JP2007040914A - Aluminum powder alloy composite for absorbing neutron, manufacturing method therefor, and basket manufactured using the same - Google Patents

Aluminum powder alloy composite for absorbing neutron, manufacturing method therefor, and basket manufactured using the same Download PDF

Info

Publication number
JP2007040914A
JP2007040914A JP2005227542A JP2005227542A JP2007040914A JP 2007040914 A JP2007040914 A JP 2007040914A JP 2005227542 A JP2005227542 A JP 2005227542A JP 2005227542 A JP2005227542 A JP 2005227542A JP 2007040914 A JP2007040914 A JP 2007040914A
Authority
JP
Japan
Prior art keywords
aluminum
mass
powder
composite material
alloy composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005227542A
Other languages
Japanese (ja)
Other versions
JP4461080B2 (en
JP2007040914A5 (en
Inventor
Shigeru Okaniwa
茂 岡庭
Hideki Ishii
秀樹 石井
Masakazu Iwase
正和 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Nikkeikin Aluminum Core Technology Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Nikkeikin Aluminum Core Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd, Nikkeikin Aluminum Core Technology Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2005227542A priority Critical patent/JP4461080B2/en
Publication of JP2007040914A publication Critical patent/JP2007040914A/en
Publication of JP2007040914A5 publication Critical patent/JP2007040914A5/ja
Application granted granted Critical
Publication of JP4461080B2 publication Critical patent/JP4461080B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy composite for absorbing a neutron, high in temperature strength, and excellent in heat resistance and corrosion resistance, and a manufacturing method therefor. <P>SOLUTION: Boron compound powder such as B<SB>4</SB>C is mixed with aluminum alloy-based powder containing 0.8-3.0 mass% of Mn, 0.15-1.5 mass% of Mg, 0.1-0.6 mass% of Cu, and 0.1-1.0 mass% of Fe, and the mixture is pressure-molded or can-sealed, is heated to a prescribed temperature under decompressed atmosphere, inert gas atmosphere or reducing gas atmosphere, is degassed and is subjected to hot plastic forming, to manufacture the aluminum powder alloy composite, for absorbing the neutron, with a boron compound dispersed in an aluminum alloy base material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、中性子吸収能に優れたアルミニウム粉末合金複合材及びその製造方法に関する。また、本発明は、使用済み核燃料の輸送や貯蔵等に用いられるキャスクのバスケットにも関する。   The present invention relates to an aluminum powder alloy composite material excellent in neutron absorption ability and a method for producing the same. The present invention also relates to a basket of cask used for transportation and storage of spent nuclear fuel.

核燃料は、使用済みのものでも高速又は熱中性子を発生させている。この中性子は核反応を促進させるので、多くの核燃料をまとめて置いておくと、核反応が中性子により進んでしまう。そのため、核燃料を輸送したり貯蔵したりする場合には、一般にバスケットと呼ばれる中性子吸収材を周りに溶接したステンレスの角パイプやホウ素等の中性子吸収元素を含有するステンレス角パイプの集合体のなかに、小分けして収納している。バスケットは、キャスクと呼ばれる容器の中に納められ、その状態で、輸送や貯蔵が行われている(例えば、特許文献1参照)。   Nuclear fuels, even those that have been used, generate fast or thermal neutrons. Since this neutron promotes the nuclear reaction, if many nuclear fuels are put together, the nuclear reaction will be advanced by the neutron. Therefore, when transporting or storing nuclear fuel, it is generally a stainless steel square pipe welded around a neutron absorber called a basket or a collection of stainless steel square pipes containing neutron absorbing elements such as boron. It is stored in small portions. The basket is stored in a container called a cask and is transported and stored in that state (see, for example, Patent Document 1).

一般に、中性子吸収能を備えた物質としては、Gd、Sm等が挙げられるが、前述の中性子吸収材にはホウ素が最も良く用いられている。Bを用いた中性子吸収材としては、「ボラール(Boral)」と称する、アルミニウム板二枚の間にサンドイッチ状にBCとアルミニウム粉末を混合した混合粉末を挟み込み圧延した板状の成形体が従来から使用されており、この中性子吸収材をステンレスなどの角パイプに溶接し、バスケットを製造していた。 In general, examples of the substance having neutron absorption ability include Gd, Sm, and the like. Boron is most often used for the above-described neutron absorber. As a neutron absorber using B, there is a plate-like molded body obtained by sandwiching and rolling a mixed powder obtained by mixing B 4 C and aluminum powder in a sandwich shape between two aluminum plates, called “Boral”. Conventionally, baskets are manufactured by welding this neutron absorber to a square pipe such as stainless steel.

しかして、近年軽量化の要望等があり、JIS規格のアルミニウム粉末とホウ素又はホウ素化合物粉末を混合して加圧焼結した使用済み核燃料集合体貯蔵用容器のバスケット材が提案されるようになってきた(例えば、特許文献2、3参照)。
また、他の中性子吸収用成形体として、ホウ素をアルミニウム合金中に溶解させ製造した中性子吸収体も提案されている(例えば、特許文献4参照)。
特開平8−136695号公報 特開2001−42090号公報 特許第3122436号公報 特開2003−268471号公報
In recent years, there has been a demand for weight reduction, and basket materials for used nuclear fuel assembly storage containers obtained by mixing and sintering JIS standard aluminum powder and boron or boron compound powder have been proposed. (For example, see Patent Documents 2 and 3).
As another neutron absorption molded body, a neutron absorber manufactured by dissolving boron in an aluminum alloy has also been proposed (see, for example, Patent Document 4).
JP-A-8-136695 JP 2001-42090 A Japanese Patent No. 3122436 JP 2003-268471 A

キャスクのバスケット材には、使用済み核燃料棒の貯蔵中常に200℃前後の高温にさらされるため、高温での強度や高温からの連続的冷却時での材料軟化性の抵抗、すなわち耐熱性及び耐食性が要求される。しかし母材となるアルミニウム合金がJIS規格の合金であると十分な強度や耐食性を得ることが難しかった。
また、ホウ素をアルミニウム合金中に溶解させた溶製材である中性子吸収材は、ホウ素を溶解するのが難しく、ホウ素の濃度を高めることができなかった。更にホウ素を溶解させるためにはアルミニウム合金を800℃以上まで加熱する必要があり、生産性が悪く、溶解炉も傷みやすいという問題があった。また、ホウ素を均一に分散させることが難しく、品質的にバラツキが生じやすいという問題もあった。
Cask basket materials are always exposed to high temperatures around 200 ° C during storage of spent nuclear fuel rods, so strength at high temperatures and resistance to material softening during continuous cooling from high temperatures, ie heat resistance and corrosion resistance Is required. However, if the aluminum alloy used as the base material is a JIS standard alloy, it has been difficult to obtain sufficient strength and corrosion resistance.
In addition, a neutron absorber, which is a smelting material in which boron is dissolved in an aluminum alloy, is difficult to dissolve boron, and the concentration of boron cannot be increased. Further, in order to dissolve boron, it is necessary to heat the aluminum alloy to 800 ° C. or higher, and there is a problem that the productivity is poor and the melting furnace is easily damaged. In addition, there is a problem that it is difficult to uniformly disperse boron, and quality tends to vary.

本発明は、上記事情に鑑みてなされたもので、高温強度や耐食性に優れた中性子吸収用アルミニウム合金複合材を提供することを目的とする。
また本発明は、高温強度や耐食性に加えて、更に熱伝導性も良好な中性子吸収用アルミニウム合金複合材を提供することを目的とする。
更に本発明は、上述の中性子吸収用アルミニウム複合材を安価に製造できる生産性に優れた製造方法を提供することを目的とする。
また本発明は、上述の中性子吸収用アルミニウム複合材を用いて製造されたキャスクのバスケットを提供することも目的とする。
This invention is made | formed in view of the said situation, and it aims at providing the aluminum alloy composite material for neutron absorption excellent in high temperature strength and corrosion resistance.
Another object of the present invention is to provide a neutron-absorbing aluminum alloy composite material that has good thermal conductivity in addition to high-temperature strength and corrosion resistance.
Furthermore, an object of the present invention is to provide a production method excellent in productivity that can produce the above-described aluminum composite for neutron absorption at low cost.
Another object of the present invention is to provide a cask basket manufactured using the above-described neutron absorbing aluminum composite.

本発明の中性子吸収用アルミニウム粉末合金複合材は、アルミニウム合金からなる母材中に中性子吸収能を有するホウ素系化合物が分散せしめられてなる中性子吸収用アルミニウム粉末合金複合材であって、母材を、母材の全質量に対して0.8〜3質量%のMn、0.15〜1.5質量%のMg、0.1〜0.6質量%のCu、0.1〜1.0質量%のFeを含み、残部がアルミニウムと不可避不純物からなるアルミニウム合金としたことを特徴とする。   The aluminum powder alloy composite material for neutron absorption according to the present invention is an aluminum powder alloy composite material for neutron absorption in which a boron-based compound having neutron absorption ability is dispersed in a base material made of an aluminum alloy. , 0.8-3 mass% Mn, 0.15-1.5 mass% Mg, 0.1-0.6 mass% Cu, 0.1-1.0 based on the total mass of the base material An aluminum alloy containing mass% Fe and the balance being aluminum and inevitable impurities is used.

上記において、母材のアルミニウム合金は、更にSiを、母材の全質量に対して0.8〜2.0質量%含有させたものでも良い。また母材のアルミニウム合金には、Siと共に又はSiとは別に、更にCrを母材の全質量に対して0.03〜1質量%含有させたものでも良い。
本発明において使用されるホウ素系化合物は、複合材の全質量に対してホウ素量で0.4〜24質量%であることが好ましい。またホウ素系化合物の種類は、中性子吸収能に優れるものであれば如何なるものでも使用可能であるが、特にBCであることが好ましく、BCの場合、その含有量は好適には複合材の全質量に対して化合物量で0.5〜10質量%である。
In the above, the aluminum alloy as the base material may further contain Si in an amount of 0.8 to 2.0 mass% with respect to the total mass of the base material. In addition, the base aluminum alloy may contain 0.03 to 1% by mass of Cr together with Si or separately from Si based on the total mass of the base material.
The boron compound used in the present invention is preferably 0.4 to 24% by mass in terms of boron based on the total mass of the composite material. Any boron compound may be used as long as it has an excellent neutron absorption ability, but B 4 C is particularly preferable. In the case of B 4 C, the content is preferably composite. The amount of the compound is 0.5 to 10% by mass with respect to the total mass of the material.

本発明の製造方法は、上記中性子吸収用アルミニウム粉末合金複合材の製造に特に適したもので、上述の組成を有する母材となるアルミニウム合金粉末と、ホウ素系化合物粉末、好適には平均粒径が1〜20μm(更に好ましくは5〜10μm)のBC粉末を混合して混合粉末を生成した後、加圧成形し、減圧雰囲気、不活性ガス雰囲気あるいは還元性ガス雰囲気中で、300〜570℃まで加熱し、脱ガス処理を行い、次に熱間塑性加工を行うことを特徴とする。
また、他の態様として、上述の組成を有する母材となるアルミニウム合金粉末と、ホウ素系化合物粉末、好適には平均粒径が1〜20μm(更に好ましくは5〜10μm)のBC粉末を混合して混合粉末を生成した後、これをアルミニウム製の容器に封入し、ついで加圧成形し、減圧雰囲気、不活性ガス雰囲気あるいは還元性ガス雰囲気中で、300〜570℃まで加熱し、脱ガス処理を行い、次に熱間塑性加工を行っても良い。
熱間塑性加工としては、熱間押出加工が好ましい。
更に、本発明に係る、使用済み核燃料を収容するキャスクのバスケットは、上述の本発明に係る中性子吸収用アルミニウム粉末合金複合材で製造したことを特徴とする。
The production method of the present invention is particularly suitable for the production of the above-mentioned neutron-absorbing aluminum powder alloy composite, which is an aluminum alloy powder serving as a base material having the above-described composition, a boron compound powder, and preferably an average particle size Is mixed with B 4 C powder of 1 to 20 μm (more preferably 5 to 10 μm) to form a mixed powder, which is then pressed and molded in a reduced pressure atmosphere, an inert gas atmosphere or a reducing gas atmosphere, It is characterized by heating to 570 ° C., degassing treatment, and then hot plastic working.
Further, in another embodiment, the aluminum alloy powder serving as a base material having the composition described above, boron-based compound powder, the average particle diameter preferably is a B 4 C powder 1 to 20 [mu] m (more preferably 5 to 10 [mu] m) After mixing to produce a mixed powder, it is sealed in an aluminum container, then press-molded, heated to 300-570 ° C. in a reduced-pressure atmosphere, inert gas atmosphere or reducing gas atmosphere, and removed. Gas treatment may be performed, and then hot plastic working may be performed.
As the hot plastic working, hot extrusion is preferable.
Further, the cask basket for containing spent nuclear fuel according to the present invention is manufactured by the above-described neutron-absorbing aluminum powder alloy composite material according to the present invention.

アルミニウム合金からなる母材中に中性子吸収能を有するホウ素系化合物が分散せしめられてなる中性子吸収用アルミニウム粉末合金複合材においては、所望の中性子吸収能を得るには一定量のホウ素系化合物を含有せしめることが必要であるが、ホウ素系化合物の添加量を増加させると、ホウ素系化合物はアルミニウム合金に比べて融点や硬度が非常に高いため、硬度等は向上するものの、焼結性、塑性加工性、伸び等が低下してしまう。そこで、複合材の高温強度、耐熱性、耐食性を高めるには、ホウ素系の添加量を増減させないで、母材となるアルミニウム合金を種々変更してみることが考えられる。しかしながら、例えば特許文献3にあるように、アルミニウム合金としてJIS規格の合金から所望の性質を具備すると思われる合金を選択しただけでは、十分な強度や耐食性を得ることができなかった。   A neutron absorbing aluminum powder alloy composite material in which a boron compound having neutron absorption ability is dispersed in a base material made of an aluminum alloy contains a certain amount of boron compound to obtain a desired neutron absorption ability. Although it is necessary to increase the amount of boron-based compound added, the boron-based compound has a very high melting point and hardness compared to the aluminum alloy, so the hardness is improved, but sinterability, plastic working Property, elongation, etc. will decrease. Therefore, in order to increase the high temperature strength, heat resistance, and corrosion resistance of the composite material, it is conceivable to variously change the aluminum alloy serving as a base material without increasing or decreasing the amount of boron-based additive. However, for example, as disclosed in Patent Document 3, sufficient strength and corrosion resistance could not be obtained simply by selecting an alloy that seems to have desired properties from an JIS standard alloy as an aluminum alloy.

そこで、本発明者等は、複合材の母材として用いた場合に、高温強度、耐熱性及び耐食性に優れた性質を有し、かつ強化材との密着性の良いアルミニウム粉末合金について、JIS規格の合金にとらわれず、あらゆる添加元素を検討し、試行錯誤を繰り返して鋭意研究を重ねた結果、焼結性に優れるAl−Mn−Mg−Cu−Fe系アルミニウム合金を母材とすると、意外にも高温強度、耐熱性、耐食性にも優れた複合材を得ることができることが分かった。
しかして、本発明に係るアルミニウム合金粉末複合材は、従来の複合材に比して、高温強度、耐熱性及び耐食性に優れる。
また、本発明の好適な実施態様では、母材と強化材の密着性がよく、強度も熱伝導性も良好なアルミニウム合金粉末複合材が得られる。
更に、本発明の製造方法は、ホウ素を溶解させることを要しないので、生産性が高く、安価に複合材を製造できるという効果を奏する。
Therefore, the present inventors, when used as a base material of a composite material, have a property excellent in high-temperature strength, heat resistance and corrosion resistance, and have good adhesion to a reinforcing material, and are JIS standard. As a result of investigating all additive elements and repeating trial and error regardless of the alloy of the alloy, and repeating the earnest research, it is surprising that the Al-Mn-Mg-Cu-Fe-based aluminum alloy having excellent sinterability is used as a base material. It was also found that a composite material excellent in high temperature strength, heat resistance and corrosion resistance can be obtained.
Therefore, the aluminum alloy powder composite material according to the present invention is superior in high temperature strength, heat resistance and corrosion resistance as compared with conventional composite materials.
Further, in a preferred embodiment of the present invention, an aluminum alloy powder composite material having good adhesion between the base material and the reinforcing material and good strength and thermal conductivity can be obtained.
Furthermore, since the manufacturing method of the present invention does not require dissolution of boron, the productivity is high and the composite material can be manufactured at low cost.

前述のように、本発明に係る中性子吸収用アルミニウム粉末合金複合材は、母材がMn:0.8〜3.0質量%、Mg:0.15〜1.5質量%、Cu:0.1〜0.6質量%、Fe:0.1〜1.0質量%を含み、残部がアルミニウムと不可避不純物からなり、適宜Si:0.8〜2.0質量%、Cr:0.03〜1質量%のいずれか1以上を添加するアルミニウム合金であり、中性子吸収材がホウ素系化合物である。以下、各元素の作用について説明する。   As described above, in the aluminum powder alloy composite for neutron absorption according to the present invention, the base material is Mn: 0.8 to 3.0% by mass, Mg: 0.15 to 1.5% by mass, Cu: 0.0. 1 to 0.6% by mass, Fe: 0.1 to 1.0% by mass, the balance is made of aluminum and inevitable impurities, Si: 0.8 to 2.0% by mass, Cr: 0.03 to It is an aluminum alloy to which any one or more of 1% by mass is added, and the neutron absorber is a boron-based compound. Hereinafter, the action of each element will be described.

[Mn:0.8〜3.0質量%]
Mnは急冷凝固によってAl中での固溶量が多くなり、また、Al中での拡散が遅く、母材の耐熱性、耐食性を向上させ、更に生成する化合物Al−Mn,Al−(Fe+Mn)−Siもその微細化合物の存在によって耐熱性を改良する。
効果を生じる量は0.8質量%以上であり、3.0質量%を超えると変形抵抗が高くなり、熱間加工性を低下させる。
[Mn: 0.8 to 3.0% by mass]
Mn increases the amount of solid solution in Al due to rapid solidification, and also diffuses slowly in Al, improves the heat resistance and corrosion resistance of the base material, and further produces compounds Al—Mn, Al— (Fe + Mn). -Si also improves heat resistance due to the presence of its fine compounds.
The amount that produces the effect is 0.8% by mass or more, and if it exceeds 3.0% by mass, the deformation resistance becomes high and the hot workability is lowered.

[Mg:0.15〜1.5質量%]
Mgは、母相中に固溶したり、他の元素と化合物(MgSi)を形成したりして、機械的強度や耐摩耗性を向上させる作用を呈する。この作用は、0.15質量%以上で顕著となり、逆に1.5質量%を超えると熱間加工性や耐食性を低下させる。
また、Mgは、アルミニウム合金の融点を低下させ、自身も高温拡散しやすい元素であるため、焼結性が向上する。更にセラミックス粒子とのアルミニウム合金の濡れ性を改善する作用もある。
[Mg: 0.15 to 1.5% by mass]
Mg exhibits a function of improving mechanical strength and wear resistance by forming a solid solution in the matrix or forming a compound (Mg 2 Si) with another element. This effect becomes remarkable at 0.15% by mass or more, and conversely when it exceeds 1.5% by mass, hot workability and corrosion resistance are lowered.
Further, Mg is an element that lowers the melting point of the aluminum alloy and easily diffuses at a high temperature, so that the sinterability is improved. Furthermore, it also has the effect of improving the wettability of the aluminum alloy with the ceramic particles.

[Cu:0.1〜0.6質量%]
Cuは、Alに対して固溶化して高温時の母材強度の維持に効果が有り、また他の元素同様にMn系化合物の析出を促進する。一方、0.6%を越えると耐食性の低下、熱間加工での不良を生じやすくなる。
[Cu: 0.1 to 0.6% by mass]
Cu is solid-solved in Al and effective in maintaining the strength of the base material at high temperatures, and promotes the precipitation of Mn-based compounds like other elements. On the other hand, if it exceeds 0.6%, the corrosion resistance is lowered and defects in hot working are likely to occur.

[Fe:0.1〜1.0質量%]
Feは、Al−Fe−Cu系化合物、Al−(Fe,Mn)系化合物、Al−Fe−Si系化合物、Al−(Mn,Fe)−Si系化合物を形成し、耐熱性を向上させる。この効果は0.1質量%以上の添加で顕著となり、逆に1.0質量%を超えて添加されると耐食性、靭性低下の原因となる。また、押し出しなどの加工時に表面欠陥を生じやすくなる。
[Fe: 0.1 to 1.0% by mass]
Fe forms an Al—Fe—Cu based compound, an Al— (Fe, Mn) based compound, an Al—Fe—Si based compound, and an Al— (Mn, Fe) —Si based compound to improve heat resistance. This effect becomes prominent when added in an amount of 0.1% by mass or more, and conversely, if added over 1.0% by mass, the corrosion resistance and toughness are reduced. In addition, surface defects are likely to occur during processing such as extrusion.

[Si:0.8〜2.0質量%]
Siは、他の元素と化合物(Al−Fe−Si,Al−(Fe+Mn)−Si系化合物)を形成したりして、高温強度を向上させ、耐摩耗性を向上させる作用を呈する。この作用は0.8質量%以上で顕著となり、逆に2.0質量%を超えると過剰なSiが単独で存在し、伸びなどの延性低下を生じやすくなる。Si添加の場合は、Mg量を低くして、Al−Mn−Si系化合物を多量に析出させるとその効果は大きくなる。
Siは、アルミニウム合金の融点を低下させ、自身も高温拡散しやすい元素であるため、焼結性が向上する。
[Si: 0.8 to 2.0% by mass]
Si forms a compound (Al-Fe-Si, Al- (Fe + Mn) -Si-based compound) with other elements to improve the high-temperature strength and to improve the wear resistance. This effect becomes remarkable at 0.8% by mass or more, and conversely, when it exceeds 2.0% by mass, excess Si is present alone, and ductility such as elongation tends to be reduced. In the case of adding Si, the effect increases if the amount of Mg is lowered and a large amount of Al-Mn-Si compound is precipitated.
Since Si is an element that lowers the melting point of the aluminum alloy and easily diffuses at high temperatures, the sinterability is improved.

[Cr:0.03〜1質量%]
Crは、Mnと同一の効果を奏するので、0.03〜1質量%含有させることが、好ましい。
[Cr: 0.03 to 1% by mass]
Since Cr has the same effect as Mn, it is preferable to contain 0.03 to 1% by mass.

[不可避不純物]
本発明の複合材の母材となるアルミニウム合金では、Znなどの不可避不純物は各元素で0.1質量%以下であれば耐食性などの性質に大きな影響を与えないので、不可避不純物として許容される。
[Inevitable impurities]
In the aluminum alloy which is the base material of the composite material of the present invention, inevitable impurities such as Zn are allowed to be inevitable impurities because they do not greatly affect properties such as corrosion resistance if each element is 0.1% by mass or less. .

[ホウ素系化合物]
本発明において用いて好適なホウ素系化合物は、中性子吸収能に優れるものであれば如何なるものでもよいが、好適には、例えば炭化ホウ素、酸化ホウ素、窒化ホウ素等、ホウ化アルミニウム等の金属とホウ素との化合物等を挙げることができ、これらを単独で又は混合物として使用することができる。特に、炭化ホウ素BCは、工業的に量産でき、中性子を良く吸収するBの同位体であるB10を約20%含有するので複合化に最適である。
このホウ素系化合物は、前述のアルミニウム合金粉末に、ホウ素量で0.4〜24質量%の量で含有せしめられる。0.4質量%以上とした理由は、0.4質量%より少ないと、十分な中性子吸収能力が得られないためであり、十分な中性子吸収能力を得るために中性子吸収材の板厚を厚くしなければならなくなり、限られたスペース内に中性子吸収成形体を収納することができなくなるばかりか、材料が嵩むという問題がある。また、24質量%以下とした理由は、24質量%より多いと、成形時の変形抵抗が高く、成形加工が難しい上、成形体が脆くなって、折れやすくなるという問題があるからである。またアルミニウムとホウ素化合物の密着性も悪くなり、空隙ができやすく、放熱性も低下する。例えば、BCの場合、前述のアルミニウム合金粉末に、化合物で0.5〜30質量%含有せしめられる。0.5質量%未満では、中性子吸収材として十分に作用しない一方、30質量%を超えると塑性加工性や切削性も悪化する。
[Boron compounds]
The boron-based compound suitable for use in the present invention may be any compound as long as it has an excellent neutron absorption capability. Preferably, for example, boron carbide, boron oxide, boron nitride, etc., a metal such as boron boride and boron And the like, and these can be used alone or as a mixture. In particular, boron carbide B 4 C can be industrially mass-produced and contains about 20% of B10, which is an isotope of B that absorbs neutrons well, and is therefore optimal for compounding.
This boron-based compound is contained in the aforementioned aluminum alloy powder in an amount of 0.4 to 24% by mass in terms of boron. The reason why it is 0.4% by mass or more is that if it is less than 0.4% by mass, sufficient neutron absorption capability cannot be obtained, and in order to obtain sufficient neutron absorption capability, the thickness of the neutron absorber is increased. There is a problem that not only the neutron absorption molded body cannot be stored in a limited space, but also the material is bulky. The reason why the amount is 24% by mass or less is that when the amount is more than 24% by mass, there is a problem that deformation resistance at the time of molding is high and molding is difficult, and the molded body becomes brittle and easily breaks. In addition, the adhesion between aluminum and the boron compound is deteriorated, voids are easily formed, and heat dissipation is also reduced. For example, in the case of B 4 C, the above-described aluminum alloy powder is contained in an amount of 0.5 to 30% by mass as a compound. If it is less than 0.5% by mass, it does not sufficiently act as a neutron absorber, whereas if it exceeds 30% by mass, plastic workability and machinability also deteriorate.

以下に、本発明の製造方法を説明する。
[第一の製造方法]
本発明の製造方法の第一の実施形態は、(a)上述の組成を有する母材となるアルミニウム合金粉末と、ホウ素系化合物粉末を混合して混合粉末を生成する工程と、(b)上記混合粉末を加圧成形する工程と、(c)加圧成形した成形体を所定雰囲気中で加熱し、脱ガス処理を行う工程と、(d)最後に熱間塑性加工を行う工程とを具備する。以下、使用される原材料についてまだ述べていない特性等についての説明を追加した上で、各工程を(a)工程から(d)工程の順に詳細に説明する。
Below, the manufacturing method of this invention is demonstrated.
[First production method]
In the first embodiment of the production method of the present invention, (a) a step of producing a mixed powder by mixing an aluminum alloy powder serving as a base material having the above-described composition and a boron-based compound powder, and (b) the above A step of pressure-forming the mixed powder, (c) a step of heating the pressure-formed molded body in a predetermined atmosphere to perform degassing treatment, and (d) a step of finally performing hot plastic working. To do. Hereinafter, after adding the description about the characteristics etc. which have not been described about the raw material used yet, each process is demonstrated in detail from the (a) process to the (d) process.

(1)原材料の説明
[母材のアルミニウム合金粉末]
C等の粒子と混合される合金の母材となるアルミニウム合金粉末の平均粒径は特に限定されるものではないが、上限値は一般には500μm以下、好ましくは150μm以下、より好ましくは60μm以下の粉末を用いることができる。平均粒径下限値は製造可能であれば特に限定されるものではないが、通常は1μm以上、好ましくは20μm以上である。アルミニウム合金粉の粒度分布を100μm以下として、ホウ素系化合物粒子の平均粒度を10μm以下とするとホウ素系化合物粒子が均一に分散し、ホウ素系化合物粒子の希薄な部分が非常に少なくなり、特性の安定化に効果がある。アルミニウム合金粉末の平均粒径は、後述するBC等の粒子の平均粒径の差が大きいと押出加工や圧延加工等の塑性加工の際に割れが生じやすいので、平均粒径の差を小さくすることが好ましい。平均粒径が大きくなりすぎると、平均粒径を大きくできない例えばBC粒子との均一混合が困難となる一方、平均粒径が小さすぎると、微細アルミニウム合金粉末同士で凝集が起こり易くなり、BC粒子等との均一混合が非常に困難になるからである。また、かかる範囲内の平均粒径とすることにより、一層優れた加工性、成形性、機械的特性を得ることもできる。
なお、本発明における平均粒径は、レーザー回折式粒度分布測定法による値を示す。粉末形状も限定されるものではなく、例えば涙滴状、真球状、回転楕円体状、フレーク状又は不定形状等いずれであっても差し支えない。
(1) Description of raw materials [base aluminum alloy powder]
The average particle size of the aluminum alloy powder that is the base material of the alloy mixed with particles such as B 4 C is not particularly limited, but the upper limit is generally 500 μm or less, preferably 150 μm or less, more preferably 60 μm. The following powders can be used. The lower limit of the average particle diameter is not particularly limited as long as it can be produced, but is usually 1 μm or more, preferably 20 μm or more. When the particle size distribution of the aluminum alloy powder is 100 μm or less and the average particle size of the boron compound particles is 10 μm or less, the boron compound particles are uniformly dispersed, and the dilute portions of the boron compound particles are very small, and the characteristics are stable. There is an effect in making. The average particle size of the aluminum alloy powder is such that cracks are likely to occur during plastic processing such as extrusion or rolling if the difference in the average particle size of particles such as B 4 C described later is large. It is preferable to make it small. If the average particle size becomes too large, the average particle size cannot be increased, for example, uniform mixing with B 4 C particles becomes difficult. On the other hand, if the average particle size is too small, aggregation is likely to occur between fine aluminum alloy powders, This is because uniform mixing with B 4 C particles or the like becomes very difficult. Further, by setting the average particle size within such a range, it is possible to obtain further excellent processability, moldability, and mechanical properties.
In addition, the average particle diameter in this invention shows the value by the laser diffraction type particle size distribution measuring method. The powder shape is not limited, and may be any shape such as a teardrop shape, a true spherical shape, a spheroid shape, a flake shape, or an indefinite shape.

上記アルミニウム合金粉末の製造方法は限定されず、公知の金属粉末の製造方法に従って製造することができる。その製造方法は例えば、アトマイズ法、メルトスピニング法、回転円盤法、回転電極法、その他の急冷凝固法等が挙げられるが、工業的生産にはアトマイズ法、特に溶湯をアトマイズすることにより粉末を製造するガスアトマイズ法が好ましい。
なお、アトマイズ法においては、上記溶湯を通常700〜1200℃に加熱してアトマイズすることが好ましい。この温度範囲に設定することにより、より効果的なアトマイズを実施することができるからである。またアトマイズ時の噴霧媒・雰囲気は、空気、窒素、アルゴン、ヘリウム、二酸化炭素、水等あるいはそれらの混合であってもよいが、噴霧媒は、経済的観点から、空気、窒素ガス又はアルゴンガスによるのが好ましい。
The manufacturing method of the said aluminum alloy powder is not limited, It can manufacture according to the manufacturing method of a well-known metal powder. The production method includes, for example, the atomizing method, melt spinning method, rotating disk method, rotating electrode method, and other rapid solidification methods. For industrial production, the atomizing method, in particular, powder is produced by atomizing molten metal. The gas atomizing method is preferred.
In the atomizing method, it is preferable to atomize the molten metal by heating it to 700 to 1200 ° C. This is because more effective atomization can be performed by setting the temperature range. Further, the atomizing medium / atmosphere during atomization may be air, nitrogen, argon, helium, carbon dioxide, water, or a mixture thereof, but the atomizing medium is air, nitrogen gas or argon gas from an economic viewpoint. Is preferred.

[ホウ素系化合物]
ホウ素系化合物の平均粒径は任意であるが、アルミニウム合金の平均粒径に対して説明したように、これら二種の粉末間の粒径差が少ない方が好ましい。具体的には、BCの場合は、1〜20μmが好ましい。平均粒径が20μm(好ましくは10μm以下)より大きいと、切断時に鋸歯が直ぐに摩耗してしまう問題があり、また、平均粒径が1μm(好ましくは5μm以上)より小さいと、これら微細粉末同士で凝集が起こり易くなり、アルミニウム粉末との均一混合が非常に困難になるからである。
なお、本発明の平均粒径は、レーザー回折式粒度分布測定法による値を示す。粉末形状も限定されず、例えば、涙滴状、真級状、回転楕円体状、フレーク状、不定形状等のいずれであってもよい。
[Boron compounds]
The average particle size of the boron-based compound is arbitrary, but as described with respect to the average particle size of the aluminum alloy, it is preferable that the particle size difference between these two kinds of powders is small. Specifically, in the case of B 4 C, 1 to 20 μm is preferable. When the average particle size is larger than 20 μm (preferably 10 μm or less), there is a problem that the saw blade is worn out immediately when cutting, and when the average particle size is smaller than 1 μm (preferably 5 μm or more), these fine powders This is because agglomeration easily occurs and uniform mixing with the aluminum powder becomes very difficult.
In addition, the average particle diameter of this invention shows the value by the laser diffraction type particle size distribution measuring method. The powder shape is not limited, and may be any one of teardrop shape, true grade shape, spheroid shape, flake shape, indefinite shape, and the like.

(2)各工程の説明
(a)アルミニウム合金粉末とホウ素系化合物粉末の混合粉末の製造工程
アルミニウム合金粉末と、BC等のホウ素系化合物粉末を用意し、これら粉末を均一に混合する。混合の方法は、公知の方法でよく、例えばVブレンダー、クロスロータリーミキサー等の各種ミキサー、振動ミル、遊星ミル等を使用し、所定の時間(例えば10分〜6時間程度)混合すればよい。また、混合は、乾式又は湿式の何れであってもよい。また、混合の際に解砕の目的で、アルミナボール等のメディアを適宜加えてもよい。
(2) Explanation of each step (a) Production process of mixed powder of aluminum alloy powder and boron compound powder Aluminum alloy powder and boron compound powder such as B 4 C are prepared, and these powders are mixed uniformly. The mixing method may be a known method. For example, various mixers such as a V blender and a cross rotary mixer, a vibration mill, a planetary mill, and the like may be used and mixed for a predetermined time (for example, about 10 minutes to 6 hours). Further, the mixing may be either dry or wet. Moreover, you may add media, such as an alumina ball | bowl, suitably for the purpose of crushing in the case of mixing.

(b)加圧成形工程
C等のホウ素系化合物粉末とアルミニウム合金の混合粉末を、加圧焼結を行いやすい形状に加圧成形する。仮成形する方法は、公知の方法で良く、例えば冷間静水圧成形、冷間一軸成形やホットプレス成形を用いて、加圧成形すれば良い。
(B) Pressure forming step A mixed powder of boron-based compound powder such as B 4 C and an aluminum alloy is pressure-molded into a shape that facilitates pressure sintering. A known method may be used for the temporary molding, and for example, cold isostatic pressing, cold uniaxial molding, or hot press molding may be used for pressure molding.

(c)脱ガス処理工程
加圧成形体は、減圧雰囲気、不活性ガス雰囲気又は還元雰囲気において、300〜570℃の温度範囲に加熱保持され、脱ガスされる。この工程により、加圧成形体に付着していた水分が気化し除去される。また成形体内部に残っていた気体も除去される。水分や気体を除去させるためには、300〜570℃の温度範囲に4時間以上保持することが好ましい。加熱保持温度が300℃未満だと水分や気体の除去が、不十分となり、この後の加圧焼結や、熱処理の際に、フクレとなり、欠陥の原因となる。加熱保持温度が570℃以上になると、一部焼結が進行し、この後のハンドリングが容易となる。また、誘電加熱が容易となり、加圧焼結の際の加熱が容易となるので450℃以上で加熱保持することが好ましい(更に、好ましくは500℃以上)。十分に仮焼結させるためには、1時間以上保持することが好ましい。加熱保持温度が570℃を超えるとアルミニウム合金の溶融や結晶粒の粗大化がおこる虞があるので、加熱保持温度は570℃以下にすることが好ましい(更に好ましくは550℃以下)。脱ガス後は、常温まで冷却される。なお、300℃以下まで冷却されるまでは、減圧雰囲気、不活性ガス雰囲気又は還元雰囲気にしておくことが好ましい。更に好ましくは常温まで冷却される。また脱ガス後、そのまま熱間加工温度まで、冷却あるいは加熱し、熱間加工を行っても良い。
(C) Degassing treatment step The pressure-molded body is heated and held in a temperature range of 300 to 570 ° C in a reduced pressure atmosphere, an inert gas atmosphere or a reducing atmosphere, and degassed. By this step, the water adhering to the pressure molded body is vaporized and removed. Further, the gas remaining inside the molded body is also removed. In order to remove moisture and gas, it is preferable to hold in a temperature range of 300 to 570 ° C. for 4 hours or more. If the heating and holding temperature is less than 300 ° C., the removal of moisture and gas becomes insufficient, resulting in blistering in the subsequent pressure sintering and heat treatment, causing defects. When the heating and holding temperature is 570 ° C. or higher, part of the sintering proceeds, and subsequent handling becomes easy. Moreover, since dielectric heating becomes easy and heating at the time of pressure sintering becomes easy, it is preferable to heat and hold at 450 ° C. or higher (more preferably 500 ° C. or higher). In order to sufficiently pre-sinter, it is preferable to hold for 1 hour or more. If the heating and holding temperature exceeds 570 ° C., the aluminum alloy may be melted or the crystal grains may be coarsened. Therefore, the heating and holding temperature is preferably 570 ° C. or less (more preferably 550 ° C. or less). After degassing, it is cooled to room temperature. Note that a reduced pressure atmosphere, an inert gas atmosphere, or a reducing atmosphere is preferably used until cooling to 300 ° C. or lower. More preferably, it is cooled to room temperature. Further, after degassing, the hot working may be performed by cooling or heating to the hot working temperature as it is.

(d)熱間塑性加工(加圧焼結)工程
脱ガス処理を行った仮成形体を所定の温度(好ましくは400〜550℃)に加熱して、押出、鍛造、圧延等の熱間塑性加工を行い、加圧焼結させる。加熱温度が400℃以下だと変形抵抗値が大きく、熱間加工に大きな力が必要となる。550℃を超えると一部溶融や結晶粒の粗大化がおこる虞がある。目的とする形状にするために熱間塑性加工は複数回行っても良いし、また熱間塑性加工の後冷間塑性加工(圧延、鍛造、引き抜き加工等)を行っても良い。冷間塑性加工する場合には、350〜450℃で加工の前に焼鈍を行うことが好ましい。熱間塑性加工又は冷間塑性加工後、複合材はそのまま使用してもよいし、溶体化処理や人工時効等の熱処理を行っても良い。
(D) Hot plastic working (pressure sintering) step The degassed temporary molded body is heated to a predetermined temperature (preferably 400 to 550 ° C.) to perform hot plasticity such as extrusion, forging, and rolling. Process and pressure sinter. When the heating temperature is 400 ° C. or less, the deformation resistance value is large, and a large force is required for hot working. If it exceeds 550 ° C., there is a risk of partial melting and coarsening of crystal grains. In order to obtain a target shape, the hot plastic working may be performed a plurality of times, or after the hot plastic working, cold plastic working (rolling, forging, drawing, etc.) may be performed. In the case of cold plastic working, it is preferable to perform annealing at 350 to 450 ° C. before working. After hot plastic working or cold plastic working, the composite material may be used as it is, or heat treatment such as solution treatment or artificial aging may be performed.

[本発明の第二の製造方法]
本発明の製造方法の第二の実施形態は、(a)上述の組成を有する母材となるアルミニウム合金粉末と、ホウ素系化合物粉末を混合して混合粉末を生成する工程と、(b’)上記混合粉末をアルミニウム製の容器に封入する工程と、(c)加圧成形した成形体を所定雰囲気中で加熱し、脱ガス処理を行う工程と、(d)最後に熱間塑性加工を行う工程とを具備する。
複合材でないアルミニウム容器に封入して熱間塑性加工することにより、複合材表面がアルミニウムに覆われることになり、複合材の耐食性、熱伝導性等が向上する。また塑性加工の際に押出ダイス等の塑性加工工具とホウ素化合物が直接接触しないので、加工工具の寿命が延び、更に複合材表面に表面欠陥も発生しにくくなる。
[Second production method of the present invention]
In the second embodiment of the production method of the present invention, (a) a step of producing a mixed powder by mixing an aluminum alloy powder serving as a base material having the above-described composition and a boron-based compound powder, and (b ′) A step of enclosing the mixed powder in an aluminum container, (c) a step of heating the molded body under pressure molding in a predetermined atmosphere and performing a degassing process, and (d) finally performing a hot plastic working. A process.
By enclosing in an aluminum container that is not a composite material and performing hot plastic working, the surface of the composite material is covered with aluminum, and the corrosion resistance, thermal conductivity, and the like of the composite material are improved. Further, since the plastic working tool such as an extrusion die and the boron compound are not in direct contact with each other during plastic working, the life of the working tool is extended, and surface defects are less likely to occur on the surface of the composite material.

(1)原材料の説明
第一の製造方法に用いられるものと同様の原材料の他、アルミニウム製の容器が準備される。このアルミニウム製容器は、複合体の熱間塑性加工工程後には複合材の表層部に残ることになるが、これを剥がさないで複合体の表層部としたままにできるし、これを剥がしてもよい。但し、剥がされないでそのまま複合体の表層部とされる場合には、複合体に要求される特性に合致したアルミニウムが利用される必要がある。その場合のアルミニウムは純アルミニウム又はアルミニウム合金であるが、簡便には、JIS1070等の純アルミニウムやAl−Cu系合金(JIS2017等)、Al−Mg系合金(JIS5052等)、Al−Mg−Si系合金(JIS6061等)、Al−Zn−Mg系合金(JIS7075等)、Al−Mn系合金等の通常のアルミニウム合金を使用することができ、所望される特性、コスト等々を考慮して決定される。
アルミニウム製容器は、缶(本体部)と蓋の形態に予め成形されたものを準備するか、常法により適宜製作する。缶の肉厚は1〜10mm程度、好ましくは4〜6mm程度で、搬送に耐える強度を持たせることが望ましい。蓋は、缶と同材質でも異材質でもよく、後の成形時のガス抜き小孔を少なくとも一以上備えたものとすることができる。
(1) Description of raw materials In addition to the same raw materials as those used in the first manufacturing method, an aluminum container is prepared. This aluminum container will remain on the surface layer of the composite after the hot plastic working step of the composite, but it can be left as the surface of the composite without peeling it off. Good. However, when it is used as it is as the surface layer portion of the composite without being peeled off, it is necessary to use aluminum that matches the properties required for the composite. In this case, the aluminum is pure aluminum or an aluminum alloy. For simplicity, pure aluminum such as JIS1070, Al—Cu alloy (JIS2017, etc.), Al—Mg alloy (JIS5052 etc.), Al—Mg—Si Ordinary aluminum alloys such as alloys (JIS6061 etc.), Al-Zn-Mg alloys (JIS7075 etc.), Al-Mn alloys can be used, and are determined in consideration of desired characteristics, cost, etc. .
The aluminum container is prepared in advance in the form of a can (main body part) and a lid, or is appropriately manufactured by a conventional method. The thickness of the can is about 1 to 10 mm, preferably about 4 to 6 mm, and it is desirable that the can be strong enough to withstand conveyance. The lid may be the same material as the can or a different material, and may be provided with at least one small vent hole for subsequent molding.

(2)各工程の説明
(a)アルミニウム合金粉末とホウ素系化合物粉末の混合粉末の製造工程
第一の製造方法の場合と同様にして、アルミニウム合金粉末とホウ素系化合物粉末を常法により均一に混合する。
(2) Explanation of each process (a) Manufacturing process of mixed powder of aluminum alloy powder and boron-based compound powder In the same manner as in the first manufacturing method, the aluminum alloy powder and boron-based compound powder are uniformly made by a conventional method. Mix.

(b’)容器封入工程
工程(a)で得られた混合粉末を、前述のアルミニウム製容器の本体部に充填する。ついで、振動を加えるなどして粉末周囲のガス抜きを行った後、蓋部を溶接等によって取り付け、搬送時に粉末が漏れ出ないようにして容器封入体を製造する。
尚、混合粉末を容器に封入する前に、加圧成形しておいてもよく、この場合は、第一の製造方法の加圧成形工程に容器封入工程が追加的に施されることになる。
(B ′) Container Enclosing Step The mixed powder obtained in the step (a) is filled in the main body of the aforementioned aluminum container. Next, after degassing around the powder by applying vibration or the like, the lid is attached by welding or the like, and the container enclosure is manufactured so that the powder does not leak during transportation.
In addition, before encapsulating the mixed powder in the container, it may be subjected to pressure molding. In this case, the container encapsulation process is additionally performed in the pressure molding process of the first manufacturing method. .

(c)脱ガス処理工程
工程(b’)で得られた容器封入体を、第一の製造方法と同様にして脱ガス処理する。すなわち、減圧雰囲気、不活性ガス雰囲気又は還元雰囲気において、200℃以上、好ましくは450℃以上、より好ましくは500℃以上で、600℃以下、好ましくは550℃以下の温度範囲に加熱保持し、脱ガス処理した後、好ましくは200℃以下まで冷却されるまでは、減圧雰囲気、不活性ガス雰囲気又は還元雰囲気にて、常温まで冷却するか、あるいはそのまま熱間加工温度まで、冷却あるいは加熱する。
(C) Degassing treatment step The container enclosure obtained in the step (b ') is degassed in the same manner as in the first production method. That is, in a reduced pressure atmosphere, an inert gas atmosphere or a reducing atmosphere, it is heated and held in a temperature range of 200 ° C. or higher, preferably 450 ° C. or higher, more preferably 500 ° C. or higher, 600 ° C. or lower, preferably 550 ° C. or lower. After the gas treatment, until it is cooled to preferably 200 ° C. or lower, it is cooled to room temperature in a reduced pressure atmosphere, an inert gas atmosphere or a reducing atmosphere, or cooled or heated to the hot working temperature as it is.

(d)熱間塑性加工(加圧焼結)工程
工程(c)で得られた仮成形体を、第一の製造方法と同様にして、所定の温度(好ましくは400〜550℃)に加熱して、押出、鍛造、圧延等の熱間塑性加工を一又は複数回行い、また場合によっては更に冷間塑性加工(圧延、鍛造、引き抜き加工等)を行って、所望の形状に加工する。
このようにして形成された複合材の表面にはアルミニウム製容器が残り、アルミニウム表層部でクラッドされた成形体が得られるが、前述のように、このクラッドされたアルミニウム製容器は、剥がしても剥がさなくても良い。
(D) Hot plastic working (pressure sintering) step The temporary molded body obtained in step (c) is heated to a predetermined temperature (preferably 400 to 550 ° C) in the same manner as in the first production method. Then, hot plastic working such as extrusion, forging, and rolling is performed one or more times, and in some cases, cold plastic working (rolling, forging, drawing, etc.) is performed to obtain a desired shape.
An aluminum container remains on the surface of the composite material thus formed, and a molded body clad with the aluminum surface layer portion is obtained. As described above, this clad aluminum container is peeled off. It does not have to be peeled off.

以下、本発明を、実施例を参照しながら詳細に説明する。
[実施例1]
ガスアトマイズ法で製造した表1の組成の平均粒径30μmのアルミニウム合金粉末に、平均粒径10μmのBC粉末を、5質量%の割合となるようにVブレンダー混合機を用いて混合し、冷間静水圧成形で、200mm直径の円筒状に加圧成形した。得られた加圧成形体を、減圧炉で560℃×4時間保持し、脱ガスを行った後、減圧雰囲気中で常温まで冷却した。その後再度480℃まで加熱し、熱間押出加工を行い、100mm幅×5mm厚さの平板に塑性加工した。
得られた押出材について、高温強度、耐熱性及び耐食性を試験した。
ここで、高温強度は、200℃での引張破断強度試験を行い、110Mpa以上の引張破断強度を示したものを合格品とした。耐熱性は、200℃で100時間加熱後に、200℃での引張破断強度試験を行い、100Mpa以上の引張破断強度を示したものを合格品とした。また、耐食性は、室温で食塩水中に500時間浸漬した場合の純アルミニウムの減量を1(10mg/dm2以下)として比較することにより評価した。この判定基準では6061−T6材は4となるので、合格品は4以下とした。
上記の試験結果を表2に示す。
また比較例として、JIS規格の1050アルミニウム合金、2017アルミニウム合金、3003アルミニウム合金、5052アルミニウム合金、6061アルミニウム合金(詳細な組成はそれぞれ表1に記載)のアルミニウム合金を母材とする複合材の押出材を同様の方法で製造し、同様の試験方法で高温強度、耐熱性及び耐食性を試験した。その結果も表2に併せて示す。尚、試験材は全てT1材(押し出しのまま)である。
Hereinafter, the present invention will be described in detail with reference to examples.
[Example 1]
A B 4 C powder having an average particle size of 10 μm was mixed with an aluminum alloy powder having an average particle size of 30 μm having the composition shown in Table 1 manufactured by the gas atomization method using a V blender mixer so as to have a ratio of 5 mass%. By cold isostatic pressing, it was pressure molded into a 200 mm diameter cylinder. The obtained press-molded body was held at 560 ° C. for 4 hours in a vacuum furnace, degassed, and then cooled to room temperature in a vacuum atmosphere. Then, it was heated again to 480 ° C., subjected to hot extrusion, and plastic processed into a flat plate having a width of 100 mm × 5 mm.
About the obtained extrusion material, high temperature strength, heat resistance, and corrosion resistance were tested.
Here, the high temperature strength was subjected to a tensile breaking strength test at 200 ° C., and the one showing a tensile breaking strength of 110 Mpa or more was regarded as an acceptable product. As for heat resistance, after heating at 200 ° C. for 100 hours, a tensile breaking strength test at 200 ° C. was performed, and a product exhibiting a tensile breaking strength of 100 Mpa or more was regarded as an acceptable product. Corrosion resistance was evaluated by comparing the weight loss of pure aluminum as 1 (10 mg / dm2 or less) when immersed in saline at room temperature for 500 hours. In this criterion, 6061-T6 material is 4, so the number of acceptable products is 4 or less.
The test results are shown in Table 2.
As a comparative example, extrusion of a composite material based on a JIS standard 1050 aluminum alloy, 2017 aluminum alloy, 3003 aluminum alloy, 5052 aluminum alloy, and 6061 aluminum alloy (detailed compositions are listed in Table 1). The material was manufactured by the same method, and the high temperature strength, heat resistance and corrosion resistance were tested by the same test method. The results are also shown in Table 2. All the test materials are T1 materials (as extruded).

Figure 2007040914
Figure 2007040914

Figure 2007040914
Figure 2007040914

表2より、本発明例である合金番号1〜10は、本材料の主要用途における高温強度、耐熱性、耐食性及び押出性(押出時の圧力と押出材表面状態で評価)などの評価では要求仕様を満足していることが分かる。主要添加元素のMn、Mg、Fe、Cuを所定の量的範囲で、そして更にはSiを所定の範囲で添加することによって十分な性能が得られるが、それらの範囲を下回る合金、上回る合金は、高温強度、耐熱性は十分であるが、耐食性、製造可否(生産性)では不満足なものとなり、実用化を困難にしている。
すなわち、JIS3003、5052、6061は耐熱性で不合格であり、この欠点を改良するには、各元素の作用効果の欄で記述したように、Mn、Mg、Fe、Cuの適量を選択する必要があった。Mnが0.8%未満では、Mgを0.2%、Fc、Cuをそれぞれ0.1%添加しても耐熱性への効果が減少した。これは、母材中に存在するMn化合物量が少なくなり、高温時の変形を防止する微細化合物の役割が減じたためと思われる。また、Mgが少ない場合も耐熱性は低下し、高温でのMgの固溶強化が小さくなったためと考えられる。Fe量の少ない場合は、Al−Fe−Mn(−Si)系化合物量の減少、そしてCu量の少ない場合は、高温での微細化合物の析出促進効果が小さくなったためと考えられる。
JIS規格品について見れば、JIS3003は強度不足である。JIS5052及びJIS6061は耐熱性の低下が大きい。これらは、上記の化合物の生成量が少なく、微細化合物の高温での成長を抑制できなかったためである。
From Table 2, Alloy Nos. 1 to 10, which are examples of the present invention, are required for evaluations such as high-temperature strength, heat resistance, corrosion resistance, and extrudability (evaluated by the pressure during extrusion and the surface condition of the extruded material) in the main applications of the material. It can be seen that the specification is satisfied. Sufficient performance can be obtained by adding the main additive elements Mn, Mg, Fe, Cu in a predetermined quantitative range, and further Si in a predetermined range. However, the high-temperature strength and heat resistance are sufficient, but the corrosion resistance and manufacturability (productivity) are unsatisfactory, making it difficult to put to practical use.
That is, JIS3003, 5052, and 6061 are heat resistant and rejected, and in order to improve this defect, it is necessary to select appropriate amounts of Mn, Mg, Fe, and Cu as described in the column of the effect of each element. was there. When Mn was less than 0.8%, the effect on heat resistance decreased even when 0.2% Mg, 0.1% Fc and Cu were added. This is probably because the amount of the Mn compound present in the base material is reduced, and the role of the fine compound for preventing deformation at high temperature is reduced. Further, it is considered that the heat resistance is lowered when Mg is small, and the solid solution strengthening of Mg at high temperature is reduced. It is considered that when the amount of Fe is small, the amount of Al—Fe—Mn (—Si) compound is decreased, and when the amount of Cu is small, the effect of promoting the precipitation of fine compounds at high temperatures is reduced.
Looking at JIS standard products, JIS 3003 is insufficient in strength. JIS5052 and JIS6061 have a large reduction in heat resistance. These are because the amount of the compound produced is small and the growth of the fine compound at a high temperature could not be suppressed.

Claims (8)

アルミニウム合金からなる母材中に中性子吸収能を有するホウ素系化合物が分散せしめられてなる中性子吸収用アルミニウム粉末合金複合材において、母材を、母材の全質量に対して0.8〜3.0質量%のMn、0.15〜1.5質量%のMg、0.1〜0.6質量%のCu、0.1〜1.0質量%のFeを含み、残部がアルミニウムと不可避不純物からなるアルミニウム合金としたことを特徴とする中性子吸収用アルミニウム粉末合金複合材。   In an aluminum powder alloy composite material for neutron absorption in which a boron compound having neutron absorption ability is dispersed in a base material made of an aluminum alloy, the base material is 0.8-3. 0% by mass of Mn, 0.15 to 1.5% by mass of Mg, 0.1 to 0.6% by mass of Cu, 0.1 to 1.0% by mass of Fe, the balance being aluminum and inevitable impurities An aluminum powder alloy composite material for neutron absorption, characterized by comprising an aluminum alloy comprising: 母材のアルミニウム合金が、母材の全質量に対して0.8〜2.0質量%のSiと母材の全質量に対して0.03〜1質量%のCrの何れか1以上を更に含有することを特徴とする請求項1に記載の中性子吸収用アルミニウム粉末合金複合材。   The aluminum alloy of the base material contains at least one of 0.8 to 2.0% by mass of Si and 0.03 to 1% by mass of Cr with respect to the total mass of the base material. The aluminum powder alloy composite material for neutron absorption according to claim 1, further comprising: ホウ素系化合物の割合が複合材の全質量に対してホウ素量で0.4〜24質量%であることを特徴とする請求項1又は2に記載の中性子吸収用アルミニウム粉末合金複合材。   The aluminum powder alloy composite material for neutron absorption according to claim 1 or 2, wherein the proportion of the boron compound is 0.4 to 24 mass% in terms of boron amount with respect to the total mass of the composite material. ホウ素系化合物の平均粒径が1〜20μmであることを特徴とする請求項1ないし3の何れか1項に記載の中性子吸収用アルミニウム粉末合金複合材。   The aluminum powder alloy composite material for neutron absorption according to any one of claims 1 to 3, wherein the boron compound has an average particle diameter of 1 to 20 µm. ホウ素系化合物がB4Cであることを特徴とする請求項1ないし4の何れか1項に記載の中性子吸収用アルミニウム粉末合金複合材。   The aluminum powder alloy composite material for neutron absorption according to any one of claims 1 to 4, wherein the boron-based compound is B4C. 請求項1ないし5の何れか1項に記載の中性子吸収用アルミニウム粉末合金複合材の製造方法であって、母材となるアルミニウム合金粉末と、ホウ素系化合物粉末を混合して混合粉末を生成した後、加圧成形し、減圧雰囲気、不活性ガス雰囲気あるいは還元性ガス雰囲気中で、300〜570℃まで加熱し、脱ガス処理を行い、次に熱間塑性加工を行うことを特徴とする中性子吸収用アルミニウム粉末合金複合材の製造方法。   A method for producing an aluminum powder alloy composite material for neutron absorption according to any one of claims 1 to 5, wherein an aluminum alloy powder as a base material and a boron compound powder are mixed to produce a mixed powder. Thereafter, the neutron is characterized by being pressure-molded, heated to 300-570 ° C. in a reduced-pressure atmosphere, inert gas atmosphere or reducing gas atmosphere, degassed, and then subjected to hot plastic working Manufacturing method of aluminum powder alloy composite for absorption. 請求項1ないし5の何れか1項に記載の中性子吸収用アルミニウム粉末合金複合材の製造方法であって、母材となるアルミニウム合金粉末と、ホウ素系化合物粉末を混合して混合粉末を生成した後、混合粉末をアルミニウム製の容器に封入し、減圧雰囲気、不活性ガス雰囲気あるいは還元性ガス雰囲気中で、400〜580℃まで加熱し、脱ガス処理を行い、次に熱間塑性加工を行うことを特徴とする中性子吸収用アルミニウム粉末合金複合材の製造方法。   A method for producing an aluminum powder alloy composite material for neutron absorption according to any one of claims 1 to 5, wherein an aluminum alloy powder as a base material and a boron compound powder are mixed to produce a mixed powder. After that, the mixed powder is sealed in an aluminum container, heated to 400 to 580 ° C. in a reduced pressure atmosphere, an inert gas atmosphere or a reducing gas atmosphere, degassed, and then subjected to hot plastic working. A method for producing an aluminum powder alloy composite material for neutron absorption. 使用済み核燃料を収容するキャスクのバスケットにおいて、請求項1ないし5の何れか1項に記載の中性子吸収用アルミニウム粉末合金複合材で製造したことを特徴とするバスケット。   A basket for a cask containing spent nuclear fuel, wherein the basket is made of the aluminum powder alloy composite material for neutron absorption according to any one of claims 1 to 5.
JP2005227542A 2005-08-05 2005-08-05 Aluminum powder alloy composite material for neutron absorption, method for manufacturing the same, and basket manufactured therewith Active JP4461080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005227542A JP4461080B2 (en) 2005-08-05 2005-08-05 Aluminum powder alloy composite material for neutron absorption, method for manufacturing the same, and basket manufactured therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005227542A JP4461080B2 (en) 2005-08-05 2005-08-05 Aluminum powder alloy composite material for neutron absorption, method for manufacturing the same, and basket manufactured therewith

Publications (3)

Publication Number Publication Date
JP2007040914A true JP2007040914A (en) 2007-02-15
JP2007040914A5 JP2007040914A5 (en) 2007-06-28
JP4461080B2 JP4461080B2 (en) 2010-05-12

Family

ID=37799021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005227542A Active JP4461080B2 (en) 2005-08-05 2005-08-05 Aluminum powder alloy composite material for neutron absorption, method for manufacturing the same, and basket manufactured therewith

Country Status (1)

Country Link
JP (1) JP4461080B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054073A1 (en) * 2007-10-23 2009-04-30 Nippon Light Metal Company, Ltd. Production method for metal matrix composite material
WO2009054074A1 (en) * 2007-10-23 2009-04-30 Nippon Light Metal Company, Ltd. Production method for metal matrix composite material
WO2009054075A1 (en) * 2007-10-23 2009-04-30 Nippon Light Metal Company, Ltd. Production method for metal matrix composite material
JP2010255033A (en) * 2009-04-23 2010-11-11 Nippon Light Metal Co Ltd Metal matrix composite material
JP2010255032A (en) * 2009-04-23 2010-11-11 Nippon Light Metal Co Ltd Metal matrix composite
US7854886B2 (en) 2007-10-23 2010-12-21 Nippon Light Metal Co., Ltd. Production method for metal matrix composite material
US7854887B2 (en) 2007-10-23 2010-12-21 Nippon Light Metal Co., Ltd. Production method for metal matrix composite material
JP2011117774A (en) * 2009-12-01 2011-06-16 Kobe Steel Ltd Basket of spent fuel transportation and storage cask
RU2470395C2 (en) * 2010-12-20 2012-12-20 Государственное образовательное учреждение высшего профессионального образования "Белгородский государственный технологический университет им. В.Г. Шухова" Composite material for radiation shielding
JP2013241675A (en) * 2013-04-11 2013-12-05 Nippon Light Metal Co Ltd Method of manufacturing metal-based composite material
WO2018061225A1 (en) * 2016-09-30 2018-04-05 三菱重工業株式会社 Aluminum alloy material, production method therefor, basket for cask, and cask
EP3611283A3 (en) * 2018-07-26 2020-07-08 Mitsubishi Heavy Industries, Ltd. Aluminum alloy material, method for producing aluminum alloy material, basket for cask, and cask
US10815552B2 (en) 2013-06-19 2020-10-27 Rio Tinto Alcan International Limited Aluminum alloy composition with improved elevated temperature mechanical properties

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101754754B1 (en) * 2016-06-21 2017-07-07 한국원자력연구원 Storage container for spent nuclear fuel

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7854887B2 (en) 2007-10-23 2010-12-21 Nippon Light Metal Co., Ltd. Production method for metal matrix composite material
WO2009054074A1 (en) * 2007-10-23 2009-04-30 Nippon Light Metal Company, Ltd. Production method for metal matrix composite material
WO2009054075A1 (en) * 2007-10-23 2009-04-30 Nippon Light Metal Company, Ltd. Production method for metal matrix composite material
WO2009054073A1 (en) * 2007-10-23 2009-04-30 Nippon Light Metal Company, Ltd. Production method for metal matrix composite material
JP2011500958A (en) * 2007-10-23 2011-01-06 日本軽金属株式会社 Method for producing metal matrix composite
US7854886B2 (en) 2007-10-23 2010-12-21 Nippon Light Metal Co., Ltd. Production method for metal matrix composite material
JP2010255033A (en) * 2009-04-23 2010-11-11 Nippon Light Metal Co Ltd Metal matrix composite material
JP2010255032A (en) * 2009-04-23 2010-11-11 Nippon Light Metal Co Ltd Metal matrix composite
JP2011117774A (en) * 2009-12-01 2011-06-16 Kobe Steel Ltd Basket of spent fuel transportation and storage cask
RU2470395C2 (en) * 2010-12-20 2012-12-20 Государственное образовательное учреждение высшего профессионального образования "Белгородский государственный технологический университет им. В.Г. Шухова" Composite material for radiation shielding
JP2013241675A (en) * 2013-04-11 2013-12-05 Nippon Light Metal Co Ltd Method of manufacturing metal-based composite material
US10815552B2 (en) 2013-06-19 2020-10-27 Rio Tinto Alcan International Limited Aluminum alloy composition with improved elevated temperature mechanical properties
WO2018061225A1 (en) * 2016-09-30 2018-04-05 三菱重工業株式会社 Aluminum alloy material, production method therefor, basket for cask, and cask
JP2018053329A (en) * 2016-09-30 2018-04-05 三菱重工業株式会社 Aluminum alloy material and method for producing the same, and cask basket and cask
EP3611283A3 (en) * 2018-07-26 2020-07-08 Mitsubishi Heavy Industries, Ltd. Aluminum alloy material, method for producing aluminum alloy material, basket for cask, and cask

Also Published As

Publication number Publication date
JP4461080B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
JP4461080B2 (en) Aluminum powder alloy composite material for neutron absorption, method for manufacturing the same, and basket manufactured therewith
JP4541969B2 (en) Aluminum powder alloy composite material for neutron absorption, method for manufacturing the same, and basket manufactured therewith
JP4037901B2 (en) Method for producing aluminum composite material
US6602314B1 (en) Aluminum composite material having neutron-absorbing ability
WO2004102586A1 (en) Aluminum based neutron absorber and method for production thereof
KR100422208B1 (en) Aluminum composite material, manufacturing method therefor, and basket and cask using the same
CN113322392B (en) Preparation method of nano silicon carbide particle reinforced aluminum alloy matrix composite material
EP4083244A1 (en) Heat-resistant powdered aluminium material
JP6031194B2 (en) Aluminum composite material and method for producing aluminum composite material
JP5270677B2 (en) Method for producing metal matrix composite
EP1956107B1 (en) Aluminum powder alloy composite material for absorbing neutrons, process of production thereof and basket made thereof
JP2017534059A (en) Radiation shielding composition and method for producing the same
JP2010255033A (en) Metal matrix composite material
WO2011125663A1 (en) Molybdenum alloy and process for producing same
JP2010255032A (en) Metal matrix composite
RU2722378C2 (en) Composite materials with improved mechanical properties at high temperatures
JP3993344B2 (en) Aluminum composite material with neutron absorption capability and method for producing the same
WO2014061494A1 (en) Boron-containing aluminum material, and method for producing same
JP3987471B2 (en) Al alloy material
JPH0635602B2 (en) Manufacturing method of aluminum alloy sintered forgings
JPS62224602A (en) Production of sintered aluminum alloy forging
EP3957418A1 (en) Method for preparing plastic working billets for composite material manufacture, and billets prepared thereby
US20230019810A1 (en) Method for manufacturing extruded material of aluminum-carbon nanotube composite with improved corrosion resistance and extruded material of aluminum-carbon nanotube composite manufactured thereby
JP2023018507A (en) Aluminum-based composite and method for producing the same
CN116287886A (en) Al-Si-Cu-Mg-Sr alloy material, scroll plate, scroll compressor and preparation method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Ref document number: 4461080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350