JP2000178670A - Copper alloy for semiconductor lead frame - Google Patents

Copper alloy for semiconductor lead frame

Info

Publication number
JP2000178670A
JP2000178670A JP35288698A JP35288698A JP2000178670A JP 2000178670 A JP2000178670 A JP 2000178670A JP 35288698 A JP35288698 A JP 35288698A JP 35288698 A JP35288698 A JP 35288698A JP 2000178670 A JP2000178670 A JP 2000178670A
Authority
JP
Japan
Prior art keywords
copper alloy
less
lead frame
amount
semiconductor lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35288698A
Other languages
Japanese (ja)
Other versions
JP3717321B2 (en
Inventor
Kuniteru Mihara
邦照 三原
Masaaki Kurihara
正明 栗原
Takao Hirai
崇夫 平井
Koichi Yoshida
浩一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP35288698A priority Critical patent/JP3717321B2/en
Publication of JP2000178670A publication Critical patent/JP2000178670A/en
Application granted granted Critical
Publication of JP3717321B2 publication Critical patent/JP3717321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy for a semiconductor lead frame excellent in strength, electroconductivity, bending workability, punching press workability or the like, further small in the softening characteristics of stress relaxation, moreover low in the sensitivity of stress corrosion cracking and improved in heat resistance. SOLUTION: A copper alloy having a compsn. contg., by weight, 5 to <35% Zn, 0.1 to 3% Sn, F and/or Ni and P by 0.05 to 2% in total, and the balance Cu with inevitable impurities, in which the atomic weight ratio between Fe and/or Ni and P: [Fe/P, Ni/P, (Fe+Ni)/P] is 0.2 to 3, the grain size is controlled to <=35 μm, and Fe-P compds. of <0.2 μm are uniformly dispersed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子電気機器用の
リードフレームおよびリード材、コネクタ、端子材など
に使用される安価で好適な銅合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inexpensive and suitable copper alloy used for lead frames and lead materials, connectors, terminal materials and the like for electronic and electrical equipment.

【0002】[0002]

【従来の技術】従来、一般的に電気電子機器用材料とし
ては、鉄系材料の他、電気伝導性および熱伝導性に優れ
ているリン青銅、丹銅、黄銅等の銅系材料も広く用いら
れている。
2. Description of the Related Art In general, copper-based materials such as phosphor bronze, copper bronze, brass, etc., which are excellent in electric conductivity and heat conductivity, have been widely used as materials for electric and electronic equipment. Have been.

【0003】一方、近年、電気電子機器の小型化、軽量
化、更にこれに伴う高密度実装化に対する要求が高ま
り、これらに適用される銅系材料にも小型化、軽量化が
求められている。従って、このような小型化、軽量化に
おいて、高度な寸法精度を確保するために、良好な成型
加工性を有する材料が強く求められている。
On the other hand, in recent years, there has been an increasing demand for miniaturization and weight reduction of electric and electronic equipment, and furthermore, a demand for high-density packaging has been increased, and miniaturization and weight reduction of copper-based materials applied to these have also been demanded. . Therefore, in such miniaturization and weight reduction, there is a strong demand for a material having good moldability in order to secure high dimensional accuracy.

【0004】成型法としては打抜加工法が主流であり、
近年の技術革新により、多ピンまたはファインピッチの
リードフレーム、ピン数は少ないが多列に加工するマト
リックス状のリードフレームなどが打抜加工により製造
されるようになり、材料の打抜加工性の重要性が増して
いる。打抜加工はコスト的にも有利であり、Znを含む
丹銅、黄銅は打抜加工性が良好で、リン青銅よりも金型
摩耗が少ないという優れた特徴を持つ。
[0004] As a molding method, a punching method is mainly used.
Due to recent technological innovations, multi-pin or fine-pitch lead frames, matrix-type lead frames with a small number of pins but processed in multiple rows, etc. have been manufactured by punching. The importance is increasing. Stamping is also advantageous in terms of cost, and copper and brass containing Zn have excellent features such as good stamping workability and less mold wear than phosphor bronze.

【0005】Snの添加は、固溶強化による強度の向上
と曲げ性の改善につながるが、その過剰な添加は良好な
導電性の阻害となる。
[0005] The addition of Sn leads to an improvement in strength and an improvement in bendability due to solid solution strengthening, but an excessive addition thereof impairs good conductivity.

【0006】また、材料に、弾性歪の範囲内で、応力を
負荷し、長時間保持した場合、塑性歪分が生じ、その
分、弾性歪量が減少し、その結果、材料に実際に負荷さ
れている応力が減少する現象を応力緩和と呼んでいる
が、この緩和が起こることは、電子機器材料としては望
ましくない。特に、Znを含む丹銅、黄銅はこの緩和が
起こりやすいという特徴を持つ。
Further, when a stress is applied to a material within the range of elastic strain and the material is held for a long time, a plastic strain is generated, and the elastic strain is reduced by that amount. As a result, the material is actually loaded. The phenomenon in which the applied stress is reduced is called stress relaxation, and it is not desirable that the relaxation occurs as a material for electronic devices. In particular, copper and brass containing Zn have a feature that this relaxation is likely to occur.

【0007】更に、引張応力のかかった状態で腐食性の
環境におかれた場合に割れを起こす現象は、応力腐食割
れと呼ばれているが、Znを含む丹銅、黄銅は、一般的
に応力緩和に対する感受性が高い。
Furthermore, the phenomenon of cracking when placed in a corrosive environment under a tensile stress is called stress corrosion cracking, but copper and brass containing Zn are generally used. High sensitivity to stress relaxation.

【0008】また、耐熱性の改善も大きな課題である。
リードフレームへの加工成形後には、ICチップならび
に樹脂をマウントさせるが、その前処理として加工成形
歪みを除去する目的で、短時間の熱処理を行う工程があ
る。この工程での熱処理による材料の軟化は、ICチッ
プや樹脂と材料との密着性が悪くなり、耐熱性が求めら
れている。
[0008] Improvement of heat resistance is also a major issue.
After processing and forming the lead frame, the IC chip and the resin are mounted. There is a step of performing a short-time heat treatment for the purpose of removing the processing distortion as a pretreatment. The softening of the material due to the heat treatment in this step deteriorates the adhesiveness between the material and the IC chip or resin, so that heat resistance is required.

【0009】[0009]

【発明が解決しようとする課題】このように、安価で良
好な打抜加工性を持つ電子電気用銅合金の開発が望まれ
ている。しかしながら、上述のCu−Zn合金は、強度
が不足するという問題がある。強度の向上には、固溶強
化と析出強化、ならびに粒径制御を行う手法が挙げられ
る。
As described above, there is a demand for the development of a copper alloy for electronic and electric use which is inexpensive and has good punching workability. However, the above-mentioned Cu-Zn alloy has a problem of insufficient strength. In order to improve the strength, a method of performing solid solution strengthening and precipitation strengthening, and controlling the particle size can be mentioned.

【0010】固溶強化は、過剰な元素の添加を伴い、導
電率を低下させるため、望ましくない。よって、析出強
化に寄与する最適な元素を適切量添加し、かつ析出サイ
ズを制御した粒子を析出させ、母相の再結晶を抑制し
て、粒径を制御する方法が最も効率的である。
[0010] Solid solution strengthening is undesirable because it involves the addition of excessive elements and lowers the conductivity. Therefore, the most efficient method is to add an appropriate amount of an optimum element contributing to precipitation strengthening, precipitate particles having a controlled precipitation size, suppress recrystallization of the parent phase, and control the particle size.

【0011】本発明は、このような事情の下になされ、
強度、導電性、曲げ加工性、打抜プレス加工性などに優
れ、さらに応力緩和の軟化特性が小さく、かつ応力腐食
割れの感受性が低く、耐熱性を向上させた半導体リード
フレーム用銅合金を提供することを目的とする。
[0011] The present invention has been made under such circumstances,
Provides copper alloys for semiconductor lead frames with excellent strength, conductivity, bending workability, stamping press workability, etc., low softening characteristics of stress relaxation, low sensitivity to stress corrosion cracking, and improved heat resistance. The purpose is to do.

【0012】[0012]

【課題を解決するための手段】上述のように、Cu−Z
n合金の強度向上のためには、析出強化に寄与する最適
な元素を適切量添加し、かつ析出サイズを制御した粒子
を析出させ、母相の再結晶を抑制して、粒径を制御する
方法が最も効率的であることを見出だした。本発明は、
このような知見に基づいてなされ、制御された原子比で
Pとともに、Feおよび/またはNiを添加し、粒径の
制御ならびに上記性能を向上させるものである。
As described above, Cu-Z
In order to improve the strength of the n-alloy, an appropriate amount of an optimum element contributing to precipitation strengthening is added, and particles having a controlled precipitation size are precipitated, thereby suppressing recrystallization of the parent phase and controlling the particle size. The method was found to be the most efficient. The present invention
Based on such knowledge, Fe and / or Ni are added together with P at a controlled atomic ratio to control the particle size and improve the performance.

【0013】すなわち、請求項1に記載の発明は、Zn
を5wt以上で35wt%未満、Snを0.1〜3wt
%、FeとPの合計を0.05〜2wt%含み、残部C
uと不可避的不純物からなる銅合金であって、FeとP
の原子量比(Fe/P)が0.2〜3であり、粒径が3
5μm以下に制御され、0.2μm未満のFe−P化合
物が均一に分散していることを特徴とする半導体リード
フレーム用銅合金を提供する。
That is, the first aspect of the present invention relates to
5 wt% or more and less than 35 wt%, Sn 0.1 to 3 wt%
%, The total content of Fe and P is 0.05 to 2 wt%, and the balance C
copper alloy consisting of u and unavoidable impurities, Fe and P
Has an atomic weight ratio (Fe / P) of 0.2 to 3 and a particle size of 3
Provided is a copper alloy for a semiconductor lead frame, wherein the Fe-P compound is controlled to 5 μm or less and the Fe—P compound of less than 0.2 μm is uniformly dispersed.

【0014】かかる発明は、結晶粒径を35μm以下に
制御することで、曲げ加工性を改善し、更に、FeとP
との添加比を制御することと、析出サイズを規定するこ
との相乗効果により、応力緩和特性、耐応力腐食性、耐
熱性の優れた半導体リードフレームを提供することが出
来る。
According to the invention, the bendability is improved by controlling the crystal grain size to 35 μm or less.
The synergistic effect of controlling the addition ratio of Pb and controlling the precipitation size can provide a semiconductor lead frame having excellent stress relaxation properties, stress corrosion resistance, and heat resistance.

【0015】請求項2に記載の発明は、打ち抜きプレス
加工性の改善を目的に、請求項1に記載の合金に対し、
Pb、Bi、Se、Te、Ca、SrおよびMM(Se
を多く含むミッシュメタル)よりなる群より選ばれた1
種又は2種以上を総計で0.001〜0.1wt%を更
に含むことを特徴とする半導体リードフレーム用銅合金
を提供する。
According to a second aspect of the present invention, an alloy according to the first aspect is provided for the purpose of improving the punching workability.
Pb, Bi, Se, Te, Ca, Sr and MM (Se
Selected from the group consisting of
Disclosed is a copper alloy for a semiconductor lead frame, further comprising a total of 0.001 to 0.1 wt% of one or more kinds.

【0016】請求項3に記載の発明は、Znを5wt%
以上で35wt%未満、Snを0.1〜3wt%、Ni
とPの合計を0.05〜2wt%含み、残部Cuと不可
避的不純物からなる銅合金であって、NiとPの原子量
比(Ni/P)が0.2〜3であり、粒径が35μm以
下に制御され、0.2μm未満のNi−P化合物が均一
に分散していることを特徴とする半導体リードフレーム
用銅合金を提供する。
According to a third aspect of the present invention, Zn is contained in an amount of 5 wt%.
Above, less than 35 wt%, 0.1-3 wt% of Sn, Ni
Is a copper alloy containing 0.05 to 2 wt% of the total of P and P, and the balance being Cu and unavoidable impurities, wherein the atomic weight ratio of Ni and P (Ni / P) is 0.2 to 3 and the particle size is Provided is a copper alloy for a semiconductor lead frame, wherein the Ni-P compound is controlled to 35 μm or less and the Ni—P compound of less than 0.2 μm is uniformly dispersed.

【0017】かかる発明は、結晶粒径を35μm以下に
制御することで、曲げ加工性を改善し、更に、NiとP
との添加比を制御することと、析出サイズを規定するこ
との相乗効果により、応力緩和特性、耐応力腐食性、耐
熱性の優れた半導体リードフレームを提供することが出
来る。
According to the invention, the bendability is improved by controlling the crystal grain size to 35 μm or less.
The synergistic effect of controlling the addition ratio of Pb and controlling the precipitation size can provide a semiconductor lead frame having excellent stress relaxation properties, stress corrosion resistance, and heat resistance.

【0018】請求項4に記載の発明は、打ち抜きプレス
加工性の改善を目的に、請求項3に記載の合金に対し、
Pb、Bi、Se、Te、Ca、SrおよびMM(Se
を多く含むミッシュメタル)よりなる群より選ばれた1
種又は2種以上を総計で0.001〜0.1wt%を更
に含むことを特徴とする半導体リードフレーム用銅合金
を提供する。
According to a fourth aspect of the present invention, there is provided an alloy according to the third aspect, for the purpose of improving the punching workability.
Pb, Bi, Se, Te, Ca, Sr and MM (Se
Selected from the group consisting of
Disclosed is a copper alloy for a semiconductor lead frame, further comprising a total of 0.001 to 0.1 wt% of one or more kinds.

【0019】請求項5に記載の発明は、Znを5wt%
以上で35wt%未満、Snを0.1〜3wt%、Fe
とNiとPの合計を0.05〜2wt%含み、残部Cu
と不可避的不純物からなる銅合金であって、Feおよび
NiとPの原子量比(Fe+Ni/P)が0.2〜3で
あり、粒径が35μm以下に制御され、0.2μm未満
のFe−P化合物、Ni−P化合物、またはFe−Ni
−P化合物が均一に分散していることを特徴とする半導
体リードフレーム用銅合金を提供する。
According to a fifth aspect of the present invention, Zn is contained in an amount of 5 wt%.
Above is less than 35 wt%, Sn is 0.1 to 3 wt%, Fe
, Ni and P in a total content of 0.05 to 2 wt%, with the balance being Cu
And an atomic weight ratio of Fe and Ni to P (Fe + Ni / P) is 0.2 to 3, the particle size is controlled to 35 μm or less, and Fe— less than 0.2 μm. P compound, Ni-P compound, or Fe-Ni
Provided is a copper alloy for a semiconductor lead frame, wherein the P compound is uniformly dispersed.

【0020】かかる発明は、結晶粒径を35μm以下に
制御することで、曲げ加工性を改善し、更に、FeとP
との添加比を制御することと、析出サイズを規定するこ
との相乗効果により、応力緩和特性、耐応力腐食性、耐
熱性の優れた半導体リードフレームを提供することが出
来る。
According to the invention, the bendability is improved by controlling the crystal grain size to 35 μm or less.
The synergistic effect of controlling the addition ratio of Pb and controlling the precipitation size can provide a semiconductor lead frame having excellent stress relaxation properties, stress corrosion resistance, and heat resistance.

【0021】請求項6に記載の発明は、打ち抜きプレス
加工性の改善を目的に、請求項5に記載の合金に対し、
Pb、Bi、Se、Te、Ca、SrおよびMM(Ce
を多く含むミッシュメタル)よりなる群より選ばれた1
種又は2種以上を総計で0.001〜0.1wt%を更
に含むことを特徴とする半導体リードフレーム用銅合金
を提供する。
According to a sixth aspect of the present invention, there is provided an alloy according to the fifth aspect for the purpose of improving the punching workability.
Pb, Bi, Se, Te, Ca, Sr and MM (Ce
Selected from the group consisting of
Disclosed is a copper alloy for a semiconductor lead frame, further comprising a total of 0.001 to 0.1 wt% of one or more kinds.

【0022】以上のように構成される本発明の半導体リ
ードフレーム用銅合金は、半導体リードフレーム用に限
らず、電気電気機器及び車載用端子・コネクターあるい
はリレースイッチ等の電子部品端子材にも好適に使用可
能である。
The copper alloy for a semiconductor lead frame of the present invention configured as described above is suitable not only for a semiconductor lead frame, but also for electric / electrical devices and terminal materials for vehicles such as terminals / connectors or relay switches. It can be used for

【0023】[0023]

【発明の実施の形態】本発明に係る銅合金は、Cu−Z
n系合金をベースとし、Snを適量添加し、最適に制御
したFeとNiならびにPを添加することにより、種々
の特性を改善したものである。この場合、Snは強度向
上に、また結晶粒度の適正化は、曲げ加工性の改善に寄
与する。
DETAILED DESCRIPTION OF THE INVENTION The copper alloy according to the present invention is Cu-Z
Various characteristics are improved by adding an appropriate amount of Sn and adding Fe, Ni and P, which are optimally controlled, based on an n-based alloy. In this case, Sn contributes to the improvement of the strength, and the optimization of the crystal grain size contributes to the improvement of the bending workability.

【0024】本発明に係る銅合金において、Znは打抜
加工時のバリの発生やリードの捩じれを極めて少なく
し、金型摩耗性を低減させて打抜加工性を向上させると
いう作用を示す。Znの含有量を5wt%以上35wt
%未満に規定する理由は、5wt%未満ではその添加効
果が十分に得られず、35wt%以上では導電率の低下
が著しくなるためである。
In the copper alloy according to the present invention, Zn has the effect of extremely reducing the occurrence of burrs and the twisting of leads during punching, reducing the die wear and improving the punching workability. Zn content of 5 wt% or more and 35 wt%
The reason for defining the content to be less than 5% is that if the content is less than 5% by weight, the effect of the addition cannot be sufficiently obtained, and if the content is 35% by weight or more, the conductivity is significantly reduced.

【0025】Snは、強度向上、耐応力腐食割れ性改善
に寄与する。その含有量を0.1〜3wt%に規定する
理由は、0.1wt%以下ではその添加効果が乏しく、
3wt%を超えると導電性および熱間加工性が低下する
ためである。
Sn contributes to improvement in strength and resistance to stress corrosion cracking. The reason for defining the content to be 0.1 to 3 wt% is that when the content is 0.1 wt% or less, the effect of adding the compound is poor.
If the content exceeds 3 wt%, the conductivity and the hot workability decrease.

【0026】FeとNi、ならびにPは、最適な熱処理
を行うことでマトリックス中に析出を起こす元素であ
る。特に、その添加比を原子量比(Fe/P、Ni/
P、あるいは(Fe+Ni)/P)で0.2〜3と制御
することにより、強度向上に寄与するFe−P、Ni−
P、Fe−Ni−Pの金属間化合物を積極的に形成する
ためである。これらの金属間化合物は、再結晶を抑制す
ると共に、添加されたSnと相乗効果を発揮して耐熱性
を向上させ、応力緩和特性や応力腐食割れ特性を改善す
る効果も担っている。
Fe, Ni, and P are elements that cause precipitation in the matrix by performing optimal heat treatment. In particular, the addition ratio is adjusted to the atomic weight ratio (Fe / P, Ni /
By controlling P or (Fe + Ni) / P to 0.2 to 3, Fe-P, Ni-
This is because P and Fe-Ni-P intermetallic compounds are positively formed. These intermetallic compounds have the effect of suppressing recrystallization, exhibiting a synergistic effect with added Sn, improving heat resistance, and improving stress relaxation properties and stress corrosion cracking properties.

【0027】なお、析出しないで固溶状態にあるFe、
Ni、Pも固溶強化に寄与し、さらに応力緩和特性や応
力腐食割れの感受性を下げる効果や、優れた耐熱性を発
揮する。また、Fe+P、Ni+P、Fe+Ni+Pが
0.05wt%未満では、その添加効果が十分に得られ
ず、2wt%以上では溶解時に晶出し、最適な析出状態
が得られない。
It should be noted that Fe which is in a solid solution state without being precipitated,
Ni and P also contribute to solid solution strengthening, and also exhibit an effect of reducing stress relaxation characteristics and sensitivity to stress corrosion cracking, and exhibit excellent heat resistance. If Fe + P, Ni + P, and Fe + Ni + P are less than 0.05% by weight, the effect of the addition cannot be sufficiently obtained, and if 2% by weight or more, crystallization occurs during melting, and an optimum precipitation state cannot be obtained.

【0028】また、添加量を規定量以上にした場合に
は、凝固時に約10μm以上の粗大なFe−P、Ni−
P、 Fe−Ni−Pの金属間化合物が晶出し、熱間な
らびに冷間加工が困難な材料となる。
When the addition amount is more than the specified amount, coarse Fe—P, Ni—
The intermetallic compounds of P and Fe-Ni-P are crystallized, making it difficult to perform hot and cold working.

【0029】本発明に係る銅合金において、結晶粒度を
35μm以下に規定する理由は、結晶粒度が35μmを
超えた場合、その曲げ加工性が十分に得られないためで
ある。なお、本発明において、結晶粒度はJIS−H0
501に準じて決定される。
The reason why the grain size of the copper alloy according to the present invention is specified to be 35 μm or less is that when the grain size exceeds 35 μm, sufficient bending workability cannot be obtained. In the present invention, the crystal grain size is JIS-H0
501 is determined.

【0030】請求項2、4、6に記載の発明に係る銅合
金において、Pb、Bi、Se、Te、Ca、Sr、M
M (ミッシュメタル)の添加は、打抜加工性の向上に
寄与する。これら元素は母相に固溶せず、プレス加工の
破断点として機能する。これら元素の1種又は2種以上
の含有量を総計で0.001〜0.1wt%に規定する
理由は、0.001wt%未満ではその添加効果が十分
に得られず、0.1wt%を超えると熱間加工性が低下
するためである。
[0030] In the copper alloy according to the second, fourth, and sixth aspects of the present invention, Pb, Bi, Se, Te, Ca, Sr, M
The addition of M (Misch metal) contributes to the improvement of the punching workability. These elements do not form a solid solution in the parent phase and function as breaking points in press working. The reason why the content of one or more of these elements is defined as a total of 0.001 to 0.1 wt% is that if the content is less than 0.001 wt%, the effect of the addition cannot be sufficiently obtained. If it exceeds, the hot workability decreases.

【0031】また、本発明に係る銅合金において、耐熱
性を向上させるため、析出物サイズを0.2μm未満に
規定している。0.2μm以上の析出物は、母相との整
合性を失い、転位移動の障害とならず、耐熱性を向上さ
せる作用が低い。
In the copper alloy according to the present invention, the precipitate size is specified to be less than 0.2 μm in order to improve heat resistance. A precipitate having a size of 0.2 μm or more loses compatibility with the parent phase, does not hinder dislocation movement, and has a low effect of improving heat resistance.

【0032】[0032]

【実施例】次に、本発明の実施例を示し、本発明につい
て具体的に説明する。
Next, examples of the present invention will be shown, and the present invention will be specifically described.

【0033】(実施例1)下記表1に示す組成の合金
(No.1〜20)を高周波溶解炉により溶解し、これ
を6℃/秒の冷却速度で鋳造して、厚さ30mm、幅1
00mm、長さ150mmの鋳塊を得た。この鋳塊を8
00℃で熱間圧延し、厚さ12mmの熱間圧延材にし
た。次に、この熱間圧延材を厚さ8mmに両面面削して
酸化皮膜を除去し、次いで、厚さ1.2mmに冷間圧延
したのち、不活性ガス雰囲気中で800℃で1時間の中
間熱処理を行った。その後、厚さ0.5mmの板材に冷
間圧延した後、析出処理として550℃で1時間の時効
熱処理を行い、次いで冷間圧延し、0.15mmの板材
に仕上げ圧延した。
Example 1 Alloys (Nos. 1 to 20) having the compositions shown in Table 1 below were melted in a high-frequency melting furnace and cast at a cooling rate of 6 ° C./sec to have a thickness of 30 mm and a width of 30 mm. 1
An ingot with a length of 00 mm and a length of 150 mm was obtained. This ingot is 8
Hot rolling was performed at 00 ° C. to obtain a hot-rolled material having a thickness of 12 mm. Next, this hot-rolled material was cut on both sides to a thickness of 8 mm to remove an oxide film, and then cold-rolled to a thickness of 1.2 mm, and then at 800 ° C. for 1 hour in an inert gas atmosphere. Intermediate heat treatment was performed. Thereafter, the sheet was cold-rolled into a sheet having a thickness of 0.5 mm, and then subjected to an aging heat treatment at 550 ° C. for 1 hour as a precipitation treatment, then cold-rolled, and finally rolled to a sheet having a thickness of 0.15 mm.

【0034】(比較例1)下記表2に示す組成の合金
(No.21〜30)を実施例1と同じ方法により板材
に加工した。
Comparative Example 1 Alloys (Nos. 21 to 30) having the compositions shown in Table 2 below were processed into sheet materials in the same manner as in Example 1.

【0035】(実施例2)下記表3に示す組成の合金
(No.31〜50)を高周波溶解炉により溶解し、こ
れを6℃/秒の冷却速度で鋳造して、厚さ30mm、幅
100mm、長さ150mmの鋳塊を得た。この鋳塊を
800℃で熱間圧延し、厚さ12mmの熱間圧延材にし
た。次に、この熱間圧延材を厚さ8mmに両面面削して
酸化皮膜を除去し、次いで、厚さ1.2mmに冷間圧延
したのち、不活性ガス雰囲気中で800℃で1時間の中
間熱処理を行った。その後、厚さ0.5mmの板材に冷
間圧延した後、析出処理として550℃で1時間の時効
熱処理を行い、次いで冷間圧延し、0.15mmの板材
に仕上げ圧延した。
Example 2 Alloys (Nos. 31 to 50) having the compositions shown in Table 3 below were melted in a high-frequency melting furnace and cast at a cooling rate of 6 ° C./sec to have a thickness of 30 mm and a width of 30 mm. An ingot having a length of 100 mm and a length of 150 mm was obtained. This ingot was hot-rolled at 800 ° C. to obtain a hot-rolled material having a thickness of 12 mm. Next, this hot-rolled material was cut on both sides to a thickness of 8 mm to remove an oxide film, and then cold-rolled to a thickness of 1.2 mm, and then at 800 ° C. for 1 hour in an inert gas atmosphere. Intermediate heat treatment was performed. Thereafter, the sheet was cold-rolled into a sheet having a thickness of 0.5 mm, and then subjected to an aging heat treatment at 550 ° C. for 1 hour as a precipitation treatment, then cold-rolled, and finally rolled to a sheet having a thickness of 0.15 mm.

【0036】(比較例2)下記表4に示す組成の合金
(No.51〜60)を実施例2と同じ方法により板材
に加工した。
(Comparative Example 2) Alloys (Nos. 51 to 60) having the compositions shown in Table 4 below were processed into sheet materials in the same manner as in Example 2.

【0037】(実施例3)下記表5に示す組成の合金
(No.61〜80)を高周波溶解炉により溶解し、こ
れを6℃/秒の冷却速度で鋳造して、厚さ30mm、幅
100mm、長さ150mmの鋳塊を得た。この鋳塊を
800℃で熱間圧延し、厚さ12mmの熱間圧延材にし
た。次に、この熱間圧延材を厚さ8mmに両面面削して
酸化皮膜を除去し、次いで、厚さ1.2mmに冷間圧延
したのち、不活性ガス雰囲気中で800℃で1時間の中
間熱処理を行った。その後、厚さ0.5mmの板材に冷
間圧延した後、析出処理として550℃で1時間の時効
熱処理を行い、次いで冷間圧延し、0.15mmの板材
に仕上げ圧延した。
Example 3 Alloys (Nos. 61 to 80) having the compositions shown in Table 5 below were melted in a high-frequency melting furnace and cast at a cooling rate of 6 ° C./sec to have a thickness of 30 mm and a width of 30 mm. An ingot having a length of 100 mm and a length of 150 mm was obtained. This ingot was hot-rolled at 800 ° C. to obtain a hot-rolled material having a thickness of 12 mm. Next, this hot-rolled material was cut on both sides to a thickness of 8 mm to remove an oxide film, and then cold-rolled to a thickness of 1.2 mm, and then at 800 ° C. for 1 hour in an inert gas atmosphere. Intermediate heat treatment was performed. Thereafter, the sheet was cold-rolled into a sheet having a thickness of 0.5 mm, and then subjected to an aging heat treatment at 550 ° C. for 1 hour as a precipitation treatment, then cold-rolled, and finally rolled to a sheet having a thickness of 0.15 mm.

【0038】(比較例3)下記表6に示す組成の合金
(No.81〜90)を実施例1と同じ方法により板材
に加工した。
Comparative Example 3 Alloys (Nos. 81 to 90) having the compositions shown in Table 6 below were processed into sheet materials in the same manner as in Example 1.

【0039】(実施例4)以上のようにして得られた各
々の板材試料について、(1)加工性、(2)結晶粒
度、(3)打抜加工性(プレス加工性)、(4)応力緩
和特性(SR)、(5)応力腐食割れ特性(SCC)、
(6)耐熱性を下記方法により調べた。
(Example 4) For each sheet material sample obtained as described above, (1) workability, (2) grain size, (3) punching workability (press workability), (4) Stress relaxation characteristics (SR), (5) stress corrosion cracking characteristics (SCC),
(6) Heat resistance was examined by the following method.

【0040】(1)加工性:熱間加工と冷間加工の工程
中に割れを起こした材料は×とし、耳割れを起こした材
料は△とし、目的の板材が取得できた材料は○とした。
(1) Workability: The material that cracked during the hot working and the cold working processes was marked as X, the material that cracked the edge was marked as Δ, and the material from which the target plate material could be obtained was marked with ○. did.

【0041】(2)結晶粒度:結晶組織を光学顕微鏡
(200倍)により観察し、JIS−H0501の切断
法に準じて測定した。
(2) Grain size: The crystal structure was observed with an optical microscope (200 times) and measured according to the cutting method of JIS-H0501.

【0042】(3)曲げ加工性:板材を幅10mm、長
さ50mm(長さ方向と圧延方向が平行)に切出し、こ
れに曲げ半径0.1mmでW曲げし、曲げ部における割
れの有無を50倍の光学顕微鏡で目視観察した。割れお
よび肌荒れの無いものを○、肌荒れが生じたものを△、
割れが生じたものを×と評価した。
(3) Bending workability: A plate material is cut out to a width of 10 mm and a length of 50 mm (the length direction and the rolling direction are parallel), and is subjected to W bending at a bending radius of 0.1 mm to determine whether there is a crack in a bent portion. It was visually observed with a 50-fold optical microscope. ○ without cracks and rough skin, △ with rough skin,
Those having cracks were evaluated as x.

【0043】(4)プレス加工性 板材にSKD11製金型で1mm×5mmの角穴を開
け、5001回目から10000回目までの打抜分から
サンプルを20個無作為に抽出し、サンプルの厚さbに
対する破断部割合(a/b)×100%を求めた。この
破断部割合は、打抜加工性の目安の一つとされ、この割
合が大きい程、打抜加工性は良好であり、打抜での歩留
まりが高く、かつ加工が精密に行えると評価される。
(4) Press workability A 1 mm × 5 mm square hole is made in a plate material using a SKD11 mold, and 20 samples are randomly extracted from the 5001st to 10000th punches, and the sample thickness b % (A / b) × 100% was calculated. This broken portion ratio is regarded as one of the standards of the punching processability. It is evaluated that the larger the ratio is, the better the punching processability is, the higher the yield in punching is, and the process can be performed precisely. .

【0044】(5)応力緩和特性(RS):日本電子材
料工業会標準規格EMAS−3003に準じて、150
℃、1000時間の条件で測定した。片持ち張り法を採
用し、初期応力として0.2%耐力の80%を負荷し
た。その模式図を図5に示す。この試験は、端子材など
に用いたときに、長時間一定歪みのもとでの応力変化を
調べるものであり、緩和率が小さい合金ほど良好と見な
される。
(5) Stress relaxation characteristics (RS): 150 according to the Electronic Materials Manufacturers Association of Japan standard EMAS-3003.
The measurement was performed at 1000 ° C. for 1000 hours. A cantilever method was adopted, and an initial stress of 80% of 0.2% proof stress was applied. The schematic diagram is shown in FIG. This test is for examining a stress change under a constant strain for a long time when used for a terminal material or the like, and an alloy having a smaller relaxation rate is considered to be better.

【0045】(6)耐応力腐食割れ性(SCC):3%
NH3 (アンモニア)ガス中で幅10mm×長さ150
mmの試験片(n=3)に荷重200Nをかけて放置
し、この試験片の破断時間を測定した。破断時間が長い
ほど感受性が低いことになる。なお、試験結果はn=3
の平均値を示し、最長試験時間は480時間としたた
め、この時間で破断しなかった材料には↑を付けた。
(6) Stress corrosion cracking resistance (SCC): 3%
10 mm wide x 150 long in NH 3 (ammonia) gas
mm test piece (n = 3) was left standing with a load of 200 N applied thereto, and the break time of this test piece was measured. The longer the break time, the lower the sensitivity. Note that the test result was n = 3
Since the maximum test time was 480 hours, materials that did not break during this time were marked with a triangle.

【0046】(7)耐熱性:板材を不活性ガス雰囲気
中、400℃で300秒と1800秒焼鈍し、次いで湿
式研磨により鏡面に仕上げて、硬度測定を行った。30
0秒の加熱時間はリードフレームの歪み取り焼鈍を想定
し、1800秒の加熱時間は電子機器用のコネクタ等の
使用を想定した場合の耐熱性の評価で軟化特性を調査す
るためである。硬度測定は、焼鈍後材と加工まま材(A
S)をJIS・Z・2244に準じて荷重300gfで
測定した。
(7) Heat resistance: The plate was annealed in an inert gas atmosphere at 400 ° C. for 300 seconds and 1800 seconds, and then mirror-finished by wet polishing to measure the hardness. 30
The heating time of 0 second is for assuming the strain relief annealing of the lead frame, and the heating time of 1800 seconds is for investigating the softening characteristics by evaluating the heat resistance when assuming the use of a connector or the like for an electronic device. The hardness was measured for the as-annealed material and as-processed material (A
S) was measured under a load of 300 gf according to JIS Z 2244.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【表2】 [Table 2]

【0049】[0049]

【表3】 [Table 3]

【0050】[0050]

【表4】 [Table 4]

【0051】[0051]

【表5】 [Table 5]

【0052】[0052]

【表6】 [Table 6]

【0053】以下に、上記表1〜表6を参照して、実施
例1と比較例1、実施例2と比較例2、ならびに実施例
3と比較例3との比較について説明する。
Hereinafter, the comparison between Example 1 and Comparative Example 1, Example 2 and Comparative Example 2, and Example 3 and Comparative Example 3 will be described with reference to Tables 1 to 6.

【0054】加工性を比較すると、実施例1、2、3で
は、いずれの合金も目的の板材に加工できたが、比較例
のうち、Zn添加量の高いNo.22、No.52、N
o.82と、Pb濃度の高いNo.30、No.60、
No.90では割れが生じた。
When the workability was compared, in Examples 1, 2, and 3, all alloys could be processed into the target plate material. 22, no. 52, N
o. No. 82 having a high Pb concentration. 30, no. 60,
No. At 90, cracks occurred.

【0055】また、Fe+P量、Ni+P量、Fe+N
i+P量が規定量より高いNo.26、No.56、N
o.86では、晶出物が多く,それらが起点となった表
面割れが発生した。
The amounts of Fe + P, Ni + P, Fe + N
No. i + P amount higher than the specified amount. 26, no. 56, N
o. In the case of No. 86, there were many crystallized substances, and surface cracks originating from them were generated.

【0056】また、Fe/P、Ni/P、Fe+Ni/
P比を規定以上にしたNo.28、No.58、No.
88では、走査型電子顕微鏡による観察から、熱処理時
に粗大なFe−PとNi−Pが見つかり、冷間加工性が
低下した.粒径の測定結果では、Fe+P量、Ni+P
量、Fe+Ni+P量、ならびにFe/P、Ni/P、
Fe+Ni/P比を制御した実施例1、2、3では、3
5μm以下になっているが、比較例の中には35μm以
上の材料がある。
Further, Fe / P, Ni / P, Fe + Ni /
No. with P ratio over specified 28, no. 58, no.
In No. 88, coarse Fe-P and Ni-P were found during heat treatment from observation with a scanning electron microscope, and the cold workability was reduced. The measurement results of the particle size show that the amount of Fe + P, Ni + P
Amount, Fe + Ni + P amount, and Fe / P, Ni / P,
In Examples 1, 2, and 3 in which the Fe + Ni / P ratio was controlled, 3
Although it is 5 μm or less, there is a material of 35 μm or more in the comparative examples.

【0057】曲げ加工性の調査から、粒径の調査で35
μm以下の材料に比べ、35μm以上の材料は、曲げ加
工により割れが発生し、曲げ加工性が悪いことが分か
る。
From the investigation of bending workability, it was found that the particle size was 35
It can be seen that a material having a size of 35 μm or more is cracked by bending and has poor bending workability as compared with a material having a size of μm or less.

【0058】プレス加工性を調査したところ、請求項
2、4、6の元素を規定量含んだ合金のプレス加工性は
良好(破断部の割合いが高い)であるが、規定量に満たな
いNo.29、No.59、No.89のプレス性は、
他の結果に比べて悪い。
When the press workability was examined, the press workability of the alloy containing the specified amount of the elements of claims 2, 4, and 6 was good (the ratio of the fractured portion was high), but was less than the specified amount. No. 29, no. 59, no. The pressability of 89 is
Bad compared to other results.

【0059】応力緩和試験(RS)は、Fe+P量、N
i+P量、Fe+Ni+P量、ならびにFe/P、Ni
/P、Fe+Ni/P比を制御し、粒径を35μm以下
にした実施例1、2、3に比べ、比較例では緩和率が高
い。
In the stress relaxation test (RS), the amount of Fe + P, N
i + P amount, Fe + Ni + P amount, and Fe / P, Ni
/ P, Fe + Ni / P ratio was controlled, and the relaxation rate was higher in the comparative example than in Examples 1, 2, and 3 in which the particle size was 35 μm or less.

【0060】応力腐食割れ試験(SCC)を評価した結
果、Fe+P量、Ni+P量、Fe+Ni+P量、なら
びにFe/P、Ni/P、Fe+Ni/P比を制御した
材料では、全く否感受性であるのに対し、比較例の中で
は感受性の高い合金もある。
As a result of evaluating the stress corrosion cracking test (SCC), it was found that a material in which the amount of Fe + P, the amount of Ni + P, the amount of Fe + Ni + P, and the ratio of Fe / P, Ni / P, and the ratio of Fe + Ni / P were completely insensitive. On the other hand, some of the comparative examples have high sensitivity.

【0061】なお,比較例中のNo.22、No.5
2、No.82は、Zn量が高く、従来数時間で破断す
る合金であるが、Fe+P量、Ni+P量、Fe+Ni
+P量、ならびにFe/P、Ni/P、Fe+Ni/P
比を制御したところ、約1/2〜1/3倍にその感受性
が低下した.耐熱性の300秒の評価では、Fe+P
量、Ni+P量、Fe+Ni+P量、ならびにFe/
P、Ni/P、Fe+Ni/P比を制御した合金は、硬
度低下量が小さいが、制御されていない合金(No.2
1〜24、No.51〜54、No.81〜84)で
は、硬度が約2/3に低下している。
Note that, in the comparative example, No. 22, no. 5
2, No. Reference numeral 82 denotes an alloy having a high Zn content and breaking in several hours in the past, but it includes Fe + P content, Ni + P content, and Fe + Ni
+ P amount, and Fe / P, Ni / P, Fe + Ni / P
Controlling the ratio reduced its sensitivity by about 1/2 to 1/3. In the evaluation of heat resistance of 300 seconds, Fe + P
Amount, Ni + P amount, Fe + Ni + P amount, and Fe /
The alloys in which the P, Ni / P, and Fe + Ni / P ratios were controlled exhibited a small decrease in hardness, but were not controlled (No. 2).
No. 1 to 24, No. Nos. 51 to 54; 81-84), the hardness is reduced to about 2/3.

【0062】また、1800秒では、Fe+P量、Ni
+P量、Fe+Ni+P量、ならびにFe/P、Ni/
P、Fe+Ni/P比を制御した合金は軟化しにくい
が、制御されていない合金(No.21〜24、No.
51〜54、No.81〜84)は軟化が早い。
At 1800 seconds, the amount of Fe + P, Ni
+ P amount, Fe + Ni + P amount, and Fe / P, Ni /
Alloys with controlled P and Fe + Ni / P ratios are difficult to soften, but uncontrolled alloys (Nos. 21 to 24, No. 2).
Nos. 51 to 54; 81-84) soften quickly.

【0063】(実施例5)析出物のサイズは、 Fe+
P量、Ni+P量、Fe+Ni+P量、ならびにFe/
P、Ni/P、Fe+Ni/P比を制御するだけでは制
御できない。これには、析出のための熱処理条件を制御
する必要がある。実施例1〜3と比較例1〜3では、析
出熱処理条件を550℃で1時間としているが、これは
予備実験として実施例中のNo.1、No.31、N
o.61の合金を時効熱処理温度として、400℃、4
50℃、500℃、550℃、600℃、650℃、7
00℃で1時間の熱処理温度を変えた板材を作製し、そ
の板材を機械研磨により約0.1mmに薄くした後、電
解研磨を行って透過型電子顕微鏡用薄膜を作成し、透過
型電子顕微鏡を用いて明視野観察して、×10000倍
で3視野中に観察された析出物の大きさを測定して算術
平均したところ、550℃の熱処理温度では2μm以上の
析出物は観察されなかったためである。
Example 5 The size of the precipitate was Fe +
P amount, Ni + P amount, Fe + Ni + P amount, and Fe /
It cannot be controlled only by controlling the P, Ni / P, and Fe + Ni / P ratios. For this purpose, it is necessary to control the heat treatment conditions for the precipitation. In Examples 1 to 3 and Comparative Examples 1 to 3, the precipitation heat treatment was performed at 550 ° C. for 1 hour. 1, No. 31, N
o. The temperature of the alloy No. 61 was set at 400 ° C.
50 ° C, 500 ° C, 550 ° C, 600 ° C, 650 ° C, 7
A plate was prepared by changing the heat treatment temperature at 00 ° C. for 1 hour, and the plate was reduced to about 0.1 mm by mechanical polishing, and then subjected to electrolytic polishing to prepare a thin film for a transmission electron microscope. When the size of the precipitates observed in three fields of view was measured at × 10,000 times and arithmetically averaged by bright field observation using, a precipitate of 2 μm or more was not observed at a heat treatment temperature of 550 ° C. It is.

【0064】そこで,析出物のサイズと引張強度、応力
緩和特性、応力腐食割れ性、半軟化温度(250〜50
0℃)まで25℃毎に1時間の熱処理を行い、硬度を調
べた結果、冷間加工まま材の約半分の硬度に低下した時
の温度)との関係を明確にするため、予備実験で得られ
た析出物の平均サイズと引張強度、応力緩和特性、応力
腐食割れ性、半軟化温度とを対応させた結果を図1、図
2、図3、図4に示す。
Therefore, the size and tensile strength of the precipitate, stress relaxation characteristics, stress corrosion cracking, semi-softening temperature (250 to 50)
0 ° C) for 1 hour at 25 ° C, and the hardness was examined. As a result, a preliminary experiment was conducted to clarify the relationship with the temperature when the hardness was reduced to about half the hardness of the material as it was cold worked. The results of associating the average size of the obtained precipitates with tensile strength, stress relaxation characteristics, stress corrosion cracking properties, and semi-softening temperature are shown in FIGS. 1, 2, 3, and 4.

【0065】図1は、強度と析出物のサイズの関係を示
す図であるが、明らかに0.2μm以上の析出物の場
合、強度は600MPa以上を示さず、析出物の大きさ
を制御することが明確になっている。
FIG. 1 is a graph showing the relationship between the strength and the size of the precipitate. In the case of a precipitate having a size of 0.2 μm or more, the strength does not show 600 MPa or more, and the size of the precipitate is controlled. It is clear.

【0066】図2は、応力緩和特性と析出物のサイズの
関係を示す図であるが、明らかに0.2μm以上の析出
物の場合、応力緩和率が早く緩和される傾向が示されて
おり、析出物の大きさを制御することが明確になってい
る。
FIG. 2 is a graph showing the relationship between the stress relaxation characteristics and the size of the precipitate. It is apparent that the stress relaxation rate tends to be reduced quickly in the case of a precipitate of 0.2 μm or more. It is clear that the size of the precipitate is controlled.

【0067】図3は、耐応力腐食割れ性と析出物のサイ
ズの関係を示した図であるが、明らかに0.2μm以上
の析出物の場合、短時間に応力腐食割れを起こす傾向が
示されており、析出物の大きさを制御することが明確に
なっている。
FIG. 3 is a graph showing the relationship between the stress corrosion cracking resistance and the size of precipitates. In the case of precipitates of 0.2 μm or more, there is a tendency that stress corrosion cracking occurs in a short time. It is clear that the size of the precipitate is controlled.

【0068】図4は、半軟化温度と析出物のサイズの関
係を示す図であるが、明らかに0.2μm以上の析出物
の場合、半軟化温度が低い傾向が示されており、析出物
の大きさを制御することが明確になっている。
FIG. 4 is a graph showing the relationship between the semi-softening temperature and the size of the precipitate. In the case of the precipitate having a size of 0.2 μm or more, the semi-softening temperature tends to be low. It is clear that the size is controlled.

【0069】[0069]

【発明の効果】以上、詳細に説明したように、本発明の
半導体リードフレーム用銅合金は、打抜加工法に優れて
いるCu−Zn合金をベースとし、これにSnと原子量
比を制御したP、Feおよび/またはNiを適量添加
し、これらの相乗効果によって結晶粒度の制御、応力緩
和特性の向上、耐応力腐食割れ性、耐熱性などを改善し
たものであり、強度、導電性、曲げ加工性、打抜加工
性、応力緩和特性、耐応力腐食割れ性、製造加工性、高
温特性などに優れ、工業上顕著な効果を奏する。
As described above in detail, the copper alloy for a semiconductor lead frame of the present invention is based on a Cu-Zn alloy which is excellent in a punching method, and the Sn and the atomic weight ratio are controlled. P, Fe and / or Ni are added in appropriate amounts to control the crystal grain size, improve stress relaxation characteristics, improve stress corrosion cracking resistance, heat resistance, etc. by the synergistic effect of these elements. It is excellent in workability, punching workability, stress relaxation characteristics, stress corrosion cracking resistance, manufacturing workability, high temperature characteristics, etc., and has remarkable industrial effects.

【0070】また、本発明の銅合金は、電気電子機器及
び車載用端子・コネクターあるいはリレースイッチ等の
電子部品端子材にも好適に使用可能である。
The copper alloy of the present invention can also be suitably used for electric / electronic devices and terminal materials for electronic parts such as terminals and connectors for vehicles and relay switches.

【図面の簡単な説明】[Brief description of the drawings]

【図1】強度と析出物のサイズの関係を示す特性図。FIG. 1 is a characteristic diagram showing a relationship between strength and precipitate size.

【図2】応力緩和特性と析出物のサイズの関係を示す特
性図。
FIG. 2 is a characteristic diagram showing a relationship between stress relaxation characteristics and precipitate size.

【図3】耐応力腐食割れ性と析出物のサイズの関係を示
した特性図。
FIG. 3 is a characteristic diagram showing a relationship between stress corrosion cracking resistance and precipitate size.

【図4】半軟化温度と析出物のサイズの関係を示す特性
図。
FIG. 4 is a characteristic diagram showing a relationship between a semi-softening temperature and a size of a precipitate.

【図5】応力緩和測定方法を示す模式図。FIG. 5 is a schematic diagram showing a stress relaxation measurement method.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 685 C22F 1/00 685Z 686 686Z (72)発明者 平井 崇夫 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 吉田 浩一 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 685 C22F 1/00 685Z 686 686Z (72) Inventor Takao Hirai 2-6 Marunouchi, Chiyoda-ku, Tokyo No. 1 Inside Furukawa Electric Co., Ltd. (72) Inventor Koichi Yoshida 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Inside Furukawa Electric Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】Znを5wt以上で35wt%未満、Sn
を0.1〜3wt%、FeとPの合計を0.05〜2w
t%含み、残部Cuと不可避的不純物からなる銅合金で
あって、FeとPの原子量比(Fe/P)が0.2〜3
であり、粒径が35μm以下に制御され、0.2μm未
満のFe−P化合物が均一に分散していることを特徴と
する半導体リードフレーム用銅合金。
1. The method according to claim 1, wherein the Zn content is 5 wt% or more and less than 35 wt%.
0.1 to 3 wt%, and the total of Fe and P is 0.05 to 2 w
a copper alloy containing t% and the balance Cu and unavoidable impurities, wherein the atomic weight ratio of Fe to P (Fe / P) is 0.2 to 3
A copper alloy for a semiconductor lead frame, wherein the Fe-P compound having a particle size controlled to 35 μm or less and less than 0.2 μm is uniformly dispersed.
【請求項2】Pb、Bi、Se、Te、Ca、Srおよ
びMM(Seを多く含むミッシュメタル)よりなる群よ
り選ばれた1種又は2種以上を総計で0.001〜0.
1wt%を更に含むことを特徴とする請求項1に記載の
半導体リードフレーム用銅合金。
2. One or more selected from the group consisting of Pb, Bi, Se, Te, Ca, Sr and MM (mish metal containing a large amount of Se) in a total amount of 0.001-0.
The copper alloy for a semiconductor lead frame according to claim 1, further comprising 1 wt%.
【請求項3】Znを5wt%以上で35wt%未満、S
nを0.1〜3wt%、NiとPの合計を0.05〜2
wt%含み、残部Cuと不可避的不純物からなる銅合金
であって、NiとPの原子量比(Ni/P)が0.2〜
3であり、粒径が35μm以下に制御され、0.2μm
未満のNi−P化合物が均一に分散していることを特徴
とする半導体リードフレーム用銅合金。
3. The method according to claim 1, wherein Zn is contained in an amount of 5 wt% or more and less than 35 wt%.
n is 0.1 to 3 wt%, and the total of Ni and P is 0.05 to 2
A copper alloy containing wt%, the balance being Cu and unavoidable impurities, wherein the atomic weight ratio of Ni to P (Ni / P) is 0.2 to
3, the particle size is controlled to 35 μm or less, and 0.2 μm
A copper alloy for a semiconductor lead frame, wherein less than Ni-P compounds are uniformly dispersed.
【請求項4】Pb、Bi、Se、Te、Ca、Srおよ
びMM(Seを多く含むミッシュメタル)よりなる群よ
り選ばれた1種又は2種以上を総計で0.001〜0.
1wt%を更に含むことを特徴とする請求項3に記載の
半導体リードフレーム用銅合金。
4. One or more selected from the group consisting of Pb, Bi, Se, Te, Ca, Sr and MM (mish metal containing a large amount of Se) in a total amount of 0.001-0.
The copper alloy for a semiconductor lead frame according to claim 3, further comprising 1 wt%.
【請求項5】Znを5wt%以上で35wt%未満、S
nを0.1〜3wt%、FeとNiとPの合計を0.0
5〜2wt%含み、残部Cuと不可避的不純物からなる
銅合金であって、FeおよびNiとPの原子量比(Fe
+Ni/P)が0.2〜3であり、粒径が35μm以下
に制御され、0.2μm未満のFe−P化合物、Ni−
P化合物、またはFe−Ni−P化合物が均一に分散し
ていることを特徴とする半導体リードフレーム用銅合
金。
5. The method according to claim 5, wherein Zn is contained in an amount of 5% by weight or more and less than 35% by weight.
n is 0.1 to 3 wt%, and the total of Fe, Ni and P is 0.0
A copper alloy containing 5 to 2 wt%, the balance being Cu and unavoidable impurities, wherein the atomic weight ratio of Fe, Ni and P (Fe
+ Ni / P) is 0.2 to 3, the particle size is controlled to 35 μm or less, and the Fe-P compound having a particle size of less than 0.2 μm, Ni-
A copper alloy for a semiconductor lead frame, wherein a P compound or an Fe-Ni-P compound is uniformly dispersed.
【請求項6】Pb、Bi、Se、Te、Ca、Srおよ
びMM(Ceを多く含むミッシュメタル)よりなる群よ
り選ばれた1種又は2種以上を総計で0.001〜0.
1wt%を更に含むことを特徴とする請求項5に記載の
半導体リードフレーム用銅合金。
6. One or more selected from the group consisting of Pb, Bi, Se, Te, Ca, Sr and MM (mish metal containing a large amount of Ce) in a total amount of 0.001-0.
The copper alloy for a semiconductor lead frame according to claim 5, further comprising 1 wt%.
JP35288698A 1998-12-11 1998-12-11 Copper alloy for semiconductor lead frames Expired - Fee Related JP3717321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35288698A JP3717321B2 (en) 1998-12-11 1998-12-11 Copper alloy for semiconductor lead frames

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35288698A JP3717321B2 (en) 1998-12-11 1998-12-11 Copper alloy for semiconductor lead frames

Publications (2)

Publication Number Publication Date
JP2000178670A true JP2000178670A (en) 2000-06-27
JP3717321B2 JP3717321B2 (en) 2005-11-16

Family

ID=18427133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35288698A Expired - Fee Related JP3717321B2 (en) 1998-12-11 1998-12-11 Copper alloy for semiconductor lead frames

Country Status (1)

Country Link
JP (1) JP3717321B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100651303B1 (en) * 2004-01-23 2006-11-29 가부시키 가이샤 고베세이코쇼 High-strength high-conductivity copper alloy
WO2011096632A2 (en) 2010-02-08 2011-08-11 주식회사 풍산 Copper alloy having high strength and high conductivity, and preparation method thereof
WO2013103149A1 (en) * 2012-01-06 2013-07-11 三菱マテリアル株式会社 Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method for manufacturing copper alloy for electronic/electric device, and conductive part and terminal for electronic/electric device
US8715431B2 (en) 2004-08-17 2014-05-06 Kobe Steel, Ltd. Copper alloy plate for electric and electronic parts having bending workability
JP2015034332A (en) * 2013-07-10 2015-02-19 三菱マテリアル株式会社 Copper alloy for electronic/electric equipment, copper alloy thin sheet for electronic/electric equipment and conductive part and terminal for electronic/electric equipment
EP2759612A4 (en) * 2011-09-20 2015-06-24 Mitsubishi Shindo Kk Copper alloy sheet and method for producing copper alloy sheet
EP2641292A4 (en) * 2010-11-17 2016-11-02 Luvata Appleton Llc Alkaline collector anode
US9653191B2 (en) 2012-12-28 2017-05-16 Mitsubishi Materials Corporation Copper alloy for electric and electronic device, copper alloy sheet for electric and electronic device, conductive component for electric and electronic device, and terminal

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5572753B2 (en) 2012-12-26 2014-08-13 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP5417523B1 (en) 2012-12-28 2014-02-19 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
CN104919066A (en) 2013-01-09 2015-09-16 三菱综合材料株式会社 Copper alloy for electronic or electrical device, copper alloy thin sheet for electronic or electrical device, process for manufacturing copper alloy for electronic or electrical device, conductive component for electronic or electrical device, and terminal
JP5417539B1 (en) 2013-01-28 2014-02-19 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP5604549B2 (en) 2013-03-18 2014-10-08 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP5501495B1 (en) 2013-03-18 2014-05-21 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
WO2015004940A1 (en) 2013-07-10 2015-01-15 三菱マテリアル株式会社 Copper alloy for electronic/electrical equipment, copper alloy thin sheet for electronic/electrical equipment, conductive component for electronic/electrical equipment, and terminal
JP5690979B1 (en) 2013-07-10 2015-03-25 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
KR20220041082A (en) 2019-08-06 2022-03-31 미쓰비시 마테리알 가부시키가이샤 A copper alloy plate, a copper alloy plate with a plating film, and their manufacturing method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005002763B4 (en) * 2004-01-23 2012-04-26 Kabushiki Kaisha Kobe Seiko Sho (Trading Also As Kobe Steel Ltd.) Copper alloy with high strength and high conductivity
KR100651303B1 (en) * 2004-01-23 2006-11-29 가부시키 가이샤 고베세이코쇼 High-strength high-conductivity copper alloy
US8715431B2 (en) 2004-08-17 2014-05-06 Kobe Steel, Ltd. Copper alloy plate for electric and electronic parts having bending workability
WO2011096632A2 (en) 2010-02-08 2011-08-11 주식회사 풍산 Copper alloy having high strength and high conductivity, and preparation method thereof
US9601767B2 (en) 2010-11-17 2017-03-21 Luvata Appleton Llc Alkaline collector anode
EP2641292A4 (en) * 2010-11-17 2016-11-02 Luvata Appleton Llc Alkaline collector anode
EP2759612A4 (en) * 2011-09-20 2015-06-24 Mitsubishi Shindo Kk Copper alloy sheet and method for producing copper alloy sheet
JP5303678B1 (en) * 2012-01-06 2013-10-02 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
US8951369B2 (en) 2012-01-06 2015-02-10 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method of producing copper alloy for electronic/electric device, conductive component for electronic/electric device and terminal
EP2801630A4 (en) * 2012-01-06 2015-10-07 Mitsubishi Materials Corp Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method for manufacturing copper alloy for electronic/electric device, and conductive part and terminal for electronic/electric device
AU2013207042B2 (en) * 2012-01-06 2016-07-21 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method for manufacturing copper alloy for electronic/electric device, and conductive part and terminal for electronic/electric device
TWI452154B (en) * 2012-01-06 2014-09-11 Mitsubishi Materials Corp Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method of producing copper alloy for electronic/electric device, conductive component for electronic/electric device, and terminal
WO2013103149A1 (en) * 2012-01-06 2013-07-11 三菱マテリアル株式会社 Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method for manufacturing copper alloy for electronic/electric device, and conductive part and terminal for electronic/electric device
EP3284835A3 (en) * 2012-01-06 2018-02-28 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method of producing copper alloy for electronic/electric device, conductive component for electronic/electric device and terminal
US9653191B2 (en) 2012-12-28 2017-05-16 Mitsubishi Materials Corporation Copper alloy for electric and electronic device, copper alloy sheet for electric and electronic device, conductive component for electric and electronic device, and terminal
JP2015034332A (en) * 2013-07-10 2015-02-19 三菱マテリアル株式会社 Copper alloy for electronic/electric equipment, copper alloy thin sheet for electronic/electric equipment and conductive part and terminal for electronic/electric equipment

Also Published As

Publication number Publication date
JP3717321B2 (en) 2005-11-16

Similar Documents

Publication Publication Date Title
EP2184371B1 (en) Copper alloy sheet
JP5972484B2 (en) Copper alloy sheet, connector made of copper alloy sheet, and method for producing copper alloy sheet
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP4177104B2 (en) High-strength copper alloy excellent in bending workability, manufacturing method thereof, and terminal / connector using the same
JP4439447B2 (en) Manufacturing method of irregular cross-section copper alloy sheet
JP3717321B2 (en) Copper alloy for semiconductor lead frames
JP2007100111A (en) Cu-Ni-Sn-P-BASED COPPER ALLOY EXCELLENT IN PRESS-PUNCHING PROPERTY, AND ITS PRODUCTION METHOD
JP2000087158A (en) Copper alloy for semiconductor lead frame
JP2003306732A (en) Copper alloy for electric and electronic parts
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
US5322575A (en) Process for production of copper base alloys and terminals using the same
JP2010031379A (en) Electronic component composed of copper alloy sheet having excellent bending workability
KR100329153B1 (en) Copper alloy for terminals and connectors and method for making same
KR20190077011A (en) Copper alloy sheet and manufacturing method thereof
JP3904118B2 (en) Copper alloy for electric and electronic parts and manufacturing method thereof
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
JP3418301B2 (en) Copper alloy for electrical and electronic equipment with excellent punching workability
JP2006200042A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JP3374037B2 (en) Copper alloy for semiconductor lead frame
JP3459520B2 (en) Copper alloy for lead frame
JP3980808B2 (en) High-strength copper alloy excellent in bending workability and heat resistance and method for producing the same
JP3807475B2 (en) Copper alloy plate for terminal and connector and manufacturing method thereof
JPH0987814A (en) Production of copper alloy for electronic equipment
JP3296709B2 (en) Thin copper alloy for electronic equipment and method for producing the same
JPH10287939A (en) Copper alloy for electric and electronic equipment, excellent in punchability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees