JP2007048572A - Manufacturing method of membrane electrode assembly for fuel cell - Google Patents

Manufacturing method of membrane electrode assembly for fuel cell Download PDF

Info

Publication number
JP2007048572A
JP2007048572A JP2005231265A JP2005231265A JP2007048572A JP 2007048572 A JP2007048572 A JP 2007048572A JP 2005231265 A JP2005231265 A JP 2005231265A JP 2005231265 A JP2005231265 A JP 2005231265A JP 2007048572 A JP2007048572 A JP 2007048572A
Authority
JP
Japan
Prior art keywords
catalyst
oxide semiconductor
electrode assembly
fuel cell
membrane electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005231265A
Other languages
Japanese (ja)
Inventor
Hiroshi Okura
央 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005231265A priority Critical patent/JP2007048572A/en
Publication of JP2007048572A publication Critical patent/JP2007048572A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a membrane electrode assembly for fuel cell having holes between catalysts, with excellent gas permeability and improved in a power generation efficiency. <P>SOLUTION: The manufacturing method of a membrane electrode assembly for fuel cell having at least a solid polyelectrolyte 13, a catalyst 14, and a catalyst carrying oxide semiconductor comprises a process in which the catalyst 14 is deposited on the oxide semiconductor 12 by a photocatalytic method and the catalyst carrying oxide semiconductor is obtained; a process in which the catalyst carrying oxide semiconductor and the catalyst are mixed, or the catalyst carrying oxide semiconductor, the catalyst, and a carrier or a catalyst carrying carrier are mixed and a mixture is obtained; and a process in which the mixture and the solid polyelectrolyte are installed on the solid polyelectrolyte membrane. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池用膜電極接合体の製造方法に関する。   The present invention relates to a method for producing a membrane electrode assembly for a fuel cell.

燃料電池はカソードに酸素または空気、アノードに水素、メタノール、炭化水素などを供給して電気エネルギーを得る装置であり、クリーンで高い発電効率を得ることができる。燃料電池は、電解質の種類により、アルカリ水溶液型、リン酸水溶液型、溶融炭酸塩型、固体高分子型に分類できる。   A fuel cell is a device that obtains electrical energy by supplying oxygen or air to a cathode and hydrogen, methanol, hydrocarbons, or the like to an anode, and can obtain clean and high power generation efficiency. Fuel cells can be classified into alkaline aqueous solution type, phosphoric acid aqueous solution type, molten carbonate type, and solid polymer type, depending on the type of electrolyte.

近年、固体高分子型燃料電池は、低温で作動するため扱いやすい、電池構造が簡単でメンテナンスが容易、膜が差圧に耐えるため電池の加圧制御が容易、高出力密度が得られる、小型軽量化が可能という利点を持つために注目を浴びている。この固体高分子型燃料電池には、一般にはフッ素樹脂系のイオン交換膜をプロトン伝導体の固体電解質として用い、水素酸化反応及び酸素還元反応を促進する触媒として活性化過電圧が低い白金微粒子を用いる。しかし、白金はコストがかかるため、その使用量を削減し、且つ性能を向上するための改良が不可欠である。そこで、担体を有効に使用した例として、炭素微粉末の粒子径と、担持される貴金属量を規定した触媒などが知られている。(特許文献1)
特開平4−274167号公報
In recent years, polymer electrolyte fuel cells are easy to handle because they operate at low temperatures, the battery structure is simple and easy to maintain, the membrane can withstand differential pressure, the pressure control of the battery is easy, and the high output density is obtained, which is compact It is attracting attention because it has the advantage of being lighter. In this polymer electrolyte fuel cell, generally, a fluororesin ion exchange membrane is used as a solid electrolyte of a proton conductor, and platinum fine particles having a low activation overvoltage are used as a catalyst for promoting a hydrogen oxidation reaction and an oxygen reduction reaction. . However, since platinum is costly, it is indispensable to improve its performance in order to reduce its use amount. Therefore, as an example of effectively using the support, a catalyst that defines the particle diameter of the carbon fine powder and the amount of the noble metal to be supported is known. (Patent Document 1)
JP-A-4-274167

従来の固体高分子型燃料電池は、表面積を大きくするため数〜数十nmという小さい、且つほぼ球形の微粒子を触媒として用いていた。そのために、微粒子間若しくは触媒担持カーボン粒子間が非常に狭くなり、電解質が触媒電極間に浸透しない、燃料が触媒電極内部に進入できない等の理由により、触媒の利用率が低かった。さらに、乾燥により燃料電池用膜電極接合体(MEA)の水分が少ないときの起動特性が低下することも問題視されていた。そのため、従来の固体高分子型燃料電池の優位点を保持した新たな燃料電池用膜電極接合体の開発が強く求められていた。   Conventional polymer electrolyte fuel cells use small and nearly spherical fine particles of several to several tens of nanometers as a catalyst in order to increase the surface area. For this reason, the utilization rate of the catalyst is low because the space between the fine particles or the catalyst-supporting carbon particles becomes very narrow, the electrolyte does not permeate between the catalyst electrodes, and the fuel cannot enter the inside of the catalyst electrodes. Furthermore, it has been regarded as a problem that the starting characteristics when the moisture content of the membrane electrode assembly (MEA) for fuel cells is low due to drying. Therefore, there has been a strong demand for the development of a new membrane electrode assembly for fuel cells that retains the advantages of conventional polymer electrolyte fuel cells.

本発明は、この様な背景技術に鑑みてなされたものであり、触媒間に空孔を有し、ガス透過性が良好で、発電効率が向上する燃料電池用膜電極接合体の製造方法を提供するものである。   The present invention has been made in view of such a background art, and provides a method for producing a membrane electrode assembly for a fuel cell having pores between catalysts, good gas permeability, and improved power generation efficiency. It is to provide.

このような状況下、本発明者は鋭意検討を行った結果、新たな燃料電池用電極接合の製造方法を見出し、本発明に至った。
すなわち、本発明は、少なくとも固体高分子電解質と、触媒と、触媒担持酸化物半導体を有する燃料電池用膜電極接合体の製造方法であって、酸化物半導体上に光触媒法によって触媒を析出させて触媒担持酸化物半導体を得る工程を有することを特徴とする燃料電池用膜電極接合体の製造方法である。
Under such circumstances, as a result of intensive studies, the present inventor has found a new method for producing an electrode joint for a fuel cell and has reached the present invention.
That is, the present invention is a method for producing a fuel cell membrane electrode assembly having at least a solid polymer electrolyte, a catalyst, and a catalyst-supporting oxide semiconductor, wherein the catalyst is deposited on the oxide semiconductor by a photocatalytic method. It is a manufacturing method of the membrane electrode assembly for fuel cells characterized by including the process of obtaining a catalyst carrying | support oxide semiconductor.

前記酸化物半導体と、触媒金属イオンを含有する溶液を接触させ、光を照射して酸化物半導体上に触媒を析出させて触媒担持酸化物半導体を得ることが好ましい。
前記酸化物半導体は、少なくともチタンを含有することが好ましい。
It is preferable to obtain a catalyst-supporting oxide semiconductor by bringing the oxide semiconductor into contact with a solution containing catalytic metal ions and irradiating light to deposit a catalyst on the oxide semiconductor.
The oxide semiconductor preferably contains at least titanium.

前記酸化物半導体の形状は、球状またはワイヤ状であることが好ましい。
前記触媒は、白金、白金を含む合金または白金を含む混合物であることが好ましい。
前記酸化物半導体上に光触媒法によって触媒を析出させて触媒担持酸化物半導体を得る工程、前記触媒担持酸化物半導体と触媒を混合し、または前記触媒担持酸化物半導体と触媒と、担体もしくは触媒担持担体を混合して混合物を得る工程、前記混合物と固体高分子電解質を固体高分子電解質膜上に設ける工程を有することが好ましい。
The oxide semiconductor preferably has a spherical shape or a wire shape.
The catalyst is preferably platinum, an alloy containing platinum, or a mixture containing platinum.
A step of depositing a catalyst on the oxide semiconductor by a photocatalytic method to obtain a catalyst-supporting oxide semiconductor, mixing the catalyst-supporting oxide semiconductor and a catalyst, or mixing the catalyst-supporting oxide semiconductor and catalyst with a carrier or catalyst It is preferable to have a step of obtaining a mixture by mixing carriers, and a step of providing the mixture and a solid polymer electrolyte on a solid polymer electrolyte membrane.

本発明は、触媒間に空孔を有し、ガス透過性が良好で、発電効率が向上する燃料電池用膜電極接合体の製造方法を提供することができる。
本発明の燃料電池用膜電極接合体の製造方法により、低温作動のため扱いやすい、電池構造が簡単でメンテナンスが容易、膜が差圧に耐えるため電池の加圧制御が容易、高出力密度が得られるため小型軽量化が可能などの固体高分子電解質燃料電池の利点を保持しつつ、微粒子の凝集を低下させ触媒間に空孔を設ける事ができ固体高分子電解質膜を良好に設置でき且つガス透過性を拡大することが可能、酸化物半導体の親水性、半導性により触媒担持酸化物半導体を用いた触媒層のオーミック抵抗の減少が可能、結晶性の良い白金の析出が可能、製造が容易且つ安価などの効果によりコスト削減と発電効率が向上した燃料電池が提供可能となる。
The present invention can provide a method for producing a membrane electrode assembly for a fuel cell that has pores between catalysts, has good gas permeability, and improves power generation efficiency.
The method for manufacturing a membrane electrode assembly for a fuel cell according to the present invention is easy to handle due to low temperature operation, the battery structure is simple and easy to maintain, the membrane can withstand differential pressure, the pressure control of the battery is easy, and the high output density is high Therefore, while maintaining the advantages of any solid polymer electrolyte fuel cell that can be reduced in size and weight, it is possible to reduce the agglomeration of fine particles and provide pores between the catalysts, so that a solid polymer electrolyte membrane can be satisfactorily installed and The gas permeability can be expanded, the ohmic resistance of the catalyst layer using the catalyst-supported oxide semiconductor can be reduced due to the hydrophilicity and semiconductivity of the oxide semiconductor, platinum with good crystallinity can be deposited, manufacturing Therefore, it is possible to provide a fuel cell with reduced cost and improved power generation efficiency due to the effects of being easy and inexpensive.

以下、図を用いて本発明を説明する。
以下においては、光触媒及び光触媒法による金属析出、酸化物半導体、触媒、固体高分子電解質、担体、供給燃料、膜電極接合体の構成及び製造方法、燃料電池の構成及び製造方法を詳述する。
Hereinafter, the present invention will be described with reference to the drawings.
In the following, the details of the photocatalyst and metal deposition by photocatalytic method, oxide semiconductor, catalyst, solid polymer electrolyte, carrier, fuel supply, membrane electrode assembly configuration and manufacturing method, and fuel cell configuration and manufacturing method will be described in detail.

(光触媒及び光触媒法による金属析出について)
先ず、触媒とは、それ自身は変化することなく化学反応を促進する物質と定義される。また、光触媒は、光があたると触媒作用を行う物質である。ここでは、好適に用いることが出来る二酸化チタンを例に、光触媒反応について詳述する。
(Metal deposition by photocatalyst and photocatalyst method)
First, a catalyst is defined as a substance that promotes a chemical reaction without changing itself. A photocatalyst is a substance that catalyzes when exposed to light. Here, the photocatalytic reaction will be described in detail by taking titanium dioxide that can be suitably used as an example.

二酸化チタンは、酸化物半導体で、3.0eV(波長にして約420nm)のバンドギャップを持っている。半導体にバンドギャップ以上のエネルギーをもつ光が当たると、荷電子帯にある電子が、伝導帯に励起される。これにより、荷電子帯には正孔が生成し、伝導帯には、電子が生成する。これらは、活性が高く、表面で様々な反応に寄与する。つまり、荷電子帯側では酸化反応、伝導帯側では還元反応が起こる。この伝導帯側の還元反応を利用することにより、燃料電池用の触媒となり得る金属イオンを還元して析出させる方法が、光触媒反応による燃料電池用触媒材料の析出である。このとき、析出し得る触媒材料は、その酸化還元電位が、酸化物半導体の伝導帯の酸化還元電位より低い必要がある。燃料電池用触媒材料としては、この条件を満たし、且つ燃料電池の作動に必要となる触媒能がある材料ならば、特に限定されるのもでは無い。   Titanium dioxide is an oxide semiconductor and has a band gap of 3.0 eV (about 420 nm in wavelength). When light having energy higher than the band gap strikes the semiconductor, electrons in the valence band are excited to the conduction band. As a result, holes are generated in the valence band and electrons are generated in the conduction band. These are highly active and contribute to various reactions on the surface. That is, an oxidation reaction occurs on the valence band side and a reduction reaction occurs on the conduction band side. A method of reducing and precipitating metal ions that can be a catalyst for a fuel cell by utilizing the reduction reaction on the conduction band side is the deposition of a fuel cell catalyst material by a photocatalytic reaction. At this time, the catalyst material that can be deposited needs to have a redox potential lower than the redox potential of the conduction band of the oxide semiconductor. The catalyst material for the fuel cell is not particularly limited as long as it satisfies the above conditions and has a catalytic ability necessary for the operation of the fuel cell.

また、酸化物半導体上に析出する触媒の粒径は、触媒活性を考慮したときに、20nm以下が好ましく、さらには10nm以下が好適に用いられる。しかし、酸化物半導体上に触媒微粒子が存在することにより、酸化物半導体のみでは有り得ない分散や凝集が、析出金属の種類や、状態によって発生する。そのため、前記した触媒微粒子の大きさに限られるものでは無い。   Further, the particle size of the catalyst deposited on the oxide semiconductor is preferably 20 nm or less, and more preferably 10 nm or less when the catalytic activity is taken into consideration. However, due to the presence of the catalyst fine particles on the oxide semiconductor, dispersion or aggregation that cannot be achieved only by the oxide semiconductor occurs depending on the type and state of the deposited metal. Therefore, the size of the catalyst fine particles is not limited to the above.

本発明においては、酸化物半導体と、触媒金属イオンを含有する溶液を接触させ、光を照射して酸化物半導体上に触媒を析出させて触媒担持酸化物半導体を得る。
触媒金属イオンを含有する溶液には、後述する触媒の金属イオンを含む溶液が用いられ、例えば、白金化合物を含む水溶液が好ましい。
In the present invention, a catalyst-supporting oxide semiconductor is obtained by bringing an oxide semiconductor into contact with a solution containing catalytic metal ions and irradiating light to deposit a catalyst on the oxide semiconductor.
As the solution containing the catalyst metal ion, a solution containing the metal ion of the catalyst described later is used, and for example, an aqueous solution containing a platinum compound is preferable.

(酸化物半導体について)
本発明の燃料電池用膜電極接合体の製造方法において用いられる酸化物半導体の材料は、光触媒反応が可能なものならば、特に制限は無い。
(About oxide semiconductors)
The oxide semiconductor material used in the method for producing a membrane electrode assembly for a fuel cell of the present invention is not particularly limited as long as a photocatalytic reaction is possible.

具体的には、二酸化チタンのほかに、チタン酸ストロンチウム、酸化亜鉛、酸化鉄、酸化タングステンなどが好適に用いられるが、これらに限られるものでは無い。
また、本発明で用いることの出来る酸化物半導体の形状は、特に規定されるものでは無いが、一般的な球状微粒子を用いることが最も容易である。それ以外の形状としては、ワイヤ状微粒子、チューブ状微粒子、ホールを保持する微粒子などは、微粒子の凝集を防ぐことや、有効な空孔を作製する観点から、好適に用いることが出来る。
Specifically, in addition to titanium dioxide, strontium titanate, zinc oxide, iron oxide, tungsten oxide and the like are preferably used, but are not limited thereto.
Further, the shape of the oxide semiconductor that can be used in the present invention is not particularly limited, but it is easiest to use general spherical fine particles. As other shapes, wire-shaped fine particles, tube-shaped fine particles, fine particles holding holes, and the like can be suitably used from the viewpoint of preventing the aggregation of fine particles and producing effective pores.

ワイヤとは、細線状に形成された1次元構造体であり、図3に示す様に、ワイヤ31の長辺の方向の長さ32が、ワイヤ31の横切断面33の重心34を通る短辺の方向の最大長さ37よりも長い構造体を示す。   The wire is a one-dimensional structure formed in a thin line shape, and as shown in FIG. 3, the length 32 in the direction of the long side of the wire 31 is a short length that passes through the center of gravity 34 of the transverse cut surface 33 of the wire 31. A structure longer than the maximum length 37 in the side direction is shown.

さらに、ワイヤは図2に示したように、テトラポッド状を含む1点より多数のワイヤが成長したもの(a)、樹枝状に形成されたもの(b)、折れ線状に成長したもの(c)、メッシュ状に成長したもの(d)、数珠状に成長したもの(e)等を含む。また、それぞれのワイヤが中空状のものも含む。   Further, as shown in FIG. 2, the wire has a number of wires grown from one point including a tetrapod shape (a), one formed in a dendritic shape (b), one grown in a polygonal line shape (c ), Those grown like a mesh (d), those grown like a bead (e), and the like. Each wire also includes a hollow wire.

また、ワイヤは円柱、円錐、円錐で先端が平坦なものや先端が大きくなっているもの、円柱で先端が尖っているものや先端が平坦なものや先端が大きくなっているものなどすべてを含む。さらにワイヤは、三角錐、四角錐、六角錐、それ以外の多角錐状やその多角錐の先端が平坦なものや先端が大きくなっているものを含む。またワイヤは、三角柱、四角柱、六角柱、それ以外の多角柱状、あるいは先端が尖っているか、若しくは先端が大きくなっている三角柱、四角柱、六角柱、それ以外の多角柱状やその先端が平坦なものや先端が大きくなっているものなども含む。さらにワイヤは、これらの折れ線状構造も含む。また、それぞれのワイヤが中空状のチューブ状のものでもよい。   In addition, all types of wire include cylinders, cones, cones with a flat tip or a large tip, cylinders with a sharp tip, a flat tip, or a tip with a large tip. . Furthermore, the wire includes a triangular pyramid, a quadrangular pyramid, a hexagonal pyramid, other polygonal pyramids, and those having a flat tip or a large tip. The wire is triangular, quadrangular, hexagonal, or other polygonal prism, or triangular, quadrangular, hexagonal, or other polygonal prism with a sharp tip or a large tip, or a flat tip. Also included are those that are large or have a large tip. Further, the wire includes these broken line structures. Each wire may be a hollow tube.

また、ワイヤのアスペクト比は5以上、特に10以上が好ましく、ワイヤの横切断面の重心を通る最大長さも2μm、さらに200nm以下が好ましい。ここでアスペクト比とは図3(a)に示したように、ワイヤ31の横切断面33が円形又は円形に近い状態の形状の場合は径に対する長さ32の比率をいう。ワイヤ31の横切断面33が六角形や図3(b)のように歪んだ図形等の場合は横切断面33の重心34を通る最大長さ35に対する長さの比率をいう。また図3(c)のようにワイヤ31の横切断面33が輪状の場合は、横切断面33の最外輪36で形成される構造体と仮定し、その重心34を通る最大長さ35に対する長さ32の比率をいう。   Further, the aspect ratio of the wire is preferably 5 or more, particularly 10 or more, and the maximum length passing through the center of gravity of the transverse cut surface of the wire is also preferably 2 μm, and more preferably 200 nm or less. Here, the aspect ratio refers to the ratio of the length 32 to the diameter when the transverse cut surface 33 of the wire 31 is circular or nearly circular as shown in FIG. When the transverse cut surface 33 of the wire 31 is a hexagon or a distorted figure as shown in FIG. 3B, the ratio of the length to the maximum length 35 passing through the center of gravity 34 of the transverse cut surface 33 is meant. 3C, when the transverse cut surface 33 of the wire 31 is ring-shaped, it is assumed that the structure is formed by the outermost ring 36 of the transverse cut surface 33, and the maximum length 35 passing through the center of gravity 34 thereof is assumed. The ratio of length 32.

(触媒について)
本発明における燃料電池用膜電極接合体を構成する触媒は、触媒担持酸化物半導体における触媒と、前記触媒担持酸化物半導体と混合する触媒微粒子の双方を指す。更に、触媒担持担体を用いる場合は、これに担持された触媒も含む。
(About catalyst)
The catalyst constituting the fuel cell membrane electrode assembly in the present invention refers to both a catalyst in a catalyst-supporting oxide semiconductor and catalyst fine particles mixed with the catalyst-supporting oxide semiconductor. Furthermore, when using a catalyst carrying | support carrier, the catalyst carry | supported by this is also included.

この触媒は、固体高分子電解質と三相界面を形成したときに電子と電荷を分離できる機能を有する材料ならば何でも用いられ得るが、特に白金、若しくは白金を含む合金、若しくはコアシェル構造などの白金を含む混合物であることが好ましい。   The catalyst may be any material that has a function of separating electrons and charges when forming a three-phase interface with the solid polymer electrolyte, and in particular platinum such as platinum, an alloy containing platinum, or a core-shell structure. It is preferable that it is a mixture containing.

さらに、白金の合金、若しくは白金を含む混合体として白金と共に含まれる材料としては、金、銀、パラジウム、イリジウム、ロジウム、ルテニウム、鉄、コバルト、ニッケル、クロム、タングステン、マンガン、バナジウム、レニウム、コバルト、リチウム、ランタン、ストロンチウム、イットリウム、およびオスミウムなどが例示できる。しかし、水素等アノード側燃料の酸化反応および酸素等カソード側燃料の還元反応を促進する材料であればこれらに限られるものではない。また、この触媒の形状は限定されるものではなく、例えば球状の微粒子から、ワイヤ状、網状、立方体、4面体、チューブ状などが挙げられる。   In addition, platinum alloys or platinum-containing materials that are included with platinum include gold, silver, palladium, iridium, rhodium, ruthenium, iron, cobalt, nickel, chromium, tungsten, manganese, vanadium, rhenium, and cobalt. , Lithium, lanthanum, strontium, yttrium, osmium and the like. However, the material is not limited to these as long as the material accelerates the oxidation reaction of the anode side fuel such as hydrogen and the reduction reaction of the cathode side fuel such as oxygen. Further, the shape of the catalyst is not limited, and examples thereof include a spherical fine particle, a wire shape, a net shape, a cube shape, a tetrahedron shape, and a tube shape.

(固体高分子電解質について)
本発明の膜電極接合体の構成成分である固体高分子電解質は、アノード側で発生したカチオンを速やかにカソード側に移動させるために高いイオン伝導性が求められる。固体高分子電解質としてはこうした要求を満たすために、水素イオン伝導性や、メタノール等の有機液体燃料遮断性に優れる材料が好ましく用いられる。具体的には、水素イオン解離が可能な有機基として、スルホン酸基、スルフィン酸基、カルボン酸基、ホスホン酸基、ホスフィン酸基、リン酸基、水酸基などを有する有機高分子が好ましく用いられる。こうした有機高分子として、パーフルオロカーボンスルホン酸樹脂、ポリスチレンスルホン酸樹脂、スルホン化ポリアミドイミド樹脂、スルホン化ポリスルホン酸樹脂、スルホン化ポリエーテルイミド半透膜、パーフルオロホスホン酸樹脂、パーフルオロスルホン酸樹脂等が例示できる。上記例示した固体高分子電解質が好適に用いられるが、これらに限定されるものでは無い。
(About solid polymer electrolyte)
The solid polymer electrolyte that is a constituent of the membrane electrode assembly of the present invention is required to have high ion conductivity in order to quickly move cations generated on the anode side to the cathode side. As the solid polymer electrolyte, a material excellent in hydrogen ion conductivity and organic liquid fuel barrier properties such as methanol is preferably used in order to satisfy these requirements. Specifically, an organic polymer having a sulfonic acid group, a sulfinic acid group, a carboxylic acid group, a phosphonic acid group, a phosphinic acid group, a phosphoric acid group, a hydroxyl group, or the like is preferably used as the organic group capable of hydrogen ion dissociation. . Such organic polymers include perfluorocarbon sulfonic acid resin, polystyrene sulfonic acid resin, sulfonated polyamideimide resin, sulfonated polysulfonic acid resin, sulfonated polyetherimide semipermeable membrane, perfluorophosphonic acid resin, perfluorosulfonic acid resin, etc. Can be illustrated. Although the solid polymer electrolyte illustrated above is used suitably, it is not limited to these.

(担体について)
膜電極接合体には、基本的にカチオンをアノード側に輸送できる固体高分子膜と、アノード及びカソードで発生した電子を取り出すことが出来る触媒電極が存在すれば発電が可能となるため、担体は必ずしも必要な材料ではない。しかし、主として白金の使用量を削減することを目的として、電子移動が可能な材料を膜電極接合体中に担持することが行われている。
(About carrier)
Since the membrane electrode assembly basically has a solid polymer membrane that can transport cations to the anode side and a catalyst electrode that can take out electrons generated at the anode and cathode, power generation is possible. It is not necessarily a necessary material. However, for the purpose of mainly reducing the amount of platinum used, a material capable of transferring electrons is supported in the membrane electrode assembly.

この担体は、炭素を主として用いることが出来るが、電子移動材料ならばこれらに限られるものでは無い。炭素の担体として、ファーネスブラック、チャンネルブラック、およびアセチレンブラック等のカーボンブラック、活性炭、黒鉛、フラーレン、カーボンナノチューブ、カーボンファイバー等が挙げられ、これらが単独あるいは混合して使用される。   As the carrier, carbon can be mainly used, but the carrier is not limited thereto as long as it is an electron transfer material. Examples of the carbon carrier include carbon black such as furnace black, channel black, and acetylene black, activated carbon, graphite, fullerene, carbon nanotube, carbon fiber, and the like, and these are used alone or in combination.

(供給燃料について)
固体高分子電解質−触媒複合型の燃料電池の燃料は、アノード側では水素、改質水素、メタノール、ジメチルエーテル等の触媒電極と固体高分子電解質の作用によって電子とカチオンが発生する燃料なら何でも用いられ得る。またカソード側では空気や酸素等のカチオンを受け取り電子を取り込む燃料なら何でも用いられ得る。一般的には、アノード側では水素若しくはメタノール、カソード側では空気を用いることが、反応効率的にも実用的にも適している。
(About fuel supply)
As the fuel for the solid polymer electrolyte-catalyst composite fuel cell, any fuel that generates electrons and cations by the action of the catalyst electrode such as hydrogen, reformed hydrogen, methanol, and dimethyl ether and the solid polymer electrolyte is used on the anode side. obtain. On the cathode side, any fuel that accepts cations such as air or oxygen and takes in electrons can be used. In general, it is appropriate to use hydrogen or methanol on the anode side and air on the cathode side in terms of reaction efficiency and practical use.

(膜電極接合体の構成、及び製造方法について)
膜電極接合体の基本構成を図1に示す。本発明の膜電極接合体11は、酸化物半導体12と固体高分子電解質13と触媒14と担体15で構成されている。ここで、図1(a)は触媒担持酸化物半導体と、触媒の混合物を用いた例であり、図1(b)は触媒担持酸化物半導体と、触媒と担体、若しくは触媒担持担体の混合物を用いた例である。
(Configuration of membrane electrode assembly and manufacturing method)
The basic structure of the membrane electrode assembly is shown in FIG. The membrane electrode assembly 11 of the present invention includes an oxide semiconductor 12, a solid polymer electrolyte 13, a catalyst 14, and a carrier 15. Here, FIG. 1 (a) is an example using a mixture of a catalyst-supporting oxide semiconductor and a catalyst, and FIG. 1 (b) is a mixture of a catalyst-supporting oxide semiconductor and a catalyst and a carrier or a catalyst-supporting support. It is an example used.

この膜電極接合体を用い、燃料として例えばアノード側に水素、カソード側に酸素を用いた場合、以下のような反応が進行する。   When this membrane electrode assembly is used and, for example, hydrogen is used on the anode side and oxygen is used on the cathode side as the fuel, the following reaction proceeds.

Figure 2007048572
Figure 2007048572

この反応式において、アノード側では供給された燃料が電子とカチオンを発生させ、発生したカチオンのみがカソード側に移動し、酸素と反応して電子を消費することにより、発電するシステムとなっている。つまり、カソードとアノードは同じ膜電極接合体中に設置されながら、固体高分子電解質で完全に分離されていることが重要である。   In this reaction formula, on the anode side, the supplied fuel generates electrons and cations, and only the generated cations move to the cathode side, react with oxygen and consume electrons to generate electricity. . That is, it is important that the cathode and the anode are completely separated by the solid polymer electrolyte while being installed in the same membrane electrode assembly.

さらに、上記反応は触媒電極と固体高分子電解質と燃料の3種類の物質における界面で行われるため、より固体高分子電解質が触媒電極上に広範囲に設置され、且つ燃料が膜電極接合体の深部にまで効率良く供給されることが重要である。   Further, since the above reaction is performed at the interface between the three kinds of materials of the catalyst electrode, the solid polymer electrolyte, and the fuel, the solid polymer electrolyte is more widely installed on the catalyst electrode, and the fuel is deep in the membrane electrode assembly. It is important that the product is efficiently supplied.

そのため、触媒と触媒担持酸化物半導体と固体高分子電解質の混合比も燃料電池の性能向上における重要な要件となる。本発明において、触媒と触媒担持酸化物半導体の混合割合は、触媒100質量部に対して、触媒担持酸化物半導体が1〜100質量部、好ましくは1〜25質量部が望ましい。   Therefore, the mixing ratio of the catalyst, the catalyst-supporting oxide semiconductor, and the solid polymer electrolyte is also an important requirement for improving the performance of the fuel cell. In the present invention, the mixing ratio of the catalyst and the catalyst-carrying oxide semiconductor is 1 to 100 parts by mass, preferably 1 to 25 parts by mass with respect to 100 parts by mass of the catalyst.

この膜電極接合体の製造方法として、大きく2つに分けることが出来る。一つは、触媒電極材料と酸化物半導体と固体高分子電解質をあらかじめ混合した物質を固体高分子電解質膜上に設置する方法であり、もう一つの方法は、固体高分子電解質膜上に触媒電極及び酸化物半導体を設置した後に固体高分子電解質を設置する方法である。ここでは、前者の方法について例示する。   The manufacturing method of this membrane electrode assembly can be roughly divided into two. One is a method in which a material in which a catalyst electrode material, an oxide semiconductor and a solid polymer electrolyte are mixed in advance is placed on the solid polymer electrolyte membrane. The other method is a method in which a catalyst electrode is formed on the solid polymer electrolyte membrane. And a method of installing a solid polymer electrolyte after an oxide semiconductor is installed. Here, the former method is illustrated.

酸化物半導体として酸化チタンを用い、触媒材料として白金を析出させた白金担持酸化チタンを白金担持カーボンと混合して触媒層とし、その触媒層を固体高分子電解質膜に固定する方法の詳細を記す。   Details of the method of using titanium oxide as the oxide semiconductor, mixing platinum-supported titanium oxide with platinum deposited as the catalyst material with platinum-supported carbon to form a catalyst layer, and fixing the catalyst layer to the solid polymer electrolyte membrane .

先ず、粒子径20nm程度の酸化チタン微粒子1gをすり鉢に入れ、その中に、水を1mLずつ10mLを混ぜながら混入する。このスラリー中に、触媒原料となる白金塩を入れて更にすり鉢内でかき混ぜる。そのスラリーを、ビーカーに移し、攪拌しながら紫外光を30分間照射することにより、酸化チタン微粒子上に白金を担持することが出来る。このとき、白金の担持量をEDX(エネルギー分散型X線分析装置;Energy Dispersive X−ray Spectrometer)で測定したところ、約2質量%であった。   First, 1 g of titanium oxide fine particles having a particle diameter of about 20 nm is put in a mortar, and water is mixed while mixing 10 mL of water by 1 mL. In this slurry, a platinum salt as a catalyst raw material is added and further stirred in a mortar. The slurry is transferred to a beaker and irradiated with ultraviolet light for 30 minutes while stirring, whereby platinum can be supported on the titanium oxide fine particles. At this time, the amount of platinum supported was measured by EDX (Energy Dispersive X-ray Spectrometer) to be about 2% by mass.

作製した白金担持酸化チタンと白金担持カーボンの合計1.0gをるつぼに入れ、マイクロピペットで純水0.4ccを滴下する。その後、るつぼ内に5%ナフィオン(登録商標)溶液をマイクロピペットを用いて1.5cc加え、続いてイソプロピルアルコールを0.2cc加える。そして、そのるつぼを5分間超音波洗浄する。さらに、ルツボ内に撹拌子を入れ、マグネチックスターラーを用いて200rpmで撹拌する。このように作製された白金担持酸化チタン−白金担持カーボン分散溶液をドクターブレード法によってPTFE(ポリテトラフルオロエチレン)シート上に塗布する。作製した触媒シートは別に移動して大気下で乾燥させる。   A total of 1.0 g of the produced platinum-supported titanium oxide and platinum-supported carbon is placed in a crucible, and 0.4 cc of pure water is dropped with a micropipette. Thereafter, 1.5 cc of 5% Nafion (registered trademark) solution is added to the crucible using a micropipette, and then 0.2 cc of isopropyl alcohol is added. The crucible is then ultrasonically cleaned for 5 minutes. Further, a stirring bar is placed in the crucible and stirred at 200 rpm using a magnetic stirrer. The thus-prepared platinum-supported titanium oxide-platinum-supported carbon dispersion solution is applied onto a PTFE (polytetrafluoroethylene) sheet by a doctor blade method. The produced catalyst sheet is moved separately and dried in the atmosphere.

次に、固体高分子電解質膜を準備する工程を示す。市販のナフィオン(登録商標)膜を使用した。過酸化水素水溶液を80℃に温め、所望の大きさにカッティングしたナフィオン(登録商標)膜を60分間浸した。過酸化水素処理後に水で洗浄した後、80℃に加熱した硫酸水溶液中にナフィオン(登録商標)膜を60分間浸した。その後、水で洗浄した後に、乾燥させたものを使用した。   Next, the process of preparing a solid polymer electrolyte membrane is shown. A commercially available Nafion® membrane was used. The aqueous hydrogen peroxide solution was warmed to 80 ° C., and a Nafion (registered trademark) film cut to a desired size was immersed for 60 minutes. After the hydrogen peroxide treatment and washing with water, a Nafion (registered trademark) film was immersed in a sulfuric acid aqueous solution heated to 80 ° C. for 60 minutes. Then, after washing with water, a dried product was used.

次に、処理後のナフィオン(登録商標)膜上に先ほど作製したPTFEシート上に塗布した触媒シートをホットプレスして白金担持酸化チタン−白金担持カーボンの膜電極接合体を作製した。   Next, the catalyst sheet coated on the PTFE sheet previously produced on the Nafion (registered trademark) film after the treatment was hot pressed to produce a platinum-supported titanium oxide-platinum-supported carbon membrane electrode assembly.

(燃料電池の構成、及び製造方法について)
上記燃料電池の構成の概略図を図4に示す。燃料電池が、固体高分子電解質51、アノード触媒層52、カソード触媒層53、アノード側集電板54,カソード側集電板55、外部出力端子56、燃料導入ライン57、燃料排出ライン58、アノード側燃料拡散層59、カソード側燃料拡散層60から構成されている。触媒層表面の三相界面で化学反応が起こることで電力が発生する。
(Configuration of fuel cell and manufacturing method)
A schematic diagram of the configuration of the fuel cell is shown in FIG. The fuel cell includes a solid polymer electrolyte 51, an anode catalyst layer 52, a cathode catalyst layer 53, an anode side current collector plate 54, a cathode side current collector plate 55, an external output terminal 56, a fuel introduction line 57, a fuel discharge line 58, an anode. The side fuel diffusion layer 59 and the cathode side fuel diffusion layer 60 are included. Electric power is generated by a chemical reaction occurring at the three-phase interface on the surface of the catalyst layer.

ここで、セルの構成として、例えば図4に示す構成を複数層形成することで発生電圧値及び電流値を高めることができる。この場合、半導体プロセスを応用して上記セルを作製することで、燃料電池システムの小型化、高出力化が可能となる。また、燃料としてアノード側に水素、カソード側に空気を用いた場合、アノード側に供給された燃料がもれることのないようにパッキングをすることが重要であり、カソード側は燃料が注入されやすいように空気に対して開放されている事が重要である。   Here, as a cell configuration, for example, a plurality of layers shown in FIG. 4 are formed, whereby the generated voltage value and the current value can be increased. In this case, it is possible to reduce the size and increase the output of the fuel cell system by manufacturing the cell by applying a semiconductor process. Also, when hydrogen is used as the fuel on the anode side and air is used on the cathode side, it is important to pack so that the fuel supplied to the anode side does not leak, and fuel is easily injected into the cathode side. It is important to be open to air.

また拡散層とは、燃料が容易にセル内に搬入され且つより多く三相界面を形成するために設置した高気孔率を有する導電性部材であり、炭素繊維織物やカーボンペーパー等を好適に用いることが出来る。また、カチオン交換を行う固体高分子電解質を用いた場合のみではなく、アノード側にカチオン交換膜、カソード側にアニオン交換膜を用いたバイポーラ電解質型燃料電池等の触媒電極を利用したときにも、勿論本発明の燃料電池用膜電極接合体が適用され得る。   The diffusion layer is a conductive member having a high porosity that is installed in order to easily carry fuel into the cell and form a three-phase interface, and preferably uses a carbon fiber fabric or carbon paper. I can do it. Moreover, not only when using a solid polymer electrolyte that performs cation exchange, but also when using a catalyst electrode such as a bipolar electrolyte fuel cell using a cation exchange membrane on the anode side and an anion exchange membrane on the cathode side, Of course, the membrane electrode assembly for fuel cells of the present invention can be applied.

以下、実施例を示し本発明をさらに具体的に説明する。
実施例1
本実施例では、以下の例について述べる。酸化物半導体である酸化チタンと白金担持カーボンを混合し、PTFEシート上に塗布する。その後光触媒法により酸化チタン上に白金を析出させ、固体高分子電解質膜上に転写して膜電極接合体を作製する。これを用いて燃料電池セルを組み上げる例である。
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
In this embodiment, the following example will be described. Titanium oxide, which is an oxide semiconductor, and platinum-supporting carbon are mixed and applied onto a PTFE sheet. Thereafter, platinum is deposited on titanium oxide by a photocatalytic method and transferred onto a solid polymer electrolyte membrane to produce a membrane electrode assembly. It is an example which assembles a fuel cell using this.

先ず、粒径20nmの酸化チタン微粒子0.2gと白金担持カーボン0.8gをすり鉢内で混合し、その混合物に1mLずつ、合計10mLの水を加えてスラリーを作製した。次に、このスラリーをPTFEシート上に、ドクターブレード法を用いて設置した。100℃で乾燥後、1.0mol/Lのヘキサクロロ白金酸塩溶液を薄膜上に滴下し、紫外光を15分間照射し、白金を析出させた。この触媒層を洗浄、乾燥後、1%ナフィオン(登録商標)溶液を滴下し、固体高分子電解質膜上にホットプレスを用いて転写し、燃料電池用膜電極接合体を作製した。   First, 0.2 g of titanium oxide fine particles having a particle diameter of 20 nm and 0.8 g of platinum-supporting carbon were mixed in a mortar, and 1 mL each of the mixture was added to make a slurry by adding a total of 10 mL of water. Next, this slurry was placed on a PTFE sheet using a doctor blade method. After drying at 100 ° C., a 1.0 mol / L hexachloroplatinate solution was dropped onto the thin film, and irradiated with ultraviolet light for 15 minutes to precipitate platinum. After washing and drying the catalyst layer, a 1% Nafion (registered trademark) solution was dropped, and the catalyst layer was transferred onto a solid polymer electrolyte membrane using a hot press to produce a membrane electrode assembly for a fuel cell.

この燃料電池用膜電極接合体を上記した製造方法と同様に、アノード側に水素、カソード側に空気を燃料として注入するセルを作製した。その方法は、予め燃料の流路を形成したグラファイト集電体の流路側に燃料拡散層となるカーボンペーパーを設置した冶具を1対準備し、これらで上記燃料電池用膜電極接合体を挟み込んでセルを作製した。   This fuel cell membrane electrode assembly was fabricated in the same manner as in the manufacturing method described above, and a cell was prepared in which hydrogen was injected on the anode side and air on the cathode side as fuel. In this method, a pair of jigs in which carbon paper serving as a fuel diffusion layer is installed on the flow path side of a graphite current collector in which a fuel flow path is formed in advance are prepared, and the fuel cell membrane electrode assembly is sandwiched between them. A cell was produced.

比較例として、平均結晶子径が3nmの白金微粒子を担持したカーボンを用いて、同様に膜電極接合体を作製し、それを用いてセルとした。
これを用いて、燃料電池単セルの電流−電位特性を評価したところ、実施例は比較例の微粒子膜に比べて10%程度出力が向上した。これは、本発明の膜電極接合体により、三相界面を増大、ガス透過性を拡大することなどが可能となり、発電効率が向上したものと考える。
As a comparative example, a membrane / electrode assembly was prepared in the same manner using carbon carrying platinum fine particles having an average crystallite diameter of 3 nm, and a cell was formed using the membrane / electrode assembly.
When this was used to evaluate the current-potential characteristics of a single fuel cell, the output of the example was improved by about 10% compared to the fine particle film of the comparative example. This is considered that the membrane electrode assembly of the present invention can increase the three-phase interface, expand the gas permeability, and improve the power generation efficiency.

(電流−電位特性の評価方法)
アノード側に80℃飽和水蒸気で加湿した水素を、カソード側に同様に加湿した空気を使用した。流量として、それぞれ200mL/分、600mL/分で供給し、作製した単セルを運転した。セル運転温度を80℃に設定し、発電評価及び交流インピーダンス測定を行った。その測定方法は、負荷に流す電流を変化させた場合の電圧変化及びIR変化を測定した。
(Evaluation method of current-potential characteristics)
Hydrogen humidified with 80 ° C. saturated steam was used on the anode side, and air similarly humidified on the cathode side. The produced single cells were operated by supplying the flow rates at 200 mL / min and 600 mL / min, respectively. The cell operating temperature was set to 80 ° C., and power generation evaluation and AC impedance measurement were performed. The measurement method measured the voltage change and IR change at the time of changing the electric current sent through load.

実施例2
本実施例では、以下の例について述べる。酸化物半導体として酸化チタンワイヤを用いて光触媒法により白金を析出させて、白金担持酸化チタンワイヤを作製する。これに白金微粒子を混合して触媒層とし、固体高分子電解質膜上に転写して膜電極接合体を作製する。これを用いて燃料電池セルを組み上げた例である。
Example 2
In this embodiment, the following example will be described. Platinum is deposited by a photocatalytic method using a titanium oxide wire as an oxide semiconductor to produce a platinum-supported titanium oxide wire. Platinum fine particles are mixed with this to form a catalyst layer, which is then transferred onto a solid polymer electrolyte membrane to produce a membrane electrode assembly. This is an example in which fuel cells are assembled using this.

先ず、平均粒径が0.13μm、平均長さが1.68μmである市販の酸化チタンワイヤ(FT−1000:石原産業)を準備する。この酸化チタンワイヤ1gをすり鉢に入れ、その中に、水を1mLずつ10mLを混ぜながら混入する。このスラリー中に、触媒原料となる白金塩(ヘキサクロロ白金酸塩)を入れて更にすり鉢内でかき混ぜる。そのスラリーを、ビーカーに移し、攪拌しながら紫外光を30分間照射することにより、酸化チタン微粒子上に白金を担持することが出来た。このとき、白金の担持量をEDXで測定したところ、約2質量%であった。   First, a commercially available titanium oxide wire (FT-1000: Ishihara Sangyo) having an average particle diameter of 0.13 μm and an average length of 1.68 μm is prepared. 1 g of this titanium oxide wire is put in a mortar, and 10 mL of water is mixed into the mortar while mixing 10 mL. Into this slurry, a platinum salt (hexachloroplatinate) as a catalyst raw material is added and further stirred in a mortar. The slurry was transferred to a beaker and irradiated with ultraviolet light for 30 minutes while stirring, whereby platinum could be supported on the titanium oxide fine particles. At this time, when the amount of platinum supported was measured by EDX, it was about 2% by mass.

作製した白金担持酸化チタンワイヤ5質量%と平均粒径が4nmの白金微粒子95質量%の合計1.0gをるつぼに入れ、マイクロピペットで純水を0.4ccを滴下する。その後、るつぼ内に5%ナフィオン(登録商標)溶液をマイクロピペットを用いて1.5cc加え、続いてイソプロピルアルコールを0.2cc加える。そして、そのるつぼを5分間超音波洗浄する。さらに、ルツボ内に撹拌子を入れ、マグネチックスターラーを用いて200rpmで撹拌する。このように作製された白金担持酸化チタンワイヤ−白金微粒子分散溶液をドクターブレード法によってPTFEシート上に塗布する。作製した触媒シートは別に移動して大気下で乾燥させる。ナフィオン(登録商標)膜上に、作製したPTFEシート上に塗布した触媒シートをホットプレスを使用することにより転写させ、膜電極接合体を作製した。   A total of 1.0 g of 5 mass% of the platinum-supported titanium oxide wire and 95 mass% of platinum fine particles having an average particle diameter of 4 nm is put in a crucible, and 0.4 cc of pure water is dropped with a micropipette. Thereafter, 1.5 cc of 5% Nafion (registered trademark) solution is added to the crucible using a micropipette, and then 0.2 cc of isopropyl alcohol is added. The crucible is then ultrasonically cleaned for 5 minutes. Further, a stirring bar is placed in the crucible and stirred at 200 rpm using a magnetic stirrer. The thus-prepared platinum-supported titanium oxide wire-platinum fine particle dispersion solution is applied onto a PTFE sheet by a doctor blade method. The produced catalyst sheet is moved separately and dried in the atmosphere. A catalyst sheet coated on the produced PTFE sheet was transferred onto a Nafion (registered trademark) film by using a hot press to produce a membrane electrode assembly.

この燃料電池用膜電極接合体を上記した製造方法と同様に、アノード側に水素、カソード側に空気を燃料として注入するセルを組み上げた。
比較例として、平均粒径が5nmの白金微粒子を用いて、同様に膜電極接合体を作製し、それを用いてセルとした。
This fuel cell membrane electrode assembly was assembled in the same manner as the manufacturing method described above with a cell for injecting hydrogen on the anode side and air on the cathode side as fuel.
As a comparative example, a membrane electrode assembly was prepared in the same manner using platinum fine particles having an average particle diameter of 5 nm, and a cell was formed using the assembly.

これを用いて、燃料電池単セルの電流−電位特性を評価したところ、実施例は比較例の微粒子膜に比べて12%程度出力が向上した。これは、本発明の白金ワイヤ状物質を膜電極接合体に組み込んだことにより、三相界面を増大、ガス透過性を拡大することが可能となり、発電効率が向上したものと考える。   When this was used to evaluate the current-potential characteristics of a single fuel cell, the output of the example was improved by about 12% compared to the fine particle film of the comparative example. This is considered that the incorporation of the platinum wire-like substance of the present invention into a membrane electrode assembly makes it possible to increase the three-phase interface and expand the gas permeability, thereby improving the power generation efficiency.

実施例3
本実施例では、以下の例について述べる。酸化物半導体である酸化タングステンと白金担持カーボンを混合し、PTFEシート上に塗布する。その後光触媒法により酸化チタン上に白金を析出させ、固体高分子電解質膜上に転写して膜電極接合体を作製する。これを用いて燃料電池セルを組み上げる例である。
Example 3
In this embodiment, the following example will be described. Tungsten oxide, which is an oxide semiconductor, and platinum-supporting carbon are mixed and applied onto a PTFE sheet. Thereafter, platinum is deposited on titanium oxide by a photocatalytic method and transferred onto a solid polymer electrolyte membrane to produce a membrane electrode assembly. It is an example which assembles a fuel cell using this.

先ず、平均粒径が200nmである酸化タングステンを準備する。この酸化タングステン1gをすり鉢に入れ、その中に、水を1mLずつ10mLを混ぜながら混入する。このスラリー中に、触媒原料となる白金塩(ヘキサクロロ白金酸塩)を入れて更にすり鉢内でかき混ぜる。そのスラリーを、ビーカーに移し、攪拌しながら紫外光を60分間照射することにより、酸化チタン微粒子上に白金を担持する。このとき、白金の担持量をEDXで測定したところ、約2質量%であった。   First, tungsten oxide having an average particle diameter of 200 nm is prepared. 1 g of this tungsten oxide is put in a mortar, and 10 mL of water is mixed into the mortar while mixing 10 mL. Into this slurry, a platinum salt (hexachloroplatinate) as a catalyst raw material is added and further stirred in a mortar. The slurry is transferred to a beaker and irradiated with ultraviolet light for 60 minutes with stirring, thereby supporting platinum on the titanium oxide fine particles. At this time, when the amount of platinum supported was measured by EDX, it was about 2% by mass.

作製した白金担持酸化タングステン0.05gと白金担持カーボン0.95gをるつぼに入れ、マイクロピペットで純水を0.4ccを滴下する。その後、るつぼ内に5%ナフィオン(登録商標)溶液をマイクロピペットを用いて1.5cc加え、続いてイソプロピルアルコールを0.2cc加える。そして、そのるつぼを5分間超音波洗浄する。さらに、ルツボ内に撹拌子を入れ、マグネチックスターラーを用いて200rpmで撹拌する。このように作製された白金担持酸化タングステン−白金担持カーボン分散溶液をドクターブレード法によってPTFEシート上に塗布する。作製した触媒シートは別に移動して大気下で乾燥させる。ナフィオン(登録商標)膜上に、作製したPTFEシート上に塗布した触媒シートをホットプレスを使用することにより転写させ、膜電極接合体を作製した。   The prepared platinum-supported tungsten oxide 0.05 g and platinum-supported carbon 0.95 g are put in a crucible, and 0.4 cc of pure water is dropped with a micropipette. Thereafter, 1.5 cc of 5% Nafion (registered trademark) solution is added to the crucible using a micropipette, and then 0.2 cc of isopropyl alcohol is added. The crucible is then ultrasonically cleaned for 5 minutes. Further, a stirring bar is placed in the crucible and stirred at 200 rpm using a magnetic stirrer. The thus prepared platinum-supported tungsten oxide-platinum-supported carbon dispersion solution is applied onto a PTFE sheet by a doctor blade method. The produced catalyst sheet is moved separately and dried in the atmosphere. A catalyst sheet coated on the produced PTFE sheet was transferred onto a Nafion (registered trademark) film by using a hot press to produce a membrane electrode assembly.

この燃料電池用膜電極接合体を上記した製造方法と同様に、アノード側に水素、カソード側に空気を燃料として注入するセルを組み上げた。
比較例として、平均結晶子径が3nmの白金微粒子を担持したカーボンを用いて、同様に膜電極接合体を作製し、それを用いてセルとした。
This fuel cell membrane electrode assembly was assembled in the same manner as the manufacturing method described above with a cell for injecting hydrogen on the anode side and air on the cathode side as fuel.
As a comparative example, a membrane / electrode assembly was prepared in the same manner using carbon carrying platinum fine particles having an average crystallite diameter of 3 nm, and a cell was formed using the membrane / electrode assembly.

これを用いて、燃料電池単セルの電流−電位特性を評価したところ、実施例は比較例の微粒子膜に比べて10%程度出力が向上した。これは、本発明の膜電極接合体により、三相界面を増大、ガス透過性を拡大することなどが可能となり、発電効率が向上したものと考える。   When this was used to evaluate the current-potential characteristics of a single fuel cell, the output of the example was improved by about 10% compared to the fine particle film of the comparative example. This is considered that the membrane electrode assembly of the present invention can increase the three-phase interface, expand the gas permeability, and improve the power generation efficiency.

本発明は、燃料電池用膜電極接合体の製造方法として利用できるが、これに限らず各種デバイスへの応用範囲をより拡大し得る新規な構成を有する触媒担持酸化物半導体構造体、触媒担持酸化物半導体電極、機能性素子を提供できる。本発明は、例えばセンサーなどの超高感度分子検出器に使用可能な電極素子としても極めて有用である。   INDUSTRIAL APPLICABILITY The present invention can be used as a method for producing a membrane electrode assembly for a fuel cell, but is not limited to this. A semiconductor electrode and a functional element can be provided. The present invention is extremely useful as an electrode element that can be used for an ultrasensitive molecular detector such as a sensor.

本発明における膜電極接合体の構成を示す模式図である。It is a schematic diagram which shows the structure of the membrane electrode assembly in this invention. 本発明における膜電極接合体におけるワイヤ及びチューブの形状を示す模式図である。It is a schematic diagram which shows the shape of the wire and tube in the membrane electrode assembly in this invention. 本発明における膜電極接合体におけるワイヤ及びチューブの定義を示す模式図である。It is a schematic diagram which shows the definition of the wire and tube in the membrane electrode assembly in this invention. 燃料電池の一般的な模式図である。It is a general schematic diagram of a fuel cell.

符号の説明Explanation of symbols

11 膜電極接合体
12 酸化物半導体
13 固体高分子電解質
14 微粒子
15 担体
31 ワイヤ
32 長辺の長さ
33 横切断面
34 重心
35 最大長さ
36 最外輪
37 短辺の長さ
51 固体高分子電解質
52 アノード触媒層
53 カソード触媒層
54 アノード側集電体
55 カソード側集電体
56 外部出力端子
57 燃料導入ライン
58 燃料排出ライン
59 アノード側燃料拡散層
60 カソード側燃料拡散層
DESCRIPTION OF SYMBOLS 11 Membrane electrode assembly 12 Oxide semiconductor 13 Solid polymer electrolyte 14 Fine particle 15 Carrier 31 Wire 32 Long side length 33 Horizontal cut surface 34 Center of gravity 35 Maximum length 36 Outer ring 37 Short side length 51 Solid polymer electrolyte 52 Anode catalyst layer 53 Cathode catalyst layer 54 Anode-side current collector 55 Cathode-side current collector 56 External output terminal 57 Fuel introduction line 58 Fuel discharge line 59 Anode-side fuel diffusion layer 60 Cathode-side fuel diffusion layer

Claims (6)

少なくとも固体高分子電解質と、触媒と、触媒担持酸化物半導体を有する燃料電池用膜電極接合体の製造方法であって、
酸化物半導体上に光触媒法によって触媒を析出させて触媒担持酸化物半導体を得る工程を有することを特徴とする燃料電池用膜電極接合体の製造方法。
A method for producing a membrane electrode assembly for a fuel cell having at least a solid polymer electrolyte, a catalyst, and a catalyst-supporting oxide semiconductor,
A method for producing a membrane electrode assembly for a fuel cell, comprising a step of depositing a catalyst on an oxide semiconductor by a photocatalytic method to obtain a catalyst-supporting oxide semiconductor.
前記酸化物半導体と、触媒金属イオンを含有する溶液を接触させ、光を照射して酸化物半導体上に触媒を析出させて触媒担持酸化物半導体を得ることを特徴とする請求項1に記載の燃料電池用膜電極接合体の製造方法。   The catalyst-supporting oxide semiconductor is obtained by bringing the oxide semiconductor into contact with a solution containing a catalytic metal ion and irradiating light to deposit a catalyst on the oxide semiconductor. Manufacturing method of fuel cell membrane electrode assembly. 前記酸化物半導体は、少なくともチタンを含有することを特徴とする請求項1または2記載の燃料電池用膜電極接合体の製造方法。   The method for producing a membrane electrode assembly for a fuel cell according to claim 1, wherein the oxide semiconductor contains at least titanium. 前記酸化物半導体の形状は、球状またはワイヤ状であることを特徴とする請求項1乃至3のいずれかの項に記載の燃料電池用膜電極接合体の製造方法。   The method for manufacturing a membrane electrode assembly for a fuel cell according to any one of claims 1 to 3, wherein the oxide semiconductor has a spherical shape or a wire shape. 前記触媒は、白金、白金を含む合金または白金を含む混合物であることを特徴とする請求項1乃至4のいずれかの項に記載の燃料電池用膜電極接合体の製造方法。   The method for producing a membrane electrode assembly for a fuel cell according to any one of claims 1 to 4, wherein the catalyst is platinum, an alloy containing platinum, or a mixture containing platinum. 前記酸化物半導体上に光触媒法によって触媒を析出させて触媒担持酸化物半導体を得る工程、
前記触媒担持酸化物半導体と触媒を混合し、または前記触媒担持酸化物半導体と触媒と、担体もしくは触媒担持担体を混合して混合物を得る工程、
前記混合物と固体高分子電解質を固体高分子電解質膜上に設ける工程、
を有することを特徴とする請求項1乃至5のいずれかの項に記載の燃料電池用膜電極接合体の製造方法。
A step of depositing a catalyst on the oxide semiconductor by a photocatalytic method to obtain a catalyst-supporting oxide semiconductor;
Mixing the catalyst-carrying oxide semiconductor and catalyst, or mixing the catalyst-carrying oxide semiconductor and catalyst and carrier or catalyst-carrying carrier to obtain a mixture;
Providing the mixture and a solid polymer electrolyte on a solid polymer electrolyte membrane;
The method for producing a membrane electrode assembly for a fuel cell according to any one of claims 1 to 5, wherein:
JP2005231265A 2005-08-09 2005-08-09 Manufacturing method of membrane electrode assembly for fuel cell Pending JP2007048572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005231265A JP2007048572A (en) 2005-08-09 2005-08-09 Manufacturing method of membrane electrode assembly for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005231265A JP2007048572A (en) 2005-08-09 2005-08-09 Manufacturing method of membrane electrode assembly for fuel cell

Publications (1)

Publication Number Publication Date
JP2007048572A true JP2007048572A (en) 2007-02-22

Family

ID=37851237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005231265A Pending JP2007048572A (en) 2005-08-09 2005-08-09 Manufacturing method of membrane electrode assembly for fuel cell

Country Status (1)

Country Link
JP (1) JP2007048572A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084825A1 (en) * 2011-12-06 2013-06-13 株式会社バイオフォトケモニクス研究所 Method for decomposing and purifying biomass, organic material or inorganic material with high efficiency and simultaneously generating electricity and producing hydrogen, and direct biomass, organic material or inorganic material fuel cell for said method
JP2018156797A (en) * 2017-03-16 2018-10-04 国立大学法人九州大学 Method for manufacturing electrode material
JP2019096624A (en) * 2019-03-08 2019-06-20 国立大学法人九州大学 Electrode material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084825A1 (en) * 2011-12-06 2013-06-13 株式会社バイオフォトケモニクス研究所 Method for decomposing and purifying biomass, organic material or inorganic material with high efficiency and simultaneously generating electricity and producing hydrogen, and direct biomass, organic material or inorganic material fuel cell for said method
JPWO2013084825A1 (en) * 2011-12-06 2015-04-27 株式会社バイオフォトケモニクス研究所 High-efficiency decomposition and purification of biomass, organic and inorganic materials, simultaneous power generation and hydrogen production methods, and biomass, organic and inorganic direct fuel cells for that purpose
JP2018156797A (en) * 2017-03-16 2018-10-04 国立大学法人九州大学 Method for manufacturing electrode material
JP2019096624A (en) * 2019-03-08 2019-06-20 国立大学法人九州大学 Electrode material

Similar Documents

Publication Publication Date Title
JP5322110B2 (en) Manufacturing method of cathode electrode material for fuel cell, cathode electrode material for fuel cell, and fuel cell using the cathode electrode material
JP5332429B2 (en) Electrocatalyst
CN111527633B (en) Catalyst, method for preparing the same, electrode, membrane-electrode assembly and fuel cell comprising the catalyst
JP7085648B2 (en) A method for manufacturing a membrane-electrode assembly, a fuel cell including the membrane-electrode assembly manufactured thereby and the membrane-electrode assembly.
US9331341B2 (en) Durable platinum/multi-walled carbon nanotube catalysts
JP6598159B2 (en) ELECTRODE MATERIAL FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME, ELECTRODE FOR FUEL CELL, MEMBRANE ELECTRODE ASSEMBLY AND SOLID POLYMER FUEL CELL
JP2005537618A (en) Fuel cell electrode
CN108539206B (en) Catalysis layer full-order fuel cell electrode and membrane electrode
Hameed Facile preparation of Pd-metal oxide/C electrocatalysts and their application in the electrocatalytic oxidation of ethanol
US20070161501A1 (en) Method for making carbon nanotube-supported platinum alloy electrocatalysts
EP2680350B1 (en) Supporter for fuel cell, method of preparing same, and electrode for fuel cell, membrane-electrode assembly for a fuel cell, and fuel cell system including same
EP3903935B1 (en) Catalyst, method for producing same, electrode comprising same, membrane-electrode assembly comprising same, and fuel cell comprising same
KR20200080152A (en) Catalyst, method for manufacturing the same, electrode comprising the same, membrane-electrode assembly comprising the same, and fuel cell comprising the same
JP2007173109A (en) Membrane-electrode conjugate for fuel cell, its manufacturing method, and fuel cell
JP2007157645A (en) Membrane electrode conjugant for fuel cell, its manufacturing method, and fuel cell
JP2007048572A (en) Manufacturing method of membrane electrode assembly for fuel cell
JP5028836B2 (en) Method for producing fuel cell catalyst
Mahmoodi et al. Novel electrocatalysts for borohydride fuel cells: enhanced power generation by optimizing anodic core–shell nanoparticles on reduced graphene oxide
JP2009140667A (en) Solid polymer fuel cell, and manufacturing method thereof
US20160104895A1 (en) Templated non-carbon metal oxide catalyst support
KR20150047343A (en) Electrode catalyst, method for preparing the same, and membrane electrode assembly and fuel cell including the same
JP2005190726A (en) Catalyst carrying electrode, mea for fuel cell, and fuel cell
JP7228942B1 (en) Fuel cell electrode material, and fuel cell electrode, membrane electrode assembly and polymer electrolyte fuel cell using the same
EP4235876A1 (en) Catalyst layer for fuel cell, manufacturing method therefor, and membrane-electrode assembly and fuel cell which comprise same
Jiang et al. Electrocatalysts for Alkaline Polymer Exchange Membrane (PEM) Fuel Cells–Overview