JP2010001922A - Vacuum heat insulating material, heat insulating box body using this material, and method for manufacturing vacuum heat insulating material - Google Patents

Vacuum heat insulating material, heat insulating box body using this material, and method for manufacturing vacuum heat insulating material Download PDF

Info

Publication number
JP2010001922A
JP2010001922A JP2008159521A JP2008159521A JP2010001922A JP 2010001922 A JP2010001922 A JP 2010001922A JP 2008159521 A JP2008159521 A JP 2008159521A JP 2008159521 A JP2008159521 A JP 2008159521A JP 2010001922 A JP2010001922 A JP 2010001922A
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum heat
insulating material
vacuum
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008159521A
Other languages
Japanese (ja)
Inventor
Toshimitsu Tsuruga
俊光 鶴賀
Hisashi Echigoya
恒 越後屋
Kuninari Araki
邦成 荒木
Daigoro Kamoto
大五郎 嘉本
Hisao Yokokura
久男 横倉
Takashi Izeki
崇 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2008159521A priority Critical patent/JP2010001922A/en
Publication of JP2010001922A publication Critical patent/JP2010001922A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum heat insulating material excellent in a bending property, a holding property after bending, and heat insulating performance. <P>SOLUTION: The vacuum heat insulating material 1 is provided with a core material 3 composed of an inorganic fiber aggregate, a getter agent 5, and a gas-barrier outer covering material 2 housing the core material 3 and the getter agent 5, and the inside of the outer covering material 2 is sealed in vacuum. Further, a laminar clay material is provided on at least a part of a surface and a thickness direction of the core material 3 in a groove-like or uneven shape. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、真空断熱材およびそれを用いた断熱箱体並びに真空断熱材の製造方法に関する。   The present invention relates to a vacuum heat insulating material, a heat insulating box using the same, and a method for manufacturing a vacuum heat insulating material.

近年、地球温暖化に対する観点から、家電品の消費電力量削減の必要性が望まれている。その中でも冷蔵庫、エアコン等は特に消費電力量の多い製品であり、消費電力量削減が地球温暖化対策として必要な状況にある。冷蔵庫を例に挙げると、冷蔵庫の消費電力は庫内の負荷量が一定であれば、庫内冷却用圧縮機の効率と、庫内からの熱漏洩量に関係する断熱材の断熱性能によってその大部分が決まる。そのため、冷蔵庫の技術開発においては、圧縮機の効率と共に断熱材の性能向上が求められている。   In recent years, from the viewpoint of global warming, the necessity of reducing the power consumption of home appliances is desired. Among them, refrigerators, air conditioners, and the like are products with particularly high power consumption, and the reduction of power consumption is necessary as a countermeasure against global warming. Taking a refrigerator as an example, if the load in the refrigerator is constant, the power consumption of the refrigerator will depend on the efficiency of the compressor for cooling in the refrigerator and the insulation performance of the heat insulating material related to the amount of heat leakage from the refrigerator. Mostly decided. Therefore, in the technical development of the refrigerator, improvement in the performance of the heat insulating material is required together with the efficiency of the compressor.

このような課題を解決する断熱材の一つとして真空断熱材がある。真空断熱材はガスバリア性を有する外包材中に断熱性に優れた繊維形状を持つ芯材を入れ、内部を真空にすることで作製される。真空断熱材は、これまで平面に広く用いられていたが、近年では、貼り付ける面が曲面形状(R形状)の場合にも対応可能で、断熱性も優れる真空断熱材が求められており、曲げ可能な真空断熱材が提案されている。   One of the heat insulating materials for solving such problems is a vacuum heat insulating material. A vacuum heat insulating material is produced by putting a core material having a fiber shape excellent in heat insulating properties into an outer packaging material having gas barrier properties and evacuating the inside. The vacuum heat insulating material has been widely used for flat surfaces so far, but in recent years, a vacuum heat insulating material that can cope with a curved surface (R shape) and has excellent heat insulating properties has been demanded. Bendable vacuum insulation has been proposed.

特開2001-336691号公報(特許文献1)には、平均直径が1μm以上、5μm以下の無機繊維からなるシート状成形体を少なくとも2層以上積層してなる芯材をガスバリア性フィルムで覆い、その内部を減圧し密封した真空断熱材であって、圧縮成型により、真空断熱材の厚み方向に垂直な側面部に少なくとも一本以上の溝を形成して、折り曲げ可能な真空断熱材が記載されている。   In JP 2001-336691 A (Patent Document 1), a core material obtained by laminating at least two layers of sheet-like molded bodies made of inorganic fibers having an average diameter of 1 μm or more and 5 μm or less is covered with a gas barrier film, A vacuum heat insulating material whose inside is depressurized and sealed, wherein a vacuum heat insulating material that can be bent by forming at least one groove on a side surface perpendicular to the thickness direction of the vacuum heat insulating material by compression molding is described. ing.

また、特開2004-197954号公報(特許文献2)には、熱溶着層を有するガスバリア性の外被材と板状の芯材とを有し、複数の芯材の周囲に芯材を間に含まず密着した外被材のみから構成される周辺部が形成された真空断熱材であって、真空断熱材の厚みが0.5mm以上、5mm以下として周縁部を芯材形状に合わせることによって任意形状とすることができる真空断熱材が記載されている。   Japanese Patent Application Laid-Open No. 2004-197954 (Patent Document 2) has a gas barrier jacket material having a heat-welded layer and a plate-like core material, and the core material is interposed around a plurality of core materials. A vacuum heat insulating material in which a peripheral portion composed only of a tightly covering outer jacket material is formed, and the thickness of the vacuum heat insulating material is 0.5 mm or more and 5 mm or less, and the peripheral portion is adjusted to the core material shape A vacuum insulation that can be of any shape is described.

また、特開2002−81596号公報(特許文献3)には、繊維径分布のピーク値が1μm以下、0.1μm以上の無機繊維芯材と、ガスバリア性を有する外被材とからなる真空断熱材であって、芯材がSiOを主成分として且つ繊維材料を固形化するための結合材を含まない構成とした可撓性の真空断熱材が記載されている。 Japanese Patent Application Laid-Open No. 2002-81596 (Patent Document 3) discloses a vacuum heat insulation composed of an inorganic fiber core material having a fiber diameter distribution peak value of 1 μm or less and 0.1 μm or more, and a jacket material having gas barrier properties. A flexible vacuum heat insulating material is described which has a structure in which the core material includes SiO 2 as a main component and does not include a binder for solidifying the fiber material.

特開2002-310384号公報(特許文献4)には、繊維径分布のピークが1μm以下、0.1μm以上である無機繊維集合体の一方または両方の面に補強材を積層した芯材とガスバリア性を有する外被材とからなり、無機繊維集合体が繊維材料を固形化するための結合材を含まない無機繊維と無機粉体の成形体や無機繊維シートが記載されている。   Japanese Patent Laid-Open No. 2002-310384 (Patent Document 4) discloses a core material and a gas barrier in which a reinforcing material is laminated on one or both surfaces of an inorganic fiber aggregate having a fiber diameter distribution peak of 1 μm or less and 0.1 μm or more. A molded body of inorganic fibers and inorganic powders and an inorganic fiber sheet, which are made of a sheath material having a property and do not contain a binder for solidifying a fiber material by an inorganic fiber aggregate, are described.

特開2004-218747号公報(特許文献5)には、芯材とゲッター剤とそれらを包む外被材とからなる真空断熱材であって、芯材を設けた凹部にゲッター剤を配置してゲッター剤と対向する外被材に、アルミニウム箔を有するラミネートフィルムを使用し、ゲッター剤と外被材との間に耐突き刺し性に優れる保護シートを介在させることによって、真空包装時におけるピンホールの発生を防止できる真空断熱材が記載されている。   Japanese Patent Application Laid-Open No. 2004-218747 (Patent Document 5) is a vacuum heat insulating material composed of a core material, a getter agent, and a jacket material that wraps them, and the getter agent is disposed in a recess provided with the core material. Using a laminate film having an aluminum foil for the outer cover material facing the getter agent, and interposing a protective sheet with excellent puncture resistance between the getter agent and the outer cover material, pinholes during vacuum packaging A vacuum insulation that can be prevented from occurring is described.

特開2001−336691号公報JP 2001-336691 A 特開2004−197954号公報JP 2004-197954 A 特開2002−81596号公報JP 2002-81596 A 特開2002-310384号公報Japanese Patent Laid-Open No. 2002-310384 特開2004-218747号公報JP 2004-218747 A

前記特許文献1に記載された真空断熱材では、圧縮成型により真空断熱材に厚み方向に垂直な側面部に溝を形成し、厚さ方向に薄くなった溝部で真空断熱材を折り曲げるようにするものであるので、真空断熱材としての厚さが溝部で薄くなり、この溝部での断熱性能が低下してしまうという問題があった。また、真空断熱材を被取り付け部の形状に沿って変形させた場合における真空断熱材の形状保持性、外被材の変形部における応力での断烈や薄膜化の防止に関しては開示されていない。   In the vacuum heat insulating material described in Patent Document 1, a groove is formed in a side surface perpendicular to the thickness direction in the vacuum heat insulating material by compression molding, and the vacuum heat insulating material is bent at the groove portion thinned in the thickness direction. Therefore, the thickness as the vacuum heat insulating material is reduced at the groove portion, and there is a problem that the heat insulating performance at the groove portion is deteriorated. Further, there is no disclosure regarding the shape retaining property of the vacuum heat insulating material when the vacuum heat insulating material is deformed along the shape of the attached portion, and prevention of bursting or thinning due to stress in the deformed portion of the outer covering material. .

前記特許文献2に記載された真空断熱材は、形状折り曲げ性がよいものの、芯材と芯材との間の熱溶着部は芯材を間に含まない外被材のみから構成される部分が残るため、その部分の熱伝導率の低減が困難である。また、真空断熱材を被取り付け部の形状に沿って変形させた場合における真空断熱材の形状保持性、外被材の変形部における応力での断烈や薄膜化の防止に関しては開示されていない。   Although the vacuum heat insulating material described in Patent Document 2 has good shape bendability, the heat welded portion between the core material and the core material has a portion composed only of the jacket material that does not include the core material. Therefore, it is difficult to reduce the thermal conductivity of the portion. Further, there is no disclosure regarding the shape retaining property of the vacuum heat insulating material when the vacuum heat insulating material is deformed along the shape of the attached portion, and prevention of bursting or thinning due to stress in the deformed portion of the outer covering material. .

前記特許文献3に記載された真空断熱材は、被取り付け部の形状に沿って真空断熱材を変形させた場合に、真空断熱材が元に戻ろうとする力(スプリングバック力)により、被取り付け部の取り付け面から離れてしまうという問題があった。また、繊維径分布のピーク値が1μm以下、0.1μm以上の超極細無機繊維を用いるため、単品でも生産性が低く繊維集合体を重ねて厚みを稼ぐ必要があり、真空断熱材が高価という課題がある。また、外被材の変形部における応力での断烈や薄膜化の防止に関しては開示されていない。   The vacuum heat insulating material described in Patent Document 3 is attached by the force (spring back force) that the vacuum heat insulating material tries to return to when the vacuum heat insulating material is deformed along the shape of the attached portion. There was a problem that it was separated from the mounting surface of the part. In addition, since ultra-fine inorganic fibers having a fiber diameter distribution peak value of 1 μm or less and 0.1 μm or more are used, productivity is low even with a single product, and it is necessary to increase the thickness of the fiber assembly, and the vacuum heat insulating material is expensive. There are challenges. In addition, there is no disclosure regarding prevention of bursting or thinning due to stress in the deformed portion of the jacket material.

前記特許文献4に記載された真空断熱材は、少なくとも一方の面に補強材(粉体やシート)を入れ、補強材の間に芯材を入れることにより、表面性および剛性を改善できるが、補強材の影響が大きく、曲げた場合にはガスバリア性フィルムへの傷つきや熱伝導率特性の悪化が生じる場合がある。特に、真空断熱材の貼り付け部の曲面が鋭い場合、貼り付けた真空断熱材が元に戻ろうとする力によって剥がれたり、真空断熱材と貼り付けた部位の間に隙間ができたりする。このことから、真空断熱材を貼り付ける直前に、真空断熱材の形状を加工しなければならない問題が生じる。また、時間が経過するにしたがって折り曲げても形状が元にもどってしまう場合がある。さらに、価格の高い繊維分布のピークが1μm以下、0.1μm以上の超極細無機繊維の集合体を重ねて厚みをもたせる必要がある。従って、生産性が低く、高価という課題がある。また、外被材の変形部における応力での断烈や薄膜化の防止に関しては開示されていない。   The vacuum heat insulating material described in Patent Document 4 can improve surface properties and rigidity by putting a reinforcing material (powder or sheet) on at least one surface and putting a core material between the reinforcing materials, The influence of the reinforcing material is great, and when bent, the gas barrier film may be damaged or the thermal conductivity characteristics may be deteriorated. In particular, when the curved surface of the application part of the vacuum heat insulating material is sharp, the attached vacuum heat insulating material is peeled off by the force of returning, or a gap is formed between the vacuum heat insulating material and the attached part. For this reason, there is a problem that the shape of the vacuum heat insulating material must be processed immediately before the vacuum heat insulating material is attached. Further, the shape may return to its original shape even if it is bent as time passes. Furthermore, it is necessary to increase the thickness of the aggregates of ultrafine inorganic fibers having a high fiber distribution peak of 1 μm or less and 0.1 μm or more. Therefore, there are problems of low productivity and high cost. In addition, there is no disclosure regarding prevention of bursting or thinning due to stress in the deformed portion of the jacket material.

前記特許文献5に記載された真空断熱材は、芯材に凹部を設ける作業で粉塵の増大およびさらなる新たな保護シートの導入により、真空断熱材を作製するのは生産性が低くなりコストアップの課題がある。   In the vacuum heat insulating material described in Patent Document 5, the production of the vacuum heat insulating material is reduced due to the increase in dust and the introduction of a new protective sheet in the process of providing the recess in the core material. There are challenges.

本発明の目的は、折り曲げ性、折り曲げ後の保持性および断熱性能が良好な真空断熱材およびこれを用いた断熱箱体並びに真空断熱材の製造方法を提供することにある。   An object of the present invention is to provide a vacuum heat insulating material having good bendability, retention after bending, and heat insulating performance, a heat insulating box using the same, and a method for manufacturing the vacuum heat insulating material.

前述の目的を達成するための本発明の第1の態様では、無機繊維集合体からなる芯材と、ゲッター剤と、前記芯材および前記ゲッター剤を収納したガスバリア性の外包材とを備え、前記外包材の内部を真空封止した真空断熱材において、前記芯材の表面および厚み方向の少なくとも一部に溝状または凹凸状に層状粘土質材を有することにある。   In the first aspect of the present invention for achieving the above-mentioned object, it comprises a core material made of an inorganic fiber aggregate, a getter agent, and a gas barrier outer packaging material containing the core material and the getter agent, In the vacuum heat insulating material in which the inside of the outer packaging material is vacuum-sealed, a layered clayey material is formed in a groove shape or an uneven shape on at least a part of the surface of the core material and the thickness direction.

係る本発明の第1の態様におけるより好ましい具体的構成例は次の通りである。
(1)前記無機繊維集合体が3〜5μmの平均繊維径を有するグラスウール、前記層状粘土質材がスメクタイト化合物であること。
(2)前記スメクタイト化合物が、モンモリロナイト、サポナイトの一種以上を用いたこと。
(3)前記芯材のゲッター剤収納開口を挟んで対向する芯材に、前記層状粘土質材を溝状または凹凸状に塗布形成して、前記開口を閉塞したこと。
(4)前記芯材を脱気圧縮して層状粘土質材と共に内袋の内部に収納し、この内袋を収納した前記外包材における内袋を含む内部を減圧し密封してなること。
A more preferable specific configuration example in the first aspect of the present invention is as follows.
(1) The glass fiber in which the inorganic fiber aggregate has an average fiber diameter of 3 to 5 μm, and the lamellar clay material is a smectite compound.
(2) The smectite compound is one or more of montmorillonite and saponite.
(3) The layered clayey material is applied and formed in a groove shape or an uneven shape on the core material facing the getter agent storage opening of the core material to close the opening.
(4) The core material is degassed and compressed and stored together with the lamellar clay material in the inner bag, and the inside including the inner bag in the outer packaging material storing the inner bag is decompressed and sealed.

また、本発明の第2の態様では、外箱と内箱とで形成される空間に真空断熱材を配置して発泡断熱材を充填してなる断熱箱体であって、前記真空断熱材は、芯材の表面および厚み方向の一部に少なくとも層状粘土質材を有し、該芯材とゲッター剤および層状粘土質材を内包し、内部を減圧して封止したガスバリア性の外包材を有することにある。   Moreover, in the second aspect of the present invention, a heat insulating box is formed by placing a vacuum heat insulating material in a space formed by an outer box and an inner box and filling with a foam heat insulating material. A gas barrier outer packaging material having at least a layered clayey material on the surface of the core material and part of the thickness direction, enclosing the core material, the getter agent and the layered clayey material, and sealing the interior by decompressing the inside. Is to have.

係る本発明の第2の態様におけるより好ましい具体的構成例は次の通りである。
(1)前記外箱または前記内箱の2つの面が交差する角部に前記真空断熱材を折り曲げて設置したこと。
A more preferable specific configuration example in the second aspect of the present invention is as follows.
(1) The vacuum heat insulating material is bent and installed at a corner where two surfaces of the outer box or the inner box intersect.

また、本発明の第3の態様では、シート形状の無機繊維集合体の一部に層状粘土質材を塗布して芯材を形成し、この芯材を外包材に収納して該外包材を減圧して封止することを特徴とする真空断熱材の製造方法にある。   Further, in the third aspect of the present invention, a layered clayey material is applied to a part of the sheet-shaped inorganic fiber aggregate to form a core material, and the core material is housed in an outer packaging material, and the outer packaging material is used. A vacuum heat insulating material manufacturing method is characterized by sealing under reduced pressure.

本発明によれば、折り曲げ性、折り曲げ後の保持性および断熱性能が良好な真空断熱材およびこれを用いた断熱箱体並びに真空断熱材の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of a vacuum heat insulating material with favorable bendability, the retainability after bending, and heat insulation performance, a heat insulation box using this, and a vacuum heat insulating material can be provided.

以下、本発明の内容について詳細に説明する。前記課題を解決する本発明の特徴は、無機繊維、ゲッター剤、外包材を有し、外包材が減圧封止されている真空断熱材において、無機繊維の表面および厚み方向の一部に少なくとも層状粘土質材を配したことにある。例えば、層状粘土質材の代わりに無機の水ガラスや有機のバインダー樹脂を用いると、無機繊維の芯材がアルカリ等の影響で劣化を促進したり、発ガスの発生や吸着で断熱性能を著しく低下したりする。また、硬化等で被膜強度が高くなると、曲げにくい問題が発生する。そこで、種々の検討から、主に無機物で構成され発ガス成分等が少なく、平板性、配向性、フレキシビリティ性の性質を有し、被膜強度が弱い層状粘土質材を選定した。その結果、無機繊維中に層状粘土質材の凹凸形状として、その付近を曲げて曲線形状とした場合にも、外包材の一部に応力が集中せずガスバリア性を高めることが可能となる。また、層状粘土質材の分散液をディスペンサーで滴下および乾燥処理で、凹凸形状やそれに類する矩形形状を自由に形成できる。これによって、真空断熱材を変形した場合でも、外包材の薄膜化による断烈のピンホールを防止し、断熱特性の長期維持を可能にする。   Hereinafter, the contents of the present invention will be described in detail. A feature of the present invention that solves the above-described problems is that in a vacuum heat insulating material having inorganic fibers, a getter agent, and an outer packaging material, and the outer packaging material is sealed under reduced pressure, the surface of the inorganic fibers and at least part of the thickness direction are layered The clay material is arranged. For example, if an inorganic water glass or organic binder resin is used instead of a layered clay material, the core material of the inorganic fiber promotes deterioration due to the influence of alkali or the like, and the heat insulation performance is remarkably increased by generation and adsorption of gas. Or drop. Further, when the coating strength increases due to curing or the like, a problem that it is difficult to bend occurs. Therefore, from various studies, a lamellar clay material mainly composed of an inorganic material, having few gas generating components, having flatness, orientation and flexibility, and having low coating strength was selected. As a result, even when the concavo-convex shape of the layered clayey material is formed in the inorganic fiber and the vicinity thereof is bent to have a curved shape, stress is not concentrated on a part of the outer packaging material, and the gas barrier property can be improved. Further, a concavo-convex shape or a similar rectangular shape can be freely formed by dropping and drying the dispersion of the layered clayey material with a dispenser. Thereby, even when the vacuum heat insulating material is deformed, a severe pinhole due to the thinning of the outer packaging material is prevented, and the heat insulating property can be maintained for a long time.

前記の真空断熱材は、無機繊維の表面および厚み方向の少なくとも一部に層状粘土質材を塗布して、外包材中に入れ減圧封止で表面部に反映させた凹凸形状を有する真空断熱材である。これまで、曲げを容易にするには、例えば、無機繊維の芯材を凹凸状に切り取って曲げ易くする方法がある。しかし、非常に曲げ易くなるが、切り取り部分での真空断熱材は断熱性を大きく低下させる問題があった。これに対し、前記真空断熱材は、芯材を切り取らずに凹凸状付近で真空断熱材を曲げることが容易にでき、部分的な断熱性の低下を抑制することを可能にした。また、外包材に係る応力の低減により、断裂のピンホールを防止して真空度を維持するものである。真空断熱材の形状は、特に限定されず適用される個所と作業性に応じて各種の形状と厚さが可能である。   The vacuum heat insulating material is a vacuum heat insulating material having a concavo-convex shape in which a layered clayey material is applied to at least a part of the surface and thickness direction of the inorganic fiber, put in an outer packaging material, and reflected on the surface portion by reduced pressure sealing. It is. Until now, in order to make it easy to bend, for example, there is a method in which an inorganic fiber core material is cut into an uneven shape to make it easy to bend. However, although it becomes very easy to bend, the vacuum heat insulating material at the cut-out portion has a problem of greatly reducing the heat insulating property. On the other hand, the vacuum heat insulating material can easily bend the vacuum heat insulating material in the vicinity of the concavo-convex shape without cutting the core material, and can suppress a partial decrease in heat insulating property. Moreover, the pinhole of a tear is prevented and the degree of vacuum is maintained by the reduction of the stress concerning an outer packaging material. The shape of the vacuum heat insulating material is not particularly limited, and various shapes and thicknesses are possible depending on the place to be applied and workability.

層状粘土質材は無機物で結晶性を有し、平面方向から厚み方向にガス分子の透過も少なく積み重ねられた層状物が好適である。このような無機層状化合物としては単位結晶層が互いに積み重なった層状構造を有する粘土質材、特にスメクタイト粘土のモンモリロナイト等がより好ましい。これらのモンモリロナイトの大きさは、数nm〜数μmで平板性と表面電荷を有し、容易に層状物を形成する。層状粘土質材は、モンモリロナイト、サポナイト、ヘクトライトが好ましく水や溶剤等に分散させて液状またはスラリ状で使用する。   The layered clay-like material is an inorganic material having crystallinity, and is preferably a layered material stacked with little gas molecule permeation from the planar direction to the thickness direction. As such an inorganic layered compound, a clayey material having a layered structure in which unit crystal layers are stacked on each other, particularly montmorillonite of smectite clay is more preferable. These montmorillonites have a flatness and a surface charge of several nm to several μm, and easily form a layered product. The layered clay-like material is preferably montmorillonite, saponite, or hectorite, and is used in a liquid or slurry state by being dispersed in water or a solvent.

粘土分散液の濃度としては、薄すぎると塗布量が少なく乾燥に時間がかかること、濃すぎると良く粘土が分散せず粘土粒子の配向が悪く均一性が劣る。そこで、最適な濃度としては、0.5〜10重量%が好ましい。また、塗布法は特に限定することなく、滴下法、ディスペンサー法、含浸法、真空含浸法、スプレー法等で適宜行うことができ、無機繊維に塗布後、分散媒である液体を乾燥除去して芯材を作製する。乾燥除去法は、例えば、熱風、乾燥空気、赤外線、マイクロ波、遠心分離、真空乾燥、加熱蒸発法等が可能である。粘土膜の厚さは分散液に用いる固体量の調整で任意の膜が可能である。その粘土膜の形状としては、特に限定がなく曲がり易くて保持可能であれば凹凸状の矩形等に適宜可能である。また、塗布部にゲッター剤を挿入固定化することにより、突起部を有するゲッター剤であっても、外包材に与える断烈のピンホール等を防止してガスバリア性を確保できる。   If the clay dispersion is too thin, the coating amount is small and it takes a long time to dry. If it is too thick, the clay does not disperse well and the orientation of the clay particles is poor and the uniformity is poor. Therefore, the optimum concentration is preferably 0.5 to 10% by weight. Further, the application method is not particularly limited, and can be appropriately performed by a dropping method, a dispenser method, an impregnation method, a vacuum impregnation method, a spray method, and the like. After coating on inorganic fibers, the liquid as a dispersion medium is removed by drying. A core material is produced. Examples of the dry removal method include hot air, dry air, infrared rays, microwaves, centrifugal separation, vacuum drying, and heat evaporation. The thickness of the clay film can be any film by adjusting the amount of solid used in the dispersion. The shape of the clay film is not particularly limited, and can be suitably formed into an uneven rectangle or the like as long as it can be easily bent and held. In addition, by inserting and fixing the getter agent in the application part, even if the getter agent has a protrusion, it is possible to prevent a severe pinhole or the like given to the outer packaging material and secure gas barrier properties.

層状粘土質材の具体例としては、例えば、クニミネ工業のクニピアFの天然モンモリロナイト、クニミネ工業のクニピアDの合成モンモリロナイト、クニミネ工業のスメクトンSAのサポナイト、コープケミカル社のルーセンタイトSWN、ルーセンタイトSAN、ルーセンタイトSTN等の合成スメクタイト商品を挙げることができる。   Specific examples of the layered clay material include, for example, natural montmorillonite of Kunimine Industries, Kunipia F, synthetic montmorillonite of Kunimine Industries, Kunimine Industries, saponite SA of Kunimine Industries, Lucentite SWN, Lucentite SAN of Corp Chemical, Examples include synthetic smectite products such as Lucentite STN.

無機繊維材としては、グラスウール、グラスファイバー、アルミナ、シリカアルミナ、シリカ、ロックウール、炭化ケイ素等の繊維各種を使用できる。ただし、平均繊維径により熱伝導率特性やコストが異なる。平均繊維径が5μm以上の繊維では、熱伝導率が多少劣るものの安価でありコストの点では実用化しやすい。繊維径が大きいと繊維が同一方向に配列し、繊維の接触が線に近くなり接触熱抵抗の低減で熱伝導率が高くなると考えられる。平均繊維径が3〜5μmの無機繊維は、接触抵抗の他に熱流路がジグザグで熱抵抗が増大し、熱伝導率が低くコストも比較的安価で好ましい。平均繊維径が2μm以下の繊維は、熱伝導率が低くなり生産性も低く高価である。真空断熱材に使用の場合は、繊維集合体を重ねてスペーサーとしての厚みが必要であり、特性やコストの面から平均繊維径が3〜5μmのグラスウールが最適である。   As the inorganic fiber material, various kinds of fibers such as glass wool, glass fiber, alumina, silica alumina, silica, rock wool, and silicon carbide can be used. However, thermal conductivity characteristics and costs vary depending on the average fiber diameter. Fibers having an average fiber diameter of 5 μm or more are inexpensive but have a low thermal conductivity, and are easy to put into practical use in terms of cost. When the fiber diameter is large, it is considered that the fibers are arranged in the same direction, the contact of the fibers is close to a line, and the thermal conductivity is increased by reducing the contact thermal resistance. Inorganic fibers having an average fiber diameter of 3 to 5 μm are preferable because, in addition to the contact resistance, the thermal flow path is zigzag and the thermal resistance is increased, the thermal conductivity is low, and the cost is relatively low. A fiber having an average fiber diameter of 2 μm or less is low in thermal conductivity, low in productivity, and expensive. In the case of use as a vacuum heat insulating material, the fiber aggregates need to be overlapped to have a thickness as a spacer, and glass wool having an average fiber diameter of 3 to 5 μm is optimal in terms of characteristics and cost.

また、芯材の脱水や脱ガスの必要性は、外包材へ挿入する前にエージング処理が不可欠である。そこで、無機繊維にモンモリロナイト等の分散液をディスペンサーで凹凸状に滴下後、約180〜230℃の温度で乾燥処理をして芯材を作製する。   Further, the necessity of dehydration and degassing of the core material is indispensable for aging treatment before insertion into the outer packaging material. Therefore, a dispersion liquid such as montmorillonite is dropped onto the inorganic fiber in a concavo-convex shape with a dispenser, and then dried at a temperature of about 180 to 230 ° C. to produce a core material.

外包材としては、内部に気密部を設ける芯材を覆う材料構成であり、減圧封止で芯材の形状を反映する材質が好適である。例えば、外包材が剛性を有するものを用いると高価で折り曲げ性が困難になり、折り曲げ後に断裂のピンホールになる原因となる。外包材は、ラミネートフィルムを袋状とするものが用いられる。衝撃等に対応可能な最外層とガスバリア性を確保する中間層と、熱融着によって密閉できる最内層が望ましい。最外層にポリアミド樹脂等を付与することで耐突き刺し性を向上させたり、中間層にアルミニウム蒸着層を有するエチレンービニルアルコール共重合体樹脂を2層設けたりしてもよい。最内層としては高密度ポリエチレン、ポリプロピレンやポリアクリルニトリル等が挙げられ、シール性やケミカルアタック性から高密度ポリエチレンが好ましい。例えば、具体的構成としては、最外層にポリエチレンテレフタレート、中間層にアルミニウム箔、最内層に高密度ポリエチレンからなるプラスチックラミネートフィルムや、最外層にポリエチレンテレフタレート、中間層にアルミニウム蒸着層を有するエチレンービニルアルコール共重合体、最内層に高密度ポリエチレンからなるプラスチックラミネートフィルムである。ガスバリア性を向上させ、例えば、最外層にポリアミド、第2層目にポリエチレンテレフタレートの二層構造とし、中間層にアルミ箔、最内層に高密度ポリエチレンからなるアルミラミネートフィルムとすることができる。   As the outer packaging material, a material structure that covers a core material that provides an airtight portion therein, and a material that reflects the shape of the core material by vacuum sealing is suitable. For example, if the outer packaging material is rigid, it is expensive and difficult to bend, which causes a pinhole to break after folding. As the outer packaging material, a laminate film having a bag shape is used. An outermost layer that can handle impacts, an intermediate layer that ensures gas barrier properties, and an innermost layer that can be sealed by thermal fusion are desirable. The puncture resistance may be improved by applying a polyamide resin or the like to the outermost layer, or two layers of an ethylene-vinyl alcohol copolymer resin having an aluminum vapor deposition layer may be provided as an intermediate layer. Examples of the innermost layer include high-density polyethylene, polypropylene, polyacrylonitrile, and the like. High-density polyethylene is preferable from the viewpoint of sealing properties and chemical attack properties. For example, specific configurations include polyethylene terephthalate as the outermost layer, aluminum foil as the intermediate layer, plastic laminate film made of high-density polyethylene as the innermost layer, polyethylene terephthalate as the outermost layer, and ethylene-vinyl having an aluminum vapor deposition layer as the intermediate layer. It is an alcohol copolymer and a plastic laminate film made of high-density polyethylene in the innermost layer. The gas barrier property can be improved. For example, a two-layer structure of polyamide as the outermost layer and polyethylene terephthalate as the second layer, an aluminum foil as the intermediate layer, and an aluminum laminated film made of high-density polyethylene as the innermost layer can be obtained.

真空断熱材の信頼性を向上させるため、ゲッター剤を用いる。ゲッター剤は、二酸化炭素、酸素、窒素等のガス、水蒸気を吸収するものであればよく、必要に応じてドーソナイト、ハイドロタルサイト、金属水酸化物等のゲッター剤、あるいはモレキュラーシーブス、シリカゲル、酸化カルシウム、ゼオライト、疎水性ゼオライト、活性炭、水酸化カリウム、水酸化リチウム等の吸収剤を使用する。その際、ゲッター剤の突起による突き刺しで起こる外包材の断烈が曲げ部で顕著になり易いため、層状粘土質材の塗布部に挟めて固定化して用いることにより、外包材の断烈によるピンホールが解消され好ましい。   In order to improve the reliability of the vacuum heat insulating material, a getter agent is used. The getter agent only needs to absorb gases such as carbon dioxide, oxygen, nitrogen, and water vapor. If necessary, getter agents such as dawsonite, hydrotalcite, metal hydroxide, molecular sieves, silica gel, oxidation Use absorbents such as calcium, zeolite, hydrophobic zeolite, activated carbon, potassium hydroxide, lithium hydroxide. At that time, the bursting of the outer packaging material that occurs due to the piercing of the getter agent protrusion tends to be noticeable at the bent portion, so the pin due to the bursting of the outer packaging material is used by being sandwiched between the application portions of the layered clayey material. Holes are eliminated and preferable.

前記の真空断熱材は、断熱箱体および冷蔵庫等に使用できる。その断熱箱体は、外箱と内箱とで空間を作製し、その空間内に発泡樹脂フォームを充填されているものであって、発泡樹脂フォームを充填する空間に真空断熱材を挿入できる。真空断熱材と発泡樹脂の挿入方法は、あらかじめ内箱と外箱とで形成した空間に真空断熱材を配設しておき、その後、発泡樹脂フォームを注入して一体成型する方法、あるいは真空断熱材と発泡樹脂フォームをあらかじめ一体成型した真空断熱材を作製しておき、その真空断熱材を内箱あるいは外箱に貼り付けまたは両者で挟持する等の方法がある。これらの方法は、断熱性能を必要とする物品に応じて適宜使用されるものである。   The said vacuum heat insulating material can be used for a heat insulation box, a refrigerator, etc. The heat insulating box body is a space formed by an outer box and an inner box, and a foamed resin foam is filled in the space, and a vacuum heat insulating material can be inserted into the space filled with the foamed resin foam. The method of inserting the vacuum heat insulating material and the foamed resin is a method in which the vacuum heat insulating material is disposed in a space formed in advance by the inner box and the outer box, and then the foamed resin foam is injected and integrally molded, or vacuum heat insulating There is a method in which a vacuum heat insulating material in which a material and a foamed resin foam are integrally molded is prepared in advance, and the vacuum heat insulating material is attached to an inner box or an outer box or sandwiched between both. These methods are appropriately used depending on the article that requires heat insulation performance.

前記の真空断熱材は保温・保冷の必要な各製品に適用できる。例示すれば、冷蔵庫、給湯器、建築物建材、車両、自動車、医療用機器等である。特に、熱交換部を含み断熱が必要な製品全般に有効である。冷蔵庫へ本発明の真空断熱材を適用することにより保温・保冷機能を向上させ、熱漏洩量の低減および省エネルギー化が期待できる。冷蔵庫には、家庭用や業務用の冷蔵・冷凍庫の他に、自動販売機、商品陳列棚、保冷庫、クーラーボックス等が含まれる。また、車両に適用することにより、省スペース化の真空断熱材の設置により車内空間が拡大され、十分な断熱効果を持たせ、結露等の問題解決が期待できる。給湯器等に用いることで湯温の低下を抑制して、省エネルギー効果が期待できる。   The vacuum heat insulating material can be applied to each product that needs to be kept warm. Examples include refrigerators, water heaters, building materials, vehicles, automobiles, medical equipment, and the like. In particular, it is effective for all products that include a heat exchange section and require heat insulation. By applying the vacuum heat insulating material of the present invention to the refrigerator, it is possible to improve the heat insulation / cooling function and reduce the amount of heat leakage and save energy. Refrigerators include vending machines, product display shelves, refrigerators, cooler boxes, etc., in addition to refrigerators and freezers for home use and commercial use. Moreover, by applying it to a vehicle, the space inside the vehicle can be expanded by installing a space-saving vacuum heat insulating material, and a sufficient heat insulating effect can be provided, so that problems such as condensation can be expected. By using it in a water heater or the like, it is possible to suppress the decrease in hot water temperature and to expect an energy saving effect.

次に、本発明の真空断熱材および該真空断熱材を挿入した冷蔵庫の構造と作製について、図面を参照して説明する。図1に本発明の真空断熱材1の断面模式図を示す。この真空断熱材1は、無機繊維のコア材(グラスウール)3の中に無機繊維のコア材の層状粘土質材を含む部分4を溝状または凹凸状に塗布して、ゲッター剤5と共に外包材2で減圧封止される構成のものである。真空断熱材1を変形させた場合に、曲げが容易で外包材の歪みが少ない。また、凹部には減圧封止時に形成される外包材の余裕が存在するため、変形による影響が吸収されやすく、突起を有するゲッターを挟め固定化することで外包材への断烈のピンホールを防止することができる。   Next, the structure and production of the vacuum heat insulating material of the present invention and the refrigerator in which the vacuum heat insulating material is inserted will be described with reference to the drawings. FIG. 1 shows a schematic sectional view of a vacuum heat insulating material 1 of the present invention. The vacuum heat insulating material 1 is formed by coating a portion 4 including a layered clay material of an inorganic fiber core material into a core material (glass wool) 3 of an inorganic fiber in a groove shape or an uneven shape, and an outer packaging material together with a getter agent 5 2 to be sealed under reduced pressure. When the vacuum heat insulating material 1 is deformed, bending is easy and distortion of the outer packaging material is small. In addition, since there is a margin of the outer packaging material formed at the time of decompression sealing in the recess, the influence of deformation is easily absorbed, and a pinned pinhole to the outer packaging material is formed by pinching and fixing a getter having a protrusion. Can be prevented.

係る真空断熱材1によれば、無機繊維の芯材3を凹凸形状に切り取ることなく、部分的な断熱性能の低下を抑制することができる。即ち、芯材3の表面および厚み方向の一部に層状粘土質材を塗布する構成とすることで、凹凸形状等の芯材作製ができる。その結果、折り曲げ性や保持性が優れ、且つ曲げ応力の影響による外包材2の薄膜化でのピンホール防止、ゲッター剤5の突起の突き刺し等による外包材のピンホール防止が図れる。このことから、真空包装時における外包材2への折り曲げ性や保持性の向上、ゲッター剤5の挿入時の層状粘土質材による固定化で外包材2の耐突き刺し性防止、曲面形状や曲面と平面の組み合わせでも、長期にわたり断熱性能が維持可能な優れた真空断熱材1を提供できる。   According to the vacuum heat insulating material 1 which concerns, the fall of a partial heat insulation performance can be suppressed, without cutting off the core material 3 of an inorganic fiber in uneven | corrugated shape. That is, by forming a layered clayey material on the surface of the core material 3 and a part in the thickness direction, a core material having an uneven shape or the like can be produced. As a result, it is excellent in bendability and retention, and can prevent pinholes when the outer packaging material 2 is made thin due to the influence of bending stress, and prevent pinholes in the outer packaging material by piercing the protrusions of the getter agent 5. From this, it is possible to improve the foldability and retention of the outer packaging material 2 during vacuum packaging, to prevent the outer packaging material 2 from being pierced by immobilization with a layered clayey material when the getter agent 5 is inserted, Even with a combination of flat surfaces, it is possible to provide an excellent vacuum heat insulating material 1 that can maintain heat insulating performance over a long period of time.

一方、図2に従来の真空断熱材6の断面模式図を示す。無機繊維のコア材3をゲッター剤5と共に外包材2で減圧封止する構成の真空断熱材である。従来の真空断熱材6は、変形が困難であると共に、形状の歪み、外包材2の外側部分が薄膜化により断烈のピンホールが生じ易く、外包材2のガスバリア性が劣る。   On the other hand, the cross-sectional schematic diagram of the conventional vacuum heat insulating material 6 is shown in FIG. It is a vacuum heat insulating material having a configuration in which the inorganic fiber core material 3 is sealed under reduced pressure with the outer packaging material 2 together with the getter agent 5. The conventional vacuum heat insulating material 6 is difficult to be deformed, is distorted in shape, and a pinhole is easily formed due to thinning of the outer portion of the outer packaging material 2, and the gas barrier property of the outer packaging material 2 is inferior.

図3に本発明の断熱材1を備えた断熱箱体7の斜視模式図を示す。この断熱箱体7は、鉄板をプレス成型した箱体9の内面側の一部に、凹凸形状を有する層状粘土質材を入れた真空断熱材1を挿入し、更に、空隙部分に硬質ポリウレタンフォーム8を発泡充填した構成のものである。真空断熱材1を作製する際には、変形部の芯材3に層状粘土質材を凹凸形状に塗布して一部を折り曲げて使用している。   The perspective schematic diagram of the heat insulation box 7 provided with the heat insulating material 1 of this invention in FIG. 3 is shown. The heat insulating box 7 is formed by inserting the vacuum heat insulating material 1 containing a layered clay-like material having a concavo-convex shape into a part of the inner surface side of a box 9 obtained by press-molding an iron plate, and further, rigid polyurethane foam in the gap portion. 8 is filled with foam. When the vacuum heat insulating material 1 is produced, a layered clayey material is applied in a concavo-convex shape to the core material 3 of the deformed portion, and a part thereof is bent and used.

本発明の真空断熱材1を、層状粘土質材を変化させて作製し、形状折り曲げ性、形状保持性、外包材のピンホール有無、熱伝導率および熱伝導率の経時劣化を確認した。また、層状構成材の無しおよびその構成材が異なるものを比較例1〜4として作製し、形状折り曲げ性、形状保持性、外包材のピンホール有無、熱伝導率および熱伝導率の経時劣化を確認した。その結果を表1に示す。   The vacuum heat insulating material 1 of the present invention was produced by changing the layered clayey material, and the shape bendability, shape retention, pinhole presence / absence of the outer packaging material, thermal conductivity, and thermal conductivity deterioration with time were confirmed. In addition, no layered component and different component materials were produced as Comparative Examples 1 to 4, and the shape bendability, shape retention, pinhole presence / absence of outer packaging material, thermal conductivity and thermal conductivity deterioration with time confirmed. The results are shown in Table 1.

Figure 2010001922
Figure 2010001922

以下、本発明の実施例および比較例を詳細に説明する。   Examples of the present invention and comparative examples will be described in detail below.

本発明の実施例1の真空断熱材1は以下のように作製した。平均繊維径が3μmのグラスウール(大きさ:500mm×500mm×10mm)中に、スメクタイト化合物のモンモリロナイト(クニミネ工業製:クニピアF)とイオン交換水をホモミキサーで1時間分散させて得たモンモリロナイト水分散液(不揮発分2重量%)を調整した。その後、分散液をディスペンサーに入れて、ディスペンシング装置を用いて水平方向(X、Y軸方向)、垂直方向(Z軸方向)に作動させて、各無機繊維中にモンモリロナイトの分散液を凹凸形状に滴下して、凹凸状の芯材を作製した。その後、230℃の恒温槽中に1時間入れて乾燥させ、繊維芯材のエージング処理を同時に行った。更に、ガスバリア性フィルムからなる外包材2の中に、形成した2層の芯材を重ねて入れ、ガス吸着のゲッター剤4(モレキュラーシーブス13X)を層状粘土質材の塗布部に挟めて固定後、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空チャンバー内に入れてチャンバーの内部圧力が1.3Paになるまで排気後、外包材の端部をヒートシールで真空封止した。   The vacuum heat insulating material 1 of Example 1 of this invention was produced as follows. Montmorillonite water dispersion obtained by dispersing a smectite compound montmorillonite (Kunimine Kogyo: Kunipia F) and ion-exchanged water for 1 hour with a homomixer in glass wool having an average fiber diameter of 3 μm (size: 500 mm × 500 mm × 10 mm) The liquid (nonvolatile content 2% by weight) was adjusted. After that, the dispersion liquid is put into a dispenser and operated in the horizontal direction (X, Y axis direction) and the vertical direction (Z axis direction) using a dispensing device, and the dispersion liquid of montmorillonite is formed into an uneven shape in each inorganic fiber. The concavo-convex core material was prepared by dripping in Then, it put into a 230 degreeC thermostat for 1 hour, it was made to dry, and the aging process of the fiber core material was performed simultaneously. Further, the two-layer core material formed is placed in the outer packaging material 2 made of a gas barrier film, and the gas adsorption getter agent 4 (molecular sieve 13X) is sandwiched between the application portions of the layered clayey material and fixed. After 10 minutes with the rotary pump of the vacuum packaging machine and 10 minutes with the diffusion pump, after evacuating until the internal pressure of the chamber becomes 1.3 Pa in the vacuum chamber, the end of the outer packaging material was vacuum sealed with heat seal .

このようにして得られた実施例1の真空断熱材(厚み:約10mm)1の熱伝導率について、英弘精機(株)製のAUTO−Λを用いて10℃で測定した。初期熱伝導率は、2.0mW/m・Kを示した。形状折り曲げ性は、曲げ試験機を用いて、試験条件(速度:10mm/min、支点間距離:100mm(支持台および圧子はφ20mmの丸棒)、変位量:40mmでの最大曲げ荷重(N)を測定し評価した。その結果、形状折り曲げ性は70.5Nであった。形状保持性は4h経過後の曲げ部分の保持状態を見た。保持前の形状から変化しておらず、形状保持性は良好であった。また、ゲッター剤は層状粘土質材の塗布部に挟めて固定化したため、外包材への突起によるピンホールの発生がなかった。更に、作製した真空断熱材を折り曲げた状態で恒温槽中に入れ、断熱性の耐久試験を行った。70℃の温度で30日間放置した後、熱伝導率を測定した。その結果、3.2mW/m・Kを示した。
(比較例1)
Thus, about the heat conductivity of the vacuum heat insulating material (thickness: about 10 mm) 1 of Example 1 obtained in this way, it measured at 10 degreeC using Hidehiro Seiki Co., Ltd. AUTO-Λ. The initial thermal conductivity was 2.0 mW / m · K. The shape bendability is determined by using a bending tester under test conditions (speed: 10 mm / min, distance between fulcrums: 100 mm (supporting plate and indenter is a round bar of φ20 mm), displacement: maximum bending load at 40 mm (N) As a result, the shape bendability was 70.5 N. The shape retainability was observed after holding the bent portion after 4 hours. In addition, since the getter agent was fixed by being sandwiched between the application parts of the layered clayey material, no pinholes were generated due to protrusions on the outer packaging material. The sample was placed in a constant temperature bath and subjected to a heat insulation durability test, and was allowed to stand at a temperature of 70 ° C. for 30 days, and then the thermal conductivity was measured, and as a result, 3.2 mW / m · K was shown.
(Comparative Example 1)

前記の層状粘土質材を入れずに、実施例1と同様の真空断熱材6を比較例1として作製した。その結果、比較例1では、形状折り曲げ性は124Nであり、曲げにくかった。また、比較例1では、曲げた後の形状は保持されず、形状保持性は不良であった。また、比較例1では、ゲッター剤を芯材上に入れて真空封止したところ、外包材に微小なピンホールが発生した。更に、比較例1では、初期熱伝導率は2.2mW/m・Kを示したが、耐久試験後の熱伝導率は7.8mW/m・Kであった。このことから、層状粘土質材を用いない場合、折り曲げ加工を施した際の応力により外包材が薄くなったり、微小な亀裂等が発生したりしてガスバリア性が低下し、真空断熱材内の真空度が低下することで熱伝導率の経時劣化を引き起こす。   A vacuum heat insulating material 6 similar to that of Example 1 was produced as Comparative Example 1 without using the layered clayey material. As a result, in Comparative Example 1, the shape bendability was 124N, which was difficult to bend. In Comparative Example 1, the shape after bending was not retained, and the shape retention was poor. Further, in Comparative Example 1, when the getter agent was put on the core material and vacuum sealed, minute pinholes were generated in the outer packaging material. Furthermore, in Comparative Example 1, the initial thermal conductivity was 2.2 mW / m · K, but the thermal conductivity after the durability test was 7.8 mW / m · K. For this reason, when the layered clayey material is not used, the outer packaging material becomes thin due to the stress at the time of bending processing, or micro cracks etc. occur and the gas barrier property is lowered, and the inside of the vacuum heat insulating material is reduced. Decreasing the degree of vacuum causes deterioration of thermal conductivity over time.

前記のとおり、層状粘土質材を入れた実施例1の真空断熱材1では、折り曲げ部分にも断熱効果があり、且つ熱伝導率の劣化が抑制されることが分かった。真空断熱材1を作製の際、外包材が芯材の凹凸形状を反映することで、折り曲げ加工を施した際も外包材に過度の応力が加わっておらず、熱伝導率の経時劣化が抑制されていることが明らかとなった。また、形状折り曲げ性と形状保持性が改善され、ゲッター剤も層状粘土質材で固定化されるため、突起による外包材の微小な亀裂も発生しなかった。従って、実施例1によれば、折り曲げた形状を維持することが容易で高性能な真空断熱材を提供できる。   As described above, it was found that in the vacuum heat insulating material 1 of Example 1 in which the layered clayey material was added, the bent portion also had a heat insulating effect and the deterioration of the thermal conductivity was suppressed. When the vacuum heat insulating material 1 is manufactured, the outer packaging material reflects the uneven shape of the core material, so that excessive stress is not applied to the outer packaging material even when it is bent, and deterioration of the thermal conductivity over time is suppressed. It became clear that it was. In addition, the shape bendability and shape retention were improved, and the getter agent was fixed with the layered clayey material, so that no minute cracks in the outer packaging material due to the protrusions were generated. Therefore, according to Example 1, it is easy to maintain a bent shape and a high-performance vacuum heat insulating material can be provided.

本発明の実施例2の真空断熱材1は、層状粘土質材として、スメクタイト化合物のサポナイト(コープケミカル製:ルーセンタイトSWN)とイオン交換水をホモミキサーで1時間分散(不揮発分5重量%)させて調合した。真空断熱材1の芯材には平均繊維径が5μmのグラスウール(大きさ:500mm×500mm×10mm)を用い、ディスペンサーに分散液を入れ、ディスペンシング装置で水平方向(X、Y軸方向)、垂直方向(Z軸)に作動させて、各無機繊維中にスメクタイト化合物のサポナイトを凹凸形状に滴下して、凹凸状の芯材を作製した。その後、200℃の恒温槽中に1時間入れて乾燥させて、繊維芯材のエージング処理も同時に行った。更に、形成した2層の芯材を重ねて入れ、ガス吸着のゲッター剤4(疎水性ゼオライトHiSiv−3000)をサポナイト塗布部に挟めて固定後、内袋に入れ脱気圧縮後、ガスバリア性フィルムからなる外包材2の中に挿入して、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空チャンバー内に入れてチャンバーの内部圧力が1.3Paになるまで排気後、外包材の端部をヒートシールで真空封止した。   The vacuum heat insulating material 1 of Example 2 of the present invention is a layered clay-like material in which a smectite compound saponite (manufactured by Co-op Chemical: Lucentite SWN) and ion-exchanged water are dispersed for 1 hour with a homomixer (non-volatile content: 5% by weight) And blended. Glass wool (size: 500 mm × 500 mm × 10 mm) having an average fiber diameter of 5 μm is used for the core material of the vacuum heat insulating material 1, the dispersion is put into a dispenser, and the dispensing device is used in the horizontal direction (X and Y axis directions). Operated in the vertical direction (Z-axis), a saponite compound saponite was dropped into the concavo-convex shape in each inorganic fiber to prepare a concavo-convex core material. Thereafter, the fiber core material was dried in a constant temperature bath at 200 ° C. for 1 hour, and the fiber core material was also subjected to aging treatment. Further, the formed two-layer core material is put on top, and the gas adsorption getter agent 4 (hydrophobic zeolite HiSiv-3000) is sandwiched between the saponite-coated portions and fixed, then put in an inner bag, degassed and compressed, and then a gas barrier film After being evacuated until the internal pressure of the chamber becomes 1.3 Pa after being inserted into the outer packaging material 2 comprising 10 minutes by the rotary pump of the vacuum packaging machine, 10 minutes by the diffusion pump, and placed in the vacuum chamber. The end of was vacuum sealed with heat seal.

このようにして得られた実施例2の真空断熱材(厚み:約10mm)1の熱伝導率は、2.2mW/m・Kを示した。形状折り曲げ性は72.9Nであった。形状保持性も良好で、ゲッター剤の突起による外包材のピンホールも見られなかった。更に、作製した真空断熱材を折り曲げた状態で恒温槽中に入れ、断熱性の耐久試験を行った。70℃の温度で30日間放置の耐久試験後の熱伝導率は3.2mW/m・Kであり、経時劣化は抑制されていた。   The heat conductivity of the vacuum heat insulating material (thickness: about 10 mm) 1 of Example 2 obtained in this way was 2.2 mW / m · K. The shape bendability was 72.9N. The shape retention was also good, and no pinholes in the outer packaging material due to the getter agent protrusion were observed. Furthermore, the manufactured vacuum heat insulating material was put in a thermostatic bath in a bent state, and a heat insulation durability test was performed. The thermal conductivity after the endurance test after standing for 30 days at a temperature of 70 ° C. was 3.2 mW / m · K, and the deterioration with time was suppressed.

本発明の実施例3の真空断熱材1は、層状粘土質材として、スメクタイト化合物の疎水性モンモリロナイト(クニミネ工業製:クニピアD)とトルエン溶媒をホモミキサーで1時間分散(不揮発分10重量%)させて調合した。真空断熱材1の芯材には平均繊維径が4μmのグラスウール(大きさ:500mm×500mm×15mm)を用い、ディスペンサーに分散液を入れディスペンシング装置で水平方向(X、Y軸方向)、垂直方向(Z軸方向)に作動させて、各無機繊維中にスメクタイト化合物の疎水性モンモリロナイトを凹凸形状に滴下して、凹凸状の芯材を作製した。溶媒を揮発後、180℃の恒温槽中に1時間入れて乾燥させて、繊維芯材のエージング処理も同時に行った。更に、形成した2層の芯材を重ねて入れ、ガス吸着のゲッター剤4(モレキュラーシーブス13Xと疎水性ゼオライトHiSiv−3000の混合物)をモンモリロナイト塗布部に挟めて固定後、ガスバリア性フィルムからなる外包材2の中に挿入して、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空チャンバー内に入れてチャンバーの内部圧力が1.3Paになるまで排気後、外包材の端部をヒートシールで真空封止した。   The vacuum heat insulating material 1 of Example 3 of the present invention is a layered clayey material, a smectite compound hydrophobic montmorillonite (Kunimine Kogyo Co., Ltd .: Kunipia D) and toluene solvent dispersed for 1 hour with a homomixer (non-volatile content 10% by weight) And blended. Glass wool with an average fiber diameter of 4 μm (size: 500 mm × 500 mm × 15 mm) is used for the core material of the vacuum heat insulating material 1, and the dispersion liquid is put into a dispenser in the horizontal direction (X and Y axis directions) and vertical. Operated in the direction (Z-axis direction), a hydrophobic montmorillonite of a smectite compound was dropped into the concavo-convex shape in each inorganic fiber to prepare a concavo-convex core material. After volatilizing the solvent, it was placed in a constant temperature bath at 180 ° C. for 1 hour and dried, and the fiber core material was subjected to aging treatment at the same time. Further, the two layers of the core material thus formed are put on top of each other, and the gas adsorption getter agent 4 (mixture of molecular sieves 13X and hydrophobic zeolite HiSiv-3000) is sandwiched between the montmorillonite coating portions and fixed, and then an outer envelope made of a gas barrier film. Inserted into the material 2 and placed in the vacuum chamber for 10 minutes with the rotary pump of the vacuum packaging machine and 10 minutes with the diffusion pump, evacuated until the internal pressure of the chamber reaches 1.3 Pa, and then the end of the outer packaging material Was vacuum-sealed with a heat seal.

このようにして得られた実施例3の真空断熱材(厚み:約15mm)の熱伝導率は、2.4mW/m・Kを示した。形状折り曲げ性は76.3Nであった。形状保持性も良好で、ゲッター剤の突起による外包材のピンホールも見られなかった。更に、作製した真空断熱材を折り曲げた状態で恒温槽中に入れ、断熱性の耐久試験を行った。70℃の温度で30日間放置の耐久試験後の熱伝導率は3.8mW/m・Kであり、経時劣化は抑制されていた。   Thus, the heat conductivity of the vacuum heat insulating material of Example 3 (thickness: about 15 mm) obtained was 2.4 mW / m · K. The shape bendability was 76.3N. The shape retention was also good, and no pinholes in the outer packaging material due to the getter agent protrusion were observed. Furthermore, the manufactured vacuum heat insulating material was put in a thermostatic bath in a bent state, and a heat insulation durability test was performed. The thermal conductivity after the endurance test after standing for 30 days at a temperature of 70 ° C. was 3.8 mW / m · K, and the deterioration with time was suppressed.

本発明の実施例4の真空断熱材1は、層状粘土質材として、スメクタイト化合物の疎水性モンモリロナイト(コープケミカル製:ルーセンタイトSEN)とトルエン溶媒をホモミキサーで1時間分散(不揮発分5重量%)させて調合した。真空断熱材1の芯材には平均繊維径が3.5μmのグラスウール(大きさ:500mm×500mm×12mm)を用い、ディスペンサーに分散液を入れディスペンシング装置で水平方向(X、Y軸方向)、垂直方向(Z軸方向)に作動させて、各無機繊維中にスメクタイト化合物の疎水性モンモリロナイトを凹凸形状に滴下して、凹凸状の芯材を作製した。溶媒を揮発後、200℃の恒温槽中に1時間入れて乾燥させて、繊維芯材のエージング処理も同時に行った。更に、形成した2層の芯材を重ねて入れ、ガス吸着のゲッター剤4(モレキュラーシーブス13X)をモンモリロナイト塗布部に挟めて固定後、ガスバリア性フィルムからなる外包材2の中に挿入して、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空チャンバー内に入れてチャンバーの内部圧力が1.3Paになるまで排気後、外包材の端部をヒートシールで真空封止した。   The vacuum heat insulating material 1 of Example 4 of the present invention is a layered clay-like material in which a smectite compound hydrophobic montmorillonite (manufactured by Co-op Chemical: Lucentite SEN) and a toluene solvent are dispersed in a homomixer for 1 hour (nonvolatile content: 5% by weight) ) To prepare. Glass wool with an average fiber diameter of 3.5 μm (size: 500 mm × 500 mm × 12 mm) is used for the core material of the vacuum heat insulating material 1, and the dispersion liquid is put into a dispenser, and the horizontal direction (X and Y axis directions) with a dispensing device. By operating in the vertical direction (Z-axis direction), a hydrophobic montmorillonite of a smectite compound was dropped into each of the inorganic fibers in a concavo-convex shape to prepare a concavo-convex core material. After volatilization of the solvent, it was placed in a constant temperature bath at 200 ° C. for 1 hour and dried, and the fiber core material was subjected to aging treatment at the same time. Further, the two layers of the core material formed are put in layers, the gas adsorption getter agent 4 (Molecular Sieves 13X) is sandwiched between the montmorillonite coating portions and fixed, and then inserted into the outer packaging material 2 made of a gas barrier film. After 10 minutes with a rotary pump of the vacuum packaging machine and 10 minutes with a diffusion pump, after evacuation until the internal pressure of the chamber became 1.3 Pa, the end of the outer packaging material was vacuum sealed with a heat seal.

このようにして得られた実施例4の真空断熱材(厚み:約12mm)1の熱伝導率は、2.1mW/m・Kを示した。形状折り曲げ性は78.5Nであった。形状保持性も良好で、ゲッター剤の突起による外包材のピンホールも見られなかった。更に、作製した真空断熱材を折り曲げた状態で恒温槽中に入れ、断熱性の耐久試験を行った。70℃の温度で30日間放置の耐久試験後の熱伝導率は3.4mW/m・Kであり、経時劣化は抑制されていた。   Thus, the heat conductivity of the vacuum heat insulating material (thickness: about 12 mm) 1 of Example 4 obtained in this way was 2.1 mW / m · K. The shape bendability was 78.5N. The shape retention was also good, and no pinholes in the outer packaging material due to the getter agent protrusion were observed. Furthermore, the manufactured vacuum heat insulating material was put in a thermostatic bath in a bent state, and a heat insulation durability test was performed. The thermal conductivity after the endurance test after standing for 30 days at a temperature of 70 ° C. was 3.4 mW / m · K, and deterioration over time was suppressed.

本発明の実施例5の真空断熱材1は、層状粘土質材として、スメクタイト化合物のモンモリロナイト(クニミネ工業製:クニピアF)とサポナイト(コープケミカル製:ルーセンタイトSWN)を等重量用い、イオン交換水を入れてホモミキサーで1時間分散(不揮発分3重量%)させて、の層状粘土質材に変更し、同様をホモミキサーで1時間分散(不揮発分5重量%)させて、スメクタイト化合物のモンモリロナイトとサポナイトを調合した。真空断熱材1の芯材には平均繊維径が4μmのグラスウール(大きさ:500mm×500mm×10mm)を用い、ディスペンサーに分散液を入れディスペンシング装置で水平方向(X、Y軸方向)、垂直方向(Z軸方向)に作動させて、各無機繊維中にスメクタイト化合物のモンモリロナイトとサポナイトを凹凸形状に滴下して、凹凸状の芯材を作製した。溶媒を揮発後、230℃の恒温槽中に1時間入れて乾燥させて、繊維芯材のエージング処理も同時に行った。更に、形成した2層の芯材を重ねて入れ、ガス吸着のゲッター剤4(疎水性ゼオライトHiSiv−3000)をモンモリロナイトとサポナイトを塗布部に挟めて固定後、ガスバリア性フィルムからなる外包材2の中に挿入して、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空チャンバー内に入れてチャンバーの内部圧力が1.3Paになるまで排気後、外包材の端部をヒートシールで真空封止した。   The vacuum heat insulating material 1 of Example 5 of the present invention uses ion-exchanged water using equal weights of a smectite compound montmorillonite (Kunimine Industries: Kunipia F) and saponite (Coop Chemical: Lucentite SWN) as a layered clayey material. And dispersed with a homomixer for 1 hour (non-volatile content: 3% by weight), and changed to a layered clay material. The same was dispersed with a homomixer for 1 hour (non-volatile content: 5% by weight), and the smectite compound montmorillonite And saponite. Glass wool with an average fiber diameter of 4 μm (size: 500 mm × 500 mm × 10 mm) is used as the core material of the vacuum heat insulating material 1, and the dispersion is placed in a dispenser in the horizontal direction (X and Y axis directions) and vertical. The smectite compound montmorillonite and saponite were dropped into the concavo-convex shape in each inorganic fiber by operating in the direction (Z-axis direction) to prepare a concavo-convex core material. After volatilizing the solvent, it was placed in a thermostatic bath at 230 ° C. for 1 hour and dried, and the fiber core material was also subjected to aging treatment at the same time. Further, the formed two-layer core material is put on top of each other, the gas adsorption getter agent 4 (hydrophobic zeolite HiSiv-3000) is fixed with montmorillonite and saponite sandwiched between the application portions, and then the outer packaging material 2 made of a gas barrier film. Insert into the vacuum packaging machine rotary pump for 10 minutes, diffusion pump for 10 minutes, put in the vacuum chamber and exhaust until the internal pressure of the chamber is 1.3 Pa, then heat seal the end of the outer packaging material And vacuum sealed.

このようにして得られた実施例5の真空断熱材(厚み:約10mm)1の熱伝導率は、2.2mW/m・Kを示した。形状折り曲げ性は74.5Nであった。形状保持性も良好で、ゲッター剤の突起による外包材のピンホールも見られなかった。更に、作製した真空断熱材を折り曲げた状態で恒温槽中に入れ、断熱性の耐久試験を行った。70℃の温度で30日間放置の耐久試験後の熱伝導率は2.9mW/m・Kであり、経時劣化は抑制されていた。   Thus, the heat conductivity of the vacuum heat insulating material (thickness: about 10 mm) 1 of Example 5 obtained was 2.2 mW / m · K. The shape bendability was 74.5N. The shape retention was also good, and no pinholes in the outer packaging material due to the getter agent protrusion were observed. Furthermore, the manufactured vacuum heat insulating material was put in a thermostatic bath in a bent state, and a heat insulation durability test was performed. The thermal conductivity after the endurance test after standing for 30 days at a temperature of 70 ° C. was 2.9 mW / m · K, and the deterioration with time was suppressed.

本発明の実施例6は、図4に示すように、本発明の真空断熱材1を冷蔵庫10に用いた例である。冷蔵庫10は、真空断熱材1およびその他の断熱材8により断熱されている。冷蔵庫10において、外気温との温度差が特に大きいのは、コンプレッサー周辺部と、冷蔵庫背面の内箱11の外面側である。この部位に本発明の真空断熱材1を使用することが有効である。真空断熱材1は無機繊維のコア材に層状粘土質材を設け、変形部と平面部を組み合わせて作製したものを用いた。真空断熱材1は、断熱壁の曲げ部に沿って配設した真空断熱材である。真空断熱材1を曲げ部の内箱側に設置する場合は、内箱11の形状に沿って内箱11に密着するように設置してある。また、真空断熱材は、曲げ部の外箱側に設置する場合は、外箱12の形状に沿って設置してある。断熱壁の曲げ部は断熱壁の変形部を構成する部分である。なお、外箱12の背面部および冷蔵庫扉の1つには、層状粘土質材を有しない真空断熱材6を配置してある。   Example 6 of this invention is an example which used the vacuum heat insulating material 1 of this invention for the refrigerator 10, as shown in FIG. The refrigerator 10 is insulated by the vacuum heat insulating material 1 and other heat insulating materials 8. In the refrigerator 10, the temperature difference from the outside air temperature is particularly large between the compressor peripheral portion and the outer surface side of the inner box 11 on the rear surface of the refrigerator. It is effective to use the vacuum heat insulating material 1 of the present invention at this site. The vacuum heat insulating material 1 used what provided the layered clayey material in the core material of the inorganic fiber, and produced it combining the deformation | transformation part and the plane part. The vacuum heat insulating material 1 is a vacuum heat insulating material disposed along the bent portion of the heat insulating wall. When the vacuum heat insulating material 1 is installed on the inner box side of the bent portion, the vacuum heat insulating material 1 is installed in close contact with the inner box 11 along the shape of the inner box 11. Moreover, the vacuum heat insulating material is installed along the shape of the outer box 12 when installed on the outer box side of the bent portion. The bent part of the heat insulating wall is a part constituting the deformed part of the heat insulating wall. In addition, the vacuum heat insulating material 6 which does not have a layered clayey material is arrange | positioned at the back part of the outer box 12, and one of the refrigerator doors.

箱体9にポリオールとイソシアネートとを、高圧発泡機を用いて注入充填して冷蔵庫の断熱材を作製した。発泡断熱材の硬質ポリウレタンフォーム8は、ポリオールとして、平均水酸基価が450のm−トリレンジアミンにプロピレンオキサイドを付加したポリエーテルポリオールを40重量部、平均水酸基価が470のo−トリレンジアミンにプロピレンオキサイドを付加したポリエーテルポリオールを30重量部、平均水酸基価が380のo−トリレンジアミンにプロピレンオキサイドを付加したポリエーテルポリオールを30重量部の混合ポリオール成分100重量部に、シクロペンタン15重量部に水1.5部および反応触媒としてテトラメチルヘキサメチレンジアミン1.2重量部とトリメチルアミノエチルピペラジン2部、整泡剤として有機シリコーン化合物X−20−1614を2重量部、イソシアネート成分としてミリオネートMRのジフェニルメタンイソシアネート多核体を125部用いて発泡充填した。   The box 9 was injected and filled with polyol and isocyanate using a high-pressure foaming machine to produce a heat insulating material for the refrigerator. Rigid polyurethane foam 8 for foam insulation is composed of 40 parts by weight of polyether polyol obtained by adding propylene oxide to m-tolylenediamine having an average hydroxyl value of 450 as an polyol, and o-tolylenediamine having an average hydroxyl value of 470. 30 parts by weight of polyether polyol added with propylene oxide, 30 parts by weight of polyether polyol added with propylene oxide to o-tolylenediamine having an average hydroxyl value of 380, 100 parts by weight of mixed polyol component, 15 parts by weight of cyclopentane 1.5 parts of water and 1.2 parts of tetramethylhexamethylenediamine as a reaction catalyst and 2 parts of trimethylaminoethylpiperazine as a reaction catalyst, 2 parts by weight of an organic silicone compound X-20-1614 as a foam stabilizer, and a millionate as an isocyanate component MR The diphenylmethane diisocyanate polynuclear was foam filling with 125 parts.

前記断熱後の冷蔵庫10の熱漏洩量および消費電力量を測定した。冷蔵庫10の熱漏洩量は、冷蔵庫10の動作状態と反対の温度条件を設定し庫内からの熱漏洩量として測定を行った。具体的には、−10℃の恒温室内に冷蔵庫10を設置し、庫内温度を所定の測定条件(温度差)になるようにヒータにそれぞれ通電し冷蔵庫10の消費電力と冷却性能を比較する温度条件で測定した。冷蔵庫10の消費電力量はJIS測定基準で行った。その結果、真空断熱材1を挿入しなかった冷蔵庫と比べて、熱漏洩量で12%、消費電力量で25%低減できる冷蔵庫10を提供できた。   The amount of heat leakage and power consumption of the refrigerator 10 after the heat insulation were measured. The amount of heat leakage of the refrigerator 10 was measured as the amount of heat leakage from the interior by setting a temperature condition opposite to the operation state of the refrigerator 10. Specifically, the refrigerator 10 is installed in a thermostatic chamber of −10 ° C., and the heater is energized so that the internal temperature becomes a predetermined measurement condition (temperature difference), and the power consumption and the cooling performance of the refrigerator 10 are compared. Measured under temperature conditions. The power consumption of the refrigerator 10 was performed according to JIS measurement standards. As a result, compared with the refrigerator in which the vacuum heat insulating material 1 was not inserted, it was possible to provide the refrigerator 10 that can reduce the amount of heat leakage by 12% and the power consumption by 25%.

なお、前記の硬質ポリウレタンフォーム8は、本発明の真空断熱材1と共に、冷蔵庫等をはじめとし断熱箱体または断熱板に使用することが可能であり、硬質ポリウレタンフォーム8以外にフェノールフォームやスチレンフォーム等が例示されるが、シクロペンタンおよび水を混合発泡剤とする硬質ポリウレタンフォームが好ましい。   The rigid polyurethane foam 8 can be used in a heat insulating box or a heat insulating plate such as a refrigerator together with the vacuum heat insulating material 1 of the present invention. In addition to the rigid polyurethane foam 8, phenol foam or styrene foam. And the like, but a rigid polyurethane foam using cyclopentane and water as a mixed foaming agent is preferable.

本発明の実施例7は、本発明の真空断熱材1をダブルスキン構造材の車両の断熱材として使用する例である。ダブルスキン構造を有する車両においては、軽量化と耐圧性向上を図るため、その側面および屋根構造体が曲面を有する構造となっており、従来の真空断熱材6では貼り付けが困難である。また、貼り付けると外包材に歪みが生じ、内部の真空度が低下し、結果として断熱性能の悪化が問題となる。実施例7においては、真空断熱材1は無機繊維のコア材に層状粘土質材を設け、変形状と平面状を組み合わせて作製したものを用いた。本発明の真空断熱材1を用いた場合は、構造体の曲面に沿って貼り付けることが可能になる。車両の断熱効果も十分なものとなっており、車両内の結露等の問題も発生しなかった。真空度の低下が生じにくいことから、断熱特性に優れ断熱材厚さを1/2にすることができ、車両の室内空間をより広くすることが可能となる。また、真空断熱材1自体が形状保持性を有していることから、車両への取り付け性が良好で本発明の真空断熱材1は車両用断熱材として有効である。   Example 7 of this invention is an example which uses the vacuum heat insulating material 1 of this invention as a heat insulating material of the vehicle of a double skin structure material. In a vehicle having a double skin structure, the side surface and the roof structure have a curved surface in order to reduce the weight and improve the pressure resistance, and it is difficult to attach the conventional vacuum heat insulating material 6. Moreover, when it sticks, a distortion will arise in an outer packaging material, an internal vacuum degree will fall, and the deterioration of heat insulation performance will pose a problem as a result. In Example 7, the vacuum heat insulating material 1 used what provided the layered clayey material in the core material of the inorganic fiber, and produced it combining the deformation | transformation shape and planar shape. When the vacuum heat insulating material 1 of the present invention is used, it can be attached along the curved surface of the structure. The heat insulation effect of the vehicle was sufficient, and problems such as condensation in the vehicle did not occur. Since the degree of vacuum is not easily lowered, the heat insulating property is excellent and the thickness of the heat insulating material can be reduced to ½, so that the vehicle interior space can be made wider. Moreover, since the vacuum heat insulating material 1 itself has a shape retaining property, the mounting property to the vehicle is good, and the vacuum heat insulating material 1 of the present invention is effective as a heat insulating material for a vehicle.

本発明の実施例8は、本発明の真空断熱材1を給湯器用貯湯タンクの断熱材として用い、給湯器を作製する例である。貯湯タンクは円筒形または曲線部を有する形状となっており、従来の真空断熱材6は貼り付けが困難である。また、従来の真空断熱材を無理に貼り付けると外包材に歪みが生じ、内部の真空度が低下するのに伴い断熱性能も低下してしまう。   Example 8 of this invention is an example which produces the water heater using the vacuum heat insulating material 1 of this invention as a heat insulating material of the hot water storage tank for water heaters. The hot water storage tank has a cylindrical shape or a shape having a curved portion, and it is difficult to attach the conventional vacuum heat insulating material 6. Moreover, when a conventional vacuum heat insulating material is forcibly applied, the outer packaging material is distorted, and the heat insulating performance is also reduced as the internal vacuum level is reduced.

本発明の真空断熱材1を用いた場合は、貯湯タンクの曲面に沿って貼り付けることができ、曲面に貼り付けても外包材に歪みが生じにくいため、断熱性能も損なわれにくい。作製した貯湯タンクに湯(90℃)を入れ、湯温の変化を測定したところ10時間経過後の湯温は75℃となった。なお、実施例8の比較例として、真空断熱材を貼り付けない貯湯タンクを作製し同様に湯を入れ、湯温の変化を測定したところ、2時間経過後の湯温は55℃となった。このことから、給湯器用貯湯タンクに本発明の真空断熱材1を用いることで、真空断熱材を用いない場合と比較して、湯温の低下を大幅に抑えることができ、保温の熱量が必要なくなることから省エネの視点から非常に有効である。
(比較例2)
When the vacuum heat insulating material 1 of the present invention is used, it can be applied along the curved surface of the hot water storage tank, and even if it is applied to the curved surface, the outer packaging material is hardly distorted, so that the heat insulating performance is not easily impaired. Hot water (90 ° C.) was put into the produced hot water storage tank, and the change in the hot water temperature was measured. As a result, the hot water temperature after 75 hours was 75 ° C. In addition, as a comparative example of Example 8, a hot water storage tank without a vacuum heat insulating material was prepared, hot water was poured in the same manner, and the change in the hot water temperature was measured, and the hot water temperature after 2 hours was 55 ° C. . From this, by using the vacuum heat insulating material 1 of the present invention for the hot water storage tank for a water heater, compared with the case where no vacuum heat insulating material is used, a decrease in hot water temperature can be greatly suppressed, and the amount of heat for heat retention is required. This is very effective from the viewpoint of energy saving.
(Comparative Example 2)

比較例2の真空断熱材においては、平均繊維径が7μmのグラスウール(大きさ:500mm×500mm×10mm)と実施例2のスメクタイト化合物とを用いて、凹凸状の芯材を作製した。その後、形成した2層の芯材を重ねて入れ、ガス吸着のゲッター剤4(疎水性ゼオライトHiSiv−3000)を芯材に入れ、ガスバリア性フィルムからなる外包材2の中に挿入して同様に真空封止した。   In the vacuum heat insulating material of Comparative Example 2, an uneven core material was prepared using glass wool having an average fiber diameter of 7 μm (size: 500 mm × 500 mm × 10 mm) and the smectite compound of Example 2. Thereafter, the formed two-layer core material is put on top, and the gas adsorption getter agent 4 (hydrophobic zeolite HiSiv-3000) is put into the core material and inserted into the outer packaging material 2 made of a gas barrier film. Vacuum sealed.

このようにして得られた比較例2の真空断熱材(厚み:約10mm)の熱伝導率は、5.2mW/m・Kを示した。形状折り曲げ性は79.2Nを示し、形状保持性も良好であったが、ゲッター剤の突起による外包材にピンホールが見られ、真空断熱材を折り曲げた状態で恒温槽中に入れて70℃の温度で30日間放置の耐久試験後の熱伝導率が、10.5mW/m・Kと高くなり、熱伝導率の経時劣化を引き起こしてしまう。
(比較例3)
Thus, the heat conductivity of the vacuum heat insulating material (thickness: about 10 mm) of the comparative example 2 obtained was 5.2 mW / m · K. The shape bendability was 79.2N and the shape retention was good, but pinholes were seen in the outer packaging material due to the getter agent projection, and the vacuum heat insulating material was folded and placed in a thermostatic bath at 70 ° C. The thermal conductivity after an endurance test for 30 days at a temperature of as high as 10.5 mW / m · K causes deterioration of the thermal conductivity over time.
(Comparative Example 3)

比較例3の真空断熱材においては、前記の層状粘土質材の代わりに、無機物の水ガラスを用いて実施例1と同様に真空断熱材を作製した。その結果、形状折り曲げ性は134Nで曲げにくかった。また、曲げた後の形状は保持されず、形状保持性は不良であった。また、初期熱伝導率は、2.5mW/m・Kを示した。耐久試験後の熱伝導率は9.8mW/m・Kであった。このことから、層状粘土質材の代わりに水ガラスを用いた場合は、折り曲げ加工時を施した際に外包材に過度の応力が加わり、外包材のガスバリア性が低下し、真空断熱材の真空度が低下することにより、熱伝導率の経時劣化を引き起こしてしまう。
(比較例4)
In the vacuum heat insulating material of the comparative example 3, the vacuum heat insulating material was produced similarly to Example 1 using the inorganic water glass instead of the said layered clayey material. As a result, the shape bendability was difficult to bend at 134N. Moreover, the shape after bending was not hold | maintained and shape retention property was unsatisfactory. The initial thermal conductivity was 2.5 mW / m · K. The thermal conductivity after the durability test was 9.8 mW / m · K. Therefore, when water glass is used instead of the layered clay material, excessive stress is applied to the outer packaging material during the bending process, the gas barrier property of the outer packaging material is lowered, and the vacuum insulation material vacuum Decreasing the degree causes deterioration of the thermal conductivity over time.
(Comparative Example 4)

比較例4の真空断熱材においては、前記の層状粘土質材の代わり、樹脂のポリビニルアルコールを用い実施例1と同様に真空断熱材を作製した。その結果、形状折り曲げ性は120Nで曲げにくかった。また、曲げた後の形状は保持されず、形状保持性は不良であった。また、初期熱伝導率は、3.4mW/m・Kを示した。耐久試験後の熱伝導率は11.4mW/m・Kであった。このことから、層状粘土質材の代わりに樹脂のポリビニルアルコールを用いた場合は、折り曲げ加工時をした際に外包材に過度の応力と発ガス発生により、外包材のガスバリア性が低下し、真空断熱材の真空度が低下することにより、熱伝導率の経時劣化を引き起こしてしまう。   In the vacuum heat insulating material of the comparative example 4, the vacuum heat insulating material was produced similarly to Example 1 using the resin polyvinyl alcohol instead of the said layered clayey material. As a result, the shape bendability was difficult at 120N. Moreover, the shape after bending was not hold | maintained and shape retention property was unsatisfactory. The initial thermal conductivity was 3.4 mW / m · K. The thermal conductivity after the durability test was 11.4 mW / m · K. From this, when using polyvinyl alcohol as the resin instead of the layered clay material, the gas barrier property of the outer packaging material is reduced due to excessive stress and gas generation in the outer packaging material during the bending process. Decreasing the degree of vacuum of the heat insulating material causes deterioration of the thermal conductivity over time.

本発明の真空断熱材の断面模式図である。It is a cross-sectional schematic diagram of the vacuum heat insulating material of this invention. 従来の真空断熱材の断面模式図である。It is a cross-sectional schematic diagram of the conventional vacuum heat insulating material. 本発明の真空断熱材を備えた断熱箱体一部の断面模式図である。It is a cross-sectional schematic diagram of a part of the heat insulation box provided with the vacuum heat insulating material of the present invention. 本発明の真空断熱材を備えた冷蔵庫の縦断面図である。It is a longitudinal cross-sectional view of the refrigerator provided with the vacuum heat insulating material of this invention.

符号の説明Explanation of symbols

1…真空断熱材、2…外包材、3…無機繊維の芯材(グラスウール)、4…無機繊維の芯材の層状粘土質材含有部、5…ゲッター剤、6…真空断熱材、7…断熱箱体、8…硬質ポリウレタンフォーム、9…箱体、10…冷蔵庫、11…冷蔵庫内箱、12…冷蔵庫外箱。   DESCRIPTION OF SYMBOLS 1 ... Vacuum heat insulating material, 2 ... Outer packaging material, 3 ... Inorganic fiber core material (glass wool), 4 ... Layered clay material containing part of inorganic fiber core material, 5 ... Getter agent, 6 ... Vacuum heat insulating material, 7 ... Heat insulation box, 8 ... rigid polyurethane foam, 9 ... box, 10 ... refrigerator, 11 ... refrigerator inner box, 12 ... refrigerator outer box.

Claims (8)

無機繊維集合体からなる芯材と、ゲッター剤と、前記芯材および前記ゲッター剤を収納したガスバリア性の外包材とを備え、前記外包材の内部を真空封止した真空断熱材において、
前記芯材の表面および厚み方向の少なくとも一部に溝状または凹凸状に層状粘土質材を有する
ことを特徴とする真空断熱材。
In a vacuum heat insulating material comprising a core material composed of an inorganic fiber aggregate, a getter agent, and a gas barrier outer packaging material containing the core material and the getter agent, and vacuum-sealing the inside of the outer packaging material,
A vacuum heat insulating material comprising a layered clayey material in a groove shape or an uneven shape on at least a part of a surface and a thickness direction of the core material.
請求項1において、前記無機繊維集合体が3〜5μmの平均繊維径を有するグラスウール、前記層状粘土質材がスメクタイト化合物であることを特徴とする真空断熱材。   2. The vacuum heat insulating material according to claim 1, wherein the inorganic fiber aggregate is glass wool having an average fiber diameter of 3 to 5 [mu] m, and the layered clayey material is a smectite compound. 請求項2において、前記スメクタイト化合物が、モンモリロナイト、サポナイトの一種以上を用いたことを特徴とする真空断熱材。   The vacuum heat insulating material according to claim 2, wherein the smectite compound is one or more of montmorillonite and saponite. 請求項1から3の何れかにおいて、前記芯材のゲッター剤収納開口を挟んで対向する芯材に、前記層状粘土質材を溝状または凹凸状に塗布形成して、前記開口を閉塞したことを特徴とする真空断熱材。   4. The method according to claim 1, wherein the layered clayey material is applied and formed in a groove shape or a concavo-convex shape on the core material facing the getter agent storage opening of the core material to close the opening. Vacuum insulation material characterized by 請求項1から4の何れかにおいて、前記芯材を脱気圧縮して層状粘土質材と共に内袋の内部に収納し、この内袋を収納した前記外包材における内袋を含む内部を減圧し密封してなることを特徴とする真空断熱材。   5. The method according to claim 1, wherein the core material is deaerated and compressed and stored in the inner bag together with the lamellar clay material, and the inside including the inner bag in the outer packaging material storing the inner bag is decompressed. A vacuum heat insulating material characterized by being sealed. 外箱と内箱とで形成される空間に真空断熱材を配置して発泡断熱材を充填してなる断熱箱体であって、
前記真空断熱材は、芯材の表面および厚み方向の一部に少なくとも層状粘土質材を有し、該芯材とゲッター剤および層状粘土質材を内包し、内部を減圧して封止したガスバリア性の外包材を有する
ことを特徴とする断熱箱体。
A heat insulating box formed by placing a vacuum heat insulating material in a space formed by an outer box and an inner box and filling a foam heat insulating material,
The vacuum heat insulating material has a layered clayey material at least on the surface of the core material and a part in the thickness direction, encloses the core material, the getter agent, and the layered clayey material, and is sealed by depressurizing the inside. A heat-insulating box characterized by having an outer packaging material.
請求項6において、前記外箱または前記内箱の2つの面が交差する角部に前記真空断熱材を折り曲げて設置したことを特徴とする断熱箱体。   7. The heat insulating box according to claim 6, wherein the vacuum heat insulating material is bent and installed at a corner where two surfaces of the outer box or the inner box intersect. シート形状の無機繊維集合体の一部に層状粘土質材を塗布して芯材を形成し、この芯材を外包材に収納して該外包材を減圧して封止することを特徴とする真空断熱材の製造方法。   A layered clayey material is applied to a part of a sheet-shaped inorganic fiber aggregate to form a core material, the core material is stored in an outer packaging material, and the outer packaging material is decompressed and sealed. Manufacturing method of vacuum heat insulating material.
JP2008159521A 2008-06-18 2008-06-18 Vacuum heat insulating material, heat insulating box body using this material, and method for manufacturing vacuum heat insulating material Withdrawn JP2010001922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008159521A JP2010001922A (en) 2008-06-18 2008-06-18 Vacuum heat insulating material, heat insulating box body using this material, and method for manufacturing vacuum heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008159521A JP2010001922A (en) 2008-06-18 2008-06-18 Vacuum heat insulating material, heat insulating box body using this material, and method for manufacturing vacuum heat insulating material

Publications (1)

Publication Number Publication Date
JP2010001922A true JP2010001922A (en) 2010-01-07

Family

ID=41583809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008159521A Withdrawn JP2010001922A (en) 2008-06-18 2008-06-18 Vacuum heat insulating material, heat insulating box body using this material, and method for manufacturing vacuum heat insulating material

Country Status (1)

Country Link
JP (1) JP2010001922A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020144956A1 (en) * 2019-01-07 2020-07-16 東芝ライフスタイル株式会社 Refrigerator
JP2021099172A (en) * 2019-12-20 2021-07-01 東芝ライフスタイル株式会社 Heat insulation material, refrigerator and heat insulation material manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020144956A1 (en) * 2019-01-07 2020-07-16 東芝ライフスタイル株式会社 Refrigerator
JP2020109339A (en) * 2019-01-07 2020-07-16 東芝ライフスタイル株式会社 refrigerator
JP7249782B2 (en) 2019-01-07 2023-03-31 東芝ライフスタイル株式会社 refrigerator
JP2021099172A (en) * 2019-12-20 2021-07-01 東芝ライフスタイル株式会社 Heat insulation material, refrigerator and heat insulation material manufacturing method
JP7407588B2 (en) 2019-12-20 2024-01-04 東芝ライフスタイル株式会社 Method of manufacturing insulation material and method of manufacturing refrigerator

Similar Documents

Publication Publication Date Title
KR100540522B1 (en) Vacuum insulating material and device using the same
JP4580843B2 (en) Vacuum heat insulating material and refrigerator using the same
JP5624305B2 (en) Insulated container
JP5198167B2 (en) Vacuum insulation box
KR100507783B1 (en) Heat insulation box, and vacuum heat insulation material used therefor
JP4779684B2 (en) Vacuum insulation box
CN101660648B (en) Vacuum heat insulation material, heat insulation box body using the same, and refrigerator
JP4962399B2 (en) Gas adsorption device
EP2622292B1 (en) Vacuum insulation panel and a refrigerator with a vacuum insulation panel
WO2017098694A1 (en) Vacuum heat insulator, heat insulation device provided with same, and method for manufacturing vacuum heat insulator
WO2010087039A1 (en) Vacuum insulation material and insulation box using the same
JP2001336691A (en) Vacuum insulation material and refrigerator using vacuum insulation material
JP2007238141A (en) Vacuum container
WO2006080416A1 (en) Thermal insulator
JP5194812B2 (en) Vacuum heat insulating material and building material to which vacuum heat insulating material is applied
JP2005106312A (en) Refrigerator, vacuum heat insulating panel and its manufacturing method
JP4969436B2 (en) Vacuum insulation material and equipment using the same
JP2007056973A (en) Vacuum heat insulating panel and refrigerator using the same
JP5256597B2 (en) Gas adsorption device and vacuum insulation
JP5194823B2 (en) Vacuum insulation box
JP2010001922A (en) Vacuum heat insulating material, heat insulating box body using this material, and method for manufacturing vacuum heat insulating material
JP2012092870A (en) Vacuum heat insulating material and heat insulating box using the same
JP2009287791A (en) Vacuum heat insulating housing
JP3563729B2 (en) Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using vacuum insulation material
JP2008208844A (en) Vacuum heat insulating case body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110906