WO2011125663A1 - Molybdenum alloy and process for producing same - Google Patents

Molybdenum alloy and process for producing same Download PDF

Info

Publication number
WO2011125663A1
WO2011125663A1 PCT/JP2011/057864 JP2011057864W WO2011125663A1 WO 2011125663 A1 WO2011125663 A1 WO 2011125663A1 JP 2011057864 W JP2011057864 W JP 2011057864W WO 2011125663 A1 WO2011125663 A1 WO 2011125663A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
molybdenum
molybdenum alloy
additive
average particle
Prior art date
Application number
PCT/JP2011/057864
Other languages
French (fr)
Japanese (ja)
Inventor
由夏 西面
俊之 澤田
Original Assignee
山陽特殊製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山陽特殊製鋼株式会社 filed Critical 山陽特殊製鋼株式会社
Priority to KR1020127022475A priority Critical patent/KR20120136350A/en
Publication of WO2011125663A1 publication Critical patent/WO2011125663A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals

Definitions

  • the present invention relates to a molybdenum alloy and a method for producing the same, and more particularly, to a molybdenum alloy used as a material for a member used in a high temperature environment where strength is required at a high temperature of 2000 ° C. or higher and a method for producing the same. .
  • Mo, W, and alloys thereof have a melting point of 2000 ° C. or higher, and have been conventionally used mainly as electronic members, electrode materials, filament materials, and the like. In recent years, these alloys are expected to be used as materials for structural members focused on their excellent high-temperature strength and corrosion resistance. However, since Mo and W have very high melting points and poor workability, it has been difficult to produce products by ordinary methods such as melting and processing. Therefore, in general, various members are manufactured by a powder sintering method.
  • the relative density of a sintered body obtained by a general powder sintering method is about 90%, and a large number of pores remain inside. It is known that the properties such as strength and corrosion resistance of these metal sintered bodies depend greatly on the density, and the bubbles inside the sintered body significantly reduce the strength, or the corrosive solution or gas penetrates into the internal bubbles. And the corrosion resistance is significantly impaired. On the other hand, if the sintering temperature is too high, the crystal grains are coarsened, and there is a problem that the strength is lowered and becomes brittle. Therefore, at present, the density is increased by plastic working such as hot rolling or hot forging.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-196570.
  • this patent document 1 does not explicitly mention the occurrence of swelling.
  • the method of Patent Document 1 has a complicated processing process, and is produced by a material plate manufacturing process by rolling and hot spinning drawing, which causes an increase in cost when manufacturing a large member.
  • the present inventors now mix one or two or more additive powders of Nb, Ta and W in an amount of 20 to 50 atomic% with respect to the molybdenum (Mo) powder as a matrix, By solidification molding, even when used at a high temperature of 2000 ° C., it suppresses the occurrence of local swelling and coarsening of the crystal grains, thereby extending the service life of the member and providing a large member without requiring complicated processing steps. It was found that can be easily produced.
  • the object of the present invention is to suppress the occurrence of local expansion and crystal grain coarsening even when used at a high temperature of 2000 ° C., thereby realizing a long life of the member and without requiring a complicated processing step. It is an object of the present invention to provide a molybdenum alloy and a method for producing the same that make it possible to easily produce a large member.
  • one or more additive powders of Nb, Ta and W in an amount of 20 to 50 atomic% with respect to the molybdenum powder are added to the molybdenum (Mo) powder to be a matrix.
  • a molybdenum alloy obtained by mixing and solidification forming is provided.
  • it includes a molybdenum powder as a matrix and one or more additive powders of 20 to 50 atomic% of Nb, Ta and W with respect to the molybdenum powder.
  • a method for producing a molybdenum alloy comprising solidifying and forming a mixed powder obtained by hot isostatic pressing (HIP).
  • Molybdenum alloy The molybdenum alloy according to the present invention is obtained by mixing an additive powder as a second phase with a molybdenum (Mo) powder as a matrix and solidifying and molding.
  • the molybdenum (Mo) powder used as the matrix is pure molybdenum powder, and the inclusion of inevitable impurities is allowed.
  • the molybdenum powder preferably has an average particle size of 6 to 30 ⁇ m, more preferably 10 to 20 ⁇ m.
  • the average particle size of the matrix is 6 ⁇ m or more, filling at the time of molding becomes extremely good, a density sufficient for practical use is obtained, and the strength is improved. In addition, it is possible to effectively avoid an increase in the amount of oxygen in molybdenum which causes the occurrence of blistering.
  • the average particle size of the matrix is 30 ⁇ m or less, the dispersion state of the second phase is improved, and local density reduction can be effectively prevented.
  • the additive powder to be the second phase is one or more of Nb, Ta and W, and inclusion of inevitable impurities is allowed.
  • This additive powder is added in an amount of 20 to 50 atomic%, preferably 20 to 40 atomic%, with respect to the molybdenum powder as a matrix.
  • the reason for using Nb, Ta and / or W as an additive powder is that the first phase particles do not melt at high temperature and secondly, the second phase particles satisfying two conditions of excellent high temperature strength are dispersed, thereby dispersing the matrix phase. It is to suppress the coarsening of the crystal grains of the molybdenum phase and increase the strength at high temperature. If the amount of additive powder added is less than 20 atomic%, sufficient strength may not be obtained with respect to the generated gas pressure. Moreover, when the addition amount exceeds 50 atomic%, the effect is saturated.
  • the average particle size of the added metal powder is preferably 15 to 50 ⁇ m, more preferably 30 to 50 ⁇ m. If the average grain size is 15 ⁇ m or more, the weakly localized parts due to the notch effect at the crystal grain boundary are reduced, and gas is prevented from collecting through the grain boundary, thereby sufficiently improving the swelling suppression effect. Can be made. When the average particle size is 50 ⁇ m or less, it is possible to prevent a decrease in sinterability and obtain a sufficiently high density after HIP.
  • the average particle diameter of the molybdenum powder and the additive powder is D50, which is a 50% diameter in a volume-based particle diameter distribution measured by a laser diffraction method.
  • the molybdenum alloy obtained by mixing and solidifying such raw material powder is composed of one or more of Nb, Ta and W, the balance Mo and inevitable impurities.
  • a manufacturing method of a molybdenum alloy according to the present invention includes a molybdenum powder as a matrix and one or more additive powders of 20 to 50 atomic% of Nb, Ta and W with respect to the molybdenum powder. Solidifying the mixed powder with a hot isostatic press (HIP).
  • HIP hot isostatic press
  • This HIP treatment is preferably carried out by holding the mixed powder at a treatment temperature of 1100 to 2100 ° C. and a pressure of 50 to 300 MPa for 30 minutes to 24 hours, more preferably a treatment temperature of 1200 to 1700 ° C. and a pressure. It is carried out by holding at 100 to 200 MPa for 1 to 10 hours.
  • the processing temperature is 1100 ° C. or higher, the density is significantly increased, and when the temperature is 2100 ° C. or lower, an increase in cost in practical equipment can be avoided.
  • the SC container melts at the processing temperature. Therefore, a container having the same dimensions as the SC container is prepared using a commercially available high melting point material such as molybdenum, niobium or tantalum. It is preferable to use for HIP processing.
  • the pressure is 50 MPa or more, a sufficiently high density can be obtained, and if the pressure is 300 MPa or less, an increase in cost in practical equipment can be avoided. Furthermore, when the holding time is 30 minutes or more, a sufficient density can be obtained, and when it is 24 hours or less, the coarsening of crystal grains can be effectively prevented.
  • one or more additive powders of Nb, Ta and W having an average particle size of 15 to 50 ⁇ m are mixed with 20 to 50 atomic% of the molybdenum powder as a matrix to obtain a HIP molded body. Therefore, it is possible to suppress swelling generated in a high temperature environment of about 2000 ° C. Furthermore, the effect of refining crystal grains can be obtained by the addition of the second phase, and non-equal axis crystal grains can be obtained by manufacturing by the HIP method, so that the life of the member can be extended.
  • Evaluation 1 Molded body density Relative density (%) was evaluated for the fabricated molded body. This relative density was determined by comparatively evaluating the density of the formed compact and the compact density of the pure molybdenum compact. The results are shown in Table 1.
  • Evaluation 2 Evaluation in accordance with the actual use environment
  • the molded body was subjected to heat treatment at 2000 ° C. in an inert atmosphere using a carbon heater.
  • the molded body subjected to this heat treatment was evaluated for swelling after heat treatment at 2000 ° C. and the crystal grain size of molybdenum as a matrix.
  • No. No. 20 is pure Mo, swelling is observed after heat treatment at 2000 ° C., and the crystal grain size is large after heat treatment.
  • No. 13 has a small addition amount, swelling after 2000 ° C. heat treatment is observed, and the crystal grain size after heat treatment is slightly large.
  • No. 14 since the average particle size of the additive powder was small, swelling was observed after heat treatment at 2000 ° C.
  • No. 15 since the average particle size of the Mo powder is small, swelling is observed after heat treatment at 2000 ° C.
  • No. No. 16 has a large average particle size of Mo powder and a small amount of additive powder added, so the molding density is low, and swelling after 2000 ° C. heat treatment is observed, and the crystal particle size after heat treatment is slightly large.
  • No. 17 the amount of additive powder added was small and the average particle size of the additive powder was small, so swelling was observed after heat treatment at 2000 ° C., and the crystal grain size after heat treatment was slightly large.
  • No. No. 18 has a low molding density because the average particle size of the Mo powder is small and the average particle size of the additive powder is large.
  • No. No. 19 has a large average particle diameter of Mo powder and a large amount of additive powder added, so that the molding density is low and the crystal grain diameter after heat treatment is large.
  • the conventional method requires a high-temperature heat treatment step when used for a high-temperature melting application (about 2000 ° C.), which causes an increase in cost.
  • the present invention is extremely excellent in that it is not necessary. Has an effect.

Abstract

Provided is a molybdenum alloy which is inhibited from suffering local swelling or crystal-grain enlargement even when used at a high temperature of 2,000ºC, and which renders prolongation of the life of members possible. The alloy makes it possible to easily produce large members without the necessity of any complicated processing step. Also provided is a process for producing the alloy. The molybdenum alloy is an alloy produced by mixing a molybdenum (Mo) powder serving as a matrix with an additive powder comprising one or more of Nb, Ta, and W, the amount of the additive powder being 20-50 at.% of the molybdenum powder, and consolidating the mixture.

Description

モリブデン合金およびその製造方法Molybdenum alloy and method for producing the same 関連出願の相互参照Cross-reference of related applications
 この出願は、2010年4月1日に出願された日本国特許出願2010-84801号に基づく優先権を主張するものであり、その全体の開示内容が参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2010-84801 filed on April 1, 2010, the entire disclosure of which is incorporated herein by reference.
 本発明は、モリブデン合金およびその製造方法に関するものであり、より詳しくは、2000℃以上の高温において強度が要求される高温環境で使用される部材の材料として使用されるモリブデン合金およびその製造方法に関する。 The present invention relates to a molybdenum alloy and a method for producing the same, and more particularly, to a molybdenum alloy used as a material for a member used in a high temperature environment where strength is required at a high temperature of 2000 ° C. or higher and a method for producing the same. .
 Mo、W、およびこれらの合金は2000℃以上の融点を有し、主に電子部材、電極材、フィラメント材等として従来用いられてきた。これらの合金には、近年、その優れた高温強度および耐食性に着目された構造用部材の材料としての用途が期待されている。しかし、MoおよびWは融点が非常に高く、かつ、加工性が悪いため、通常の溶解や加工といった方法で製品を作ることは困難であった。したがって、一般には粉末焼結法により各種部材を製造しているのが現状である。 Mo, W, and alloys thereof have a melting point of 2000 ° C. or higher, and have been conventionally used mainly as electronic members, electrode materials, filament materials, and the like. In recent years, these alloys are expected to be used as materials for structural members focused on their excellent high-temperature strength and corrosion resistance. However, since Mo and W have very high melting points and poor workability, it has been difficult to produce products by ordinary methods such as melting and processing. Therefore, in general, various members are manufactured by a powder sintering method.
 しかしながら、一般的な粉末焼結法で得られる焼結体の相対密度は90%程度で、その内部には多数の気孔が残留している。これら金属焼結体の強度や耐食性等の特性は密度に大きく依存することが知られており、焼結体内部の気泡は強度を著しく低下させたり、内部の気泡に腐食性溶液やガスが浸透して耐食性を著しく害したりする。一方、焼結温度が高すぎると結晶粒が粗大化してしまい、強度が低下して脆くなるという問題がある。従って、通常は熱間圧延や熱間鍛造といった塑性加工により高密度化を図っているのが現状である。 However, the relative density of a sintered body obtained by a general powder sintering method is about 90%, and a large number of pores remain inside. It is known that the properties such as strength and corrosion resistance of these metal sintered bodies depend greatly on the density, and the bubbles inside the sintered body significantly reduce the strength, or the corrosive solution or gas penetrates into the internal bubbles. And the corrosion resistance is significantly impaired. On the other hand, if the sintering temperature is too high, the crystal grains are coarsened, and there is a problem that the strength is lowered and becomes brittle. Therefore, at present, the density is increased by plastic working such as hot rolling or hot forging.
 これらの方法で作製された部材は、高温での使用により等軸結晶粒を生成するため、高温強度の低下が著しく、耐久性悪化の原因となっている。また、Moは耐酸化性に非常に乏しいために、成形体中の酸素含有量が非常に高くなる。その結果、2000℃程度の高温環境で使用する場合には、酸素起因と考えられるガスの発生により、部材の一部分または全体的に局部的な膨らみが発生する場合がある。 Since members produced by these methods generate equiaxed crystal grains when used at high temperatures, the strength at high temperatures is significantly reduced, causing deterioration in durability. Moreover, since Mo is very poor in oxidation resistance, the oxygen content in the molded body becomes very high. As a result, when used in a high-temperature environment of about 2000 ° C., partial bulging of a part or the whole of the member may occur due to generation of a gas considered to be caused by oxygen.
 この問題に対して、例えば特許文献1(特開平9-196570号公報)に開示されているように、タングステン(W)の添加により結晶粒の粗大化を抑制することが知られている。しかし、この特許文献1は膨れ発生については明確に言及していない。また、この特許文献1の方法は、加工工程が複雑であり、圧延による素材板の作製工程と熱間スピニング絞り加工により作製が行われるため、大型部材の作製時にはコストが増加する原因となる。 For this problem, it is known that the addition of tungsten (W) suppresses the coarsening of crystal grains as disclosed in, for example, Patent Document 1 (Japanese Patent Laid-Open No. 9-196570). However, this patent document 1 does not explicitly mention the occurrence of swelling. Further, the method of Patent Document 1 has a complicated processing process, and is produced by a material plate manufacturing process by rolling and hot spinning drawing, which causes an increase in cost when manufacturing a large member.
特開平9-196570号公報JP-A-9-196570
 本発明者らは、今般、マトリックスとなるモリブデン(Mo)粉末に、モリブデン粉末に対して20~50原子%の量のNb,TaおよびWの1種または2種以上の添加粉末を混合し、固化成形することにより、2000℃の高温使用時においても局部的膨れ発生および結晶粒粗大化を抑制して部材の長寿命化を実現し、かつ、複雑な加工工程を必要とすることなく大型部材を容易に作製できるとの知見を得た。 The present inventors now mix one or two or more additive powders of Nb, Ta and W in an amount of 20 to 50 atomic% with respect to the molybdenum (Mo) powder as a matrix, By solidification molding, even when used at a high temperature of 2000 ° C., it suppresses the occurrence of local swelling and coarsening of the crystal grains, thereby extending the service life of the member and providing a large member without requiring complicated processing steps. It was found that can be easily produced.
 したがって、本発明の目的は、2000℃の高温使用時においても局部的膨れ発生および結晶粒粗大化を抑制して部材の長寿命化を実現し、かつ、複雑な加工工程を必要とすることなく大型部材を容易に作製することを可能とする、モリブデン合金およびその製造方法を提供することにある。 Therefore, the object of the present invention is to suppress the occurrence of local expansion and crystal grain coarsening even when used at a high temperature of 2000 ° C., thereby realizing a long life of the member and without requiring a complicated processing step. It is an object of the present invention to provide a molybdenum alloy and a method for producing the same that make it possible to easily produce a large member.
 すなわち、本発明の一態様によれば、マトリックスとなるモリブデン(Mo)粉末に、モリブデン粉末に対して20~50原子%の量のNb,TaおよびWの1種または2種以上の添加粉末を混合し、固化成形して得られるモリブデン合金が提供される。 That is, according to one aspect of the present invention, one or more additive powders of Nb, Ta and W in an amount of 20 to 50 atomic% with respect to the molybdenum powder are added to the molybdenum (Mo) powder to be a matrix. A molybdenum alloy obtained by mixing and solidification forming is provided.
 また、本発明の別の一態様によれば、マトリックスとなるモリブデン粉末と、モリブデン粉末に対して20~50原子%のNb,TaおよびWの1種または2種以上の添加粉末とを含んでなる混合粉末を熱間静水圧プレス(HIP)にて固化成形することを含んでなる、モリブデン合金の製造方法が提供される。 Further, according to another aspect of the present invention, it includes a molybdenum powder as a matrix and one or more additive powders of 20 to 50 atomic% of Nb, Ta and W with respect to the molybdenum powder. There is provided a method for producing a molybdenum alloy, comprising solidifying and forming a mixed powder obtained by hot isostatic pressing (HIP).
モリブデン合金
 本発明によるモリブデン合金は、マトリックスとなるモリブデン(Mo)粉末に、第2相となる添加粉末を混合し、固化成形して得られるものである。
Molybdenum alloy The molybdenum alloy according to the present invention is obtained by mixing an additive powder as a second phase with a molybdenum (Mo) powder as a matrix and solidifying and molding.
 マトリックスとなるモリブデン(Mo)粉末は、純モリブデンの粉末であり、不可避不純物の含有は許容される。モリブデン粉末は6~30μmの平均粒径を有するのが好ましく、より好ましくは10~20μmである。マトリックスの平均粒径が6μm以上であると、成形時の充填が極めて良くなり、実用として要求されるのに十分な密度が得られ、強度が向上する。また、モリブデン中の酸素量が増加して膨れの発生の要因となるのを効果的に回避することができる。マトリックスの平均粒径が30μm以下であると、第2相の分散状態が良くなり、局所的な密度低下を効果的に防止することができる。 The molybdenum (Mo) powder used as the matrix is pure molybdenum powder, and the inclusion of inevitable impurities is allowed. The molybdenum powder preferably has an average particle size of 6 to 30 μm, more preferably 10 to 20 μm. When the average particle size of the matrix is 6 μm or more, filling at the time of molding becomes extremely good, a density sufficient for practical use is obtained, and the strength is improved. In addition, it is possible to effectively avoid an increase in the amount of oxygen in molybdenum which causes the occurrence of blistering. When the average particle size of the matrix is 30 μm or less, the dispersion state of the second phase is improved, and local density reduction can be effectively prevented.
 第2相となる添加粉末は、Nb,TaおよびWの1種または2種以上の粉末であり、不可避不純物の含有は許容される。この添加粉末はマトリックスとなるモリブデン粉末に対して20~50原子%、好ましくは20~40原子%の量で添加される。Nb,Taおよび/またはWを添加粉末として用いる理由は、第1に高温で溶融しないこと、第2に高温強度に優れることの2つの条件を満たす第2相粒子を分散させることにより、マトリックスのモリブデン相の結晶粒粗大化を抑制し、かつ、高温での強度を高めることにある。添加粉末の添加量が20原子%未満であると発生ガス圧力に対して十分な強度が得られない場合がある。また、添加量が50原子%を超えるとその効果が飽和する。 The additive powder to be the second phase is one or more of Nb, Ta and W, and inclusion of inevitable impurities is allowed. This additive powder is added in an amount of 20 to 50 atomic%, preferably 20 to 40 atomic%, with respect to the molybdenum powder as a matrix. The reason for using Nb, Ta and / or W as an additive powder is that the first phase particles do not melt at high temperature and secondly, the second phase particles satisfying two conditions of excellent high temperature strength are dispersed, thereby dispersing the matrix phase. It is to suppress the coarsening of the crystal grains of the molybdenum phase and increase the strength at high temperature. If the amount of additive powder added is less than 20 atomic%, sufficient strength may not be obtained with respect to the generated gas pressure. Moreover, when the addition amount exceeds 50 atomic%, the effect is saturated.
 添加金属粉末の平均粒径は15~50μmであるのが好ましく、より好ましくは30~50μmである。平均粒径が15μm以上であると結晶粒界での切欠効果などによる局部的に強度の弱い部分を減らして、粒界を通りガスが集まるのを抑制し、それによって膨れ抑制効果を十分に向上させることができる。平均粒径が50μm以下であると、焼結性の低下を防止してHIP後に十分に高い密度を得ることができる。なお、モリブデン粉末および添加粉末の平均粒径はレーザー回折法により測定した体積基準粒径分布における50%径であるD50である。 The average particle size of the added metal powder is preferably 15 to 50 μm, more preferably 30 to 50 μm. If the average grain size is 15 μm or more, the weakly localized parts due to the notch effect at the crystal grain boundary are reduced, and gas is prevented from collecting through the grain boundary, thereby sufficiently improving the swelling suppression effect. Can be made. When the average particle size is 50 μm or less, it is possible to prevent a decrease in sinterability and obtain a sufficiently high density after HIP. The average particle diameter of the molybdenum powder and the additive powder is D50, which is a 50% diameter in a volume-based particle diameter distribution measured by a laser diffraction method.
 このような原料粉末を混合し、固化成形して得られるモリブデン合金は、Nb,TaおよびWの1種または2種以上と、残部Moおよび不可避不純物とからなる(consisting of)のが好ましい。 It is preferable that the molybdenum alloy obtained by mixing and solidifying such raw material powder is composed of one or more of Nb, Ta and W, the balance Mo and inevitable impurities.
 製造方法
 本発明によるモリブデン合金の製造方法は、マトリックスとなるモリブデン粉末と、モリブデン粉末に対して20~50原子%のNb,TaおよびWの1種または2種以上の添加粉末とを含んでなる混合粉末を熱間静水圧プレス(HIP)にて固化成形することを含んでなる。
Manufacturing Method A manufacturing method of a molybdenum alloy according to the present invention includes a molybdenum powder as a matrix and one or more additive powders of 20 to 50 atomic% of Nb, Ta and W with respect to the molybdenum powder. Solidifying the mixed powder with a hot isostatic press (HIP).
 このHIP処理は、混合粉末を、処理温度1100~2100℃および圧力50~300MPaの条件下で30分~24時間保持することにより行われるのが好ましく、より好ましくは処理温度1200~1700℃および圧力100~200MPaで1~10時間保持することにより行われる。処理温度が1100℃以上であると密度が有意に高くなり、2100℃以下の温度であると実用設備上のコストアップを回避することができる。なお、HIP温度が1400℃を超える条件では、SC製容器が処理温度により溶融するため、市販のモリブデンやニオブやタンタルなど高融点材料の板を用いてSC製容器と同寸法の容器を作成し、HIP処理に用いることが好ましい。 This HIP treatment is preferably carried out by holding the mixed powder at a treatment temperature of 1100 to 2100 ° C. and a pressure of 50 to 300 MPa for 30 minutes to 24 hours, more preferably a treatment temperature of 1200 to 1700 ° C. and a pressure. It is carried out by holding at 100 to 200 MPa for 1 to 10 hours. When the processing temperature is 1100 ° C. or higher, the density is significantly increased, and when the temperature is 2100 ° C. or lower, an increase in cost in practical equipment can be avoided. Under the conditions where the HIP temperature exceeds 1400 ° C., the SC container melts at the processing temperature. Therefore, a container having the same dimensions as the SC container is prepared using a commercially available high melting point material such as molybdenum, niobium or tantalum. It is preferable to use for HIP processing.
 また、圧力が50MPa以上であると十分に高い密度を得ることができ、300MPa以下の圧力であれば実用設備上のコストアップを回避することができる。さらに、保持時間が30分以上であると十分な密度を得ることができ、24時間以下であると結晶粒の粗大化を効果的に防止することができる。 Moreover, if the pressure is 50 MPa or more, a sufficiently high density can be obtained, and if the pressure is 300 MPa or less, an increase in cost in practical equipment can be avoided. Furthermore, when the holding time is 30 minutes or more, a sufficient density can be obtained, and when it is 24 hours or less, the coarsening of crystal grains can be effectively prevented.
 上述したように、平均粒径15~50μmのNb,TaおよびWの1種または2種以上の添加粉末を、マトリックスとなるモリブデン粉末に対し、20~50原子%混合し、HIP成形体とすることで2000℃程度の高温環境において発生する膨れを抑制できる。さらには、第二相添加により結晶粒微細化効果が得られ、HIP法により作製することで非等軸結晶粒となるため、部材の長寿命化が実現できる。 As described above, one or more additive powders of Nb, Ta and W having an average particle size of 15 to 50 μm are mixed with 20 to 50 atomic% of the molybdenum powder as a matrix to obtain a HIP molded body. Therefore, it is possible to suppress swelling generated in a high temperature environment of about 2000 ° C. Furthermore, the effect of refining crystal grains can be obtained by the addition of the second phase, and non-equal axis crystal grains can be obtained by manufacturing by the HIP method, so that the life of the member can be extended.
 以下、本発明について実施例によって具体的に説明する。表1に示すモリブデン粉末に対する各種添加粉末を混合した組成の粉末20kgを直径250mmで高さ80mmの円柱形状のHIP用鉄カプセルに充填して脱気封入した。このカプセルを、処理温度1350℃、圧力147MPa、保持時間5時間、および圧力媒体Arの条件でHIP処理に付し、直径200mmで厚さ40mmの成形体を作製した。こうして得られた成形体について以下の評価を行った。 Hereinafter, the present invention will be specifically described with reference to examples. 20 kg of a powder having a composition obtained by mixing various additive powders with respect to the molybdenum powder shown in Table 1 was filled into a cylindrical iron capsule for HIP having a diameter of 250 mm and a height of 80 mm, followed by deaeration. This capsule was subjected to HIP treatment under the conditions of a treatment temperature of 1350 ° C., a pressure of 147 MPa, a holding time of 5 hours, and a pressure medium Ar to produce a molded body having a diameter of 200 mm and a thickness of 40 mm. The molded body thus obtained was evaluated as follows.
評価1:成形体密度
 作製した成形体について相対密度(%)を評価した。この相対密度は、作製した成形体の密度を、純モリブデン成形体の成形体密度と比較評価することにより決定した。その結果を表1に示す。
Evaluation 1: Molded body density Relative density (%) was evaluated for the fabricated molded body. This relative density was determined by comparatively evaluating the density of the formed compact and the compact density of the pure molybdenum compact. The results are shown in Table 1.
評価2:実使用環境に合わせた評価
 実使用環境に合わせた評価を行うために、カーボンヒーターを用いて2000℃、不活性雰囲気にて、成形体に熱処理を実施した。この熱処理を施した成形体について、2000℃熱処理後の膨れ、およびマトリックスであるモリブデンの結晶粒径を評価した。これらの結果を表1に示す。
Evaluation 2: Evaluation in accordance with the actual use environment In order to perform an evaluation in accordance with the actual use environment, the molded body was subjected to heat treatment at 2000 ° C. in an inert atmosphere using a carbon heater. The molded body subjected to this heat treatment was evaluated for swelling after heat treatment at 2000 ° C. and the crystal grain size of molybdenum as a matrix. These results are shown in Table 1.
 腫れに関しては、2000℃熱処理後のガスによる部材の局部的な膨れの有無を目視にて観察した。その結果、局部的な腫れが観察されなかったものを○と、局部的な腫れが観察されたものを×と評価した。 Regarding swelling, the presence or absence of local swelling of the member due to the gas after heat treatment at 2000 ° C. was visually observed. As a result, a case where no local swelling was observed was evaluated as “◯”, and a case where local swelling was observed was evaluated as “X”.
 熱処理後結晶粒径(μm)に関しては、研磨面を腐食し光学顕微鏡写真を撮影し、この写真に一定長さの試験直線を引き、この直線と結晶粒界との交点の数を測定し、[試験直線長さ(μm)]/[交点の数(個)]により評価した。 Regarding the crystal grain size (μm) after heat treatment, the polished surface was corroded and an optical microscope photograph was taken, a test line of a certain length was drawn on this photograph, and the number of intersections between this line and the grain boundary was measured. [Test linear length (μm)] / [number of intersections (pieces)]
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、No.20は純Moの場合であって、2000℃熱処理後膨れが観察され、熱処理後結晶粒径が大きい。No.13は添加量が少ないために、2000℃熱処理後膨れが観察され、かつ熱処理後結晶粒径がやや大きい。No.14は添加粉末の平均粒径が小さいために、2000℃熱処理後膨れが観察された。No.15はMo粉末の平均粒径が小さいために、2000℃熱処理後膨れが観察される。 As shown in Table 1, No. No. 20 is pure Mo, swelling is observed after heat treatment at 2000 ° C., and the crystal grain size is large after heat treatment. No. Since No. 13 has a small addition amount, swelling after 2000 ° C. heat treatment is observed, and the crystal grain size after heat treatment is slightly large. No. In No. 14, since the average particle size of the additive powder was small, swelling was observed after heat treatment at 2000 ° C. No. In No. 15, since the average particle size of the Mo powder is small, swelling is observed after heat treatment at 2000 ° C.
 No.16はMo粉末の平均粒径が大きく、かつ添加粉末の添加量が少ないために、成形密度が低く、かつ2000℃熱処理後膨れが観察され、熱処理後結晶粒径がやや大きい。No.17は添加粉末の添加量が少なく、かつ添加粉末の平均粒径が小さいために、2000℃熱処理後膨れが観察され、熱処理後結晶粒径がやや大きい。No.18はMo粉末の平均粒径が小さく、かつ添加粉末の平均粒径が大きいために、成形密度が低い。 No. No. 16 has a large average particle size of Mo powder and a small amount of additive powder added, so the molding density is low, and swelling after 2000 ° C. heat treatment is observed, and the crystal particle size after heat treatment is slightly large. No. In No. 17, the amount of additive powder added was small and the average particle size of the additive powder was small, so swelling was observed after heat treatment at 2000 ° C., and the crystal grain size after heat treatment was slightly large. No. No. 18 has a low molding density because the average particle size of the Mo powder is small and the average particle size of the additive powder is large.
 No.19はMo粉末の平均粒径が大きく、かつ添加粉末の添加量が多いために、成形密度が低く、熱処理後結晶粒径が大きい。これに対し、No.1~12はいずれもMo粉末の平均粒径、添加粉末の添加量、添加粉末の平均粒径が本発明の好適範囲の条件を満たしていることから、成形体密度が高く、2000℃熱処理後膨れが観察されず、かつ熱処理後結晶粒径は小さいことが分かる。 No. No. 19 has a large average particle diameter of Mo powder and a large amount of additive powder added, so that the molding density is low and the crystal grain diameter after heat treatment is large. In contrast, no. In all of Nos. 1 to 12, since the average particle size of the Mo powder, the amount of additive powder added, and the average particle size of the additive powder satisfy the conditions of the preferred range of the present invention, the compact density is high and after heat treatment at 2000 ° C. It can be seen that no swelling is observed and the crystal grain size is small after the heat treatment.
 このように、Mo粉末に、高温強度の高いW粉末等を添加することで、発生ガス圧力に対する十分に高い強度が得られ、部材の変形を抑制できる。また、2000℃の高温使用時においても局部的膨れ発生および結晶粒粗大化を抑制して部材の長寿命化を実現するともに、複雑な加工工程を必要せず、大型部材の作製も容易となる。さらに従来法では、高温溶解の用途(約2000℃)への使用の際には、高温熱処理工程が必要となりコストアップの原因となっていたが、本発明ではそれを必要としない等の極めて優れた効果を奏する。 Thus, by adding W powder having high high-temperature strength to the Mo powder, a sufficiently high strength against the generated gas pressure can be obtained, and deformation of the member can be suppressed. Moreover, even when used at a high temperature of 2000 ° C., the occurrence of local swelling and coarsening of the crystal grains is suppressed, so that the life of the member can be extended. In addition, a complicated processing step is not required, and the production of a large member is facilitated. . Furthermore, the conventional method requires a high-temperature heat treatment step when used for a high-temperature melting application (about 2000 ° C.), which causes an increase in cost. However, the present invention is extremely excellent in that it is not necessary. Has an effect.

Claims (8)

  1.  マトリックスとなるモリブデン(Mo)粉末に、モリブデン粉末に対して20~50原子%の量のNb,TaおよびWの1種または2種以上の添加粉末を混合し、固化成形して得られるモリブデン合金。 Molybdenum alloy obtained by mixing one or more additive powders of Nb, Ta and W in an amount of 20 to 50 atomic% with respect to molybdenum powder and solidifying and forming molybdenum (Mo) powder as a matrix .
  2.  前記モリブデン粉末が6~30μmの平均粒径を有する、請求項1に記載のモリブデン合金。 The molybdenum alloy according to claim 1, wherein the molybdenum powder has an average particle size of 6 to 30 µm.
  3.  前記添加粉末が15~50μmの平均粒径を有する、請求項1または2に記載のモリブデン合金。 The molybdenum alloy according to claim 1 or 2, wherein the additive powder has an average particle size of 15 to 50 µm.
  4.  前記モリブデン合金が、Nb,TaおよびWの1種または2種以上と、残部Moおよび不可避不純物とからなる(consisting of)、請求項1または2に記載のモリブデン合金。 The molybdenum alloy according to claim 1 or 2, wherein the molybdenum alloy is composed of one or more of Nb, Ta, and W, and the balance Mo and inevitable impurities.
  5.  マトリックスとなるモリブデン粉末と、モリブデン粉末に対して20~50原子%のNb,TaおよびWの1種または2種以上の添加粉末とを含んでなる混合粉末を熱間静水圧プレス(HIP)にて固化成形することを含んでなる、モリブデン合金の製造方法。 A mixed powder comprising molybdenum powder as a matrix and one or more additive powders of 20 to 50 atomic% of Nb, Ta and W with respect to the molybdenum powder is subjected to hot isostatic pressing (HIP). A method for producing a molybdenum alloy, comprising solidifying and forming.
  6.  前記モリブデン粉末が6~30μmの平均粒径を有する、請求項5に記載のモリブデン合金。 The molybdenum alloy according to claim 5, wherein the molybdenum powder has an average particle size of 6 to 30 µm.
  7.  前記添加粉末が15~50μmの平均粒径を有する、請求項5または6に記載のモリブデン合金。 The molybdenum alloy according to claim 5 or 6, wherein the additive powder has an average particle size of 15 to 50 µm.
  8.  前記熱間静水圧プレス(HIP)処理が、前記混合粉末を、処理温度1100~2100℃および圧力50~300MPaの条件下で30分~24時間保持することにより行われる、請求項5または6に記載の方法。 The hot isostatic pressing (HIP) treatment is performed by holding the mixed powder at a treatment temperature of 1100 to 2100 ° C. and a pressure of 50 to 300 MPa for 30 minutes to 24 hours. The method described.
PCT/JP2011/057864 2010-04-01 2011-03-29 Molybdenum alloy and process for producing same WO2011125663A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020127022475A KR20120136350A (en) 2010-04-01 2011-03-29 Molybdenum alloy and process for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010084801A JP5579480B2 (en) 2010-04-01 2010-04-01 Molybdenum alloy
JP2010-084801 2010-04-01

Publications (1)

Publication Number Publication Date
WO2011125663A1 true WO2011125663A1 (en) 2011-10-13

Family

ID=44762610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057864 WO2011125663A1 (en) 2010-04-01 2011-03-29 Molybdenum alloy and process for producing same

Country Status (4)

Country Link
JP (1) JP5579480B2 (en)
KR (1) KR20120136350A (en)
TW (1) TWI491738B (en)
WO (1) WO2011125663A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188713A1 (en) * 2018-03-29 2019-10-03 株式会社アライドマテリアル Molybdenum material and method for producing same
CN114318101A (en) * 2021-12-29 2022-04-12 合肥工业大学 High-density fine-grain molybdenum-tantalum alloy and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8820824B1 (en) * 2013-03-14 2014-09-02 Honda Motor Co., Ltd. Vehicle roof structure
JP6331019B2 (en) * 2014-04-28 2018-05-30 三菱マテリアル株式会社 Tungsten-molybdenum alloy electrode material for resistance welding
CN106604892B (en) 2014-08-29 2019-01-15 Lg化学株式会社 The preparation method of rodlike molybdenum oxide and the preparation method for aoxidizing molybdenum composite material
JP2019173049A (en) * 2018-03-27 2019-10-10 山陽特殊製鋼株式会社 Powder for metal mold

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196348A (en) * 1987-10-08 1989-04-14 Tokyo Tungsten Co Ltd Corrosion-resistant material
JPH1136067A (en) * 1997-07-18 1999-02-09 Hitachi Metals Ltd Molybdenum-tungsten based target
JP2002327264A (en) * 2001-04-26 2002-11-15 Hitachi Metals Ltd Sputtering target for forming thin film
JP2005307226A (en) * 2004-04-16 2005-11-04 Hitachi Metals Ltd Mo BASED TARGET MATERIAL

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4574949B2 (en) * 2003-01-14 2010-11-04 株式会社東芝 Sputtering target and manufacturing method thereof
JP2008044244A (en) * 2006-08-17 2008-02-28 Hideaki Koda Stretching rod and blowing mold

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196348A (en) * 1987-10-08 1989-04-14 Tokyo Tungsten Co Ltd Corrosion-resistant material
JPH1136067A (en) * 1997-07-18 1999-02-09 Hitachi Metals Ltd Molybdenum-tungsten based target
JP2002327264A (en) * 2001-04-26 2002-11-15 Hitachi Metals Ltd Sputtering target for forming thin film
JP2005307226A (en) * 2004-04-16 2005-11-04 Hitachi Metals Ltd Mo BASED TARGET MATERIAL

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188713A1 (en) * 2018-03-29 2019-10-03 株式会社アライドマテリアル Molybdenum material and method for producing same
CN114318101A (en) * 2021-12-29 2022-04-12 合肥工业大学 High-density fine-grain molybdenum-tantalum alloy and preparation method thereof

Also Published As

Publication number Publication date
KR20120136350A (en) 2012-12-18
TWI491738B (en) 2015-07-11
JP5579480B2 (en) 2014-08-27
TW201209176A (en) 2012-03-01
JP2011214112A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP4461080B2 (en) Aluminum powder alloy composite material for neutron absorption, method for manufacturing the same, and basket manufactured therewith
JP4541969B2 (en) Aluminum powder alloy composite material for neutron absorption, method for manufacturing the same, and basket manufactured therewith
WO2010122960A1 (en) High-strength copper alloy
WO2011125663A1 (en) Molybdenum alloy and process for producing same
JP5546880B2 (en) Molybdenum alloy
JP2009074173A (en) Ultra-hard composite material and method for manufacturing the same
EP4083244A1 (en) Heat-resistant powdered aluminium material
KR102350989B1 (en) A method for producing a sintered component and a sintered component
WO2014208447A1 (en) Cermet, and method for manufacturing same, as well as cutting tool
KR102373916B1 (en) Polycrystalline tungsten sintered compact, polycrystalline tungsten alloy sintered compact, and method for manufacturing same
JP5905907B2 (en) Method for producing Mo-Si-B alloy powder, metal material raw material powder and Mo-Si-B alloy powder
WO2021078885A1 (en) Printable powder material of fecral for additive manufacturing and an additive manufactured object and the uses thereof
JP6259978B2 (en) Ni-based intermetallic compound sintered body and method for producing the same
JP4149623B2 (en) Double boride hard sintered alloy and screw for resin processing machine using the alloy
JPWO2013058338A1 (en) Nickel-based intermetallic compound composite sintered material and method for producing the same
JP2016156055A (en) Thermal insulation material
WO2004015154A1 (en) Dispersed oxide reinforced martensitic steel excellent in high temperature strength and method for production thereof
US20180195152A1 (en) Cast material and method of manufacturing cast material
JP3987471B2 (en) Al alloy material
US20140245863A1 (en) Corrosion-resistant and wear-resistant ni-based alloy
JP7366707B2 (en) Sintered material and its manufacturing method
JP2018150194A (en) Hard sintered body
EP2992985B1 (en) Nickel-chromium alloy and method of making the same
JP6217638B2 (en) Target material and manufacturing method thereof
JP2013204115A (en) Brass alloy sintering extruded material and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765563

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127022475

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765563

Country of ref document: EP

Kind code of ref document: A1