JP2007056366A - Method for recovering indium from blast particle - Google Patents

Method for recovering indium from blast particle Download PDF

Info

Publication number
JP2007056366A
JP2007056366A JP2006204528A JP2006204528A JP2007056366A JP 2007056366 A JP2007056366 A JP 2007056366A JP 2006204528 A JP2006204528 A JP 2006204528A JP 2006204528 A JP2006204528 A JP 2006204528A JP 2007056366 A JP2007056366 A JP 2007056366A
Authority
JP
Japan
Prior art keywords
indium
tin
nickel
blast particles
filtrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006204528A
Other languages
Japanese (ja)
Inventor
Masaharu Ishiwatari
正治 石渡
Hiroki Kimura
浩樹 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006204528A priority Critical patent/JP2007056366A/en
Publication of JP2007056366A publication Critical patent/JP2007056366A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for recovering indium where indium is separated from tin, so as to be efficiently recovered from blast particles used for cleaning ITO films or the like. <P>SOLUTION: The method for recovering metal indium from blast particles is characterized by the steps of: indium-containing blast particles are dissolved in hydrochloric acid and/or sulfuric acid to leach indium (a dissolution stage); next, alumina and/or silica as the main component of the blast particles is filtered away as dissolution residue (a filtering stage); a metal baser than indium is added to the filtrate, so as to reduce/precipitate indium in the solution (an indium reduction/precipitation stage); and spongy metal indium is recovered, regarding the blast particles comprising tin and nickel together with indium. After the dissolution-filtering stages, zinc powder or indium is added to the filtrate, and tin and nickel are reduced/precipitated, so as to be filtered away (a tin removal stage), and, if required, the removal of nickel is further performed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ブラスト粒子からインジウムを回収する方法に関し、より詳しくは、ITO膜洗浄などに用いたブラスト粒子からインジウムをアルミニウム等と分離して効率よく回収することができるインジウムの回収方法に関する。 The present invention relates to a method for recovering indium from blast particles, and more particularly to a method for recovering indium that can be efficiently recovered by separating indium from aluminum or the like from blast particles used for ITO film cleaning or the like.

ITOスパッタリングを行った後は、使用した装置や周囲に付着したITO膜を除去するために、暫々、ブラスト処理がなされる。このITO膜除去に使用したブラスト粒子にはITO成分のインジウムやスズが付着しており、とくにインジウムは一般的な金属に比べて高価であるので、できるだけ回収して再利用することが求められる。 After ITO sputtering is performed, blasting is performed for a while in order to remove the ITO film attached to the used apparatus and the surroundings. The blast particles used for the removal of the ITO film have ITO components indium and tin attached thereto. In particular, since indium is more expensive than general metals, it is required to collect and reuse it as much as possible.

従来、ITOスクラップからインジウムを回収する技術が知られている。例えば、ITOスクラップ等を硝酸に混合して、酸化インジウムを溶解させる一方、硝酸に不溶性の酸化スズを溶解残として分離する方法であり、スズを分離した後は、インジウム硝酸溶解液を陽イオン交換型の抽出溶媒に接触させてインジウムを抽出する方法(特許文献1)や、インジウム硝酸溶解液に硫化水素を通して、亜鉛、錫 、鉛、銅などの不純物を硫化物として沈殿除去した後、これにアンモニアを加えて中和し、水酸化インジウムとして回収する方法が知られている。 Conventionally, a technique for recovering indium from ITO scrap is known. For example, ITO scrap is mixed with nitric acid to dissolve indium oxide, while insoluble nitric oxide in nitric acid is separated as a residual residue. After the tin is separated, the indium nitric acid solution is subjected to cation exchange. A method of extracting indium by bringing it into contact with an extraction solvent of a mold (Patent Document 1), or by passing hydrogen sulfide through an indium nitrate solution to precipitate and remove impurities such as zinc, tin, lead, and copper as sulfides. A method of adding ammonia to neutralize and recover as indium hydroxide is known.

しかし、ITOスクラップを硝酸に溶解させて、スズを不溶性のメタスズ酸として分離する方法は、スズと共にニッケル等が共存している場合にはニッケルの分離が問題になる。また、有機抽出溶媒を用いてインジウムを抽出する方法はコストが嵩み、共存する他の金属イオンの存在によって抽出効果が影響を受けるなどの問題がある。さらに、インジウム硝酸溶解液からインジウムを水酸化沈澱にして分離回収する方法は亜鉛や錫の分離性が良くない。 However, in the method of dissolving ITO scrap in nitric acid and separating tin as insoluble metastannic acid, separation of nickel becomes a problem when nickel or the like coexists with tin. In addition, the method of extracting indium using an organic extraction solvent has a problem that the cost is high and the extraction effect is affected by the presence of other coexisting metal ions. Furthermore, the method of separating and recovering indium from the indium nitric acid solution by hydroxide precipitation does not provide good separation of zinc and tin.

一方、ITOスクラップを塩酸に溶解させ、この溶解液に水酸化ナトリウムを添加して水酸化スズ沈澱を生成させ、これを濾過してインジウムと分離する方法も知られている(特許文献2、3)。しかし、この方法は水酸化スズの濾過性が良くないので分離操作に時間がかかる。また、水酸化スズの含水量が多くインジウムが付着水分とともにロスすると云う問題がある。 On the other hand, a method is also known in which ITO scrap is dissolved in hydrochloric acid, sodium hydroxide is added to the solution to form a tin hydroxide precipitate, which is filtered and separated from indium (Patent Documents 2 and 3). ). However, this method takes time for the separation operation because the filterability of tin hydroxide is not good. Further, there is a problem that the water content of tin hydroxide is large and indium is lost along with the attached moisture.

さらに、従来の上記回収方法は何れもITOスラップからインジウムを回収する方法であり、使用済みブラスト粒子からインジウムを回収するものではない。ブラスト粒子はアルミナやシリカを主成分としており、これらを効率よくインジウムと分離する必要がある。
特開2000−128531号公報 特開2002−69544号公報 特開2002−201025号公報
Further, any of the conventional recovery methods described above is a method of recovering indium from ITO slap, and does not recover indium from used blast particles. The blast particles are mainly composed of alumina or silica, and it is necessary to efficiently separate them from indium.
JP 2000-128531 A JP 2002-69544 A JP 2002-201025 A

本発明は、従来の方法における上記問題を解決したものであり、使用済みブラスト粒子からインジウムを効率よく回収する方法を提供するものであり、本発明によれば、ブラスト粒子の主成分であるアルミナやシリカを効率よくインジウムと分離し、インジウムと共に含まれるスズやニッケルに対して分離性良く、容易に金属インジウムを回収することができる。 The present invention solves the above-described problems in the conventional method, and provides a method for efficiently recovering indium from used blast particles. According to the present invention, alumina as a main component of blast particles is provided. And silica can be efficiently separated from indium, and metal indium can be easily recovered with good separability with respect to tin and nickel contained together with indium.

本発明によれば以下のインジウム回収方法が提供される。
(1)インジウムを含有するブラスト粒子を塩酸および/または硫酸に溶解してインジウムを浸出させ(溶解工程)、次いでブラスト粒子の主成分であるアルミナおよび/またはシリカを溶解残渣として濾過分離し(濾過工程)、この濾液にインジウムよりも卑な金属を添加して液中のインジウムを還元析出させ(インジウム還元析出工程)、スポンジ状の金属インジウムを回収することを特徴とするブラスト粒子からインジウムを回収する方法。
(2)上記(1)の方法において、インジウムを含有するブラスト粒子がITO膜除去に用いたブラスト粒子であり、これを塩酸および/または硫酸に溶解してインジウムを浸出させ(溶解工程)、次いで溶解残渣を濾過分離し(濾過工程)、さらにこの濾液に亜鉛粉末またはインジウムを添加してスズを還元析出させて濾過分離し(脱スズ工程)、この脱スズ濾液にさらに亜鉛を添加してインジウムを還元析出させ(インジウム還元析出工程)、スポンジ状の金属インジウムを回収する方法。
(3)上記(2)の方法において、インジウムと共にスズおよびニッケルを含有するブラスト粒子を塩酸および/または硫酸に溶解してインジウムを浸出させ(濾過工程)、次いで溶解残渣を濾過分離し(濾過工程)、この濾液に亜鉛粉末またはインジウムを添加してスズおよびニッケルを還元析出させて濾過分離し(脱スズ工程)、この濾液にさらに脱ニッケル剤を添加してニッケル含有澱物を生成させて濾過分離し(脱ニッケル工程)、この濾液に亜鉛を添加してインジウムを還元析出させ(インジウム還元析出工程)、スポンジ状の金属インジウムを回収する方法。
According to the present invention, the following indium recovery method is provided.
(1) Indium-containing blast particles are dissolved in hydrochloric acid and / or sulfuric acid to leach indium (dissolution step), and then alumina and / or silica, which are the main components of the blast particles, are filtered and separated as a dissolution residue (filtering) Process), adding inferior metal to indium to the filtrate to reduce and deposit indium in the liquid (indium reduction deposition process), and recover indium from blast particles characterized by recovering sponge-like metal indium how to.
(2) In the method of (1), the blast particles containing indium are the blast particles used for removing the ITO film, and this is dissolved in hydrochloric acid and / or sulfuric acid to leach indium (dissolution step), The dissolved residue is separated by filtration (filtering step), and zinc powder or indium is added to the filtrate to reduce and precipitate tin (filtering step). Then, zinc is further added to the tin-free filtrate to add indium. A method for recovering sponge metal indium by reducing and precipitating (indium reduction deposition step).
(3) In the above method (2), blast particles containing tin and nickel together with indium are dissolved in hydrochloric acid and / or sulfuric acid to leach indium (filtering step), and then the dissolved residue is separated by filtration (filtering step) ), Zinc powder or indium is added to the filtrate to reduce and precipitate tin and nickel, and then filtered and separated (tin removal process), and a nickel-containing starch is produced by adding a nickel removal agent to the filtrate and filtered. Separating (nickel removal step), adding zinc to the filtrate to reduce and deposit indium (indium reduction deposition step), and recovering sponge-like metal indium.

本発明の回収方法は、インジウム含有ブラスト粒子を塩酸または硫酸またはこれらの混酸に溶解し、ブラスト粒子の主成分であるアルミナやシリカを溶解残渣として最初に分離するので、効率よくインジウムを回収することができる。 In the recovery method of the present invention, indium-containing blast particles are dissolved in hydrochloric acid or sulfuric acid or a mixed acid thereof, and alumina or silica, which is the main component of the blast particles, is first separated as a dissolved residue, so that indium can be efficiently recovered. Can do.

また、本発明の回収方法は、インジウムとスズの分離性が良く、スズと共にニッケルが共存する場合でも、スズと共にニッケルを一緒に沈澱化して分離するので、ブラスト粒子から容易にインジウムを回収することができる。さらに、本発明の方法はスポンジ状の金属インジウムを回収するので、回収工程が簡単であり、低コストでインジウムを回収することができる。 In addition, the recovery method of the present invention has good separability between indium and tin, and even when nickel coexists with tin, nickel is precipitated together with tin and separated, so that indium can be easily recovered from blast particles. Can do. Furthermore, since the method of the present invention recovers spongy metallic indium, the recovery process is simple and indium can be recovered at low cost.

本発明のインジウム回収方法は、インジウムを含有するブラスト粒子を塩酸および/または硫酸に溶解してインジウムを浸出させ(溶解工程)、次いでブラスト粒子の主成分であるアルミナおよび/またはシリカを溶解残渣として濾過分離し(濾過工程)、この濾液にインジウムよりも卑な金属を添加して液中のインジウムを還元析出させ(インジウム還元析出工程)、スポンジ状の金属インジウムを回収することを特徴とするブラスト粒子からインジウムを回収する方法である。本発明のインジウム回収方法を図1に示す。 In the method for recovering indium according to the present invention, blast particles containing indium are dissolved in hydrochloric acid and / or sulfuric acid to leach indium (dissolution step), and then alumina and / or silica which are the main components of the blast particles are used as dissolution residues. Blasting characterized by filtering and separating (filtering step), adding a base metal lower than indium to the filtrate to reduce and deposit indium in the solution (indium reducing and depositing step), and recovering sponge-like metal indium This is a method for recovering indium from particles. The indium recovery method of the present invention is shown in FIG.

本発明の回収方法において、インジウムを含有するブラスト粒子とは、例えばITO膜除去に用いたブラスト粒子である。このブラスト粒子にはITO膜成分のインジウムおよびスズが付着しており、またスパッタ装置の構成部品である鋼材成分の鉄、ニッケル、クロムなどが付着している場合がある。 In the recovery method of the present invention, the blast particles containing indium are, for example, blast particles used for removing the ITO film. Indium and tin as ITO film components adhere to the blast particles, and steel components such as iron, nickel, and chromium as components of the sputtering apparatus may adhere.

図示するように、このブラスト粒子を塩酸および/または硫酸に溶解してブラスト粒子に含まれるITO成分のインジウムおよびスズを浸出させる(溶解工程)。また、このブラスト粒子に鉄、クロム、ニッケルが含まれている場合には、これらもインジウムおよびスズと共に浸出される。一方、ブラスト粒子の主成分であるアルミナやシリカは溶解せずに残渣となる。 As shown in the figure, the blast particles are dissolved in hydrochloric acid and / or sulfuric acid to leach out indium and tin as ITO components contained in the blast particles (dissolution step). Moreover, when iron, chromium, and nickel are contained in the blast particles, these are also leached together with indium and tin. On the other hand, alumina and silica, which are the main components of the blast particles, do not dissolve and become a residue.

なお、塩酸や硫酸に代えて硝酸を用いると、スズが硝酸と反応して不溶性のメタスズ酸沈澱を生じ、このメタスズ酸沈澱は濾過性が良くないので好ましくない。塩酸または硫酸の濃度は塩酸が2モル/L以上、硫酸が100g/L以上が適当であり、液温は50℃以上、好ましくは70℃以上が良い。 If nitric acid is used instead of hydrochloric acid or sulfuric acid, tin reacts with nitric acid to produce an insoluble metastannic acid precipitate, which is not preferred because the filterability is not good. The concentration of hydrochloric acid or sulfuric acid is suitably 2 mol / L or higher for hydrochloric acid and 100 g / L or higher for sulfuric acid, and the liquid temperature is 50 ° C. or higher, preferably 70 ° C. or higher.

上記浸出溶解液を濾過して溶解残渣のアルミナおよびシリカを濾液から分離する(濾過工程)。次いで、この濾液のpHを0〜2に調整し、該濾液にスズより卑な金属、例えば亜鉛粉末を添加して液中のスズをメタルに還元し、金属スズの澱物を生成させる。一方、インジウムは還元されず液中に残るので、これを濾過してスズ含有澱物を分離し、脱スズ濾液を得る(脱スズ工程)。 The leaching solution is filtered to separate dissolved residues of alumina and silica from the filtrate (filtration step). Next, the pH of the filtrate is adjusted to 0 to 2, and a metal lower than tin, such as zinc powder, is added to the filtrate to reduce tin in the liquid to metal, thereby producing a metal tin starch. On the other hand, since indium is not reduced and remains in the liquid, it is filtered to separate a tin-containing starch, thereby obtaining a tin removal filtrate (tin removal step).

ブラスト粒子にスズと共にニッケルが含まれている場合には、上記脱スズ工程においてスズと共にニッケルの一部がメタルに還元されてスズとニッケルを含む澱物が生成する。このスズニッケル含有澱物を濾過分離する。この脱スズ工程において、亜鉛粉末の添加量は液中のスズおよびニッケル含有量と当量が好ましい。また、亜鉛粉末の添加雰囲気は大気中よりも不活性雰囲気下がより好ましい。 When nickel is contained in the blast particle together with tin, a part of nickel together with tin is reduced to metal in the detinning step to produce a starch containing tin and nickel. The tin-nickel-containing starch is separated by filtration. In this tin removal step, the amount of zinc powder added is preferably equivalent to the tin and nickel content in the liquid. The atmosphere in which zinc powder is added is more preferably an inert atmosphere than in the air.

上記脱スズ濾液からさらにニッケルを除去するには、脱スズ濾液に脱ニッケル剤を添加してニッケル含有澱物を生成させ、この澱物を固液分離することによって脱ニッケルを進める(脱ニッケル工程)。脱ニッケル剤としては、例えば、ジメチルグリオキシムなどを用いると良い。脱スズ濾液のpHを1〜3.5に調整し、ジメチルグリオキシムを添加すれば、液中に残留するニッケルイオンはジメチルグリオキシムと反応してキレート錯化合物を形成してニッケル含有澱物が生成するので、これを濾過分離して液中のニッケルイオンを除去することができる。 To further remove nickel from the tin removal filtrate, a nickel-containing starch is produced by adding a nickel removal agent to the tin removal filtrate, and the nickel removal proceeds by solid-liquid separation of the starch (denicking step). ). For example, dimethylglyoxime may be used as the nickel removal agent. When the pH of the tin-free filtrate is adjusted to 1 to 3.5 and dimethylglyoxime is added, nickel ions remaining in the liquid react with dimethylglyoxime to form a chelate complex compound, and the nickel-containing starch is formed. Since it is formed, it can be filtered and removed to remove nickel ions in the liquid.

上記脱スズ濾液ないし脱スズニッケル濾液に、インジウムよりも卑な金属、例えば亜鉛を添加してインジウムを還元し、スポンジ状の金属インジウムを析出させる(インジウム還元工程)。これを濾過分離して回収する。インジウム還元時のpHはインジウムの水酸化物沈殿が生成する領域以下であれば特に制限は無いが、好ましくはpH1〜3に維持することが、亜鉛消費量の観点から好ましい。 A metal that is lower than indium, such as zinc, is added to the above tin-free or tin-free nickel filtrate to reduce indium, thereby depositing sponge-like metal indium (indium reduction step). This is separated by filtration and recovered. The pH at the time of indium reduction is not particularly limited as long as it is below the region where indium hydroxide precipitate is generated, but it is preferably maintained at pH 1 to 3 from the viewpoint of zinc consumption.

本発明の実施例を以下に示す。結果を表1に示した。
〔実施例A1〕
ITO膜除去に用いたブラスト粒子(アルミナ75wt%)200gを塩酸1L(濃度2mol/L)に混合し、60℃に加熱して溶解させた。この塩酸溶解液を濾過し、溶解残渣160gを分離した。この残渣はアルミナ94wt%であった。一方、濾液のpHを1.0に調整し、大気雰囲気下にて亜鉛粉末を添加、生成した澱物5.1gを濾過分離した。この澱物はスズ70wt%およびニッケル20wt%であった。このニッケルスズ含有澱物を分離した濾液のpHを1〜3.5に調整し、ジメチルグリオキシムを添加して生成した澱物1.2gを濾過分離した。この澱物はニッケル20wt%であった。このニッケル澱物を分離した濾液に亜鉛粉末を添加し、析出したスポンジ状の金属インジウム35gを回収した。この金属インジウムのスズおよびニッケルの含有量はそれぞれ30ppm、50ppmであった。
Examples of the present invention are shown below. The results are shown in Table 1.
[Example A1]
200 g of blast particles (alumina 75 wt%) used for removing the ITO film were mixed with 1 L of hydrochloric acid (concentration 2 mol / L) and dissolved by heating to 60 ° C. This hydrochloric acid solution was filtered to separate 160 g of the dissolution residue. This residue was 94 wt% alumina. On the other hand, the pH of the filtrate was adjusted to 1.0, zinc powder was added in an air atmosphere, and 5.1 g of the produced starch was separated by filtration. The starch was 70 wt% tin and 20 wt% nickel. The pH of the filtrate from which the nickel tin-containing starch was separated was adjusted to 1 to 3.5, and 1.2 g of the starch produced by adding dimethylglyoxime was separated by filtration. This starch was 20 wt% nickel. Zinc powder was added to the filtrate from which the nickel starch had been separated, and 35 g of the spongy metal indium deposited was recovered. The contents of tin and nickel in the metal indium were 30 ppm and 50 ppm, respectively.

〔実施例A2〜A4〕
溶解条件を表1に示すように調整した以外は実施例A1と同様にして金属インジウムを得た。この結果を表1に示した。
[Examples A2 to A4]
Indium metal was obtained in the same manner as in Example A1, except that the dissolution conditions were adjusted as shown in Table 1. The results are shown in Table 1.

〔試験No.B1〜No.B2〕
溶解条件および各処理工程を表1に示すように変更した以外は実施例A1と同様にして金属インジウムを得た。この結果を表1に示した。
[Test No. B1-No. B2]
Indium metal was obtained in the same manner as in Example A1, except that the dissolution conditions and the treatment steps were changed as shown in Table 1. The results are shown in Table 1.

〔実施例C1〕
ITO膜除去に用いたシリカ粒子(主成分シリカ)250gを塩酸1L(濃度2mol/L)に混合し、60℃に加熱して溶解させた。この塩酸溶解液を濾過し、溶解残渣210gを分離した。この残渣はシリカ94wt%であった。一方、濾液のpHを1.0に調整し、大気雰囲気下にて亜鉛粉末を添加、生成した澱物5.0gを濾過分離した。この澱物はスズ70wt%およびニッケル20wt%であった。このニッケルスズ含有澱物を分離した濾液のpHを1〜3.5に調整し、ジメチルグリオキシムを添加して生成した澱物1.3gを濾過分離した。この澱物はニッケル20wt%であった。このニッケル澱物を分離した濾液に亜鉛粉末を添加し、析出したスポンジ状の金属インジウム35gを回収した。この金属インジウムのスズおよびニッケルの含有量はそれぞれ25ppm、45ppmであった。
[Example C1]
250 g of silica particles (main component silica) used for removing the ITO film were mixed with 1 L of hydrochloric acid (concentration 2 mol / L) and dissolved by heating to 60 ° C. This hydrochloric acid solution was filtered to separate 210 g of the dissolution residue. This residue was 94 wt% silica. On the other hand, the pH of the filtrate was adjusted to 1.0, zinc powder was added in an air atmosphere, and 5.0 g of the produced starch was separated by filtration. The starch was 70 wt% tin and 20 wt% nickel. The pH of the filtrate from which the nickel tin-containing starch was separated was adjusted to 1 to 3.5, and 1.3 g of the starch produced by adding dimethylglyoxime was separated by filtration. This starch was 20 wt% nickel. Zinc powder was added to the filtrate from which the nickel starch had been separated, and 35 g of the spongy metal indium deposited was recovered. The contents of tin and nickel in the metal indium were 25 ppm and 45 ppm, respectively.

〔実施例C2〜C3〕
溶解条件を表1に示すように調整した以外は実施例A1と同様にして金属インジウムを得た。この結果を表1に示した。
[Examples C2 to C3]
Indium metal was obtained in the same manner as in Example A1, except that the dissolution conditions were adjusted as shown in Table 1. The results are shown in Table 1.

表1に示すように、A1〜A4およびB1〜B2は何れも同一のブラスト粉末を使用しているが、溶解工程の液温が20℃および40℃のNo.B1、No.B2は、溶解温度が高いNo.A1〜No.A4よりも液中のIn濃度が低下している。一方、No.A1〜No.A4では、液中In濃度が34g/L以上であり、溶解液のインジウム濃度が高い。 As shown in Table 1, A1 to A4 and B1 to B2 all use the same blast powder, but No.B1 and No.B2 whose solution temperatures are 20 ° C and 40 ° C are dissolved. The In concentration in the liquid is lower than that of No. A1 to No. A4 where the temperature is high. On the other hand, in No. A1 to No. A4, the In concentration in the liquid is 34 g / L or more, and the indium concentration of the solution is high.

試料No.B1は亜鉛粉末による脱スズ工程を省略したものであり、最終的なInスポンジ中のSn含有量が11.4%であって極めて高い。また、脱ニッケル工程ではジメチルグリオキシムのアルコール溶液への溶解度が低いため、多量のアルコール溶液を添加する必要があり、脱スズを実施していないことから、脱ニッケル工程でのpHを3.5程度まで上昇させることが困難なため、Inスポンジ中のNi濃度も上昇している。 Sample No. B1 is obtained by omitting the tin removal step with zinc powder, and the Sn content in the final In sponge is 11.4%, which is extremely high. In addition, since the solubility of dimethylglyoxime in an alcohol solution is low in the nickel removal step, it is necessary to add a large amount of alcohol solution, and since tin removal is not performed, the pH in the nickel removal step is set to 3.5. Since it is difficult to raise to the extent, the Ni concentration in the In sponge is also increased.

試料No.B2は脱スズ工程を実施した後の脱ニッケル工程を省略したものであり、脱スズ工程によってニッケルがスズと共に除去されるので、Inスポンジ中のNi含有量は試料No.B1よりも低く、0.5%程度であるが、脱ニッケル工程を実施した試料No.A1〜A4よりは高い。 Sample No. B2 is obtained by omitting the nickel removal step after the tin removal step. Since nickel is removed together with tin by the tin removal step, the Ni content in the In sponge is higher than that of sample No. B1. Although it is low and about 0.5%, it is higher than Sample Nos. A1 to A4 subjected to the nickel removal step.

Figure 2007056366
Figure 2007056366

本発明の回収方法の概略を示す工程図Process drawing which shows the outline of the collection | recovery method of this invention

Claims (3)

インジウムを含有するブラスト粒子を塩酸および/または硫酸に溶解してインジウムを浸出させ(溶解工程)、次いでブラスト粒子の主成分であるアルミナおよび/またはシリカを溶解残渣として濾過分離し(濾過工程)、この濾液にインジウムよりも卑な金属を添加して液中のインジウムを還元析出させ(インジウム還元析出工程)、スポンジ状の金属インジウムを回収することを特徴とするブラスト粒子からインジウムを回収する方法。
Indium-containing blast particles are dissolved in hydrochloric acid and / or sulfuric acid to leach indium (dissolution step), and then alumina and / or silica, which are the main components of the blast particles, are filtered and separated as a dissolution residue (filtration step). A method for recovering indium from blast particles, comprising adding a metal lower than indium to the filtrate to reduce and deposit indium in the solution (indium reduction deposition step), and recovering sponge-like metal indium.
請求項1の方法において、インジウムを含有するブラスト粒子がITO膜除去に用いたブラスト粒子であり、これを塩酸および/または硫酸に溶解してインジウムを浸出させ(溶解工程)、次いで溶解残渣を濾過分離し(濾過工程)、さらにこの濾液に亜鉛粉末またはインジウムを添加してスズを還元析出させて濾過分離し(脱スズ工程)、この脱スズ濾液にさらに亜鉛を添加してインジウムを還元析出させ(インジウム還元析出工程)、スポンジ状の金属インジウムを回収する方法。
2. The method according to claim 1, wherein the blast particles containing indium are blast particles used for removing the ITO film, and the blast particles are dissolved in hydrochloric acid and / or sulfuric acid to leach indium (dissolution step), and then the dissolution residue is filtered. Separate (filtering step), and add zinc powder or indium to the filtrate to reduce and precipitate tin, and filter and separate (tin removal step). Add zinc to the detinned filtrate to reduce and deposit indium. (Indium reduction deposition step), a method of recovering sponge-like metal indium.
請求項2の方法において、インジウムと共にスズおよびニッケルを含有するブラスト粒子を塩酸および/または硫酸に溶解してインジウムを浸出させ(濾過工程)、次いで溶解残渣を濾過分離し(濾過工程)、この濾液に亜鉛粉末またはインジウムを添加してスズおよびニッケルを還元析出させて濾過分離し(脱スズ工程)、この濾液にさらに脱ニッケル剤を添加してニッケル含有澱物を生成させて濾過分離し(脱ニッケル工程)、この濾液に亜鉛を添加してインジウムを還元析出させ(インジウム還元析出工程)、スポンジ状の金属インジウムを回収する方法。


3. The method according to claim 2, wherein blast particles containing tin and nickel together with indium are dissolved in hydrochloric acid and / or sulfuric acid to leach indium (filtering step), and then the dissolved residue is separated by filtration (filtering step). Zinc powder or indium is added to the solution to reduce and precipitate tin and nickel (tin removal process), and a nickel removal agent is further added to the filtrate to form a nickel-containing starch, which is separated by filtration (denitration). Nickel step), adding zinc to the filtrate to reduce and deposit indium (indium reduction deposition step), and recovering sponge-like metal indium.


JP2006204528A 2005-07-29 2006-07-27 Method for recovering indium from blast particle Withdrawn JP2007056366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006204528A JP2007056366A (en) 2005-07-29 2006-07-27 Method for recovering indium from blast particle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005220781 2005-07-29
JP2006204528A JP2007056366A (en) 2005-07-29 2006-07-27 Method for recovering indium from blast particle

Publications (1)

Publication Number Publication Date
JP2007056366A true JP2007056366A (en) 2007-03-08

Family

ID=37920093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006204528A Withdrawn JP2007056366A (en) 2005-07-29 2006-07-27 Method for recovering indium from blast particle

Country Status (1)

Country Link
JP (1) JP2007056366A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215623A (en) * 2008-03-12 2009-09-24 Dowa Metals & Mining Co Ltd Method for recovering indium
WO2016111571A1 (en) * 2015-01-08 2016-07-14 주식회사 화류테크 Method for collecting indium and tin using industrial waste
CN110117724A (en) * 2019-04-04 2019-08-13 湖南工程学院 A kind of recovery method of indium in carbon thermal reduction slag containing indium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215623A (en) * 2008-03-12 2009-09-24 Dowa Metals & Mining Co Ltd Method for recovering indium
WO2016111571A1 (en) * 2015-01-08 2016-07-14 주식회사 화류테크 Method for collecting indium and tin using industrial waste
CN110117724A (en) * 2019-04-04 2019-08-13 湖南工程学院 A kind of recovery method of indium in carbon thermal reduction slag containing indium

Similar Documents

Publication Publication Date Title
JP5796716B2 (en) Method for removing impurities from cobalt-containing liquid
NO158106B (en) PROCEDURE FOR TREATING Aqueous SOLUTION CONTAINING Precious Metals and Undesirable Elements.
JP5399510B2 (en) High-purity platinum recovery method
JP2007009274A (en) Method for recovering indium
JP6030005B2 (en) Method for recovering platinum group elements
JP6077624B2 (en) Method for treating zinc sulfate containing solution
CN103014352A (en) Method for smelting and extracting platinum metal from alumina-supported petrochemical catalyst
JP2013522471A (en) Method for recovering rhenium and other metals from rhenium-containing materials
JP2007056367A (en) Method for recovering indium from blast particle
JP2009035808A (en) Method for separating tin from coexistence metal
CN101186976B (en) Method for withdrawing indium from indium-containing material
JP4310388B2 (en) Indium recovery method
JP2012197492A (en) RECOVERING METHOD OF Cu, Co, AND Ni FROM LEACHATE OF In CONTAINING DRAINAGE SLUDGE
JP2007056366A (en) Method for recovering indium from blast particle
JP2010138490A (en) Method of recovering zinc
JP2008297608A (en) Method for separating/recovering tin
JP2013181181A (en) Method for recovering gold
JP2008133538A (en) Method of separating and recovering target waste material and indium
JP5351747B2 (en) Gold reduction recovery method
JP2012052215A (en) Method for collecting indium
JP6256491B2 (en) Scandium recovery method
JP5283403B2 (en) Indium recovery method
JP2007039798A (en) Method for recovering indium, and its use
KR100942518B1 (en) Method for recycling cobalt from cobalt scrap
JP5854065B2 (en) Scandium recovery method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006