粒成長させて大きな粒子を得ることが考えられる。しかしながら、この方法を用いた場合には、種粒子の成長とは別に新たな核生成が起こり、微小な粒子の生成が避けられない。そのため、この方法により例えば2μmを越えるような大きな平均粒子径の単分散粒子を効率良く得ようとする場合には、微小粒子の生成に伴い原料の有効利用率が低くなるだけでなく、生成した微小粒子を除去するための高精度な分級工程が必要になるという問題が発生する。   As a method of obtaining monodispersed silica having a large average particle diameter exceeding 2 μm, a metal alkoxide is added to an organic solvent containing water and a catalyst in which seed particles are dispersed, and this is hydrolyzed and polycondensed. It is conceivable to grow grains by depositing polycondensate outside the seed particles to obtain large particles. However, when this method is used, new nucleation occurs separately from the growth of seed particles, and generation of fine particles is inevitable. For this reason, when it is attempted to efficiently obtain monodisperse particles having a large average particle diameter exceeding 2 μm, for example, by this method, not only the effective utilization rate of the raw material is lowered but also the fine particles are produced. There arises a problem that a highly accurate classification process for removing fine particles is required.

また、微粒子の発生とは別に粒子同士の衝突により粒子の接合が起こり、単分散性が低下する問題も起こる。   In addition to the generation of fine particles, the particles collide with each other due to collisions between the particles, resulting in a problem that monodispersibility is lowered.

そこで、本発明は、例えば2μm以上といった大きな平均粒子径を有し、更に単分散性が高いシリカ系酸化物粒子を効率よく製造する方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for efficiently producing silica-based oxide particles having a large average particle diameter of, for example, 2 μm or more and having high monodispersibility.

本発明は、上記したような、2μmを越えるような大きな平均粒子径を有する単分散シリカを得るという新たな要求に対する特殊な課題を解決するために成されたものであり、回転式撹拌翼を有する撹拌装置及び反応容器を含んでなる反応装置の反応容器内で、水と有機溶媒との混合液と金属アルコキシドとを触媒の存在下に混合して当該金属アルコキシドを加水分解及び重縮合させることによりシリカ系酸化物粒子を製造する方法において、反応装置として、以下に定義される標準状態において撹拌を行ったときに無次元混合時間nθmが1〜50の範囲となり得る反応装置を使用すると共に、標準状態の撹拌において無次元混合時間nθmが1〜50の範囲となる撹拌回転数で前記撹拌翼を回転させながら前記金属アルコキシドの加水分解及び重縮合を行うことを特徴とする。なお、ここで、標準状態とは、反応容器にその内容積の50%となるように水を導入した状態をいい、無次元混合時間nθmとは、撹拌翼回転数n(1/s)と混合時間θm(s)の積を意味する。   The present invention was made in order to solve the special problem with respect to the new requirement for obtaining monodispersed silica having a large average particle diameter exceeding 2 μm as described above. Mixing a mixture of water and an organic solvent and a metal alkoxide in the presence of a catalyst to hydrolyze and polycondense the metal alkoxide in a reaction vessel of the reaction device comprising the stirring device and the reaction vessel. In the method for producing silica-based oxide particles, the reaction apparatus is a reaction apparatus in which the dimensionless mixing time nθm can be in the range of 1 to 50 when stirring is performed in a standard state defined below. Hydrolysis of the metal alkoxide while rotating the stirring blade at a stirring rotational speed at which the dimensionless mixing time nθm is in the range of 1 to 50 in standard stirring. And performing fine polycondensation. Here, the standard state refers to a state in which water is introduced into the reaction vessel so as to be 50% of its internal volume, and the dimensionless mixing time nθm is the stirring blade rotational speed n (1 / s). It means the product of the mixing time θm (s).

ゾルゲル法では生成粒子の成長に伴い粒子の重量が増加し粒子が沈降し易くなるため溶液の状態が不均一になり、粒子の濃度が低い領域では新たな核生成が起こるため微粒子が生成し易くなる。一方、このような現象の発生を防ぐために撹拌力を強くして生成粒子の沈降を抑制しようとした場合には、粒子同士の衝突が起こりやすくなり粒子の接合が起こり、生成粒子の単分散性が低下する。本発明は、撹拌翼の形状、反応容器の形状、或いは邪魔板の設置条件を検討することにより、粒子の衝突と粒子の沈降の両方を抑制できる撹拌状態を実現することに成功すると共に、このような撹拌条件は、無次元混合時間という指標が特定の範囲となることで表すことができることを見出すことによりされたものである。   In the sol-gel method, as the generated particles grow, the weight of the particles increases and the particles easily settle, so the state of the solution becomes non-uniform, and in the region where the concentration of particles is low, new nucleation occurs, so fine particles are easily generated. Become. On the other hand, in order to prevent the occurrence of such a phenomenon, when trying to suppress the settling of the generated particles by increasing the stirring force, the particles tend to collide with each other and the particles are joined, and the monodispersity of the generated particles Decreases. The present invention has succeeded in realizing a stirring state capable of suppressing both particle collision and particle settling by examining the shape of the stirring blade, the shape of the reaction vessel, or the baffle plate installation conditions. Such a stirring condition is based on the finding that the index of dimensionless mixing time can be expressed by a specific range.

本発明の製造方法によれば、球状のシリカ系酸化物粒子、特に従来製造が困難であった2μm以上の単分散性の高い球状のシリカ系酸化物粒子を効率よく製造できる。   According to the production method of the present invention, spherical silica-based oxide particles, particularly spherical silica-based oxide particles having a high monodispersity of 2 μm or more, which has been difficult to produce conventionally, can be efficiently produced.

本発明の製造方法では、従来のゾルゲル法によるシリカ系酸化物粒子の製造方法と同様に、回転式撹拌翼を有する撹拌装置及び反応容器を含んでなる反応装置の反応容器内で、水と有機溶媒との混合液と金属アルコキシドとを触媒の存在下に混合して当該金属アルコキシドの加水分解及び重縮合を行うことによりシリカ系酸化物粒子を製造する。   In the production method of the present invention, as in the conventional production method of silica-based oxide particles by the sol-gel method, water and organic matter are contained in a reaction vessel of a reaction device comprising a stirring device and a reaction vessel having a rotary stirring blade. Silica-based oxide particles are produced by mixing a mixed solution with a solvent and a metal alkoxide in the presence of a catalyst, and performing hydrolysis and polycondensation of the metal alkoxide.

本発明は、特定の反応装置を用い特定の撹拌条件で反応を行う他は従来のゾルゲル法と特に変わることは無く、有機溶媒、水、金属アルコシド、及び触媒等の反応試剤およびこれらの使用量も従来のゾルゲル法におけるのと同様である。   The present invention is not particularly different from the conventional sol-gel method except that the reaction is carried out under a specific stirring condition using a specific reaction apparatus, and a reaction reagent such as an organic solvent, water, metal alcoside, and catalyst, and the amount of use thereof. Is the same as in the conventional sol-gel method.

即ち、有機溶媒としては、水と相溶性のある有機溶媒が好適に使用される。好適に使用できる有機溶媒を具体的に示せば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、s−ブタノール、t−ブタノール、エチレングリコール、プロピレングリコールなどのアルコール類;アセトン、メチルエチルケトンなどのケトン類;ジオキサン、テトラヒドロフラン、1,2−ジメトキシエタンなどのエーテル類;炭酸エチレンなどのエステル類;これらの混合物を挙げることができる。これらの中でも、水との相溶性が特に高く、更に粘性率が低いために取り扱い易いという理由から、メタノール、エタノール、イソプロパノールのような低級アルコール類が特に好適に使用される。有機溶媒の使用量は、反応に使用する金属アルコキシドの合計100質量部に対して、通常は10〜1000質量部であり、好適には20〜500質量部である。   That is, as the organic solvent, an organic solvent compatible with water is preferably used. Specific examples of organic solvents that can be suitably used include alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, s-butanol, t-butanol, ethylene glycol, propylene glycol; acetone, Mention may be made of ketones such as methyl ethyl ketone; ethers such as dioxane, tetrahydrofuran and 1,2-dimethoxyethane; esters such as ethylene carbonate; and mixtures thereof. Among these, lower alcohols such as methanol, ethanol and isopropanol are particularly preferably used because they are particularly compatible with water and are easy to handle due to their low viscosity. The usage-amount of an organic solvent is 10-1000 mass parts normally with respect to a total of 100 mass parts of metal alkoxide used for reaction, It is 20-500 mass parts suitably.

本発明の製造方法において、金属アルコキシドは一旦加水分解されてから重縮合するため、反応系には水が必要である。そのため、本発明では、上記有機溶媒は水との混合液として使用される。水は前記有機溶媒と水の混合溶液の総質量を基準として3〜40質量%、特に5〜20質量%使用するのが好ましい。   In the production method of the present invention, since the metal alkoxide is once hydrolyzed and then subjected to polycondensation, water is required for the reaction system. Therefore, in the present invention, the organic solvent is used as a mixed solution with water. Water is preferably used in an amount of 3 to 40% by mass, particularly 5 to 20% by mass, based on the total mass of the mixed solution of the organic solvent and water.

本発明で使用する金属アルコキシドとしては、前記の有機溶媒と水との混合液中で加水分解及び重縮合を受けてシリカ系酸化物になるものであれば公知の化合物が何ら制限なく採用される。例示すると、式Si(OR)またはSiR’(OR)4−nで示されるアルコキシシラン類、またはアルコキシシランを部分的に加水分解・重縮合して得られる低縮合物が工業的に入手しやすく、その1種または2種以上の混合物が好ましく用いられる。なお、上記式において、RおよびR’はエーテル結合、エステル結合を含んでもよい有機基であり、nは1〜3の整数である。1分子中に含まれる複数のR又はR’は互いに異なっていてもよいが、原料の入手が容易であるため、通常は1分子中に含まれる複数のR又はR’は同じである化合物が好適に使用される。RおよびR’は上記有機基のものが制限なく使用できるが、原料の入手が容易であるという理由からアルキル基であるのが好適であり、有機溶媒への相溶性が良好であるという理由から、メチル基、エチル基、イソプロピル基、ブチル基などの低級アルキル基であるのが特に好適である。 As the metal alkoxide used in the present invention, any known compound may be used without any limitation as long as it undergoes hydrolysis and polycondensation in a mixed solution of the organic solvent and water to form a silica-based oxide. . Illustratively, alkoxysilanes represented by the formula Si (OR) 4 or SiR ′ n (OR) 4-n , or low condensates obtained by partially hydrolyzing and polycondensing alkoxysilanes are industrially available. One or a mixture of two or more thereof is preferably used. In the above formula, R and R ′ are organic groups that may include an ether bond or an ester bond, and n is an integer of 1 to 3. A plurality of R or R ′ contained in one molecule may be different from each other. However, since it is easy to obtain raw materials, a compound in which a plurality of R or R ′ contained in one molecule is usually the same is used. Preferably used. R and R ′ can be used without limitation, those having the above organic groups, but are preferably alkyl groups because the raw materials are easy to obtain, and because they have good compatibility with organic solvents. Particularly preferred are lower alkyl groups such as methyl, ethyl, isopropyl and butyl.

本発明で好適に使用できるアルコキシシラン類を例示すれば、テトラメトキシシラン、テトラエトキシシラン、及びこれらの加水分解物、部分加水分解物、並びにこれら加水分解物又は部分加水分解物の低縮合物(珪素原子を2〜8個含む縮合物)を挙げることができる。   Examples of alkoxysilanes that can be suitably used in the present invention include tetramethoxysilane, tetraethoxysilane, and their hydrolysates, partial hydrolysates, and low condensates of these hydrolysates or partial hydrolysates ( Condensates containing 2 to 8 silicon atoms).

さらに本発明においては、上記のアルコキシシラン類と共にケイ素以外の金属アルコキシドを添加してもよく、こうすることによりケイ素と他の金属との複合酸化物からなるシリカ系酸化物粒子を得ることができる。このとき使用する他の金属アルコキシドとしては、特に制限なく使用することができ、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、チタン、ジルコニウム、ゲルマニウム、ハフニウム、鉄、スズまたは鉛などの金属のアルコキシドが使用できる。それらの中でもチタンやジルコニウムの金属アルコキシドは、球形度の高いシリカ系酸化物粒子が得やすく、好適である。   Furthermore, in the present invention, a metal alkoxide other than silicon may be added together with the above alkoxysilanes, whereby silica-based oxide particles composed of a composite oxide of silicon and another metal can be obtained. . Other metal alkoxides used at this time can be used without particular limitation, such as lithium, sodium, potassium, magnesium, calcium, strontium, barium, aluminum, titanium, zirconium, germanium, hafnium, iron, tin or lead. These metal alkoxides can be used. Among these, metal alkoxides of titanium and zirconium are preferable because silica-based oxide particles having high sphericity can be easily obtained.

本発明で好適に使用できるアルコキシシラン類以外の金属アルコキシド(他の金属アルコキシドともいう)を例示すれば、チタンテトライソプロポキシド、チタンテトラブトキシド、ゾルコニウムテトラブトキシド、及びこれらの加水分解物、部分加水分解物、並びにこれら加水分解物又は部分加水分解物の低縮合物(金属素原子を2〜8個含む縮合物)を挙げることができる。   Examples of metal alkoxides other than alkoxysilanes that can be suitably used in the present invention (also referred to as other metal alkoxides) include titanium tetraisopropoxide, titanium tetrabutoxide, zorconium tetrabutoxide, and hydrolysates thereof. Examples thereof include partial hydrolysates and low-condensates of these hydrolysates or partial hydrolysates (condensates containing 2 to 8 metal element atoms).

これら他の金属アルコキドの使用量は、得ようとするシリカ系酸化物粒子の組成に応じて決定すればよい。但し、得られる粒子の球形度を高く保つという観点から、他の金属アルコキシドの使用量はアルコキシシラン類の合計モル数を1モルとしたときに0.001〜5モル、特に0.01〜3モルとなるような量を使用するのが好適である。   What is necessary is just to determine the usage-amount of these other metal alkoxides according to the composition of the silica type oxide particle to obtain. However, from the viewpoint of keeping the sphericity of the resulting particles high, the amount of other metal alkoxide used is 0.001 to 5 moles, especially 0.01 to 3 moles when the total number of moles of alkoxysilanes is 1 mole. It is preferred to use such an amount as to make a mole.

含水有機溶媒にアルコキシシラン類又は、アルコキシシラン類及び上記他の金属のアルコキシドを添加する場合、これらをアルコール等の有機溶媒で希釈して添加しても良い。しかしながら、反応器中のスラリー濃度を上げるためには、希釈率は50%以下とするのが好ましく、全く希釈せずに添加しても良い。   When adding alkoxysilanes or alkoxysilanes and alkoxides of the other metals to the water-containing organic solvent, these may be diluted with an organic solvent such as alcohol. However, in order to increase the slurry concentration in the reactor, the dilution rate is preferably 50% or less, and may be added without being diluted at all.

本発明で使用する触媒としては、アルコキシシラン類を代表とする金属アルコキシドの加水分解及び重縮合反応を促進する機能を有するものであれば特に限定されない。通常、酸や塩基が使用できるが、球状で単分散性の高い粒子が得られるという理由から、塩基触媒を使用するのが好適である。本発明で好適に使用できる塩基触媒を例示すれば、アンモニア、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどの無機塩基;メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、ジプロピルアミン、トリプロピルアミン、ピリジン、イミダゾール、ピペリジン、キノリン、ピロール、1,4−ジアザビシクロ[2.2.2]オクタン、1,8−ジアザビシクロ[5.4.0]ウンデ−7−セン、水酸化テトラメチルアンモニウム、エタノールアミン、ジエタノールアミン、トリエタノールアミンなどの有機塩基;を挙げることができる。これらの中でも、アンモニアやアミンのように金属を含まない塩基の場合、製造したシリカ系酸化物粒子を焼成することにより、粒子中に塩基成分や金属成分が残留しないため、このような触媒を使用するのが特に好適である。   The catalyst used in the present invention is not particularly limited as long as it has a function of promoting hydrolysis and polycondensation reaction of metal alkoxides typified by alkoxysilanes. Usually, an acid or a base can be used, but it is preferable to use a base catalyst because spherical and highly monodisperse particles can be obtained. Examples of the base catalyst that can be suitably used in the present invention include inorganic bases such as ammonia, lithium hydroxide, sodium hydroxide, and potassium hydroxide; methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, propylamine, Propylamine, tripropylamine, pyridine, imidazole, piperidine, quinoline, pyrrole, 1,4-diazabicyclo [2.2.2] octane, 1,8-diazabicyclo [5.4.0] unde-7-cene, water And organic bases such as tetramethylammonium oxide, ethanolamine, diethanolamine, and triethanolamine. Among these, in the case of a base that does not contain a metal such as ammonia or amine, such a catalyst is used because the base component and the metal component do not remain in the particle by firing the produced silica-based oxide particles. It is particularly preferred to do this.

触媒の添加量は、用いる触媒の種類や反応液中の水と有機溶媒の種類や配合比率、更には使用する金属アルコキシドの量によって異なるために一概には言えないが、反応の開始から終了までpHが10以上、好ましくは11以上になるように添加するのが好ましい。触媒として最も好適なアンモニアの場合には、反応の開始から終了まで全反応混合物質量を基準としてその濃度が2〜15質量%、好ましくは3〜7質量%の範囲となるように保つのが好適である。なお、ここで言う全反応混合物とは、反応器中のシリカ系酸化物粒子を含む全溶媒の総和であり、具体的には、有機溶媒、水、金属アルコキシド原料、アンモニア水(触媒)、及び必要に応じて添加するシリカ系酸化物種粒子の混合物を意味する。アンモニアの濃度を上記範囲に保つためには、添加する金属アルコキシドの量を相対的に少なくするか、或いは反応中にアンモニア水を適宜添加すればよい。   The amount of catalyst added varies depending on the type of catalyst used, the type and mixing ratio of water and organic solvent in the reaction solution, and the amount of metal alkoxide used. It is preferable to add so that the pH is 10 or more, preferably 11 or more. In the case of ammonia which is most suitable as a catalyst, it is preferable to keep the concentration within the range of 2 to 15% by mass, preferably 3 to 7% by mass based on the total amount of the reaction mixture from the start to the end of the reaction. It is. The total reaction mixture referred to here is the sum of all the solvents including the silica-based oxide particles in the reactor, specifically, an organic solvent, water, a metal alkoxide raw material, aqueous ammonia (catalyst), and It means a mixture of silica-based oxide seed particles added as necessary. In order to keep the concentration of ammonia within the above range, the amount of metal alkoxide to be added may be relatively reduced, or ammonia water may be appropriately added during the reaction.

本発明の製造方法は、回転式撹拌翼を有する撹拌装置及び反応容器を含んでなる反応装置であって、前記標準状態において撹拌を行ったときに無次元混合時間nθmが1〜50の範囲となり得る反応装置を使用すると共に、標準状態の撹拌において無次元混合時間nθmが1〜50の範囲となる撹拌回転数で前記撹拌翼を回転させながら前記金属アルコキシドを加水分解及び重縮合を行うことを最大の特徴とする。このような条件を満足することにより、生成粒子の沈降による撹拌の不均一化と微粒子の発生、粒子の衝突による単分散性の低下を同時に抑制し、平均粒子径が2〜20μm、好ましくは5〜20μmと非常に大きく、しかも、粒子径の変動係数で表して10%以下、好ましくは8%以下と単分散性が高いシリカ系酸化物粒子を効率よく製造することが可能となる。   The production method of the present invention is a reactor comprising a stirring device having a rotary stirring blade and a reaction vessel, and the dimensionless mixing time nθm is in the range of 1 to 50 when stirring is performed in the standard state. Using the obtained reaction apparatus, and performing hydrolysis and polycondensation of the metal alkoxide while rotating the stirring blade at a stirring speed at which the dimensionless mixing time nθm is in the range of 1 to 50 in stirring in a standard state. The biggest feature. By satisfying such conditions, the nonuniformity of stirring due to sedimentation of the generated particles, the generation of fine particles, and the decrease in monodispersibility due to the collision of particles are simultaneously suppressed, and the average particle size is 2 to 20 μm, preferably 5 It is possible to efficiently produce silica-based oxide particles having a very large monodispersity of as large as ˜20 μm and 10% or less, preferably 8% or less in terms of the coefficient of variation of the particle diameter.

ここで、無次元混合時間nθmとは、撹拌翼回転数n(1/s)と混合時間θm(s)の積を意味する。無次元混合時間nθmは撹拌レイノルズ数が一定であれば反応器のスケールによらず一義的に決まり、撹拌効率を示すのに非常に有用な指標である。また、混合時間θmは、一般に、トレーサー物質が均一に混合するまでの時間を意味するが、該混合時間は、反応容器の形状、邪魔板設置の有無やその配置状況、撹拌翼の種類や回転数、混合される液体の粘弾性特性などにより影響を受ける。このため、本発明では、標準状態、即ち実機(使用する撹拌装置付の反応容器)に水を内容積(最大容積)の50%満たした状態において撹拌を行ったときの混合時間に基づいて装置特性および反応時の撹拌状態を特定している。なお、標準状態における撹拌時間は、ヨード澱粉の呈色をチオ硫酸ナトリウムで還元脱色する混合実験を行ったときに撹拌を開始してから均一溶液が得られるまでの時間として容易に測定できる。   Here, the dimensionless mixing time nθm means the product of the stirring blade rotational speed n (1 / s) and the mixing time θm (s). The dimensionless mixing time nθm is uniquely determined regardless of the scale of the reactor if the stirring Reynolds number is constant, and is a very useful index for showing the stirring efficiency. In addition, the mixing time θm generally means the time until the tracer substance is uniformly mixed. The mixing time includes the shape of the reaction vessel, the presence / absence of the baffle plate and its arrangement, the type of the stirring blade and the rotation It is influenced by the number and viscoelastic properties of the liquid to be mixed. For this reason, in the present invention, the apparatus is based on the mixing time when stirring is performed in the standard state, that is, in the state where the actual machine (reaction vessel with a stirring apparatus to be used) is filled with 50% of the internal volume (maximum volume). The characteristics and the stirring state during the reaction are specified. The stirring time in the standard state can be easily measured as the time from the start of stirring to the time when a homogeneous solution is obtained when a mixing experiment is performed in which the coloration of iodo starch is reduced and decolorized with sodium thiosulfate.

本発明で使用する反応装置は、回転式撹拌翼を有する撹拌装置及び反応容器を含んでなる反応装置であって、前記標準状態において撹拌を行ったときに無次元混合時間nθmが1〜50の範囲となり得る反応装置であれば特に限定されないが、撹拌翼として、傾斜パドル翼やタービン翼、三枚後退翼、アンカー翼のような通常の撹拌翼を用いた場合には、反応容器の形状、邪魔板の形状や配置条件などを高度に調整しないと、標準状態の撹拌において無次元混合時間nθmを1〜50とすることは困難である。これに対し、二枚のワイドパドル翼を上下に配置すると共に、両ワイドパドル翼の交差角度を45〜75°とし、更に下段翼を後退翼とした撹拌翼を用いた場合には、撹拌回転数を調整するだけで容易に無次元混合時間nθmを1〜50とすることができる。したがって、反応装置としてはこのような回転式撹拌翼を有する反応装置を使用するのが好ましい。なお、このような構造を有する撹拌翼は、公知であり、フルゾーン翼、ツインスター翼、マックスブレンド翼として市販されている(例えば特開平5−49890号公報)。   The reactor used in the present invention is a reactor comprising a stirring device having a rotary stirring blade and a reaction vessel, and the dimensionless mixing time nθm is 1 to 50 when stirring is performed in the standard state. Although it is not particularly limited as long as it is a reactor that can be in the range, when using a normal stirring blade such as an inclined paddle blade, a turbine blade, a three-bladed blade, and an anchor blade as a stirring blade, the shape of the reaction vessel, Unless the shape and arrangement conditions of the baffle plate are adjusted to a high degree, it is difficult to set the dimensionless mixing time nθm to 1 to 50 in standard state stirring. On the other hand, when two wide paddle blades are arranged up and down, the crossing angle of both wide paddle blades is 45 to 75 °, and the lower blade is a swept blade, the stirring rotation The dimensionless mixing time nθm can be easily set to 1 to 50 simply by adjusting the number. Therefore, it is preferable to use a reaction apparatus having such a rotary stirring blade as the reaction apparatus. In addition, the stirring blade which has such a structure is well-known, and is marketed as a full zone blade, a twin star blade, and a Max blend blade (for example, Unexamined-Japanese-Patent No. 5-49890).

このような回転式撹拌翼を用いた撹拌装置を使用する場合、反応器としては半球状、又は平底或いは丸底の円筒状の一般的な形状の反応容器、さらにこれら反応容器内に邪魔板を設置したものが特に限定されず使用できる。また、反応器の材質も特に限定されず、ガラス製、ステンレススチールなどの金属製(ガラスコート或いは樹脂コートされたものを含む)、又は樹脂製のものが使用できる。   When such a stirring device using a rotary stirring blade is used, the reactor is a hemispherical, flat-bottomed or round-bottomed cylindrical reaction vessel, and a baffle plate is provided in the reaction vessel. The installed one is not particularly limited and can be used. Moreover, the material of the reactor is not particularly limited, and those made of glass, metal such as stainless steel (including those coated with glass or resin), or those made of resin can be used.

本発明の製造方法における金属アルコキシドの加水分解及び重縮合させる方法は、前記反応装置を用い前記撹拌条件下で行なう以外は、従来の方法と同様にして行なうことができる。好適な反応方法を示せば、反応容器内に所定量の有機溶媒、水、及び触媒、更には必要に応じて種粒子を導入した後に、撹拌を開始し、金属アルコキシドを連続的または断続的に添加し混合する方法を挙げることができる。なお、反応開始時に反応系内に導入する触媒量を少なめにしておき、金属アルコキシドの添加を開始してから触媒を連続的或いは断続的に添加することもできる。   The method for hydrolyzing and polycondensing the metal alkoxide in the production method of the present invention can be carried out in the same manner as in the conventional method except that the reaction is carried out under the stirring conditions using the reaction apparatus. If a suitable reaction method is shown, after introducing a predetermined amount of an organic solvent, water, and a catalyst, and seed particles as necessary into the reaction vessel, stirring is started and the metal alkoxide is continuously or intermittently introduced. The method of adding and mixing can be mentioned. It is also possible to reduce the amount of catalyst introduced into the reaction system at the start of the reaction, and continuously or intermittently add the catalyst after starting the addition of the metal alkoxide.

このとき、金属アルコキシド(アルコキシシラン類又は、アルコキシシラン類及び他の金属アルコキシド)の添加方法は、特に限定されるものではないが、より単分散性の高い粒子が得られるという理由からポンプ等を用いて添加速度を制御しながら添加するのが好適である。このときの添加速度は、得られる粒子の単分散性及び製造効率の観点から、反応液1(l)に対し、1分間に添加する金属アルコキシドの合計モル数で表して、0.01〜100(mmol/l−含水有機溶媒)、特に0.1〜50(mmol/l−含水有機溶媒)とするのが好適である。また、反応時の反応液の温度は10〜55℃、特に20〜50℃とするのが好適である。   At this time, the addition method of the metal alkoxide (alkoxysilanes or alkoxysilanes and other metal alkoxides) is not particularly limited, but a pump or the like is used for the reason that particles with higher monodispersibility can be obtained. It is preferable to add while controlling the addition rate. The addition rate at this time is expressed in terms of the total number of moles of metal alkoxide added per minute with respect to the reaction liquid 1 (l) from the viewpoint of monodispersity and production efficiency of the obtained particles, and is 0.01-100. (Mmol / l-water-containing organic solvent), particularly 0.1-50 (mmol / l-water-containing organic solvent) is preferred. In addition, the temperature of the reaction solution during the reaction is preferably 10 to 55 ° C, particularly 20 to 50 ° C.

本発明により、平均粒子径が2μm以上で単分散性の高いシリカ系酸化物粒子を製造する場合には、効率性の観点から、前記金属アルコキシドの加水分解及び重縮合をシリカ系酸化物種粒子の存在下で行なうのが好ましい。   When producing silica-based oxide particles having an average particle diameter of 2 μm or more and high monodispersibility according to the present invention, hydrolysis and polycondensation of the metal alkoxide is performed on the silica-based oxide seed particles from the viewpoint of efficiency. It is preferably carried out in the presence.

前記種粒子を使用して製造する場合、種粒子としては特に制限無く各種の酸化物粒子が使用できる。好適には、ゾルゲル法で別途製造した、単分散性の高い球状のシリカ系酸化物粒子が使用できる。もちろん、本発明の方法で製造したシリカ系酸化物粒子を種粒子として用い、更に本発明の方法で粒子径を大きくすることもできる。しかしなら、製造効率及び最終的に得られる粒子の単分散性の観点から、粒子径の変動係数が0.1〜30%、特に1〜10%の球状粒子を使用するのが好適である。種粒子を成長させるのに、成長部分が種粒子と異なる組成の原料を使用し、コアシェル型のシリカ系酸化物粒子を製造することも可能である。   In the case of producing using the seed particles, various oxide particles can be used as the seed particles without particular limitation. Preferably, spherical silica-based oxide particles having a high monodispersity and separately produced by a sol-gel method can be used. Of course, the silica-based oxide particles produced by the method of the present invention can be used as seed particles, and the particle size can be further increased by the method of the present invention. However, from the viewpoint of production efficiency and monodispersibility of the finally obtained particles, it is preferable to use spherical particles having a particle diameter variation coefficient of 0.1 to 30%, particularly 1 to 10%. In order to grow the seed particles, it is possible to produce core-shell type silica-based oxide particles by using a raw material having a composition different from that of the seed particles.

以下、本発明の実施例を挙げて具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

なお、平均粒子径、標準偏差、粒子径の変動係数は、電気的検知法(コールター・カウンター)により測定した。混合時間θmは、使用する反応装置の反応器に水を所定量(最大容積の半分)満たし、ヨード澱粉の呈色をチオ硫酸ナトリウムで還元脱色する混合実験(具体的には所定の撹拌速度で撹拌されている呈色状態のヨード澱粉水溶液に当該水溶液を脱色するのに必要十分量のチオ硫酸ナトリウム水溶液を添加し、添加開始直後から脱色が完了するまでの時間を測定すること)により決定した。   The average particle size, standard deviation, and variation coefficient of the particle size were measured by an electrical detection method (Coulter counter). The mixing time θm is a mixing experiment (specifically at a predetermined stirring speed) in which the reactor of the reactor to be used is filled with a predetermined amount of water (half the maximum volume), and the coloration of iodine starch is decolorized with sodium thiosulfate. Add a sufficient amount of sodium thiosulfate aqueous solution necessary to decolorize the aqueous solution of iodinated starch in a colored state that is being stirred, and measure the time from the start of the addition to the completion of decolorization) .

実施例1
フルゾーン翼(翼径93mm、神鋼環境ソリューション社製、該フルゾーン翼は、2段のパドル翼よりなり、下段翼形状が後退翼であり、両ワイドパドル翼の交差角度は120°である。)、邪魔板(幅20mm)を反応器壁に対向して2枚取り付けた内容積5リットルのジャケット付ガラス製反応器(内径160mm)に、イソプロパノール420gおよびアンモニア水(25質量%)80gを仕込み、ジャケットの循環水の温度を40℃に設定し、60rpmで撹拌した。テトラエトキシシラン(コルコート(株)、商品名;エチルシリケート28)2010gとメタノール200gの混合物を0.2g/minの速度で、アンモニア水(25質量%)663gを0.1g/minの速度で、それぞれ別々に反応液中に供給し、シリカ粒子を合成した。供給には外径1/8インチのSUS製管を用いた。供給開始後、それぞれの供給速度を徐々に増加させ、5時間かけて全量を供給した。
Example 1
Full-zone blade (blade diameter 93 mm, manufactured by Shinko Environmental Solution Co., Ltd., the full-zone blade is composed of two-stage paddle blades, the lower blade shape is a retracted blade, and the intersection angle of both wide paddle blades is 120 °), A jacketed glass reactor (inner diameter: 160 mm) having an inner volume of 5 liters with two baffle plates (width 20 mm) facing the reactor wall was charged with 420 g of isopropanol and 80 g of aqueous ammonia (25 mass%), and the jacket The temperature of the circulating water was set to 40 ° C. and stirred at 60 rpm. A mixture of 2010 g of tetraethoxysilane (Colcoat Co., Ltd., trade name: ethyl silicate 28) and 200 g of methanol at a rate of 0.2 g / min, 663 g of aqueous ammonia (25% by mass) at a rate of 0.1 g / min, Each was separately supplied into the reaction solution to synthesize silica particles. A SUS pipe having an outer diameter of 1/8 inch was used for supply. After the start of supply, each supply rate was gradually increased, and the entire amount was supplied over 5 hours.

供給終了後1時間撹拌を続けた後、シリカ粒子のスラリーを取り出した。このときのスラリー濃度は17.2質量%であり、得られたシリカ粒子は真球状で、平均粒子径3.58μm、標準偏差0.13μm、変動係数3.6%であった。なお、合成した粒子を走査型電子顕微鏡で観察したところ、2μm以下の微粒子の発生は無視できるほど少量であった。また、本撹拌条件での無次元混合時間nθmは6であった。   After the supply was completed, stirring was continued for 1 hour, and then a slurry of silica particles was taken out. The slurry concentration at this time was 17.2% by mass, and the obtained silica particles were spherical, with an average particle size of 3.58 μm, a standard deviation of 0.13 μm, and a coefficient of variation of 3.6%. When the synthesized particles were observed with a scanning electron microscope, the generation of fine particles of 2 μm or less was negligibly small. In addition, the dimensionless mixing time nθm under the stirring conditions was 6.

実施例2
撹拌翼にマックスブレンド翼(翼径130mm、住友重機械工業社製)を用いた以外は実施例1と同様にしてシリカ粒子を合成した。原料供給終了後1時間撹拌を続けた後、シリカ粒子のスラリーを取り出し、分析を行った結果、このときのスラリー濃度は17.2質量%であり、得られたシリカ粒子は真球状で、平均粒子径3.74μm、標準偏差0.16μm、変動係数4.3%であった。なお、合成した粒子を走査型電子顕微鏡で観察したところ、2μm以下の微粒子の発生は無視できるほど少量であった。また、本撹拌条件の無次元混合時間nθmは10であった。
Example 2
Silica particles were synthesized in the same manner as in Example 1 except that a Max blend blade (blade diameter 130 mm, manufactured by Sumitomo Heavy Industries, Ltd.) was used as the stirring blade. After stirring for 1 hour after the completion of the raw material supply, the silica particle slurry was taken out and analyzed. As a result, the slurry concentration at this time was 17.2% by mass, and the obtained silica particles were spherical and averaged. The particle diameter was 3.74 μm, the standard deviation was 0.16 μm, and the coefficient of variation was 4.3%. When the synthesized particles were observed with a scanning electron microscope, the generation of fine particles of 2 μm or less was negligibly small. Further, the dimensionless mixing time nθm under the present stirring conditions was 10.

実施例3
ツインスター翼(翼径70mm、神鋼環境ソリューション社製、該ツインスター翼は、1段のパドル翼であり、翼形状が後退翼である。)を用いた以外は実施例1と同様にしてシリカ粒子を合成した。原料供給終了後1時間撹拌を続けた後、シリカ粒子のスラリーを取り出し、分析したところ、このときのスラリー濃度は17.2質量%であり、得られたシリカ粒子は真球状で、平均粒子径3.55μm、標準偏差0.21μm、変動係数5.9%であった。なお、合成した粒子を走査型電子顕微鏡で観察したところ、2μm以下の微粒子の発生は無視できるほど少量であった。また、本撹拌条件の無次元混合時間nθmは30であった。
Example 3
Silica in the same manner as in Example 1 except that a twin star blade (blade diameter 70 mm, manufactured by Shinko Environmental Solution Co., Ltd., the twin star blade is a one-stage paddle blade and the blade shape is a swept blade) is used. Particles were synthesized. After stirring for 1 hour after completion of the raw material supply, the slurry of silica particles was taken out and analyzed. The slurry concentration at this time was 17.2% by mass, and the obtained silica particles were true spherical and had an average particle diameter. It was 3.55 μm, standard deviation 0.21 μm, coefficient of variation 5.9%. When the synthesized particles were observed with a scanning electron microscope, the generation of fine particles of 2 μm or less was negligibly small. Further, the dimensionless mixing time nθm under the stirring conditions was 30.

実施例4
フルゾーン翼(翼径93mm、神鋼環境ソリューション社製、該フルゾーン翼は、2段のパドル翼よりなり、下段翼形状が後退翼であり、両ワイドパドル翼の交差角度は120°である。)、邪魔板(幅20mm)を2枚取り付けた内容積5リットルのジャケット付ガラス製反応器(内径160mm)に、種粒子となるシリカ(平均粒子径5.04μm、標準偏差0.37μm、変動係数7.3%)207g、メタノール611g、イソプロパノール262gおよびアンモニア水(25質量%)160gを仕込み、ジャケットの循環水の温度を40℃に設定し、60rpmで撹拌した。テトラエトキシシラン(コルコート(株)、商品名;エチルシリケート28)1209gとメタノール121gの混合物を0.7g/minの速度で、アンモニア水(25質量%)380gを0.2g/minの速度で、それぞれ別々に反応液中に供給し、シリカ粒子を合成した。供給には外径1/8インチのSUS製管を用いた。供給開始後、それぞれの供給速度を徐々に増加させ、5時間かけて全量を供給した。
Example 4
Full-zone blade (blade diameter 93 mm, manufactured by Shinko Environmental Solution Co., Ltd., the full-zone blade is composed of two-stage paddle blades, the lower blade shape is a retracted blade, and the intersection angle of both wide paddle blades is 120 °), Silica (average particle size 5.04 μm, standard deviation 0.37 μm, coefficient of variation 7) as a seed particle in a jacketed glass reactor (inner diameter 160 mm) with an inner volume of 5 liters attached with two baffle plates (width 20 mm) .3%) 207 g, methanol 611 g, isopropanol 262 g and ammonia water (25 mass%) 160 g were charged, the temperature of the circulating water in the jacket was set to 40 ° C., and the mixture was stirred at 60 rpm. A mixture of 1209 g of tetraethoxysilane (Colcoat Co., Ltd., trade name: ethyl silicate 28) and 121 g of methanol at a rate of 0.7 g / min, 380 g of aqueous ammonia (25% by mass) at a rate of 0.2 g / min, Each was separately supplied into the reaction solution to synthesize silica particles. A SUS pipe having an outer diameter of 1/8 inch was used for supply. After the start of supply, each supply rate was gradually increased, and the entire amount was supplied over 5 hours.

供給終了後1時間撹拌を続けた後、シリカ粒子のスラリーを取り出した。このときのスラリー濃度は18.8質量%であり、得られたシリカ粒子は真球状で、平均粒子径7.17μm、標準偏差0.42μm、変動係数5.9%であった。なお、合成した粒子を走査型電子顕微鏡で観察したところ、2μm以下の微粒子の発生は無視できるほど少量であった。また、本撹拌条件の無次元混合時間nθmは6であった。   After the supply was completed, stirring was continued for 1 hour, and then a slurry of silica particles was taken out. The slurry concentration at this time was 18.8% by mass, and the obtained silica particles were spherical, with an average particle size of 7.17 μm, standard deviation of 0.42 μm, and coefficient of variation of 5.9%. When the synthesized particles were observed with a scanning electron microscope, the generation of fine particles of 2 μm or less was negligibly small. In addition, the dimensionless mixing time nθm under this stirring condition was 6.

実施例5
フルゾーン翼(翼径93mm、神鋼環境ソリューション社製、該フルゾーン翼は、2段のパドル翼よりなり、下段翼形状が後退翼であり、両ワイドパドル翼の交差角度は120°である。)、邪魔板(幅20mm)を2枚取り付けた内容積5リットルのジャケット付ガラス製反応器(内径160mm)に、シードとなるシリカ(平均粒子径12.15μm、標準偏差0.62μm、変動係数5.1%)328g、メタノール2024g、イソプロパノール506gおよびアンモニア水(25質量%)423gを仕込み、ジャケットの循環水の温度を40℃に設定し、60rpmで撹拌した。テトラエトキシシラン(コルコート(株)、商品名;エチルシリケート28)395gとメタノール40gの混合物を0.4g/minの速度で反応液中に供給し、シリカ粒子を合成した。供給には外径1/8インチのSUS製管を用い、アンモニア水の供給は行わなかった。供給開始後、供給速度を徐々に増加させ、3時間かけて全量を供給した。
Example 5
Full-zone blade (blade diameter 93 mm, manufactured by Shinko Environmental Solution Co., Ltd., the full-zone blade is composed of two-stage paddle blades, the lower blade shape is a retracted blade, and the intersection angle of both wide paddle blades is 120 °), Into a jacketed glass reactor (inner diameter 160 mm) with an inner volume of 5 liters attached with two baffle plates (width 20 mm), seed silica (average particle diameter 12.15 μm, standard deviation 0.62 μm, coefficient of variation 5. 1%) 328 g, methanol 2024 g, isopropanol 506 g and ammonia water (25 mass%) 423 g were charged, the temperature of the circulating water in the jacket was set to 40 ° C., and the mixture was stirred at 60 rpm. A mixture of 395 g of tetraethoxysilane (Corcoat Co., Ltd., trade name; ethyl silicate 28) and 40 g of methanol was supplied into the reaction solution at a rate of 0.4 g / min to synthesize silica particles. A SUS pipe having an outer diameter of 1/8 inch was used for supply, and ammonia water was not supplied. After the start of supply, the supply rate was gradually increased, and the entire amount was supplied over 3 hours.

供給終了後1時間撹拌を続けた後、シリカ粒子のスラリーを取り出した。このときのスラリー濃度は11.9質量%であり、得られたシリカ粒子は真球状で、平均粒子径13.54μm、標準偏差0.73μm、変動係数5.4%であった。なお、合成した粒子を走査型電子顕微鏡で観察したところ、2μm以下の微粒子の発生は無視できるほど少量であった。また、本撹拌条件の無次元混合時間nθmは6であった。   After the supply was completed, stirring was continued for 1 hour, and then a slurry of silica particles was taken out. The slurry concentration at this time was 11.9% by mass, and the resulting silica particles were spherical, with an average particle size of 13.54 μm, a standard deviation of 0.73 μm, and a coefficient of variation of 5.4%. When the synthesized particles were observed with a scanning electron microscope, the generation of fine particles of 2 μm or less was negligibly small. In addition, the dimensionless mixing time nθm under this stirring condition was 6.

実施例6
実施例1で使用したのと同じジャケット付ガラス製反応器に、種粒子となるシリカ(平均粒子径1.04μm、標準偏差0.07μm、変動係数6.7%)45g、イソプロパノール880gおよびアンモニア水(25質量%)220gを仕込み、ジャケットの循環水の温度を40℃に設定し、60rpmで撹拌した。
Example 6
In the same jacketed glass reactor used in Example 1, 45 g of silica (average particle size 1.04 μm, standard deviation 0.07 μm, coefficient of variation 6.7%), 880 g of isopropanol, and aqueous ammonia are used as seed particles. (25% by mass) 220 g was charged, the temperature of circulating water in the jacket was set to 40 ° C., and the mixture was stirred at 60 rpm.

テトラメトキシシラン(多摩化学(株))670g、メタノール335g、希塩酸79gを混合し10分間経過してから、テトライソプロポキシチタン(日本曹達(株)、商品名;A−1)313g、イソプロピルアルコール625gからなる複合アルコキシド原料を0.5g/minの速度で、アンモニア水(25質量%)409gを0.1g/minの速度で、それぞれ別々に反応液中に供給し、シリカ粒子にシリカ−チタニア(チタニア含有率20mol%)を被覆した粒子を合成した。供給には外径1/8インチのSUS製管を用いた。供給開始後、それぞれの供給速度を徐々に増加させ、7時間かけて全量を供給した。   Tetramethoxysilane (Tama Chemical Co., Ltd.) (670 g), methanol (335 g), and dilute hydrochloric acid (79 g) were mixed for 10 minutes. Tetraisopropoxytitanium (Nippon Soda Co., Ltd., trade name: A-1) (313 g), isopropyl alcohol (625 g) A composite alkoxide raw material comprising 409 g of ammonia water (25% by mass) at a rate of 0.5 g / min and separately supplied at a rate of 0.1 g / min into the reaction solution, and silica-titania (silica particles) Particles coated with a titania content of 20 mol% were synthesized. A SUS pipe having an outer diameter of 1/8 inch was used for supply. After the start of supply, each supply rate was gradually increased, and the entire amount was supplied over 7 hours.

供給終了後1時間撹拌を続けた後、スラリーを取り出した。このときのスラリー濃度は11.1質量%であり、得られた粒子は真球状で、平均粒子径2.29μm、標準偏差0.16μm、変動係数7.0%であった。なお、合成した粒子を走査型電子顕微鏡で観察したところ、2μm以下の微粒子の発生は無視できるほど少量であった。なお、本撹拌条件の無次元混合時間nθmは6であった。   Stirring was continued for 1 hour after completion of the supply, and then the slurry was taken out. The slurry concentration at this time was 11.1% by mass, and the obtained particles were spherical, with an average particle size of 2.29 μm, a standard deviation of 0.16 μm, and a coefficient of variation of 7.0%. When the synthesized particles were observed with a scanning electron microscope, the generation of fine particles of 2 μm or less was negligibly small. The dimensionless mixing time nθm under this stirring condition was 6.

比較例1
撹拌翼に2段の傾斜パドル翼(翼径75mm、翼間隔50mm)を用い、撹拌翼回転数を100rpmとした以外は実施例4と同様にしてシリカ粒子を合成した。原料の供給終了後1時間撹拌を続けた後、シリカ粒子のスラリーを取り出した。このとき、撹拌翼にはシリカが付着しており、反応器底部にはシリカが多く沈降していた。得られた粒子は、5〜20μmの広い分布をしており、平均粒子径8.24μm、標準偏差2.67μm、変動係数32.4%であり、走査型電子顕微鏡で観察したところ、粒子同士が数十個くっついた単分散性の低い粒子であり、2μm以下の程度の微粒子も生成していた。なお、本撹拌条件の無次元混合時間nθmは200であった。
Comparative Example 1
Silica particles were synthesized in the same manner as in Example 4 except that a two-stage inclined paddle blade (blade diameter: 75 mm, blade interval: 50 mm) was used as the stirring blade, and the rotational speed of the stirring blade was 100 rpm. The stirring of the raw material was continued for 1 hour, and then the silica particle slurry was taken out. At this time, silica adhered to the stirring blade, and a large amount of silica was precipitated at the bottom of the reactor. The obtained particles have a wide distribution of 5 to 20 μm, an average particle size of 8.24 μm, a standard deviation of 2.67 μm, and a coefficient of variation of 32.4%. Are particles having a low monodispersibility, and fine particles having a size of 2 μm or less were also produced. The dimensionless mixing time nθm under this stirring condition was 200.

邪魔板を4枚に増やし、位置を調整し、撹拌翼回転数を200rpmに上げて数回実験を行ったが、いずれも単分散性の高い粒子を得ることはできなかった。   The number of baffle plates was increased to four, the position was adjusted, the number of stirring blade rotations was increased to 200 rpm, and experiments were performed several times. However, none of the particles could have high monodispersity.

比較例2
撹拌翼に2段の傾斜パドル翼(翼径75mm、翼間隔50mm)を用い、撹拌翼回転数を100rpmとした以外は実施例5と同様にしてシリカ粒子を合成した原料の供給終了後1時間撹拌を続けた後、シリカ粒子のスラリーを取り出した。このとき、撹拌翼にはシリカが付着しており、反応器底部にはシリカが多く沈降していた。得られた粒子は、12〜30μmの広い分布をしており、平均粒子径15.79μm、標準偏差8.21μm、変動係数52.0%であり、走査型電子顕微鏡で観察したところ、粒子同士が数十個くっついた単分散性の低い粒子であり、2μm以下の程度の微粒子も多く生成していた。なお、本撹拌条件の無次元混合時間nθmは200であった。
Comparative Example 2
1 hour after the completion of the supply of the raw material synthesized with silica particles in the same manner as in Example 5 except that a two-stage inclined paddle blade (blade diameter 75 mm, blade interval 50 mm) was used as the stirring blade, and the rotation speed of the stirring blade was 100 rpm. After continuing the stirring, a slurry of silica particles was taken out. At this time, silica adhered to the stirring blade, and a large amount of silica was precipitated at the bottom of the reactor. The obtained particles have a wide distribution of 12 to 30 μm, an average particle size of 15.79 μm, a standard deviation of 8.21 μm, and a coefficient of variation of 52.0%. Are particles having a low monodispersibility and several fine particles having a size of 2 μm or less were produced. The dimensionless mixing time nθm under this stirring condition was 200.

邪魔板を4枚に増やし、位置を調整し、撹拌翼回転数を200rpmに上げて数回実験を行ったが、いずれも単分散性の高い粒子を得ることはできなかった。   The number of baffle plates was increased to four, the position was adjusted, the number of stirring blade rotations was increased to 200 rpm, and experiments were performed several times. However, none of the particles could have high monodispersity.

比較例3
撹拌翼に三枚後退翼(翼径75mm)を用い、撹拌翼回転数を100rpmとした以外は実施例4と同様にしてシリカ粒子を合成した。原料の供給終了後1時間撹拌を続けた後、シリカ粒子のスラリーを取り出した。このとき、撹拌翼にはシリカが付着しており、反応器底部にはシリカが多く沈降していた。得られた粒子は、5〜20μmの広い分布をしており、平均粒子径7.57μm、標準偏差1.39μm、変動係数18.4%であり、走査型電子顕微鏡で観察したところ、粒子同士が数十個くっついた単分散性の低い粒子であり、2μm以下の程度の微粒子も生成していた。なお、本撹拌条件の無次元混合時間nθmは70であり、1〜50の範囲を達成することはできなかった。
Comparative Example 3
Silica particles were synthesized in the same manner as in Example 4 except that three swirling blades (blade diameter 75 mm) were used as the stirring blades and the rotation speed of the stirring blades was 100 rpm. The stirring of the raw material was continued for 1 hour, and then the silica particle slurry was taken out. At this time, silica adhered to the stirring blade, and a large amount of silica was precipitated at the bottom of the reactor. The obtained particles have a wide distribution of 5 to 20 μm, an average particle size of 7.57 μm, a standard deviation of 1.39 μm, and a coefficient of variation of 18.4%. Are particles having a low monodispersibility, and fine particles having a size of 2 μm or less were also produced. In addition, dimensionless mixing time n (theta) m of this stirring condition is 70, and it was not able to achieve the range of 1-50.

邪魔板を4枚に増やし、位置を調整し、撹拌翼回転数を200rpmに上げて数回実験を行ったが、いずれも単分散性の高い粒子を得ることはできなかった。
The number of baffle plates was increased to four, the position was adjusted, the number of stirring blade rotations was increased to 200 rpm, and experiments were performed several times. However, none of the particles could have high monodispersity.

Claims (4)

回転式撹拌翼を有する撹拌装置及び反応容器を含んでなる反応装置の反応容器内で、水と有機溶媒との混合液と金属アルコキシドとを触媒の存在下に混合して当該金属アルコキシドを加水分解及び重縮合させることによりシリカ系酸化物粒子を製造する方法において、反応装置として、以下に定義される標準状態において撹拌を行ったときに無次元混合時間nθmが1〜50の範囲となり得る反応装置を使用すると共に、標準状態の撹拌において無次元混合時間nθmが1〜50の範囲となる撹拌回転数で前記撹拌翼を回転させながら前記金属アルコキシドの加水分解及び重縮合を行うことを特徴とする方法。
標準状態: 反応容器にその内容積の50%となるように水を導入した状態
In a reaction vessel of a reaction device comprising a stirring device having a rotary stirring blade and a reaction vessel, a mixed solution of water and an organic solvent and a metal alkoxide are mixed in the presence of a catalyst to hydrolyze the metal alkoxide. In addition, in the method for producing silica-based oxide particles by polycondensation, as a reaction apparatus, a reaction apparatus in which the dimensionless mixing time nθm can be in the range of 1 to 50 when stirring is performed in a standard state defined below. In addition, the metal alkoxide is hydrolyzed and polycondensed while rotating the stirring blade at a stirring speed at which the dimensionless mixing time nθm is in the range of 1 to 50 in stirring in a standard state. Method.
Standard state: A state where water is introduced into the reaction vessel so as to be 50% of its internal volume.
前記金属アルコキシドの加水分解及び重縮合をシリカ系酸化物種粒子の存在下に行なうことを特徴とする請求項1に記載の方法。 The method according to claim 1, wherein the metal alkoxide is hydrolyzed and polycondensed in the presence of silica-based oxide seed particles. 平均粒子径が2〜20μmで且つ粒子径の変動係数が10%以下であるシリカ系酸化物粒子を製造する請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the silica-based oxide particles having an average particle diameter of 2 to 20 µm and a coefficient of variation of the particle diameter of 10% or less are produced. 粒子の内部と外部の組成が異なるコアシェル型シリカ系酸化物粒子であり、平均粒子径が2〜20μmで且つ粒子径の変動係数が10%以下であるシリカ系酸化物粒子を製造する請求項1乃至3のいずれかに記載の方法。
2. A silica-based oxide particle having core-shell type silica-based oxide particles having different internal and external compositions, having an average particle size of 2 to 20 μm and a particle size variation coefficient of 10% or less is produced. The method in any one of thru | or 3.
JP2005259232A 2005-09-07 2005-09-07 Method for producing silica-based oxide particles Active JP4895556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005259232A JP4895556B2 (en) 2005-09-07 2005-09-07 Method for producing silica-based oxide particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005259232A JP4895556B2 (en) 2005-09-07 2005-09-07 Method for producing silica-based oxide particles

Publications (2)

Publication Number Publication Date
JP2007070163A true JP2007070163A (en) 2007-03-22
JP4895556B2 JP4895556B2 (en) 2012-03-14

Family

ID=37931941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259232A Active JP4895556B2 (en) 2005-09-07 2005-09-07 Method for producing silica-based oxide particles

Country Status (1)

Country Link
JP (1) JP4895556B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260848A (en) * 2007-04-12 2008-10-30 Sumitomo Chemical Co Ltd Polypropylene-based resin composition and film therefrom
US9550683B2 (en) 2007-03-27 2017-01-24 Fuso Chemical Co., Ltd. Colloidal silica, and method for production thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252119A (en) * 1985-08-29 1987-03-06 Tokuyama Soda Co Ltd Production of silica particle
JPH02120221A (en) * 1988-10-31 1990-05-08 Nippon Steel Chem Co Ltd Production of silica particle
JPH10226512A (en) * 1997-02-10 1998-08-25 Ube Nitto Kasei Co Ltd Resin-coated silica particle and its production
JP2002284515A (en) * 2001-03-28 2002-10-03 Tokuyama Corp Spherical inorganic oxide particle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252119A (en) * 1985-08-29 1987-03-06 Tokuyama Soda Co Ltd Production of silica particle
JPH02120221A (en) * 1988-10-31 1990-05-08 Nippon Steel Chem Co Ltd Production of silica particle
JPH10226512A (en) * 1997-02-10 1998-08-25 Ube Nitto Kasei Co Ltd Resin-coated silica particle and its production
JP2002284515A (en) * 2001-03-28 2002-10-03 Tokuyama Corp Spherical inorganic oxide particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9550683B2 (en) 2007-03-27 2017-01-24 Fuso Chemical Co., Ltd. Colloidal silica, and method for production thereof
JP2008260848A (en) * 2007-04-12 2008-10-30 Sumitomo Chemical Co Ltd Polypropylene-based resin composition and film therefrom

Also Published As

Publication number Publication date
JP4895556B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
KR100711081B1 (en) Silica composite oxide particles and a method for preparation thereof
KR20010074514A (en) Spherical silicone fine particles and process for producing the same
JP2008037700A (en) Aggregate of silica-based compound oxide particle and method for manufacturing the same
JP2007269594A (en) Method for producing silica-based multiple oxide particle
JP4895556B2 (en) Method for producing silica-based oxide particles
JP2019116396A (en) Silica-based particle dispersion and production method thereof
US9067798B2 (en) Method for producing silica-zirconia composite particles each coated with silica layer
JPH0741544A (en) Epoxy resin composition and optical semiconductor device
JP3330984B2 (en) Method for producing monodisperse spherical silica
JP5863526B2 (en) Method for producing silica
JP5004492B2 (en) Silica-based composite oxide fine particles and method for producing the same
JP2008156414A (en) Resin composition and phase difference film
JP2021091607A (en) Manufacturing method of silica-clad silica-titania composite oxide powder
JPH08337413A (en) Silica particles and their production
JP5701087B2 (en) Spherical silica-titania composite oxide particles and method for producing the same
WO2019177004A1 (en) Composite oxide powder and method for production thereof
JP2003176120A (en) Method for manufacturing silica-titania complex oxide
JP3477813B2 (en) Inorganic powder, coating liquid for inorganic powder and method for producing the same
JP3387969B2 (en) Composite oxide particles
JP2000272917A (en) Aluminum silicate for resin packing, its production and transparent resin composition containing the same
JPS61141604A (en) Production of inorganic oxide
TWI833391B (en) Surface-treated silicon dioxide particle dispersion sol and manufacturing method thereof
JP2005162554A (en) Method for producing titania solution
JP2019052051A (en) Spherical silica powder for filler and manufacturing method thereof
RU2448043C2 (en) Method for obtaining lithium liquid glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4895556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3