JP2007056973A - Vacuum heat insulating panel and refrigerator using the same - Google Patents

Vacuum heat insulating panel and refrigerator using the same Download PDF

Info

Publication number
JP2007056973A
JP2007056973A JP2005242281A JP2005242281A JP2007056973A JP 2007056973 A JP2007056973 A JP 2007056973A JP 2005242281 A JP2005242281 A JP 2005242281A JP 2005242281 A JP2005242281 A JP 2005242281A JP 2007056973 A JP2007056973 A JP 2007056973A
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum heat
insulating material
refrigerator
deformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005242281A
Other languages
Japanese (ja)
Inventor
Hisashi Echigoya
恒 越後屋
Kuninari Araki
邦成 荒木
Katsumi Fukuda
克美 福田
Takayuki Nakakawaji
孝行 中川路
Hisao Yokokura
久男 横倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2005242281A priority Critical patent/JP2007056973A/en
Publication of JP2007056973A publication Critical patent/JP2007056973A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ecological vacuum heat insulating material which compatibly secures a bending property and shape retaining property and improving heat conductivity. <P>SOLUTION: The vacuum heat insulating material 30 comprises a shell material 31 having gas barrier performance and a core material 32 vacuumed and sealed therein. The core material 32 is formed of a fiber polymer which does not contain a binder having an average fiber diameter of 2 μm or larger. In a space of the shell material 31, a deformation retaining member 33 is arranged which is deformable and which can retain the shape of the core material after deformed. The deformation retaining member 33 is formed of a biodegradable material into a fibriform mat. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、真空断熱パネル及びそれを用いた冷蔵庫に関する。   The present invention relates to a vacuum heat insulation panel and a refrigerator using the same.

(従来技術1)
従来の真空断熱材としては、特開2002−81596号公報(特許文献1)に示されたものがある。この特許文献1に記載の真空断熱材は、繊維径分布のピーク値が1μmかつ以下0.1μm以上である無機繊維芯材と、ガスバリア性を有する外皮材とからなる真空断熱材であって、前記芯材がSiO2を主成分とし、かつ繊維材料を固形化するための結合材を含まない構成としたことにより、真空断熱材として可撓性を有するようにしていた。
(従来技術2)
また、従来の真空断熱材としては、特開2002−310384号公報(特許文献2)に示されたものがある。この特許文献2に記載の真空断熱材は、繊維径分布のピークが1μm以下かつ0.1μm以上である無機繊維集合体の一方または両方の面に補強材を積層した芯材とガスバリア性を有する外被材とからなり、無機繊維集合体が繊維材料を固形化するための結合材を含まない無機繊維と無機粉体の成形体や無機繊維シートからなるものである。
(従来技術3)
また、従来の真空断熱材としては、特開2004−324839号公報(特許文献3)に示されたものがある。この特許文献3に記載の真空断熱材は、断熱コア材としてヤシ科植物、黄麻、マニラ麻などの天然素材の繊維を被覆材に封止したものである。
(Prior art 1)
As a conventional vacuum heat insulating material, there exists a thing shown by Unexamined-Japanese-Patent No. 2002-81596 (patent document 1). The vacuum heat insulating material described in Patent Document 1 is a vacuum heat insulating material composed of an inorganic fiber core material having a fiber diameter distribution peak value of 1 μm and 0.1 μm or less, and a skin material having a gas barrier property, The core material is composed of SiO2 as a main component and does not include a binder for solidifying the fiber material, so that it has flexibility as a vacuum heat insulating material.
(Prior art 2)
Moreover, as a conventional vacuum heat insulating material, there exist some which were shown by Unexamined-Japanese-Patent No. 2002-310384 (patent document 2). The vacuum heat insulating material described in Patent Document 2 has a gas barrier property and a core material in which a reinforcing material is laminated on one or both surfaces of an inorganic fiber aggregate having a fiber diameter distribution peak of 1 μm or less and 0.1 μm or more. It consists of a jacket material, and the inorganic fiber aggregate consists of a molded body of inorganic fiber and inorganic powder or inorganic fiber sheet that does not contain a binder for solidifying the fiber material.
(Prior art 3)
Moreover, as a conventional vacuum heat insulating material, there exists a thing shown by Unexamined-Japanese-Patent No. 2004-324839 (patent document 3). The vacuum heat insulating material described in Patent Document 3 is obtained by sealing a natural material fiber such as coconut plant, jute, manila hemp as a heat insulating core material in a covering material.

特開2002−81596号公報JP 2002-81596 A 特開2002−310384号公報JP 2002-310384 A 特開2004−324839号公報JP 2004-324839 A

近年、地球温暖化に対する観点から、家電品の消費電力量削減の必要性が望まれている。そして、冷蔵庫は家電品の中で特に消費電力量の多い製品であるため、冷蔵庫の断熱箱体中に真空断熱材を採用して、この断熱箱体の熱漏洩量を低減することが提案されている。この真空断熱材の応用展開を推進するためには、コストアップや断熱性能の低下を招くことなく、被取付け部の形状に沿って真空断熱材を配設できるように折り曲げ性を付与することが重要な課題となっている。曲げ可能な真空断熱材として、例えば、上述した特許文献1及び特許文献2に記載のものがある。   In recent years, from the viewpoint of global warming, the necessity of reducing the power consumption of home appliances is desired. And since the refrigerator is a product that consumes a lot of electric power among household electrical appliances, it is proposed to reduce the amount of heat leakage of the heat insulating box by adopting a vacuum heat insulating material in the heat insulating box of the refrigerator. ing. In order to promote the application development of this vacuum heat insulating material, bendability should be imparted so that the vacuum heat insulating material can be disposed along the shape of the mounted portion without causing an increase in cost or a decrease in heat insulating performance. It is an important issue. Examples of the bendable vacuum heat insulating material include those described in Patent Document 1 and Patent Document 2 described above.

しかしながら、特許文献1の真空断熱材では、繊維径分布のピーク値が1μm以下かつ0.1μm以上の超極細無機繊維を用いるため、単品でも生産性が低く高価であると共に、繊維集合体を重ねて厚みを稼ぐ必要があり、真空断熱材のコストアップを招いていた。また、特許文献1の真空断熱材では、折り曲げ性が良好でないという問題があると共に、被取付け部の形状に沿って折り曲げても、時間が経過するに従って形状が元に戻ってしまう問題がある。例えば、被取付け部の曲面が小さい場合、貼り付けた真空断熱材が元に戻ろうとする力によって剥がれたり、真空断熱材と貼り付けた部位の間に間隙ができたりすることから、真空断熱材を貼り付ける直前に折り曲げ加工しなければならなかった。従って、特許文献1の真空断熱材では、未だ、折り曲げ性及び形状保持性の確保と熱伝導率の向上とを両立できるようにすることが課題となっている。   However, in the vacuum heat insulating material of Patent Document 1, since ultrafine inorganic fibers having a fiber diameter distribution peak value of 1 μm or less and 0.1 μm or more are used, even a single product is low in productivity and expensive, and the fiber aggregate is overlapped. Therefore, it was necessary to increase the thickness, which resulted in an increase in the cost of the vacuum heat insulating material. Further, the vacuum heat insulating material of Patent Document 1 has a problem that the bendability is not good, and there is a problem that the shape returns to its original shape as time passes even if it is bent along the shape of the attached portion. For example, if the curved surface of the part to be attached is small, the vacuum insulation material attached may peel off due to the force of returning, or a gap may be created between the vacuum insulation material and the attached part. Had to be bent just before sticking. Therefore, the vacuum heat insulating material of Patent Document 1 still has a problem of ensuring both bendability and shape retention and improving thermal conductivity.

また、特許文献2の真空断熱材では、繊維径分布のピーク値が1μm以下かつ0.1μm以上の超極細無機繊維を用いるため、単品でも生産性が低く高価であると共に、繊維集合体を重ねて厚みを稼ぐ必要があり、真空断熱材のコストアップを招いていた。また、特許文献2のように無機繊維集合体の一方または両方の面に補強材を入れた真空断熱材では、表面性及び剛性を改善することは可能であるが、折り曲げ性や熱伝導率の低減には補強材の影響が大きく、特に熱伝導率の向上が難しいという問題があった。更に、特許文献2の真空断熱材では、被取付け部の形状に沿って折り曲げても、時間が経過するに従って形状が元に戻ってしまう問題がある。例えば、被取付け部の曲面が小さい場合、貼り付けた真空断熱材が元に戻ろうとする力によって剥がれたり、真空断熱材と貼り付けた部位の間に間隙ができたりすることから、真空断熱材を貼り付ける直前に折り曲げ加工しなければならなかった。従って、特許文献2の真空断熱材でも、未だ、折り曲げ性及び形状保持性の確保と熱伝導率の向上とを両立できるようにすることが課題となっている。   Further, in the vacuum heat insulating material of Patent Document 2, since ultrafine inorganic fibers having a fiber diameter distribution peak value of 1 μm or less and 0.1 μm or more are used, even a single product is low in productivity and expensive, and the fiber aggregate is overlapped. Therefore, it was necessary to increase the thickness, which resulted in an increase in the cost of the vacuum heat insulating material. Moreover, in the vacuum heat insulating material in which the reinforcing material is put on one or both surfaces of the inorganic fiber aggregate as in Patent Document 2, it is possible to improve the surface property and the rigidity, but the bending property and the thermal conductivity are improved. The reduction is greatly affected by the reinforcing material, and there is a problem that it is particularly difficult to improve the thermal conductivity. Furthermore, in the vacuum heat insulating material of patent document 2, even if it bends along the shape of a to-be-attached part, there exists a problem that a shape will return as time passes. For example, if the curved surface of the part to be attached is small, the vacuum insulation material attached may peel off due to the force of returning, or a gap may be created between the vacuum insulation material and the attached part. Had to be bent just before sticking. Therefore, even with the vacuum heat insulating material of Patent Document 2, it is still a problem to make it possible to ensure both bendability and shape retention and to improve thermal conductivity.

一方、地球環境の保護の観点が真空断熱材にも求められるようになっており、芯材に天然素材を用いたものとして特許文献3に記載のものがある。   On the other hand, the viewpoint of protection of the global environment is also required for a vacuum heat insulating material, and there is one described in Patent Document 3 as a natural material used as a core material.

しかしながら、特許文献3の真空断熱材では、ヤシ科植物等の繊維を主体とする芯材を用いているため、優れた熱伝導率を確保することが困難である。また、特許文献3の真空断熱材では折り曲げることについては開示されていない。従って、特許文献3の真空断熱材でも、折り曲げ性及び形状保持性の確保と熱伝導率の向上とを両立できるようにすることが課題である。   However, since the vacuum heat insulating material of Patent Document 3 uses a core material mainly composed of fibers of palm plant or the like, it is difficult to ensure excellent thermal conductivity. Further, the vacuum heat insulating material of Patent Document 3 does not disclose folding. Therefore, even with the vacuum heat insulating material of Patent Document 3, it is a problem to be able to achieve both bendability and shape retainability and improve thermal conductivity.

本発明の目的は、折り曲げ性及び形状保持性の確保と熱伝導率の向上とを両立できるとともに地球環境に優しい真空断熱材及びそれを用いた冷蔵庫を提供することにある。   An object of the present invention is to provide a vacuum heat insulating material that is capable of ensuring both bendability and shape retention and improving thermal conductivity, and is friendly to the global environment, and a refrigerator using the same.

前述の目的を達成するための本発明の第1の態様は、ガスバリア性を有する外被材中に芯材を真空封止した真空断熱材であって、前記芯材を平均繊維径が2μm以上の結合材を含まない繊維重合体で形成すると共に、前記芯材の間に変形可能で且つ変形後の芯材形状を保持可能な変形保持部材を配置し、前記変形保持部材を生分解性物からなる繊維状マットで形成したものである。   A first aspect of the present invention for achieving the above object is a vacuum heat insulating material obtained by vacuum-sealing a core material in a jacket material having gas barrier properties, and the core material has an average fiber diameter of 2 μm or more. And a deformation holding member that is deformable and capable of holding the deformed core material shape is disposed between the core materials, and the deformation holding member is a biodegradable material. It is formed of a fibrous mat made of

また、前述の目的を達成するための本発明の第2の態様は、ガスバリア性を有する外被材中に芯材を真空封止した真空断熱材であって、前記芯材を平均繊維径が2μm以上の繊維重合体で形成すると共に、前記芯材の間に変形可能で且つ変形後の芯材形状を保持可能な変形保持部材を配置し、前記変形保持部材を生分解性物からなる粉体を不織布の袋に詰めて形成したものである。   In addition, a second aspect of the present invention for achieving the above object is a vacuum heat insulating material obtained by vacuum-sealing a core material in a jacket material having gas barrier properties, and the core material has an average fiber diameter. A deformation holding member that is formed of a fiber polymer of 2 μm or more and that can be deformed and can hold the shape of the deformed core material is disposed between the core materials, and the deformation holding member is a powder made of a biodegradable material. The body is formed by packing in a non-woven bag.

係る本発明の第1の態様または第2の態様におけるより好ましい具体的構成例は次の通りである。
(1)前記芯材の繊維重合体が3〜5μmの平均繊維径を有するものであること。
(2)前記生分解性物が、カポック、竹、セルロース、パルプ、糖、茶抽出殻、貝殻、デンプンからなる少なくとも1種であること。
A more preferable specific configuration example in the first aspect or the second aspect of the present invention is as follows.
(1) The fiber polymer of the core material has an average fiber diameter of 3 to 5 μm.
(2) The biodegradable material is at least one of kapok, bamboo, cellulose, pulp, sugar, tea extraction shell, shell, and starch.

さらには、本発明の第3の態様は、ガスバリア性を有する外被材中に芯材を真空封止した真空断熱材を外箱と内箱とによって形成される空間に配設すると共に、その真空断熱材の周囲の前記空間に発泡断熱材を充填してなる冷蔵庫であって、前記芯材を平均繊維径が2μm以上の繊維重合体で形成すると共に、前記芯材の間に変形可能で且つ変形後の芯材形状を保持可能な変形保持部材を配置し、前記変形保持部材を生分解性物からなる繊維状マットで形成した前記真空断熱材を構成し、前記真空断熱材を前記外箱または前記内箱の変形部に沿って変形して配置したものである。   Furthermore, in the third aspect of the present invention, a vacuum heat insulating material obtained by vacuum-sealing a core material in a jacket material having gas barrier properties is disposed in a space formed by an outer box and an inner box, and A refrigerator in which the space around a vacuum heat insulating material is filled with a foam heat insulating material, wherein the core material is formed of a fiber polymer having an average fiber diameter of 2 μm or more, and is deformable between the core materials. And a deformation holding member capable of holding the deformed core material shape is disposed, the vacuum heat insulating material is formed of a fibrous mat made of a biodegradable material, and the vacuum heat insulating material is It is arranged by being deformed along the deformed portion of the box or the inner box.

さらには、本発明の第4の態様は、ガスバリア性を有する外被材中に芯材を真空封止した真空断熱材を外箱と内箱とによって形成される空間に配設すると共に、その真空断熱材の周囲の前記空間に発泡断熱材を充填してなる冷蔵庫であって、前記芯材を平均繊維径が2μm以上の繊維重合体で形成すると共に、前記芯材の間に変形可能で且つ変形後の芯材形状を保持可能な変形保持部材を配置し、前記変形保持部材を生分解性物からなる粉体を不織布の袋に詰めて形成して前記真空断熱材を構成し、前記真空断熱材を前記外箱または前記内箱の変形部に沿って変形して配置したものである。   Furthermore, in the fourth aspect of the present invention, a vacuum heat insulating material obtained by vacuum-sealing a core material in a jacket material having gas barrier properties is disposed in a space formed by an outer box and an inner box, and A refrigerator in which the space around a vacuum heat insulating material is filled with a foam heat insulating material, wherein the core material is formed of a fiber polymer having an average fiber diameter of 2 μm or more, and is deformable between the core materials. And arranging a deformation holding member capable of holding the deformed core material shape, forming the vacuum heat insulating material by filling the deformation holding member with a powder made of biodegradable material in a non-woven bag, The vacuum heat insulating material is deformed and arranged along the deformed portion of the outer box or the inner box.

係る本発明の第3の態様または第4の態様におけるより好ましい具体的構成例は次の通りである。
(1)前記芯材の繊維重合体が3〜5μmの平均繊維径を有するものであり、前記生分解性物が、カポック、竹、セルロース、パルプ、糖、茶抽出殻、貝殻、デンプンからなる少なくとも1種であること。
A more preferable specific configuration example in the third aspect or the fourth aspect of the present invention is as follows.
(1) The fiber polymer of the core material has an average fiber diameter of 3 to 5 μm, and the biodegradable material is composed of kapok, bamboo, cellulose, pulp, sugar, tea extraction shell, shell, starch. Must be at least one.

本発明によれば、折り曲げ性及び形状保持性の確保と熱伝導率の向上とを両立できるとともに地球環境に優しい真空断熱材及びそれを用いた冷蔵庫を提供することができる。   According to the present invention, it is possible to provide a vacuum heat insulating material that is capable of ensuring both bendability and shape retention and improving thermal conductivity and is friendly to the global environment, and a refrigerator using the same.

以下、本発明の一実施形態の真空断熱材及びそれを用いた冷蔵庫を図1から図3を用いて説明する。   Hereinafter, the vacuum heat insulating material of one Embodiment of this invention and the refrigerator using the same are demonstrated using FIGS. 1-3.

まず、本実施形態の冷蔵庫の全体に関して図1を参照しながら説明する。図1は本発明の一実施形態の真空断熱材及びそれを用いた冷蔵庫を示す縦断面図である。   First, the whole refrigerator of this embodiment is demonstrated, referring FIG. FIG. 1 is a longitudinal sectional view showing a vacuum heat insulating material and a refrigerator using the same according to an embodiment of the present invention.

冷蔵庫は、箱状に形成された冷蔵庫の箱体20と、冷蔵庫の箱体20の前面開口を開閉する扉6とを備えて構成されている。冷蔵庫の箱体20は、鉄板をプレス成形した外箱23と、ABS樹脂を真空成形した内箱21と、外箱23と内箱21とがフランジを介して構成される断熱壁中に設置された真空断熱材30,80と、前記外箱23や内箱21および前記真空断熱材30,80と接着可能な、それ自身に接着力を有するウレタン等の発泡断熱材22とにより構成されている。この断熱壁は、底壁、両側壁、上壁及び背壁から構成されている。真空断熱材30,80はパネル状に形成されている。   The refrigerator includes a refrigerator box 20 formed in a box shape and a door 6 that opens and closes a front opening of the refrigerator box 20. The box 20 of the refrigerator is installed in a heat insulating wall in which an outer box 23 formed by press-molding an iron plate, an inner box 21 obtained by vacuum-forming ABS resin, and the outer box 23 and the inner box 21 are configured via a flange. The vacuum heat insulating materials 30, 80, and the outer box 23, the inner box 21, and the foam heat insulating material 22, such as urethane, which can adhere to the vacuum heat insulating materials 30, 80 and have adhesive strength to itself. . The heat insulating wall is composed of a bottom wall, side walls, a top wall, and a back wall. The vacuum heat insulating materials 30 and 80 are formed in a panel shape.

最下部の扉6は、外箱と、内箱と、外箱と内箱とによって形成される断熱壁中に設置された真空断熱材80と、外箱や内箱および前記真空断熱材80と接着可能な、それ自身に接着力を有するウレタン等の発泡断熱材とにより構成されている。上部の扉6に真空断熱材80を設置しても良い。   The lowermost door 6 includes an outer box, an inner box, a vacuum heat insulating material 80 installed in a heat insulating wall formed by the outer box and the inner box, an outer box, an inner box, and the vacuum heat insulating material 80. It is comprised with foaming heat insulating materials, such as urethane which can adhere | attach and has the adhesive force in itself. A vacuum heat insulating material 80 may be installed on the upper door 6.

また、冷蔵庫の箱体20は、温度の異なる貯蔵室10〜12を複数形成しており、各貯蔵室10〜12間には区画壁(図示せず)が設けられている。貯蔵室10は、温度の低い貯蔵室(具体的には冷凍室)であり、複数の貯蔵室における最下部に配置されている。貯蔵室11は、温度の低い貯蔵室10より温度が高い貯蔵室(具体的には野菜室)であり、複数の貯蔵室における中間部に配置されている。貯蔵室12は、温度の低い貯蔵室10より温度が高い貯蔵室(具体的には冷蔵室)であり、複数の貯蔵室における最上部に配置されている。貯蔵室10〜12は、圧縮機13、凝縮器14、減圧装置及び冷却器15などからなる冷凍サイクル及び冷却ファン16などを用いて冷却される。   Moreover, the box 20 of the refrigerator forms a plurality of storage chambers 10 to 12 having different temperatures, and partition walls (not shown) are provided between the storage chambers 10 to 12. The storage room 10 is a low temperature storage room (specifically, a freezing room), and is arranged at the lowermost part of the plurality of storage rooms. The storage room 11 is a storage room (specifically a vegetable room) whose temperature is higher than that of the low temperature storage room 10, and is arranged in an intermediate part of the plurality of storage rooms. The storage room 12 is a storage room (specifically, a refrigeration room) having a higher temperature than the storage room 10 having a low temperature, and is disposed at the top of the plurality of storage rooms. The storage chambers 10 to 12 are cooled using a refrigeration cycle including a compressor 13, a condenser 14, a decompression device, a cooler 15, and the like, a cooling fan 16, and the like.

内箱21は、貯蔵室10〜12を形成する壁面を構成するものであり、底面、両側面、上面及び背面からなっている。外箱23は、冷蔵庫の箱体20の外観を形成する壁面を構成するものであり、底面、両側面、上面及び背面からなっている。なお、冷蔵庫の箱体20の底壁の背面側には、圧縮機を収納する機械室を形成するための段部を有しており、内箱21及び外箱23の底面はこれに伴う段部を有している。   The inner box 21 constitutes a wall surface that forms the storage chambers 10 to 12 and includes a bottom surface, both side surfaces, a top surface, and a back surface. The outer box 23 constitutes a wall surface that forms the appearance of the box 20 of the refrigerator, and includes a bottom surface, both side surfaces, a top surface, and a back surface. In addition, it has the step part for forming the machine room which accommodates a compressor in the back side of the bottom wall of the box 20 of a refrigerator, and the bottom face of the inner box 21 and the outer box 23 is a step accompanying this. Has a part.

真空断熱材30は、断熱壁の曲げ部24に沿って配設した真空断熱材であり、曲げ部24の内箱21側に設置する場合は、内箱21の形状に沿って内箱21に密着するように設置してある。また、真空断熱材30は、曲げ部24の外箱23側に設置する場合は、外箱23の形状に沿って設置してある。   The vacuum heat insulating material 30 is a vacuum heat insulating material disposed along the bent portion 24 of the heat insulating wall. When the vacuum heat insulating material 30 is installed on the inner box 21 side of the bent portion 24, the vacuum heat insulating material 30 is formed on the inner box 21 along the shape of the inner box 21. It is installed in close contact. Further, when the vacuum heat insulating material 30 is installed on the outer box 23 side of the bent portion 24, it is installed along the shape of the outer box 23.

前記断熱壁の曲げ部24は断熱壁の変形部を構成する部分である。そして、断熱壁の変形部は、内箱21または外箱23における二つの面が交差する角部である曲げ部24の他に、内箱21または外箱23における凹凸部などである変形部が含まれる。   The bent portion 24 of the heat insulating wall is a portion constituting a deformed portion of the heat insulating wall. And the deformation | transformation part which is an uneven | corrugated | grooved part etc. in the inner box 21 or the outer box 23 other than the bending part 24 which is a corner | angular part where the two surfaces in the inner box 21 or the outer box 23 cross | intersect the deformation | transformation part of the heat insulation wall. included.

真空断熱材80は、断熱壁の平面部に配設した真空断熱材であり、真空断熱材30を折り曲げることをしないで、平面形状のままで、断熱壁内に配設した真空断熱材である。外箱23の一面(背面)に沿って設置された真空断熱材80の端部は、内箱21の一面(上面または底面)から曲げ部24を経て他の面(背面)に沿って延びる真空断熱材30の端部と投影面で重合している。係る構成によって、発泡断熱材22の充填性を確保しつつ、真空断熱材30、80の設置面積を増大することができ、断熱性能を向上することができる。   The vacuum heat insulating material 80 is a vacuum heat insulating material provided in the flat surface portion of the heat insulating wall, and is a vacuum heat insulating material provided in the heat insulating wall without bending the vacuum heat insulating material 30 and in a planar shape. . The end of the vacuum heat insulating material 80 installed along one surface (back surface) of the outer box 23 extends from the one surface (upper surface or bottom surface) of the inner box 21 along the other surface (back surface) via the bent portion 24. Polymerization occurs at the end of the heat insulating material 30 and the projection surface. With such a configuration, the installation area of the vacuum heat insulating materials 30 and 80 can be increased while ensuring the filling property of the foam heat insulating material 22, and the heat insulating performance can be improved.

次に、本実施形態における曲げ部24へ適用する真空断熱材を図2及び図3により説明する。図2は図1のC部を拡大した断面図、図3は図2の真空断熱材の折り曲げる前の断面図である。図2では真空断熱材30の理解を容易にするため、真空断熱材30を図1より強調して示してある。   Next, the vacuum heat insulating material applied to the bending part 24 in this embodiment is demonstrated with reference to FIG.2 and FIG.3. 2 is an enlarged cross-sectional view of a portion C of FIG. 1, and FIG. 3 is a cross-sectional view of the vacuum heat insulating material of FIG. 2 before being bent. In FIG. 2, in order to facilitate understanding of the vacuum heat insulating material 30, the vacuum heat insulating material 30 is emphasized from FIG.

図2において、真空断熱材30は断熱壁の曲げ部24の内箱面21aの形状に沿って該内箱面21aに密着するように配設された真空断熱材であり、ガスバリア性を有する外被材31中に、結合剤を含まない無機繊維重合体にて形成された芯材を32と、ガスを吸着するゲッター剤34を内蔵した変形保持部材33と共に収納し、所定の真空度にて真空封止して構成してある。   In FIG. 2, a vacuum heat insulating material 30 is a vacuum heat insulating material disposed so as to be in close contact with the inner box surface 21a along the shape of the inner box surface 21a of the bent portion 24 of the heat insulating wall. A core material 32 made of an inorganic fiber polymer that does not contain a binder is housed in a material 31 together with a deformation holding member 33 containing a getter agent 34 that adsorbs gas, and at a predetermined degree of vacuum. It is constructed by vacuum sealing.

芯材32を構成する無機繊維重合体は、平均繊維径3μmから5μmの汎用性の高いものが用いられており、従来技術3の真空断熱材に用いられる繊維径分布のピーク値が1μm以下かつ0.1μm以上の超極細無機繊維と比較して、格段に安価なものとすることができると共に、折り曲げ性が格段に良好である。なお、芯材32として、無機繊維重合体の代わりに有機繊維重合体を用いてもよい。   As the inorganic fiber polymer constituting the core material 32, a highly versatile polymer having an average fiber diameter of 3 μm to 5 μm is used, and the peak value of the fiber diameter distribution used for the vacuum heat insulating material of the prior art 3 is 1 μm or less. Compared with a super fine inorganic fiber of 0.1 μm or more, the fiber can be remarkably inexpensive and the bending property is remarkably good. As the core material 32, an organic fiber polymer may be used instead of the inorganic fiber polymer.

真空断熱材30は、その製造時は、真空断熱材30自身の生産性の向上が図れるように、図3に示すように略平面形状として製造される。そして、略平面形状として製造された真空断熱材30を冷蔵庫の箱体20に組み込む際には、前述したように、曲げ部24の内箱面21aの形状に沿って密着するように、真空断熱材30を曲げた状態で設置する。   The vacuum heat insulating material 30 is manufactured in a substantially planar shape as shown in FIG. 3 so that the productivity of the vacuum heat insulating material 30 itself can be improved at the time of manufacturing. And when incorporating the vacuum heat insulating material 30 manufactured as a substantially planar shape into the box body 20 of the refrigerator, as described above, the vacuum heat insulation is performed so as to closely adhere to the shape of the inner box surface 21a of the bent portion 24. The material 30 is installed in a bent state.

従って、本実施形態においては、略平面形状として製造された真空断熱材30を、図2に示すように、所定の曲面半径で、所定の角度に曲げられるように、且つ、曲げた形状を保持できるように、無機繊維重合体にて形成された芯材32の間に、生分解性物からなる繊維状マットで形成した変形保持部材33或いは生分解性物からなる粉体を不織布の袋に詰めて形成した変形保持部材33を介在させてある。変形保持部材33として生分解性物を用いることにより、地球環境に優しいものとすることができる。   Therefore, in this embodiment, the vacuum heat insulating material 30 manufactured as a substantially planar shape is bent at a predetermined curved radius and a predetermined angle as shown in FIG. 2, and the bent shape is maintained. In order to be able to do so, between the core material 32 formed of an inorganic fiber polymer, the deformation holding member 33 formed of a fibrous mat made of a biodegradable material or the powder made of a biodegradable material is put into a non-woven bag. A deformable holding member 33 formed in a packed manner is interposed. By using a biodegradable material as the deformation holding member 33, it can be made environmentally friendly.

所定の厚さを有する芯材32を複数の層32a、32bで作り、該複数の層32aと32bとの間に、変形保持部材33を設置することにより、真空断熱材30を所定の曲面半径で、所定の角度に曲げても、芯材32の層32a、32bを構成する無機繊維重合体が破壊する程度が少なく、且つ、該無機繊維重合体による外被材31の損傷が少なくなるように構成されている。   A core material 32 having a predetermined thickness is formed of a plurality of layers 32a and 32b, and a deformation holding member 33 is installed between the plurality of layers 32a and 32b, whereby the vacuum heat insulating material 30 has a predetermined curved surface radius. Thus, even when bent at a predetermined angle, the inorganic fiber polymer constituting the layers 32a and 32b of the core material 32 is less likely to break, and damage to the jacket material 31 by the inorganic fiber polymer is reduced. It is configured.

つまり、変形保持部材33を芯材32の間に設置しない場合は、芯材32の内面半径の部分において強制的に圧縮されるか、或いは、芯材32の外面半径の部分において強制的に引っ張り力を受けるので、芯材32を形成する無機繊維重合体が有る程度の割合で破壊してしまう恐れがある。   That is, when the deformation holding member 33 is not installed between the core members 32, it is forcibly compressed at the inner surface radius portion of the core member 32, or is forcibly pulled at the outer surface radius portion of the core member 32. Since the force is received, the inorganic fiber polymer forming the core member 32 may be broken at a certain ratio.

これに対して、本実施形態では、変形保持部材33により芯材32が複数の層32a、32bに分離されているので、真空断熱材30を曲げた場合には、複数の層32a或いは32bがそれぞれ単独に曲がるので、層32aの内面半径の部分或いは外面半径の部分において強制的に圧縮される圧縮量が、変形保持部材33を設置しない場合と比較して小さくなり、或いは、層32bの内面半径の部分或いは外面半径の部分において強制的に引っ張られる量が、変形保持部材33を設置しない場合と比較して少なくなる。これによって、層32aや層32bを形成する無機繊維重合体が破壊する程度が少なくなり、該無機繊維重合体による外被材31の損傷が少なくなるように構成されている。   On the other hand, in this embodiment, since the core material 32 is separated into the plurality of layers 32a and 32b by the deformation holding member 33, when the vacuum heat insulating material 30 is bent, the plurality of layers 32a or 32b are Since each of them bends independently, the amount of compression forcedly compressed at the inner radius portion or outer radius portion of the layer 32a is smaller than when the deformation holding member 33 is not installed, or the inner surface of the layer 32b. The amount forcibly pulled in the radius portion or the outer radius portion is smaller than that in the case where the deformation holding member 33 is not installed. Thus, the degree of destruction of the inorganic fiber polymer forming the layer 32a and the layer 32b is reduced, and the damage to the jacket material 31 by the inorganic fiber polymer is reduced.

次に、表1を参照しながら説明する。表1は本実施形態の真空断熱材である実施例1〜5及びその比較例1の各種試験データ説明表である。   Next, description will be made with reference to Table 1. Table 1 is an explanatory table of various test data of Examples 1 to 5 and Comparative Example 1 which are vacuum heat insulating materials of the present embodiment.

Figure 2007056973
Figure 2007056973

(実施例1)
実施例1の真空断熱材30は、平均繊維径が3μmのグラスウール中にカポック繊維(ニードルパンチング加工品、マット厚5mm)を挟みこみ、更に各々エージング処理を行って作製した。その後、外被材31に5種類の大きさ(500mm×300mm×10mm、220mm×200mm×10mm、300mm×200mm×10mm、250mm×200mm×10mm、400mm×250mm×10mm)の芯材と更にガスを吸着するゲッター剤4(モレキュラ−シ−ブス13X/活性炭)を詰め、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空断熱材30の内部圧力が1.3Paになるまで排気した後、端部をヒートシールで封止した。
Example 1
The vacuum heat insulating material 30 of Example 1 was produced by sandwiching Kapok fibers (needle punched product, mat thickness 5 mm) in glass wool having an average fiber diameter of 3 μm and further performing an aging treatment. After that, the core material of five types (500 mm × 300 mm × 10 mm, 220 mm × 200 mm × 10 mm, 300 mm × 200 mm × 10 mm, 250 mm × 200 mm × 10 mm, 400 mm × 250 mm × 10 mm) and gas are further applied to the jacket material 31. Adsorbed getter agent 4 (Molecular Sieves 13X / activated carbon) was packed and evacuated until the internal pressure of the vacuum heat insulating material 30 reached 1.3 Pa with the rotary pump of the vacuum packaging machine for 10 minutes, with the diffusion pump for 10 minutes. After that, the end was sealed with heat seal.

このようにして得られた真空断熱材30(厚み:約10mm)の熱伝導率について、英弘精機(株)製のAUTO−Λを用いて10℃で測定した。また、折り曲げ性は、曲げ試験機を用いて、試験条件(速度:10mm/min、支点間距離:100mm(支持台及び圧子はΦ20mmの丸棒)、変位量:40mm)での最大曲げ荷重(N)を測定し評価した。更に、形状保持性は4h経過後の保持状態を見た。その結果、表1に示すように、折り曲げ性は97Nで、形状保持性は良好であった。また、熱伝導率が3.0mW/m・Kを示した。このことから、実施例1の真空断熱材30は折り曲げ性と形状保持性及び熱伝導率の両立化が図れ、冷蔵庫箱体20に実施例1の真空断熱材30を挿入することにより熱漏洩量の低減及び省エネ化が期待できる。   The thermal conductivity of the vacuum heat insulating material 30 (thickness: about 10 mm) thus obtained was measured at 10 ° C. using AUTO-Λ manufactured by Eihiro Seiki Co., Ltd. In addition, the bendability is determined by using a bending tester with the maximum bending load under the test conditions (speed: 10 mm / min, distance between fulcrums: 100 mm (support and indenters are round bars of Φ20 mm), displacement: 40 mm). N) was measured and evaluated. Further, the shape retention was observed after 4 hours. As a result, as shown in Table 1, the bendability was 97N and the shape retention was good. The thermal conductivity was 3.0 mW / m · K. From this, the vacuum heat insulating material 30 of Example 1 can achieve both bendability, shape retention, and thermal conductivity, and the amount of heat leakage by inserting the vacuum heat insulating material 30 of Example 1 into the refrigerator box 20. Reduction and energy saving can be expected.

次に、実施例1の真空断熱材30を冷蔵庫で温度差が大きいコンプレッサー周辺部及び冷蔵庫背面の内箱21の外面側に挿入し、更に冷蔵庫箱体20にポリオールとイソシアネートを、高圧発泡機を用いて注入充填して冷蔵庫の断熱材を作製した。発泡断熱材の硬質ポリウレタンフォーム6は、ポリオールとして、平均水酸基価が450のm−トリレンジアミンにプロピレンオキサイドを付加したポリエ−テルポリオールを40重量部、平均水酸基価が470のo−トリレンジアミンにプロピレンオキサイドを付加したポリエ−テルポリオールを30重量部、平均水酸基価が380のo−トリレンジアミンにプロピレンオキサイドを付加したポリエ−テルポリオールを30重量部の混合ポリオール成分100重量部に、シクロペンタン15重量部に水1.5部及び反応触媒としてテトラメチルヘキサメチレンジアミン1.2重量部とトリメチルアミノエチルピペラジン2部、整泡剤として有機シリコ−ン化合物X−20−1614を2重量部、イソシアネート成分としてミリオネートMRのジフェニルメタンイソシアネート多核体を125部用いて発泡充填した。   Next, the vacuum heat insulating material 30 of Example 1 is inserted into the compressor peripheral part where the temperature difference is large in the refrigerator and the outer surface side of the inner box 21 on the rear side of the refrigerator, and further, the polyol and isocyanate are put into the refrigerator box 20, and the high-pressure foaming machine is installed. It was used for injection filling to prepare a refrigerator heat insulating material. Rigid polyurethane foam 6 for foam insulation is 40 parts by weight of polyol obtained by adding propylene oxide to m-tolylenediamine having an average hydroxyl value of 450 as an polyol, and o-tolylenediamine having an average hydroxyl value of 470. 30 parts by weight of a polyether polyol having propylene oxide added thereto, 30 parts by weight of a polyether polyol having propylene oxide added to o-tolylenediamine having an average hydroxyl value of 380, 15 parts by weight of pentane, 1.5 parts by weight of water, 1.2 parts by weight of tetramethylhexamethylenediamine as a reaction catalyst, 2 parts of trimethylaminoethylpiperazine, and 2 parts by weight of an organic silicone compound X-20-1614 as a foam stabilizer Millionate MR as isocyanate component The diphenylmethane diisocyanate polynuclear was foam filling with 125 parts.

その後、冷蔵庫の熱漏洩量及び消費電力量を測定した。冷蔵庫の熱漏洩量は、冷蔵庫の動作状態と反対の温度条件を設定し、庫内からの熱漏洩量として測定を行った。具体的には、−10℃の恒温室内に冷蔵庫を設置し、庫内温度を所定の測定条件(温度差)になるようヒータにそれぞれ通電し冷蔵庫の消費電力と冷却性能を比較する温度条件下で測定した。冷蔵庫の消費電力量はJIS C9801測定基準により測定を行った。その結果、表1に示すように、真空断熱材30を挿入しなかった冷蔵庫と比べて、熱漏洩量で19%、消費電力量で13%低減できる冷蔵庫が得られた。
(実施例2)
実施例1と同様の製作方法で実施例2の真空断熱材30を作製した。用いたグラスウール材は平均繊維径が3.5μmの結合剤を含まないものである。更に、竹繊維(ニードルパンチング加工品、マット厚4mm)の変形保持部材33をグラスウール中に挟みこみ、芯材32のエージング処理を各々行い、外被材31に更にガスを吸着するゲッター剤4(モレキュラ−シ−ブス13X/活性炭)と共に挿入封止して実施例2の真空断熱材30(厚み:約10mm)を作製した。その後、実施例2の真空断熱材30の形状曲げ折り性と形状保持性及び熱伝導率を測定した。その結果、表1に示すように、折り曲げ性は95Nで、4h経過後の形状は保持され良好であった。また、熱伝導率は3.1mW/m・Kを示した。
Thereafter, the amount of heat leakage and power consumption of the refrigerator were measured. The amount of heat leakage from the refrigerator was measured as the amount of heat leakage from the interior by setting the temperature condition opposite to the operating state of the refrigerator. Specifically, a refrigerator is installed in a temperature-controlled room at −10 ° C., and a temperature condition for comparing the power consumption and the cooling performance of the refrigerator by energizing the heaters so that the internal temperature becomes a predetermined measurement condition (temperature difference). Measured with The power consumption of the refrigerator was measured according to the JIS C9801 measurement standard. As a result, as shown in Table 1, a refrigerator capable of reducing the amount of heat leakage by 19% and the power consumption by 13% was obtained compared to the refrigerator in which the vacuum heat insulating material 30 was not inserted.
(Example 2)
The vacuum heat insulating material 30 of Example 2 was produced by the same manufacturing method as Example 1. The used glass wool material does not contain a binder having an average fiber diameter of 3.5 μm. Further, a getter agent 4 (a needle punched product, mat thickness 4 mm) is held between glass wool and the core material 32 is subjected to an aging treatment to further adsorb gas to the jacket material 31 ( The vacuum heat insulating material 30 (thickness: about 10 mm) of Example 2 was produced by inserting and sealing together with molecular sieves 13X / activated carbon). Thereafter, the shape bendability, shape retention, and thermal conductivity of the vacuum heat insulating material 30 of Example 2 were measured. As a result, as shown in Table 1, the bendability was 95 N, and the shape after 4 hours was maintained and was good. The thermal conductivity was 3.1 mW / m · K.

次に、実施例2の真空断熱材30を実施例1と同様に冷蔵庫箱体20に挿入して実機冷蔵庫の特性評価を行った。冷蔵庫箱体20中には、実施例2の真空断熱材30を冷蔵庫で温度差が大きいコンプレッサー周辺部及び冷蔵庫背面の内箱21の外面側に5枚挿入し、実施例1と同様にポリオールとイソシアネートを発泡充填して冷蔵庫の断熱材を作製し、熱漏洩量及び消費電力量を評価した。その結果、表1に示すように、真空断熱材30を挿入しなかった冷蔵庫と比べて熱漏洩量で17%、消費電力量で12%低減でき省エネ化が可能となった。
(実施例3)
実施例1と同様の製作方法で実施例3の真空断熱材30を作製した。用いたグラスウール材は平均繊維径が4μmの結合剤を含まないものである。更に、セルロース繊維(ニードルパンチング加工品、マット厚6mm)の変形保持部材33をグラスウール中に挟みこみ、芯材32のエージング処理を行い、外被材31にゲッター剤と共に挿入封止して実施例3の真空断熱材30(厚み:約10mm)を作製した。その後、実施例3の真空断熱材30の曲げ折り性と形状保持性及び熱伝導率を測定した。その結果、表1に示すように、折り曲げ性は99Nで、4h経過後の形状は保持され良好であった。また、熱伝導率は3.3mW/m・Kを示した。
Next, the vacuum heat insulating material 30 of Example 2 was inserted in the refrigerator box 20 similarly to Example 1, and the characteristic evaluation of the actual refrigerator was performed. In the refrigerator box 20, five sheets of the vacuum heat insulating material 30 of Example 2 are inserted in the periphery of the compressor having a large temperature difference in the refrigerator and on the outer surface side of the inner box 21 on the back of the refrigerator. The refrigerator was filled with isocyanate to produce a heat insulating material for the refrigerator, and the amount of heat leakage and power consumption were evaluated. As a result, as shown in Table 1, it was possible to reduce the amount of heat leakage by 17% and the amount of power consumption by 12% as compared with the refrigerator in which the vacuum heat insulating material 30 was not inserted.
(Example 3)
The vacuum heat insulating material 30 of Example 3 was produced by the same manufacturing method as Example 1. The used glass wool material does not contain a binder having an average fiber diameter of 4 μm. Further, the deformation holding member 33 of cellulose fiber (needle punched product, mat thickness 6 mm) is sandwiched between glass wool, the core material 32 is aged, and the outer cover material 31 is inserted and sealed together with the getter agent. 3 vacuum heat insulating material 30 (thickness: about 10 mm) was produced. Thereafter, the bendability, shape retention and thermal conductivity of the vacuum heat insulating material 30 of Example 3 were measured. As a result, as shown in Table 1, the bendability was 99N, and the shape after 4 hours was maintained and was good. The thermal conductivity was 3.3 mW / m · K.

次に、実施例3の真空断熱材30を実施例1と同様に冷蔵庫箱体20に挿入して実機冷蔵庫の特性評価を行った。冷蔵庫箱体20中には、実施例3の真空断熱材30を冷蔵庫で温度差が大きいコンプレッサー周辺部及び冷蔵庫背面の内箱21の外面側に5枚挿入し、実施例1と同様にポリオールとイソシアネートを発泡充填して冷蔵庫の断熱材を作製し、熱漏洩量及び消費電力量を評価した。その結果、表1に示すように、真空断熱材30を挿入しなかった冷蔵庫と比べて熱漏洩量で15%、消費電力量で11%低減でき省エネ化が可能となった。
(実施例4)
実施例1と同様の製作方法で実施例4の真空断熱材30を作製した。用いたグラスウール材は平均繊維径が4.5μmの結合剤を含まないものである。更に、デンプン粉体を不織布の袋に詰め(厚さ:3mm)をグラスウール中に挟みこみ、芯材32のエージング処理を各々行い、外被材31にゲッター剤と共に挿入封止して実施例4の真空断熱材30(厚み:約10mm)を作製した。その後、実施例4の真空断熱材30の曲げ特性と形状保持性及び熱伝導率を測定した。その結果、表1に示すように、折り曲げ性は98Nで、4h経過後の形状は保持され良好であった。また、熱伝導率は3.5mW/m・Kを示した。
Next, the vacuum heat insulating material 30 of Example 3 was inserted in the refrigerator box 20 similarly to Example 1, and the characteristic evaluation of the actual refrigerator was performed. In the refrigerator box 20, five sheets of the vacuum heat insulating material 30 of Example 3 are inserted on the outer peripheral side of the compressor peripheral part having a large temperature difference in the refrigerator and the inner box 21 on the back of the refrigerator. The refrigerator was filled with isocyanate to produce a heat insulating material for the refrigerator, and the amount of heat leakage and power consumption were evaluated. As a result, as shown in Table 1, the amount of heat leakage can be reduced by 15% and the amount of power consumption can be reduced by 11% compared to the refrigerator in which the vacuum heat insulating material 30 is not inserted.
Example 4
The vacuum heat insulating material 30 of Example 4 was produced by the same manufacturing method as Example 1. The used glass wool material does not contain a binder having an average fiber diameter of 4.5 μm. Further, the starch powder was packed in a non-woven bag (thickness: 3 mm) in glass wool, the core material 32 was subjected to an aging treatment, and the outer cover material 31 was inserted and sealed together with a getter agent. The vacuum heat insulating material 30 (thickness: about 10 mm) was produced. Thereafter, the bending characteristics, shape retention, and thermal conductivity of the vacuum heat insulating material 30 of Example 4 were measured. As a result, as shown in Table 1, the bendability was 98N, and the shape after 4 hours was maintained and was good. The thermal conductivity was 3.5 mW / m · K.

次に、実施例4の真空断熱材30を実施例1と同様に冷蔵庫箱体20に挿入して実機冷蔵庫の特性評価を行った。冷蔵庫箱体20中には、真空断熱材30を冷蔵庫で温度差が大きいコンプレッサー周辺部及び冷蔵庫背面の内箱21の外面側に5枚挿入し、実施例1のポリオールとイソシアネートを発泡充填して冷蔵庫の断熱材を作製し、熱漏洩量及び消費電力量を評価した。その結果、表1に示すように、真空断熱材30を挿入しなかった冷蔵庫と比べて熱漏洩量で15%、消費電力量で9%低減でき省エネ化が可能となった。
(実施例5)
実施例1と同様の製作方法で実施例5の真空断熱材30を作製した。用いたグラスウール材は平均繊維径が5μmの結合剤を含まないものである。更に、細粒子化した貝殻粉を不織布の袋に詰め(厚さ:3mm)をグラスウール中に挟みこみ、芯材32のエージング処理を各々行い、外被材31にゲッター剤と共に挿入封止して実施例5の真空断熱材30(厚み:約10mm)を作製した。その後、実施例5の真空断熱材30の折り曲げ性と形状保持性及び熱伝導率を測定した。その結果、表1に示すように、折り曲げ性は102Nで、4h経過後の形状は保持され良好であった。また、熱伝導率は3.6mW/m・Kを示した。
Next, the vacuum heat insulating material 30 of Example 4 was inserted in the refrigerator box 20 similarly to Example 1, and the characteristic evaluation of the actual refrigerator was performed. In the refrigerator box 20, five vacuum heat insulating materials 30 are inserted in the refrigerator peripheral portion having a large temperature difference in the refrigerator and the outer surface side of the inner box 21 on the rear surface of the refrigerator, and the polyol and isocyanate of Example 1 are foam-filled. A refrigerator heat insulating material was prepared, and the amount of heat leakage and power consumption were evaluated. As a result, as shown in Table 1, the amount of heat leakage can be reduced by 15% and the amount of power consumption can be reduced by 9% compared to the refrigerator in which the vacuum heat insulating material 30 is not inserted.
(Example 5)
A vacuum heat insulating material 30 of Example 5 was manufactured by the same manufacturing method as Example 1. The glass wool material used does not contain a binder having an average fiber diameter of 5 μm. Further, the finely crushed shell powder is packed in a non-woven bag (thickness: 3 mm) and sandwiched between glass wool, aging treatment of the core material 32 is performed, and the outer cover material 31 is inserted and sealed together with the getter agent. The vacuum heat insulating material 30 (thickness: about 10 mm) of Example 5 was produced. Thereafter, the bendability, shape retention, and thermal conductivity of the vacuum heat insulating material 30 of Example 5 were measured. As a result, as shown in Table 1, the bendability was 102 N, and the shape after 4 hours was maintained and good. The thermal conductivity was 3.6 mW / m · K.

次に、実施例5の真空断熱材30を実施例1と同様に冷蔵庫箱体20に挿入して実機冷蔵庫の特性評価を行った。冷蔵庫箱体20中には、実施例5の真空断熱材30を冷蔵庫で温度差が大きいコンプレッサー周辺部及び冷蔵庫背面の内箱21の外面側に5枚挿入し、実施例1のポリオールとイソシアネートを発泡充填して冷蔵庫の断熱材を作製し、熱漏洩量及び消費電力量を評価した。その結果、表1に示すように、実施例5の真空断熱材30を挿入しなかった冷蔵庫と比べて熱漏洩量で10%、消費電力量で5%低減でき省エネ化が可能となった。
(比較例1)
実施例1と同様の製作方法で、変形保持部材33を用いない比較例1の真空断熱材30を作製した。用いたグラスウール材は平均繊維径が6μmである。更に、グラスウール芯材32のエージング処理を行い、外被材31に挿入封止して真空断熱材30(厚み:約10mm)を作製した。その後、比較例1の真空断熱材30の折り曲げ性と形状保持性及び熱伝導率を測定した。その結果、表1に示すように、折り曲げ性は125Nで、4h経過後の形状は保持されず不良であった。また、熱伝導率は4.3mW/m・Kを示した。
Next, the vacuum heat insulating material 30 of Example 5 was inserted in the refrigerator box 20 similarly to Example 1, and the characteristic evaluation of the actual refrigerator was performed. In the refrigerator box 20, five pieces of the vacuum heat insulating material 30 of Example 5 are inserted into the periphery of the compressor having a large temperature difference in the refrigerator and the outer surface side of the inner box 21 on the back of the refrigerator, and the polyol and isocyanate of Example 1 are inserted. A foam insulation was prepared by foam filling, and the amount of heat leakage and power consumption were evaluated. As a result, as shown in Table 1, compared to the refrigerator in which the vacuum heat insulating material 30 of Example 5 was not inserted, the amount of heat leakage was reduced by 10% and the amount of power consumption was reduced by 5%, which enabled energy saving.
(Comparative Example 1)
The vacuum heat insulating material 30 of the comparative example 1 which does not use the deformation | transformation holding member 33 with the manufacturing method similar to Example 1 was produced. The glass wool material used has an average fiber diameter of 6 μm. Furthermore, the aging process of the glass wool core material 32 was performed, and it inserted and sealed to the jacket material 31, and produced the vacuum heat insulating material 30 (thickness: about 10 mm). Thereafter, the bendability, shape retention, and thermal conductivity of the vacuum heat insulating material 30 of Comparative Example 1 were measured. As a result, as shown in Table 1, the bendability was 125 N, and the shape after 4 hours had not been maintained and was poor. The thermal conductivity was 4.3 mW / m · K.

次に、比較例1の真空断熱材30を実施例1と同様に冷蔵庫箱体20に挿入して実機冷蔵庫の特性評価を行った。冷蔵庫箱体20中には、比較例1の真空断熱材30を冷蔵庫で温度差が大きいコンプレッサー周辺部及び冷蔵庫背面の内箱21の外面側に5枚挿入し、実施例1のポリオールとイソシアネートを発泡充填して冷蔵庫の断熱材を作製し、熱漏洩量及び消費電力量を評価した。その結果、表1に示すように、真空断熱材30を挿入しなかった冷蔵庫と比べて熱漏洩量で9%、消費電力量で4%しか省エネ化できなかった。   Next, the vacuum heat insulating material 30 of the comparative example 1 was inserted in the refrigerator box 20 similarly to Example 1, and the characteristic evaluation of the actual refrigerator was performed. In the refrigerator box 20, five sheets of the vacuum heat insulating material 30 of Comparative Example 1 are inserted in the refrigerator peripheral portion having a large temperature difference in the refrigerator and the outer surface side of the inner box 21 on the back of the refrigerator, and the polyol and isocyanate of Example 1 are inserted. A foam insulation was prepared by foam filling, and the amount of heat leakage and power consumption were evaluated. As a result, as shown in Table 1, it was possible to save energy by only 9% in terms of heat leakage and 4% in terms of power consumption compared to refrigerators in which the vacuum heat insulating material 30 was not inserted.

以上説明したように、本実施形態によれば、芯材32を平均繊維径が2μm以上の結合材を含まない繊維重合体で形成すると共に、芯材32の間に変形可能で且つ変形後の芯材形状を保持可能な変形保持部材33を配置し、変形保持部材33を生分解性物からなる繊維状マットまたは生分解性物からなる粉体を不織布の袋に詰めて形成し、これらをガスバリア性外被材31中に入れて、真空封止した真空断熱材30としているので、折り曲げ性と形状保持性及び断熱特性を両立することが可能な高性能真空断熱材30を提供することができる。   As described above, according to the present embodiment, the core material 32 is formed of a fiber polymer that does not include a binder having an average fiber diameter of 2 μm or more, and is deformable between the core materials 32 and after being deformed. A deformation holding member 33 capable of holding the core material shape is disposed, and the deformation holding member 33 is formed by filling a fibrous mat made of biodegradable material or a powder made of biodegradable material into a nonwoven fabric bag, Since the vacuum heat insulating material 30 is put in the gas barrier outer covering material 31 and vacuum-sealed, it is possible to provide a high performance vacuum heat insulating material 30 capable of achieving both bendability, shape retention and heat insulating properties. it can.

また、本実施形態によれば、芯材32の無機繊維重合体が3〜5μmの平均繊維径を有するグラスウールであることを特徴とする真空断熱材30である。ここで、結合剤を含まないグラスウールの径が3〜5μmであることが好ましい。無機繊維重合体は、平均繊維径により熱伝導率特性やコストが大きく変わる。例えば、平均繊維径が5μm以上のグラスウール等はコストの点では安価であるため実用化しやすい素材であるが熱伝導率が大きく劣る。その理由は、繊維が同一方向に配列して繊維の接触が線に近く、このため接触熱抵抗が小さくなり熱伝導率が高くなると考えられる。一方、平均繊維径が2μm未満の繊維は単品でも生産性が低く高価であると共に、繊維集合体を重ねて厚みを稼ぐ必要があり、真空断熱材30のコスト高騰や生産性の点から断熱材としての使用は難しい。また、接触抵抗の他に熱流路がジグザクとなり、熱抵抗が増大して熱伝導率が低くなる多くの繊維材の中から、平均繊維径が3〜5μmで且つ結合材を含まないグラスウールを選定し、折り曲げ性と形状保持性及び断熱性を両立した真空断熱材30を見出した。   Moreover, according to this embodiment, it is the vacuum heat insulating material 30 characterized by the inorganic fiber polymer of the core material 32 being the glass wool which has an average fiber diameter of 3-5 micrometers. Here, it is preferable that the diameter of the glass wool which does not contain a binder is 3-5 micrometers. Inorganic fiber polymers vary greatly in thermal conductivity characteristics and cost depending on the average fiber diameter. For example, glass wool having an average fiber diameter of 5 μm or more is a material that is easy to put into practical use because it is inexpensive in terms of cost, but its thermal conductivity is greatly inferior. The reason is considered that the fibers are arranged in the same direction and the contact of the fibers is close to a line, so that the contact thermal resistance is reduced and the thermal conductivity is increased. On the other hand, a fiber having an average fiber diameter of less than 2 μm is low in productivity and expensive even if it is a single product, and it is necessary to increase the thickness by stacking fiber assemblies. Use as is difficult. In addition to contact resistance, the heat flow path becomes zig-zag, and glass wool with an average fiber diameter of 3 to 5 μm and no binder is selected from many fiber materials that increase thermal resistance and lower thermal conductivity. And the vacuum heat insulating material 30 which balanced bendability, shape retention property, and heat insulation was discovered.

無機繊維重合体としては、グラスウール、グラスファイバー、アルミナ、シリカアルミナ、シリカ、ロックウール、炭化ケイ素等の結合剤を含まない繊維を使用できる。   As the inorganic fiber polymer, fibers containing no binder such as glass wool, glass fiber, alumina, silica alumina, silica, rock wool and silicon carbide can be used.

本実施形態では、変形保持部材33を地球環境に優しい生分解性物からなる繊維状マットまたは粉体を不織布の袋に詰めたもので形成した真空断熱材30である。ここで、生分解物は、カポック、竹、セルロース、パルプ、糖、茶抽出殻、貝殻、デンプンであり、ガス発生の少ない素材を選定した。また、繊維及び粉体は繊維径や粒径が小さい程、熱伝導率の点で好ましい。   In the present embodiment, the deformation holding member 33 is a vacuum heat insulating material 30 formed by packing a fibrous mat or powder made of a biodegradable material friendly to the global environment into a non-woven bag. Here, biodegradable materials were kapok, bamboo, cellulose, pulp, sugar, tea extraction shell, shell, and starch, and materials with less gas generation were selected. Further, the smaller the fiber diameter and particle size of the fiber and powder, the more preferable in terms of thermal conductivity.

また、芯材32の脱水、脱ガスを目的として、外被材31への挿入前に芯材32等をエージング処理を施すことも有効である。この時の加熱温度は、脱水が可能であることから110℃程が好ましい。   For the purpose of dehydration and degassing of the core material 32, it is also effective to subject the core material 32 and the like to aging treatment before insertion into the jacket material 31. The heating temperature at this time is preferably about 110 ° C. because dehydration is possible.

更に、外被材31としては、内部に気密部を設けるために芯材32を覆うものであり、材料構成としては特に限定されるものではない。例えば、最外層にポリエチレンテレフタレート樹脂、中間層にアルミニウム箔、最内層に高密度ポリエチレン樹脂からなるプラスチックラミネートフィルム、例えば、最外層にポリエチレンテレフタレ−ト樹脂、中間層にアルミニウム蒸着層を有するエチレンービニルアルコール共重合体樹脂、最内層に高密度ポリエチレン樹脂からなるプラスチックラミネートフィルムとを袋状にしたものなどが例示される。外被材31のこれら各層、最外層は衝撃などに対応するためであり、中間層はガスバリア性を確保するためであり、最内層は熱融着によって密閉するためである。従って、これらの目的にあうものであれば、全ての公知材料が使用可能であり、更に改善する手段として、最外層にポリアミド樹脂等を付与することで耐突き刺し性を向上させたり、中間層にアルミニウム蒸着層を有するエチレンービニルアルコール共重合体樹脂を2層設けたりしてよい。熱融着する最内層としては、シール性やケミカルアタック性等から高密度ポリエチレン樹脂が好ましいが、この他に、ポリプロピレン樹脂やポリアクリルニトリル樹脂等を用いても良い。外被材31の材料の具体的構成としては、例えば、最外層にポリアミド、第2層目にポリエチレンテレフタレ−ト樹脂、第3層目にアルミ箔、最内層に高密度ポリエチレン樹脂からなるアルミラミネートフィルムである。   Further, the jacket material 31 covers the core material 32 in order to provide an airtight portion therein, and the material configuration is not particularly limited. For example, polyethylene terephthalate resin in the outermost layer, aluminum foil in the intermediate layer, plastic laminate film made of high-density polyethylene resin in the innermost layer, for example, ethylene with polyethylene terephthalate resin in the outermost layer and aluminum vapor deposition layer in the intermediate layer Examples include a vinyl alcohol copolymer resin and a plastic laminate film made of a high-density polyethylene resin in the innermost layer in a bag shape. This is because each of these layers and the outermost layer of the jacket material 31 are to cope with impact and the like, the intermediate layer is to ensure gas barrier properties, and the innermost layer is sealed by heat fusion. Therefore, as long as it meets these purposes, all known materials can be used, and as a means for further improvement, piercing resistance is improved by applying a polyamide resin or the like to the outermost layer, or an intermediate layer is provided. Two layers of ethylene-vinyl alcohol copolymer resin having an aluminum vapor deposition layer may be provided. The innermost layer to be heat-sealed is preferably a high-density polyethylene resin from the viewpoint of sealing properties, chemical attack properties, etc. In addition to this, polypropylene resin, polyacrylonitrile resin, or the like may be used. As a specific configuration of the material of the jacket material 31, for example, an outer layer made of polyamide, a second layer made of polyethylene terephthalate resin, a third layer made of aluminum foil, and an innermost layer made of high-density polyethylene resin. Laminated film.

また、真空断熱材の信頼性を更に向上させるために、ゲッター剤として必要に応じてドーソナイト、ハイドロタルサイト、金属水酸化物等のガス吸着剤、あるいはモレキュラ−シ−ブス、シリカゲル、酸化カルシウム、ゼオライト、活性炭、水酸化カリウム、水酸化ナトリウム、水酸化リチウム等の水分吸着剤を使用する。   Further, in order to further improve the reliability of the vacuum heat insulating material, a gas adsorbent such as dawsonite, hydrotalcite, metal hydroxide or the like as a getter agent, or molecular sieves, silica gel, calcium oxide, A moisture adsorbent such as zeolite, activated carbon, potassium hydroxide, sodium hydroxide, lithium hydroxide is used.

真空断熱材30の外形や厚さなどの形状は、特に限定されず、適用される個所と作業性に応じて各種外形及び厚さのものが適用可能である。   The shape, such as the outer shape and thickness, of the vacuum heat insulating material 30 is not particularly limited, and various shapes and thicknesses can be applied depending on the location and workability.

本実施形態は、外箱23と内箱21からなる空間内に硬質樹脂フォーム22を充填した冷蔵庫断熱箱体20または断熱扉体6において、上記本実施形態のいずれかに記載の真空断熱材30と硬質樹脂フォーム22を断箱体20または断熱扉体6の内部の断熱材として用いた冷蔵庫である。   This embodiment is the refrigerator heat insulation box body 20 or the heat insulation door body 6 in which the hard resin foam 22 is filled in the space composed of the outer box 23 and the inner box 21, and the vacuum heat insulating material 30 according to any one of the above embodiments. And the hard resin foam 22 as a heat insulating material inside the box body 20 or the heat insulating door body 6.

本実施形態は、硬質樹脂フォーム22がシクロペンタン及び水を混合発泡剤とするポリウレタンフォームであることを特徴とする冷蔵庫である。   The present embodiment is a refrigerator characterized in that the hard resin foam 22 is a polyurethane foam using cyclopentane and water as a mixed foaming agent.

ここで、硬質樹脂フォーム22としては、例えば硬質ウレタンフォーム、フェノールフォームやスチレンフォーム等が例示される。この中で、シクロペンタン及び水を混合発泡剤とする硬質ポリウレタンフォームが好ましい。   Here, examples of the hard resin foam 22 include hard urethane foam, phenol foam, and styrene foam. Among these, a rigid polyurethane foam using cyclopentane and water as a mixed foaming agent is preferable.

本実施形態の硬質ポリウレタンフォームは、ポリオールを基本原料として、発泡剤、整泡剤、反応触媒の存在下でイソシアネートを反応させて得られるものである。ポリオールとしては、m−トリレンジアミン(2,4−トリレンジアミン、2,6−トリレンジアミン)及びo−トリレンジアミン(2,3−トリレンジアミン、3,4−トリレンジアミン)から成る開始剤のプロピレンオキサイド付加物を主に用いた。他の開始剤は、2価アルコ−ルのプロピレングリコ−ル,ジプロピレングリコ−ル、3価アルコ−ルのグリセリン,トリメチロ−ルプロパン、多価アルコ−ルのジグリセリン、メチルグルコシド、ソルビト−ル、シュ−クロ−ズ、アルキレンポリアミンのエチレンジアミン、ジエチレントリアミン、アルカノールアミンのモノエタノールアミン、ジエタノールアミン、イソプロパノールアミンその他のジアミノジフェニルメタン、ビスフェノールA、ポリメチレンポリフェニルポリアミンを種々のアルキレンオキサイドで付加物としたポリオールを用いた。イソシアネートは、ジフェニルメタンジイソシアネート多核体を主に使用する。ジフェニルメタンジイソシアネート多核体を用いたイソシアネートは、ポリエーテルポリオール溶液と粘度差が小さいので、ポリエ−テルポリオールとの相溶性が向上する。ジフェニルメタンジイソシアネート多核体を用いることによって、初期反応は比較的速くなりゲル化や硬化が遅くなるので、脱形時のフォーム膨れ量を小さくなる。少量であればトリレンジイソシアネート異性体混合物、2,4−体100部、2,4−体/2,6−体=80/20、65/35(重量比)はもちろん、商品名三井コスモネートTRC、武田薬品のタケネート4040プレポリマーのウレタン変性トリレンジイソシアネート,アロファネート変性トリレンジイソシアネート、ビウレット変性トリレンジイソシアネート、イソシアヌレ−ト変性トリレンジイソシアネート等も使用できる。4,4′―ジフェニルメタンジイソシアネートとしては、主成分とする純品の他3核体以上の多核体を含有する商品名三井コスモネートM−200、武田薬品製のミリオネートMRのジフェニルメタンイソシアネート多核体を使用できる。また、発泡剤としては、炭化水素系発泡剤のシクロペンタン及び水を用いる。ポリオール混合物100重量部に対し、12〜18重量部のシクロペンタン及び1.8重量部未満の水を組み合わせる。一般にシクロペンタンと水を多く用いれば容易に低密度化できるが、水が多いと気泡セル内の炭酸ガスの分圧が増加して膨れ量が大きくなり、シクロペンタンが多いと圧縮強度や寸法安定性が劣ってくる。反応触媒としては、テトラメチルヘキサメチレンジアミン、ペンタメチルジエチレントリアミン、3量化触媒を併用して高速反応化とキュア−性を高められる。反応触媒の配合量は、ポリオール成分100重量部に対し、2〜5重量部が好ましい。それ以外に、第3級アミンのトリメチルアミノエチルピペラジン、トリエチレンジアミン、テトラメチルエチレンジアミン、3量化触媒のトリス(3−ジメチルアミノプロピル)ヘキサヒドロ−S−トリアジン、遅効性触媒のジプロピレングリコール、酢酸カリジエチレングリコール等、反応性が合致すれば使用することができる。整泡剤としては、低表面張力の方が気泡セルの大きさがそろうので、フォームは一様に膨れ、一様な強度を有する。整泡剤の配合量は、ポリオール成分が100重量部あたり1.5〜4重量部である。例えばゴ−ルドシュミット製のB−8461,B−8462,信越化学製のX−20−1614,X−20−1634,日本ユニカ製のSZ−1127,SZ−1671を用いる。上記材料を用いて、硬質ポリウレタンフォームを発泡する。発泡機は、例えばプロマ−ト社製PU−30型発泡機が用いられる。発泡条件は、発泡機の種類によって多少異なるが通常は液温18〜30℃、吐出圧力80〜150kg/cm、吐出量15〜30kg/min、型箱の温度は35〜45℃が好ましい条件である。 The rigid polyurethane foam of this embodiment is obtained by reacting an isocyanate in the presence of a foaming agent, a foam stabilizer, and a reaction catalyst using a polyol as a basic raw material. As the polyol, from m-tolylenediamine (2,4-tolylenediamine, 2,6-tolylenediamine) and o-tolylenediamine (2,3-tolylenediamine, 3,4-tolylenediamine) The propylene oxide adduct of the initiator was mainly used. Other initiators include dihydric alcohol propylene glycol, dipropylene glycol, trihydric alcohol glycerin, trimethylolpropane, polyhydric alcohol diglycerin, methyl glucoside, sorbitol. , Sucrose, alkylenepolyamine ethylenediamine, diethylenetriamine, alkanolamine monoethanolamine, diethanolamine, isopropanolamine and other diaminodiphenylmethane, bisphenol A, and polymethylene polyphenylpolyamine as adducts with various alkylene oxides. Using. Diisocyanate diisocyanate polynuclear is mainly used as the isocyanate. Since the isocyanate using the diphenylmethane diisocyanate polynuclear body has a small difference in viscosity from the polyether polyol solution, the compatibility with the polyether polyol is improved. By using diphenylmethane diisocyanate polynuclear bodies, the initial reaction is relatively fast and the gelation and curing are slowed down, so that the amount of foam expansion at the time of demolding is reduced. If it is a small amount, tolylene diisocyanate isomer mixture, 2,4-isomer 100 parts, 2,4-isomer / 2,6-isomer = 80/20, 65/35 (weight ratio) as well as trade name Mitsui Cosmonate TRC, Takeda's Takenate 4040 prepolymer urethane modified tolylene diisocyanate, allophanate modified tolylene diisocyanate, biuret modified tolylene diisocyanate, isocyanurate modified tolylene diisocyanate and the like can also be used. As the 4,4'-diphenylmethane diisocyanate, the product name Mitsui Cosmonate M-200, which contains a polynuclear compound of 3 or more nuclei in addition to the pure product as the main component, diphenylmethane isocyanate polynuclear product of Millionate MR manufactured by Takeda it can. Further, as the foaming agent, hydrocarbon-based foaming agent cyclopentane and water are used. 12 to 18 parts by weight of cyclopentane and less than 1.8 parts by weight of water are combined per 100 parts by weight of the polyol mixture. In general, if a large amount of cyclopentane and water is used, the density can be easily reduced. However, if there is a large amount of water, the partial pressure of carbon dioxide in the bubble cell increases and the amount of swelling increases. Inferiority. As a reaction catalyst, tetramethylhexamethylenediamine, pentamethyldiethylenetriamine, and a trimerization catalyst can be used in combination to increase the high-speed reaction and cure properties. The blending amount of the reaction catalyst is preferably 2 to 5 parts by weight with respect to 100 parts by weight of the polyol component. Other than that, tertiary amines such as trimethylaminoethylpiperazine, triethylenediamine, tetramethylethylenediamine, trimerization catalyst tris (3-dimethylaminopropyl) hexahydro-S-triazine, slow-acting catalyst dipropylene glycol, potassium carbonate acetate It can be used if the reactivity matches. As the foam stabilizer, the foam is uniformly expanded and has a uniform strength because the size of the bubble cell is aligned with the lower surface tension. The blending amount of the foam stabilizer is 1.5 to 4 parts by weight per 100 parts by weight of the polyol component. For example, B-8461 and B-8462 manufactured by Goldschmidt, X-20-1614, X-20-1634 manufactured by Shin-Etsu Chemical, and SZ-1127 and SZ-1671 manufactured by Nippon Unica are used. A rigid polyurethane foam is foamed using the above materials. As the foaming machine, for example, a PU-30 type foaming machine manufactured by PROMAT Co., Ltd. is used. Foaming conditions vary slightly depending on the type of foaming machine, but usually a liquid temperature of 18 to 30 ° C., a discharge pressure of 80 to 150 kg / cm 2 , a discharge amount of 15 to 30 kg / min, and a mold box temperature of 35 to 45 ° C. are preferable. It is.

本発明でいう冷蔵庫には、家庭用及び業務用の冷蔵・冷凍庫の他に、自動販売機、商品陳列棚、商品陳列ケース、保冷庫、クーラーボックス、冷蔵・冷凍庫等が含まれる。   The refrigerator in the present invention includes vending machines, product display shelves, product display cases, cool storage boxes, cooler boxes, refrigeration / freezers, etc., in addition to home and commercial refrigeration / freezers.

内箱と外箱とから構成される箱体内部に有する断熱箱体及び/又は断熱扉体内部に、真空断熱材30と硬質樹脂フォームを挿入する方法としては、あらかじめ内箱と外箱とで形成した空間に真空断熱材30を配設しておき、その後硬質樹脂フォームを注入して一体成型する方法、あるいは真空断熱材30と硬質樹脂フォームをあらかじめ一体成型した断熱ボードを作製しておき、その断熱ボードを内箱あるいは外箱に貼り付け又は両者で挟持する等、様々な方法があるが、本発明はこれらに特に限定されるものではない。   As a method of inserting the vacuum heat insulating material 30 and the hard resin foam into the heat insulating box and / or the heat insulating door inside the box constituted by the inner box and the outer box, the inner box and the outer box are preliminarily used. The vacuum heat insulating material 30 is disposed in the formed space, and then a method of injecting and integrally molding the hard resin foam, or preparing a heat insulating board in which the vacuum heat insulating material 30 and the hard resin foam are integrally molded in advance, There are various methods such as attaching the heat insulation board to the inner box or the outer box or sandwiching them between the two, but the present invention is not particularly limited thereto.

本実施形態は、少なくとも芯材32が結合剤を含まない無機繊維中に生分解性物からなる繊維状又は粉体状の変形保持部材33を挟み、ガスバリア性フィルム中にゲッター剤と共に入れて真空引きし、開口部を封止することを特徴とする真空断熱材30の製造方法である。   In this embodiment, a fibrous or powdery deformation holding member 33 made of a biodegradable material is sandwiched between inorganic fibers in which at least the core material 32 does not contain a binder, and a vacuum is obtained by putting together with a getter agent in a gas barrier film. It is a manufacturing method of the vacuum heat insulating material 30 characterized by pulling and sealing an opening part.

本発明の一実施形態の真空断熱材及びそれを用いた冷蔵庫を示す縦断面図である。It is a longitudinal cross-sectional view which shows the vacuum heat insulating material of one Embodiment of this invention, and the refrigerator using the same. 図1のC部を拡大した断面図である。It is sectional drawing to which the C section of FIG. 1 was expanded. 図2の真空断熱材の曲げる前の状態を示す断面図である。It is sectional drawing which shows the state before bending of the vacuum heat insulating material of FIG.

符号の説明Explanation of symbols

6…扉、10〜12…貯蔵室、20…冷蔵庫の箱体、21…内箱、22…発泡断熱材、23…外箱、24…曲げ部(変形部)、30…真空断熱材、31…外被材、32(32a、32b)…芯材、33…変形保持部材、34…ゲッター剤、80…真空断熱材。   6 ... Door, 10-12 ... Storage room, 20 ... Refrigerator box, 21 ... Inner box, 22 ... Foam insulation, 23 ... Outer box, 24 ... Bend (deformation), 30 ... Vacuum insulation, 31 ... jacket material, 32 (32a, 32b) ... core material, 33 ... deformation holding member, 34 ... getter agent, 80 ... vacuum heat insulating material.

Claims (7)

ガスバリア性を有する外被材中に芯材を真空封止した真空断熱材であって、
前記芯材を平均繊維径が2μm以上の結合材を含まない繊維重合体で形成すると共に、
前記芯材の間に変形可能で且つ変形後の芯材形状を保持可能な変形保持部材を配置し、
前記変形保持部材を生分解性物からなる繊維状マットで形成した
ことを特徴とする真空断熱材。
A vacuum heat insulating material obtained by vacuum-sealing a core material in a jacket material having gas barrier properties,
The core material is formed of a fiber polymer that does not include a binder having an average fiber diameter of 2 μm or more,
A deformation holding member that can be deformed and can hold the deformed core material shape is disposed between the core materials,
A vacuum heat insulating material, wherein the deformation holding member is formed of a fibrous mat made of a biodegradable material.
ガスバリア性を有する外被材中に芯材を真空封止した真空断熱材であって、
前記芯材を平均繊維径が2μm以上の繊維重合体で形成すると共に、
前記芯材の間に変形可能で且つ変形後の芯材形状を保持可能な変形保持部材を配置し、
前記変形保持部材を生分解性物からなる粉体を不織布の袋に詰めて形成した
ことを特徴とする真空断熱材。
A vacuum heat insulating material obtained by vacuum-sealing a core material in a jacket material having gas barrier properties,
While forming the core material with a fiber polymer having an average fiber diameter of 2 μm or more,
A deformation holding member that can be deformed and can hold the deformed core material shape is disposed between the core materials,
A vacuum heat insulating material, wherein the deformation holding member is formed by filling a powder of a biodegradable material into a non-woven bag.
請求項1に記載の真空断熱材において、前記芯材の繊維重合体が3〜5μmの平均繊維径を有するものであることを特徴とする真空断熱パネル。   2. The vacuum heat insulating panel according to claim 1, wherein the fiber polymer of the core material has an average fiber diameter of 3 to 5 [mu] m. 請求項1または2に記載の真空断熱材において、前記生分解性物が、カポック、竹、セルロース、パルプ、糖、茶抽出殻、貝殻、デンプンからなる少なくとも1種であることを特徴とする真空断熱パネル。   The vacuum heat insulating material according to claim 1 or 2, wherein the biodegradable material is at least one kind of kapok, bamboo, cellulose, pulp, sugar, tea extraction shell, shell, starch. Thermal insulation panel. ガスバリア性を有する外被材中に芯材を真空封止した真空断熱材を外箱と内箱とによって形成される空間に配設すると共に、その真空断熱材の周囲の前記空間に発泡断熱材を充填してなる冷蔵庫において、
前記芯材を平均繊維径が2μm以上の繊維重合体で形成すると共に、前記芯材の間に変形可能で且つ変形後の芯材形状を保持可能な変形保持部材を配置し、前記変形保持部材を生分解性物からなる繊維状マットで形成した前記真空断熱材を構成し、
前記真空断熱材を前記外箱または前記内箱の変形部に沿って変形して配置した
ことを特徴とする冷蔵庫。
A vacuum heat insulating material obtained by vacuum-sealing a core material in a jacket material having a gas barrier property is disposed in a space formed by the outer box and the inner box, and a foam heat insulating material is provided in the space around the vacuum heat insulating material. In a refrigerator filled with
The core material is formed of a fiber polymer having an average fiber diameter of 2 μm or more, and a deformation holding member that can be deformed and can hold the deformed core material shape is disposed between the core materials, and the deformation holding member The vacuum heat insulating material formed with a fibrous mat made of biodegradable material,
A refrigerator, wherein the vacuum heat insulating material is deformed and arranged along a deformed portion of the outer box or the inner box.
ガスバリア性を有する外被材中に芯材を真空封止した真空断熱材を外箱と内箱とによって形成される空間に配設すると共に、その真空断熱材の周囲の前記空間に発泡断熱材を充填してなる冷蔵庫において、
前記芯材を平均繊維径が2μm以上の繊維重合体で形成すると共に、前記芯材の間に変形可能で且つ変形後の芯材形状を保持可能な変形保持部材を配置し、前記変形保持部材を生分解性物からなる粉体を不織布の袋に詰めて形成して前記真空断熱材を構成し、
前記真空断熱材を前記外箱または前記内箱の変形部に沿って変形して配置した
ことを特徴とする冷蔵庫。
A vacuum heat insulating material obtained by vacuum-sealing a core material in a jacket material having a gas barrier property is disposed in a space formed by the outer box and the inner box, and a foam heat insulating material is provided in the space around the vacuum heat insulating material. In a refrigerator filled with
The core material is formed of a fiber polymer having an average fiber diameter of 2 μm or more, and a deformation holding member that can be deformed and can hold the deformed core material shape is disposed between the core materials, and the deformation holding member Forming the vacuum heat insulating material by forming a biodegradable powder into a non-woven bag and forming it,
A refrigerator, wherein the vacuum heat insulating material is deformed and arranged along a deformed portion of the outer box or the inner box.
請求項5または6に記載の冷蔵庫において、前記発泡断熱材がシクロペンタン及び水を混合発泡剤とするポリウレタンフォームであることを特徴とする冷蔵庫。
The refrigerator according to claim 5 or 6, wherein the foam heat insulating material is a polyurethane foam using cyclopentane and water as a mixed foaming agent.
JP2005242281A 2005-08-24 2005-08-24 Vacuum heat insulating panel and refrigerator using the same Withdrawn JP2007056973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005242281A JP2007056973A (en) 2005-08-24 2005-08-24 Vacuum heat insulating panel and refrigerator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005242281A JP2007056973A (en) 2005-08-24 2005-08-24 Vacuum heat insulating panel and refrigerator using the same

Publications (1)

Publication Number Publication Date
JP2007056973A true JP2007056973A (en) 2007-03-08

Family

ID=37920632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005242281A Withdrawn JP2007056973A (en) 2005-08-24 2005-08-24 Vacuum heat insulating panel and refrigerator using the same

Country Status (1)

Country Link
JP (1) JP2007056973A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236770A (en) * 2009-03-31 2010-10-21 Panasonic Corp Heat insulating housing and refrigerator-freezer
JP2010276167A (en) * 2009-05-29 2010-12-09 Hitachi Appliances Inc Vacuum heat insulating material, heat insulated box using the same, and equipment
CN102564002A (en) * 2012-02-27 2012-07-11 合肥美的荣事达电冰箱有限公司 Refrigerator and refrigerator body thereof
CN105605863A (en) * 2014-11-13 2016-05-25 松下知识产权经营株式会社 Vacuum heat insulating material
JP2016102584A (en) * 2014-11-13 2016-06-02 パナソニックIpマネジメント株式会社 Vacuum heat insulation material
JP2019082325A (en) * 2019-03-04 2019-05-30 東芝ライフスタイル株式会社 Heat insulation cabinet
JP2020109339A (en) * 2019-01-07 2020-07-16 東芝ライフスタイル株式会社 refrigerator
CN115304824A (en) * 2022-07-08 2022-11-08 华南理工大学 Kapok fiber-based vacuum insulation panel and preparation method and application thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236770A (en) * 2009-03-31 2010-10-21 Panasonic Corp Heat insulating housing and refrigerator-freezer
JP2010276167A (en) * 2009-05-29 2010-12-09 Hitachi Appliances Inc Vacuum heat insulating material, heat insulated box using the same, and equipment
CN102564002A (en) * 2012-02-27 2012-07-11 合肥美的荣事达电冰箱有限公司 Refrigerator and refrigerator body thereof
CN102564002B (en) * 2012-02-27 2014-07-16 合肥美的电冰箱有限公司 Refrigerator and refrigerator body thereof
US9671055B2 (en) 2014-11-13 2017-06-06 Panasonic Intellectual Property Management Co., Ltd. Vacuum heat insulating material
JP2016102584A (en) * 2014-11-13 2016-06-02 パナソニックIpマネジメント株式会社 Vacuum heat insulation material
CN105605863A (en) * 2014-11-13 2016-05-25 松下知识产权经营株式会社 Vacuum heat insulating material
CN105605863B (en) * 2014-11-13 2018-01-02 松下知识产权经营株式会社 Vacuum heat insulation material
JP2020109339A (en) * 2019-01-07 2020-07-16 東芝ライフスタイル株式会社 refrigerator
WO2020144956A1 (en) * 2019-01-07 2020-07-16 東芝ライフスタイル株式会社 Refrigerator
JP7249782B2 (en) 2019-01-07 2023-03-31 東芝ライフスタイル株式会社 refrigerator
JP2019082325A (en) * 2019-03-04 2019-05-30 東芝ライフスタイル株式会社 Heat insulation cabinet
CN115304824A (en) * 2022-07-08 2022-11-08 华南理工大学 Kapok fiber-based vacuum insulation panel and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP4580844B2 (en) Vacuum heat insulating material and refrigerator using the same
US10781963B2 (en) Heat-insulating wall, and heat-insulating housing and method for producing the same
JP2007056973A (en) Vacuum heat insulating panel and refrigerator using the same
CN100441932C (en) Vacuum thermal insulating material and refrigerator using the same
KR100548660B1 (en) Open-celled rigid polyurethane foam and method for producing the same
US5575871A (en) Heat insulating material and method for producing same
JP2011241988A (en) Heat insulation box and refrigerator
JP5162377B2 (en) Vacuum heat insulating material, heat insulating box using the same, and refrigerator
US20080199678A1 (en) Method for the Production of Vacuum Insulation Panels
KR100623101B1 (en) Refrigerator, vacuum insulation panel and method manufacturing thereof
JP2010236770A (en) Heat insulating housing and refrigerator-freezer
US20080280120A1 (en) Thermally Insulating Molded Element
KR100790662B1 (en) Vacuum Heat Insulator and Refrigerator Using The Same
KR101444530B1 (en) Insulation door and insulation box structure
JP2012013114A (en) Heat insulating member and building member using the same
JP2004084847A (en) Vacuum heat insulating panel and refrigerator using this panel
JP2010053980A (en) Vacuum heat insulation material, heat insulation box using the same and refrigerator
JP5889707B2 (en) Premix polyol composition for rigid urethane foam, method for producing rigid urethane foam using the same, and insulated door body
JP4223724B2 (en) Vacuum insulation panel and refrigerator using the same
JP2000171148A (en) Cold reserving device
CN202158308U (en) Vacuum insulation panel and refrigerator with same
KR101472441B1 (en) Rigid polyurethane foam and premix polyol for producing rigid polyurethane foam
JP2010001922A (en) Vacuum heat insulating material, heat insulating box body using this material, and method for manufacturing vacuum heat insulating material
JP2017015319A (en) Heat insulation box
KR20000000977A (en) Vacuum insulating panel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081104