JP7083650B2 - Solid-liquid separator - Google Patents

Solid-liquid separator Download PDF

Info

Publication number
JP7083650B2
JP7083650B2 JP2018009679A JP2018009679A JP7083650B2 JP 7083650 B2 JP7083650 B2 JP 7083650B2 JP 2018009679 A JP2018009679 A JP 2018009679A JP 2018009679 A JP2018009679 A JP 2018009679A JP 7083650 B2 JP7083650 B2 JP 7083650B2
Authority
JP
Japan
Prior art keywords
sludge
rotating body
solid
water tank
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018009679A
Other languages
Japanese (ja)
Other versions
JP2019126770A (en
Inventor
靖大 荒生
知弥 中村
正弘 山本
篤 齋藤
宏樹 田中
萌子 森井
Original Assignee
株式会社西原環境
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社西原環境 filed Critical 株式会社西原環境
Priority to JP2018009679A priority Critical patent/JP7083650B2/en
Publication of JP2019126770A publication Critical patent/JP2019126770A/en
Application granted granted Critical
Publication of JP7083650B2 publication Critical patent/JP7083650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、上水、下水、産業排水、農業集落排水等の一次処理、生物処理による二次処理において発生した汚泥や水中の懸濁物を含む原水を、濃縮汚泥と分離液とに固液分離する固液分離装置に関するものである。 In the present invention, raw water containing sludge and suspension in water generated in primary treatment such as clean water, sewage, industrial wastewater, agricultural settlement wastewater, and secondary treatment by biological treatment is solidified into concentrated sludge and separation liquid. It relates to a solid-liquid separation device for separation.

汚泥の濃縮技術は、重力濃縮法と機械濃縮法の2つに大別される。 Sewage sludge concentration technology is roughly divided into two methods: gravity concentration method and mechanical concentration method.

重力濃縮法は、重力濃縮槽、凝集濃縮槽または沈殿槽等を用いて、汚泥を重力によって沈降させて濃縮するものである。また、固液分離性能や濃縮性の向上のため、このような沈殿槽等にかき寄せ機が設置されることもある。
重力濃縮法は、重力を利用するため、汚泥を濃縮する際のエネルギーを必要とせず、維持管理にかかるコストは安価となる。その反面、原水の性状変動によって濃縮後に得られる濃縮汚泥や分離液の性状が変動しやすく、処理性能が一定にならない。また、濃縮汚泥の濃縮濃度は比較的低く、汚泥発生量の増加によって汚泥処分費を増大させたり、分離液水質の悪化によって水処理系に悪影響を与えたりするおそれがある。
In the gravity concentration method, sludge is settled by gravity and concentrated by using a gravity concentration tank, a coagulation concentration tank, a settling tank, or the like. Further, in order to improve the solid-liquid separation performance and the concentrateability, a scraper may be installed in such a settling tank or the like.
Since the gravity concentration method uses gravity, it does not require energy for concentrating sludge, and the maintenance cost is low. On the other hand, the properties of the concentrated sludge and the separated liquid obtained after concentration tend to fluctuate due to the fluctuation of the properties of the raw water, and the treatment performance is not constant. In addition, the concentrated concentration of concentrated sludge is relatively low, and there is a risk that the sludge disposal cost will increase due to an increase in the amount of sludge generated, and that the deterioration of the separated liquid water quality will adversely affect the water treatment system.

機械濃縮法には、遠心式、常圧浮上式またはベルト式等がある。このうち遠心式は、高速で回転する遠心分離機によって、比重が1よりも大きい汚泥を分離するものである。
機械式濃縮法は、重力濃縮法と比較すると、原水の性状変動にもある程度対応することができ、濃縮汚泥濃度やSS(浮遊物質)回収率等の処理性能を安定させやすい。その反面、設備を運転するための操作が煩雑であることに加え、運転時のエネルギー消費量が多く、設備の状態を良好に維持するための定期的なメンテナンス作業を要するなど、運転や維持管理のためのコストは比較的高価になる。例えば遠心式では、高速回転によって汚泥の分離をするため、エネルギーの消費量が多く、音や振動等への対策が必要であり、安全を確保するための定期的なメンテナンスも要するため、その運転や維持管理のコストは高くなる。
The mechanical concentration method includes a centrifugal type, a normal pressure levitation type, a belt type and the like. Of these, the centrifugal type separates sludge having a specific gravity of more than 1 by a centrifuge that rotates at high speed.
Compared with the gravity concentration method, the mechanical concentration method can cope with changes in the properties of raw water to some extent, and it is easy to stabilize the treatment performance such as the concentration of concentrated sludge and the recovery rate of SS (suspended solids). On the other hand, in addition to the complicated operation for operating the equipment, the energy consumption during operation is large, and regular maintenance work is required to maintain the equipment in good condition. The cost for is relatively expensive. For example, in the centrifugal type, sludge is separated by high-speed rotation, so it consumes a lot of energy, it is necessary to take measures against noise and vibration, and regular maintenance is required to ensure safety. And maintenance costs are high.

上記のような事情から、維持管理が容易で、設置コストが低く、処理性能が良好な固液分離装置の提供が望まれていたところ、本出願人はこれら課題を解決する固液分離装置を開発し、既に特許出願を行った(特許文献1等参照)。 Due to the above circumstances, it has been desired to provide a solid-liquid separation device that is easy to maintain, has a low installation cost, and has good processing performance. It has been developed and a patent application has already been filed (see Patent Document 1 etc.).

特開2006-263670号公報Japanese Unexamined Patent Publication No. 2006-263670 特開2007-29801号公報Japanese Unexamined Patent Publication No. 2007-29801 特許第6165968号公報Japanese Patent No. 6165968

特許文献1に開示された固液分離装置では、水槽内に、円周に分離羽根を有し、流入管から供給される流入水を受け入れる筒状回転体を設けて、これを回転させることにより、流入水を回転させるが凝集した汚泥粒子である汚泥フロックを筒状回転体の外側に流出させないようにして内部へ汚泥フロックを多量に保持することを可能とし、汚泥濃縮効率を向上させている。
この方法においては、汚泥フロックを回転体の内部に保持することを容易にするために、流入管は、その開口部が回転体の内側に位置するように設置される。ここで、回転体内部の中間から上部付近に存在する汚泥フロックは形成途中のものであり、特に結合が不安定で破壊されやすいため、流入管の開口部は水流による形成途中の汚泥フロックの破壊を最小限とする位置に配設する必要がある。そのため、特許文献1に開示された固液分離装置における流入水の投入位置の水深は、回転体の中間から下部付近となるため従来のかき寄せ機を備えた沈殿槽等よりも深くなる。
しかし、流入水の投入位置が深くなると、流入管から供給される流入水量によっては流束が回転体の下端よりも深い位置に到達しやすくなり、流入水の一部が回転体の内部に保持されずに回転体の下端から流出することになる。回転体の下端から流出した流入水は、沈殿槽等の底部付近で乱流を発生させ、この乱流は、沈殿槽等の底部付近に形成される濃縮汚泥層を撹拌する。その結果、流入水や分離液と濃縮汚泥層を形成する汚泥とが混合し、濃縮汚泥濃度の低下や分離液水質の悪化が引き起こされるおそれがある。
In the solid-liquid separation device disclosed in Patent Document 1, a cylindrical rotating body having a separation blade on the circumference and receiving the inflow water supplied from the inflow pipe is provided in the water tank, and the cylindrical rotating body is provided and rotated. , It is possible to hold a large amount of sludge flocs inside by preventing the sludge flocs, which are sludge particles that rotate the inflow water but aggregated, from flowing out to the outside of the cylindrical rotating body, and improve the sludge concentration efficiency. ..
In this method, the inflow pipe is installed so that its opening is located inside the rotating body in order to facilitate holding the sludge flocs inside the rotating body. Here, the sludge flocs existing from the middle to the upper part of the inside of the rotating body are in the process of being formed, and the bond is particularly unstable and easily broken. It is necessary to arrange it in a position that minimizes. Therefore, the water depth at the injection position of the inflow water in the solid-liquid separation device disclosed in Patent Document 1 is from the middle to the lower part of the rotating body, and is therefore deeper than that of a settling tank or the like equipped with a conventional scraper.
However, when the input position of the inflow water becomes deep, the flow flux easily reaches a position deeper than the lower end of the rotating body depending on the amount of inflow water supplied from the inflow pipe, and a part of the inflow water is held inside the rotating body. Instead, it will flow out from the lower end of the rotating body. The inflow water flowing out from the lower end of the rotating body generates a turbulent flow near the bottom of the settling tank or the like, and this turbulent flow agitates the concentrated sludge layer formed near the bottom of the settling tank or the like. As a result, the inflow water or the separation liquid and the sludge forming the concentrated sludge layer may be mixed, which may cause a decrease in the concentration of the concentrated sludge and deterioration of the water quality of the separation liquid.

上記のような乱流の発生を抑制するため、流入管から供給される原水を水平方向に分散させる機構を設けることが考えられる。そのための構成として、例えば特許文献2に開示された固液分離装置では、流入管から供給された原液を回転筒の中央に誘導する漏斗状の誘導器を設け、その誘導器の直状管部の下端を閉塞させるとともに直状管部に多数の孔を形成することが開示されている。
ここで、誘導器はその下端が回転筒の上下方向のほぼ中央に位置するように設置されるため、誘導器の直状管部に形成された多数の孔から流出する原液は、回転筒内部の中間から上部付近に供給されることになる。前述の通り、回転筒内部には汚泥フロックが保持されているが、回転筒内部の中間から上部付近に存在する汚泥フロックは形成途中のものであり、特に結合が不安定で破壊されやすい。このように不安定な汚泥フロックを多く保持する回転筒の内部の中間から上部付近に対し、継続的に原液を供給すれば、形成途中の汚泥フロックが破壊され、汚泥の沈降性を悪化させるおそれがある。
さらに、誘導器は回転筒の内部に設置されるが、回転体の内部には汚泥フロックの形成と保持をするための十分な空間を確保する必要があるため、誘導器の直状管部の直径は回転筒よりも十分に小径である必要がある。このような直状管部に多数の孔を形成すると、それぞれの孔は小径となる。このような誘導器において、その直状管部の下端が閉塞されると、原液の流出箇所は上記のような小径の孔のみに限定されることになり、誘導器から回転筒に流出する際の原液の流速が上昇することになる。その結果、水平方向への流れが形成され、この水平方向への流れが、回転筒の内部に保持された汚泥フロックを破壊し、破壊された汚泥フロックがスリットから回転筒の外部へと流出することで、分離液水質の悪化を招くおそれがある。
In order to suppress the occurrence of the above-mentioned turbulent flow, it is conceivable to provide a mechanism for horizontally dispersing the raw water supplied from the inflow pipe. As a configuration for that purpose, for example, in the solid-liquid separator disclosed in Patent Document 2, a funnel-shaped inducer for guiding the undiluted solution supplied from the inflow pipe to the center of the rotary cylinder is provided, and the straight pipe portion of the inducer is provided. It is disclosed that the lower end of the pipe is closed and a large number of holes are formed in the straight pipe portion.
Here, since the lower end of the inducer is installed so as to be located substantially in the center of the rotary cylinder in the vertical direction, the undiluted solution flowing out from a large number of holes formed in the straight tube portion of the inducer is inside the rotary cylinder. It will be supplied from the middle to the upper part. As described above, sludge flocs are held inside the rotary cylinder, but sludge flocs existing from the middle to the upper part of the inside of the rotary cylinder are in the process of being formed, and the bond is particularly unstable and easily broken. If the undiluted solution is continuously supplied from the middle to the upper part of the rotating cylinder that holds a large amount of unstable sludge flocs, the sludge flocs in the process of formation may be destroyed and the sludge sedimentation property may be deteriorated. There is.
Furthermore, although the inducer is installed inside the rotating cylinder, it is necessary to secure sufficient space inside the rotating body for forming and holding sludge flocs. The diameter needs to be sufficiently smaller than the rotating cylinder. When a large number of holes are formed in such a straight tube portion, each hole has a small diameter. In such an inducer, when the lower end of the straight tube portion is closed, the outflow point of the undiluted solution is limited to the hole having a small diameter as described above, and when the undiluted solution flows out from the inducer to the rotary cylinder. The flow velocity of the undiluted solution will increase. As a result, a horizontal flow is formed, and this horizontal flow destroys the sludge flocs held inside the rotating cylinder, and the destroyed sludge flocs flow out from the slit to the outside of the rotating cylinder. This may lead to deterioration of the quality of the separated liquid.

また、特許文献3では、流入管から供給される原水を水平方向に分散させる構成として、流入管の下方に複数のプレートからなる原水分配機構を設けることが開示されている。前記複数のプレートには、最下端に位置するプレートを除いて、前記流入管の軸を中心とした開口部が形成されており、当該開口部の大きさが上側のプレートから下側のプレートに向かうにつれて順次狭小化している。そして、プレートに衝突した原水は、外周側の水平方向に均等に分散され、各プレートで段階的に行われることで水平方向へ分散することになる。
しかし、この構成によると、供給される原水の流束が外周側から順番に各プレートに衝突することとなるため、原水の多くは最下段に位置するプレートから供給されることになる。したがって、上記構成を特許文献1や特許文献2のような固液分離装置に適用しても、原水が回転体の下部に多く供給されて回転体内部に汚泥フロックを保持することが難しくなるため、回転体内部への汚泥粒子や汚泥フロックの保持による、汚泥粒子や汚泥フロックと分離羽根の接触機会を確保して汚泥のフロック化を促進することができず、安定した濃縮性能を得るための効果的な対策とはいえない。
Further, Patent Document 3 discloses that a raw water distribution mechanism composed of a plurality of plates is provided below the inflow pipe as a configuration for horizontally dispersing the raw water supplied from the inflow pipe. Except for the plate located at the lowermost end, the plurality of plates are formed with an opening centered on the axis of the inflow pipe, and the size of the opening is changed from the upper plate to the lower plate. It is getting narrower as it goes. Then, the raw water that collides with the plates is evenly dispersed in the horizontal direction on the outer peripheral side, and is dispersed in the horizontal direction by being performed stepwise on each plate.
However, according to this configuration, the flux of the supplied raw water collides with each plate in order from the outer peripheral side, so that most of the raw water is supplied from the plate located at the lowest stage. Therefore, even if the above configuration is applied to a solid-liquid separation device such as Patent Document 1 and Patent Document 2, a large amount of raw water is supplied to the lower part of the rotating body, and it becomes difficult to hold sludge flocs inside the rotating body. By retaining sludge particles and sludge flocs inside the rotating body, it is not possible to secure contact opportunities between sludge particles and sludge flocs and the separation blades to promote sludge flocculation, and to obtain stable concentration performance. It cannot be said to be an effective measure.

さらに、汚泥のフロック化は汚泥粒子同士が接触することで進行するところ、特許文献1や特許文献2のような分離羽根を有する固液分離装置においては、分離羽根が回転体とともに回転する際に生み出す回転流が、回転体内部の分離羽根の表面付近に存在する汚泥粒子の接触頻度を高めることによって、汚泥のフロック化が一層促されることになる。したがって、回転体内部における汚泥のフロック化の効率は、分離羽根の表面に近いほど高く、回転体の中心に近いほど低くなる。
しかし、水槽に供給された原水が回転体内部に保持されないまま水槽底部に流出すると、汚泥粒子同士の接触頻度が減少するため、汚泥のフロック化の効率が低下することになる。
また、一般に水槽の水深は約4~5mである事から、施設計画上1日に処理すべき原水の量(処理量)が多くなるに従い、水面積負荷(処理量を水槽面積で除したもので、水槽内の上向流速を表す。重力による固液分装置の設計や管理に係る基本指標の一つ。)を一定の範囲に保つために水槽の口径(直径)も比例して大きくする必要がある。さらに、処理量が多くなった場合、回転体内部に汚泥フロックを保持するため、当該水槽に適用する回転体の口径も大型にする必要がある。しかし、回転体の口径が大型になると、原水が供給される位置と回転体の円周との水平距離が増加するため、原水に含まれる汚泥粒子の一部が分離羽根の表面付近まで到達する前に、通常の重力沈降により水槽底部に沈降してしまうことになる。すると、回転体内部の分離羽根の表面付近に到達する汚泥粒子が減少するため汚泥粒子の接触頻度を高めることができなくなり、汚泥のフロック化の効率が低下することになる。
このように、水槽の大型化に対応させるために回転体の口径を大型化すると、回転体内部の分離羽根の表面付近に存在する汚泥粒子の接触頻度を十分に高めることができず、汚泥のフロック化効率を高めることができなくなり、安定した濃縮性能を得にくくなる。
Further, sludge flocking progresses when sludge particles come into contact with each other. In a solid-liquid separation device having a separation blade as in Patent Document 1 and Patent Document 2, when the separation blade rotates together with a rotating body, the sludge becomes flocked. The generated rotary flow increases the contact frequency of sludge particles existing near the surface of the separation blade inside the rotating body, so that sludge flocking is further promoted. Therefore, the efficiency of sludge flocking inside the rotating body is higher as it is closer to the surface of the separation blade and lower as it is closer to the center of the rotating body.
However, if the raw water supplied to the water tank flows out to the bottom of the water tank without being held inside the rotating body, the frequency of contact between sludge particles decreases, and the efficiency of sludge flocculation decreases.
In addition, since the water depth of the water tank is generally about 4 to 5 m, the water area load (treatment amount divided by the water tank area) as the amount of raw water to be treated per day (treatment amount) increases in the facility plan. It represents the upward flow velocity in the water tank. One of the basic indicators related to the design and management of solid-liquid separation devices by gravity.) In order to keep the range within a certain range, the diameter of the water tank is also increased proportionally. There is a need. Further, when the amount of treatment increases, it is necessary to increase the diameter of the rotating body applied to the water tank in order to hold sludge flocs inside the rotating body. However, when the diameter of the rotating body becomes large, the horizontal distance between the position where the raw water is supplied and the circumference of the rotating body increases, so that some of the sludge particles contained in the raw water reach the vicinity of the surface of the separation blade. Before, it will settle to the bottom of the water tank due to normal gravity settling. Then, since the sludge particles that reach the vicinity of the surface of the separation blade inside the rotating body decrease, the contact frequency of the sludge particles cannot be increased, and the efficiency of sludge flocculation decreases.
In this way, if the diameter of the rotating body is increased in order to cope with the increase in size of the water tank, the contact frequency of sludge particles existing near the surface of the separation blade inside the rotating body cannot be sufficiently increased, and sludge It becomes impossible to increase the flocking efficiency, and it becomes difficult to obtain stable concentration performance.

上記に加え、回転体を設置した水槽では、回転体内部には、流入管によって水槽に供給された直後の原水に含まれる汚泥粒子や、汚泥粒子同士の接触により形成された汚泥フロックなどの汚泥が保持される一方で、回転体外部の水槽底部には、回転体内部に保持された汚泥が沈降し堆積して滞留時間の長い濃縮汚泥層が形成されている。
一般に、水槽内における固形物滞留時間が長くなると、汚泥の腐敗により炭酸ガスや硫化水素ガスが発生し、これらのガスが気泡として汚泥に付着することにより汚泥の浮力が増加して沈降が阻害される結果、濃縮性能が低下する。このため、水槽の底部付近で発生した乱流により筒状回転体内部の汚泥を汚泥引抜口まで掻き寄せることが困難となると、固形物滞留時間の長期化による汚泥の腐敗が発生するおそれがあることになる。さらに、腐敗した汚泥が撹拌されて水槽内に存在し続けることになり、濃縮性能を低下させるおそれがある。
そして、前記固形物滞留時間の長期化および濃縮性の低下は、水槽の口径が大きくなるほど、すなわち水槽底部面積が増大するほど起こりやすくなる。
In addition to the above, in the water tank where the rotating body is installed, sludge particles contained in the raw water immediately after being supplied to the water tank by the inflow pipe and sludge such as sludge flocs formed by contact between the sludge particles are inside the rotating body. On the other hand, sludge held inside the rotating body settles and accumulates at the bottom of the water tank outside the rotating body to form a concentrated sludge layer having a long residence time.
Generally, when the residence time of solids in a water tank is long, carbon dioxide gas and hydrogen sulfide gas are generated due to sludge decay, and these gases adhere to the sludge as bubbles, which increases the buoyancy of the sludge and inhibits sedimentation. As a result, the concentration performance is reduced. For this reason, if it becomes difficult to scrape the sludge inside the tubular rotating body to the sludge extraction port due to the turbulent flow generated near the bottom of the water tank, sludge decay may occur due to the prolonged residence time of the solid matter. It will be. Further, the rotten sludge is agitated and continues to exist in the water tank, which may deteriorate the concentration performance.
The lengthening of the solid matter residence time and the decrease in the concentration are more likely to occur as the diameter of the water tank increases, that is, as the bottom area of the water tank increases.

本発明は上記のような課題を解決するためのものであり、処理量の多い大口径の水槽の底部付近における乱流の発生や回転体内部に保持された汚泥フロックの破壊を抑制するとともに、分離羽根の表面付近に存在する汚泥粒子の接触頻度を高めることや、濃縮汚泥の脱気を促進して汚泥の沈降性を回復させることにより、安定した濃縮性能を得ることができる固液分離装置を提供することを目的とする。 The present invention is for solving the above-mentioned problems, and suppresses the generation of turbulent flow near the bottom of a large-diameter water tank having a large amount of treatment and the destruction of sludge flocs held inside the rotating body, and at the same time. A solid-liquid separation device that can obtain stable concentration performance by increasing the contact frequency of sludge particles existing near the surface of the separation blade and promoting degassing of concentrated sludge to restore sludge sedimentation. The purpose is to provide.

(構成1)
水槽と、前記水槽に原水を供給する供給管と、前記水槽内に配設され、円周上に複数枚の短冊状の分離羽根が間隔をもって設けられた筒状の回転体と、前記回転体の中心に、軸線を鉛直方向に向けて配設された回転軸と、前記水槽の底部に配設され、汚泥を前記水槽外に排出する汚泥排出管とを有する固液分離装置において、前記回転体の内側に、側面に一以上の開孔を有する筒と、前記供給管から供給された原水を鉛直方向または水平方向に分散させる部材とを備えることを特徴とする固液分離装置。
(構成2)
円周上に複数枚の短冊状の分離羽根が間隔をもって設けられた内回転体を有し、前記内回転体は前記回転体の内径より小径であることを特徴とする構成1に記載の固液分離装置。
(構成3)
表面を水平方向および鉛直方向に対して傾斜させた一以上の板状の部材が設けられていることを特徴とする構成1又は2に記載の固液分離装置。
(Structure 1)
A water tank, a supply pipe for supplying raw water to the water tank, a cylindrical rotating body arranged in the water tank and having a plurality of strip-shaped separating blades provided at intervals on the circumference, and the rotating body. In a solid-liquid separator having a rotating shaft arranged at the center of the water tank with its axis directed in the vertical direction and a sludge discharge pipe arranged at the bottom of the water tank and discharging sludge to the outside of the water tank. A solid-liquid separation device comprising a cylinder having one or more openings on the side surface inside the body and a member for dispersing raw water supplied from the supply pipe in the vertical direction or the horizontal direction.
(Structure 2)
The solid according to configuration 1, wherein the inner rotating body has an inner rotating body in which a plurality of strip-shaped separating blades are provided at intervals on the circumference, and the inner rotating body has a diameter smaller than the inner diameter of the rotating body. Liquid separator.
(Structure 3)
The solid-liquid separation device according to configuration 1 or 2, wherein one or more plate-shaped members whose surfaces are inclined with respect to the horizontal direction and the vertical direction are provided.

本発明の固液分離装置によれば、処理量の多い大口径の固液分離装置であっても水槽の底部付近における乱流の発生や回転体内部に保持された汚泥フロックの破壊を抑制することが可能となるほか、回転体内部に保持された汚泥粒子や汚泥フロックと分離羽根の接触機会を確保して汚泥のフロック化を促進することや、濃縮汚泥の脱気を促進して汚泥の沈降性を回復させることが可能となり、安定した濃縮性能を得ることができる。 According to the solid-liquid separation device of the present invention, even in a large-diameter solid-liquid separation device having a large processing amount, it is possible to suppress the generation of turbulence near the bottom of the water tank and the destruction of sludge flocs held inside the rotating body. In addition to this, it is possible to secure contact opportunities between sludge particles and sludge flocs held inside the rotating body and the separation blades to promote sludge flocculation, and to promote degassing of concentrated sludge to promote sludge. It is possible to restore the sedimentation property, and stable concentration performance can be obtained.

本発明の実施の形態1における固液分離装置を示す概略側面図である。It is a schematic side view which shows the solid-liquid separation apparatus in Embodiment 1 of this invention. 本発明の実施の形態2における固液分離装置を示す概略側面図である。It is a schematic side view which shows the solid-liquid separation apparatus in Embodiment 2 of this invention. 本発明の実施の形態3における固液分離装置を示す概略側面図である。It is a schematic side view which shows the solid-liquid separation apparatus in Embodiment 3 of this invention. 回転体の内部における分離羽根の設置状態を示す図である。It is a figure which shows the installation state of the separation vane inside a rotating body. 部材11の設置状態を示す図である。It is a figure which shows the installation state of the member 11. 回転体3の外部に形成された分離液層SP、汚泥層M、液層Lおよび分離羽根4の垂直断面を示す模式図である。It is a schematic diagram which shows the vertical cross section of the separation liquid layer SP, sludge layer M, liquid layer L and the separation vane 4 formed on the outside of the rotating body 3. 実施例1の固液分離装置と従来の固液分離装置における、濃縮汚泥濃度と分離液SS濃度の経日変化を示す図である。It is a figure which shows the diurnal change of the concentrated sludge concentration and the separation liquid SS concentration in the solid-liquid separation apparatus of Example 1 and the conventional solid-liquid separation apparatus. 実施例1の固液分離装置と従来の固液分離装置における、水槽内の汚泥濃度の分布を示す図である。It is a figure which shows the distribution of the sludge concentration in the water tank in the solid-liquid separation apparatus of Example 1 and the conventional solid-liquid separation apparatus. 実施例2の固液分離装置と実施例1の固液分離装置における濃縮汚泥濃度および分離液SS濃度の測定結果を比較した図である。It is a figure which compared the measurement result of the concentrated sludge concentration and the separation liquid SS concentration in the solid-liquid separation apparatus of Example 2 and the solid-liquid separation apparatus of Example 1. FIG. 実施例3の固液分離装置を適用した水槽と実施例2の固液分離装置を適用した水槽における分離液SS濃度の測定結果を比較したものである。The measurement results of the separation liquid SS concentration in the water tank to which the solid-liquid separation device of Example 3 was applied and the water tank to which the solid-liquid separation device of Example 2 was applied were compared. 実施例3の調査の調査期間中における流入汚泥の条件を示す表である。It is a table which shows the condition of the inflow sludge during the investigation period of the investigation of Example 3. 実施例3の固液分離装置を適用した水槽と実施例2の固液分離装置を適用した水槽における濃縮汚泥濃度を示す表である。It is a table which shows the concentration of concentrated sludge in the water tank to which the solid-liquid separation apparatus of Example 3 was applied, and the water tank to which the solid-liquid separation apparatus of Example 2 was applied. 内回転体10の外部に形成された分離液層SP2、汚泥層M2、液層L2および分離羽根10aの垂直断面を示す模式図である。It is a schematic diagram which shows the vertical cross section of the separation liquid layer SP2, sludge layer M2, liquid layer L2 and separation blade 10a formed on the outside of the inner rotating body 10.

以下、本発明の実施態様について、図面を参照しながら具体的に説明する。なお、以下の実施態様は、本発明を具体化する際の一形態であって、本発明をその範囲内に限定するものではない。 Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. It should be noted that the following embodiment is an embodiment of the present invention and does not limit the present invention to the scope thereof.

(実施の形態1)
図1は、本発明を実施するための実施の形態1における固液分離装置を説明するための概略側面図である。
この固液分離装置は、水槽1と、水槽1に原水を供給する供給管2と、円周上に複数枚の短冊状の分離羽根4が間隔をもって設けられた筒状の回転体3と、回転体の中心に軸線を鉛直方向に向けて配設された回転軸5と、水槽1内で沈降した汚泥をかき寄せるかき寄せ機6と、水槽1の底部に配設され、汚泥を水槽1外に排出する汚泥排出管(図示せず)と、上端および下端が開口し、側面に一以上の開孔8aを有する筒8と、供給管2から供給された原水を鉛直方向または水平方向に分散させる部材9を備える。部材9は、回転体3と同軸上に配設され、凸部が前記水槽の底部とは反対の方向を向いた形状をしている。
(Embodiment 1)
FIG. 1 is a schematic side view for explaining a solid-liquid separation device according to the first embodiment for carrying out the present invention.
This solid-liquid separation device includes a water tank 1, a supply pipe 2 for supplying raw water to the water tank 1, a cylindrical rotating body 3 in which a plurality of strip-shaped separation blades 4 are provided at intervals on the circumference. A rotating shaft 5 arranged at the center of the rotating body with its axis directed in the vertical direction, a scraper 6 for attracting sludge settled in the water tank 1, and a sludge arranged at the bottom of the water tank 1 outside the water tank 1. A sludge discharge pipe (not shown), a cylinder 8 having an opening at the upper end and a lower end and having one or more openings 8a on the side surface, and raw water supplied from the supply pipe 2 are dispersed vertically or horizontally. A member 9 for making the member 9 is provided. The member 9 is arranged coaxially with the rotating body 3 and has a shape in which the convex portion faces in the direction opposite to the bottom portion of the water tank.

水槽の平面形状は、円形、四角形または多角形等に形成することができるが、実施の形態1では円形としている。水槽1の底部は、沈降または濃縮した汚泥を効率的に回収できるように、水槽1の底部の中心に向かって下降傾斜するテーパ状にすることが好ましい。なお、テーパ部の傾斜角度(勾配)は、例えば5/100とすることができる。
水槽1は、回転体3が位置する槽上部の反応部12と、反応部12の下方の沈殿部13とを備え、沈殿部13には沈降した汚泥を収容するようになっている。なお、回転体3の上端は、水槽1の水面WLとほぼ一致させてある。また、沈殿部13には、回転軸5と連結されたかき寄せ機6が設けられている。回転軸5は、図示しない駆動機と連結されており、この回転軸5が駆動機によって回転することにより、かき寄せ機6が低速度で回転し、沈殿部13に沈降した汚泥は、このかき寄せ機6によって反応部12に巻き上げられることなく水槽1の底の中央部に集められる。集められた汚泥は、沈殿部13の下部に接続された図示しない汚泥排出管から、自然流下方式で排出されるか、または図示しないポンプ等によって強制的に排出される。そして、水槽1の上部には図示しない越流堰が設けられ、この越流堰を越流した分離液は、図示しない分離液排出管から系外に排出される。
The planar shape of the water tank can be formed into a circle, a quadrangle, a polygon, or the like, but in the first embodiment, it is a circle. The bottom of the water tank 1 is preferably tapered so as to be inclined downward toward the center of the bottom of the water tank 1 so that sludge that has settled or concentrated can be efficiently recovered. The inclination angle (gradient) of the tapered portion can be, for example, 5/100.
The water tank 1 includes a reaction section 12 at the upper part of the tank where the rotating body 3 is located, and a settling section 13 below the reaction section 12, and the settling section 13 is adapted to contain sludge that has settled. The upper end of the rotating body 3 is substantially aligned with the water surface WL of the water tank 1. Further, the settling portion 13 is provided with a scraper 6 connected to the rotating shaft 5. The rotary shaft 5 is connected to a drive machine (not shown), and when the rotary shaft 5 is rotated by the drive machine, the scraper 6 rotates at a low speed, and sludge settled in the settling portion 13 is collected by the scraper. 6 collects in the central part of the bottom of the water tank 1 without being wound up by the reaction part 12. The collected sludge is discharged by a natural flow method from a sludge discharge pipe (not shown) connected to the lower part of the settling portion 13, or is forcibly discharged by a pump (not shown) or the like. An overflow weir (not shown) is provided in the upper part of the water tank 1, and the separation liquid overflowing the overflow weir is discharged to the outside of the system from a separation liquid discharge pipe (not shown).

供給管2は、その大部分を占める本体2aと、本体2aの端部において原水を鉛直下方に向けて供給する鉛直部2bを設けてあり、鉛直部2bの下端は開口させてある。この開口部分は、回転体3の内部に配設された筒8内に原水が供給されるように配置する。
さらに、供給管2は、図示のように水槽1の上方から導くことができるが、水槽1の壁面を貫通させて導くこともできる。
なお、原水は、間欠的または連続的に流入させることができる。
The supply pipe 2 is provided with a main body 2a that occupies most of the main body 2a and a vertical portion 2b that supplies raw water vertically downward at the end of the main body 2a, and the lower end of the vertical portion 2b is opened. This opening portion is arranged so that raw water is supplied into the cylinder 8 arranged inside the rotating body 3.
Further, the supply pipe 2 can be guided from above the water tank 1 as shown in the figure, but can also be guided by penetrating the wall surface of the water tank 1.
The raw water can be flowed intermittently or continuously.

回転体3は、かき寄せ機6と連結されており、このかき寄せ機6は回転軸5と連結されている。回転軸5は図示しない駆動機と連結しており、この駆動機によって回転軸5が低速で回転駆動されることによって、回転体3は回転する。
そして、図4で示されるように、回転体3には、複数枚の短冊状の分離羽根4が所定間隔をおいて同一円周上に隣接配置され、隣接する分離羽根4同士の間に形成された隙間は鉛直方向に細長いスリット3aとなっている。
The rotating body 3 is connected to the scraping machine 6, and the scraping machine 6 is connected to the rotating shaft 5. The rotary shaft 5 is connected to a drive (not shown), and the rotary shaft 5 is rotationally driven at a low speed by the drive to rotate the rotating body 3.
Then, as shown in FIG. 4, a plurality of strip-shaped separation blades 4 are arranged adjacent to each other on the same circumference at predetermined intervals on the rotating body 3, and are formed between the adjacent separation blades 4. The gap formed is a slit 3a elongated in the vertical direction.

実施の形態1の分離羽根4は、短冊状であり、その水平断面形状は、図4に示すように「く」の字状としてある。これらの分離羽根4は、それぞれ所定幅を有する一方の第1短辺4aと他方の第2短辺4bとが屈曲部4cにおいて折り曲げられている。これらの短辺同士の交差角度は鈍角であり、例えば図4においては150度(接線に対して30度)としてある。
なお、第2短辺4bは、円形の回転体3内でその接線方向に沿って配置され、結果として、第1短辺4aは回転体3の内方に向けられている。そして、互いに隣接する分離羽根4は、一方の分離羽根4の第1短辺4aの端部と、他方の分離羽根4の屈曲部4cとの間隔Sを同一長さにするとともに、一方の分離羽根4の第1短辺4aの端部と、他方の分離羽根4の第2短辺4bの端部との間隔、すなわちスリット3aの幅が同じになるように配置してある。
図4の例では、これらの間隔Sおよびスリット3aは、すべての分離羽根4同士で一致させてあるが、これらは必ずしも等間隔で設けられる必要はない。これらは、ランダムの長さの間隔Sまたはスリット3aであっても、また、一つ置き、二つ置きに同一の間隔または長さとなるように設けてもよい。
The separation blade 4 of the first embodiment has a strip shape, and its horizontal cross-sectional shape is a dogleg shape as shown in FIG. In these separation blades 4, one first short side 4a and the other second short side 4b, each having a predetermined width, are bent at the bent portion 4c. The crossing angle between these short sides is an obtuse angle, for example, 150 degrees (30 degrees with respect to the tangent line) in FIG.
The second short side 4b is arranged along the tangential direction in the circular rotating body 3, and as a result, the first short side 4a is directed inward of the rotating body 3. Then, the separation blades 4 adjacent to each other have the same length between the end of the first short side 4a of one separation blade 4 and the bent portion 4c of the other separation blade 4, and one of the separation blades 4 is separated. The distance between the end of the first short side 4a of the blade 4 and the end of the second short side 4b of the other separation blade 4, that is, the width of the slit 3a is the same.
In the example of FIG. 4, these intervals S and the slits 3a are matched with each other in all the separation blades 4, but they do not necessarily have to be provided at equal intervals. These may be random length intervals S or slits 3a, or may be provided so that the intervals or lengths are the same every other or every two.

次に、実施の形態1における回転体3の作用を、図4に基づいて説明する。
汚泥等の固形分と水分から構成される原水は供給管2から筒8を通って回転体3の内部に供給される。回転体3は低速度で回転(例えば図4では時計回り方向に回転)しているので、回転体3の内部に供給された原水は、回転体3に配設された分離羽根4の移動に同伴して流動する。また、回転体3の内部の中間から上部付近に保持された形成途中の汚泥フロック3bは分離羽根4よりも遅い速度で分離羽根4と同じ方向に移動し、他の形成途中の汚泥フロックと接触を繰り返し、回転体3の中心方向に沈降しつつ安定した汚泥フロックとして集まり保持される。また、スリット3aから流出しようとする形成途中の汚泥フロック3bは、分離羽根4の表面に接触して回転体3の内側へと押し戻され、汚泥フロック形成を繰り返す。
このようにして固形分である汚泥フロック3bが回転体3の内部に保持される一方で、水分はスリット3aを通過して、水槽1の上方に分離液として上昇した後、越流堰を越流して系外に排出されることになる。このような回転体3によれば、スリット3aを介して原水中の水分が回転体3外へ流出し、汚泥等の固形分は回転体3内に保持されるので、汚泥の固液分離、濃縮、沈降が効率的に行われる。
Next, the operation of the rotating body 3 in the first embodiment will be described with reference to FIG.
Raw water composed of solid content such as sludge and water is supplied from the supply pipe 2 to the inside of the rotating body 3 through the cylinder 8. Since the rotating body 3 rotates at a low speed (for example, in the clockwise direction in FIG. 4), the raw water supplied to the inside of the rotating body 3 moves the separation blade 4 arranged on the rotating body 3. It flows with it. Further, the sludge floc 3b during formation held from the middle to the upper part of the inside of the rotating body 3 moves in the same direction as the separation vane 4 at a slower speed than the separation vane 4, and comes into contact with other sludge flocs during formation. Repeatedly, the sludge flocs are collected and held as stable sludge flocs while sinking toward the center of the rotating body 3. Further, the sludge floc 3b that is about to flow out from the slit 3a comes into contact with the surface of the separation blade 4 and is pushed back to the inside of the rotating body 3, and sludge floc formation is repeated.
In this way, the sludge floc 3b, which is a solid content, is held inside the rotating body 3, while the water passes through the slit 3a, rises above the water tank 1 as a separation liquid, and then passes over the overflow weir. It will be washed away and discharged to the outside of the system. According to such a rotating body 3, water in the raw water flows out of the rotating body 3 through the slit 3a, and solid content such as sludge is held in the rotating body 3, so that sludge is separated into solid and liquid. Concentration and sedimentation are performed efficiently.

また、出願人は、回転体3の内部に保持される汚泥と分離羽根4との接触機会が多いほど、汚泥の固液分離性や濃縮の効率が良好になることを明らかにしている(例えば特許第5468316号)。
すなわち、原水に含まれる汚泥粒子や回転体3の内部に保持された汚泥フロックは、供給管2によって供給された原水が回転体3の内部に分散する際に生じる水流により、分離羽根4の表面付近まで到達する。そして、これらの汚泥粒子や汚泥フロックは、分離羽根4に接触して回転体3の内部に押し戻されつつ、分離羽根4の移動に同伴して回転体3の回転方向と同じ方向に低速で流動する。その結果、分離羽根4の表面付近には汚泥粒子や汚泥フロックが滞留しやすくなり、汚泥粒子や汚泥フロックが互いに接触する機会が増加するため、沈降性(固液分離性)や圧密性(濃縮の効率)の高い、安定した汚泥フロックが形成されやすくなる。
このように、回転体3の内部に保持される汚泥と分離羽根4との接触機会が多いほど、汚泥粒子や汚泥フロックが互いに接触する機会も増加する結果、汚泥の固液分離性や濃縮の効率は良好になる。
Further, the applicant has clarified that the more the sludge held inside the rotating body 3 comes into contact with the separation blade 4, the better the solid-liquid separability and concentration efficiency of the sludge (for example). Patent No. 5468316).
That is, sludge particles contained in the raw water and sludge flocs held inside the rotating body 3 are present on the surface of the separating blade 4 due to the water flow generated when the raw water supplied by the supply pipe 2 is dispersed inside the rotating body 3. Reach near. Then, these sludge particles and sludge flocs come into contact with the separation blade 4 and are pushed back into the rotating body 3, and flow at a low speed in the same direction as the rotation direction of the rotating body 3 along with the movement of the separating blade 4. do. As a result, sludge particles and sludge flocs tend to stay near the surface of the separation blade 4, and the chances of sludge particles and sludge flocs coming into contact with each other increase. (Efficiency), stable sludge flocs are likely to be formed.
As described above, the greater the chance of contact between the sludge held inside the rotating body 3 and the separation blade 4, the greater the chance that sludge particles and sludge flocs come into contact with each other. Efficiency will be good.

また、回転体3が低速度で回転することにより、回転体3の外部に形成された汚泥層Mと分離羽根4とが接触するため、分離羽根4の外表面付近にある汚泥層Mが物理的にかき分けられて縦方向に筒状の液層Lが形成される。図6は回転体3の外部に形成された分離液層SP、汚泥層M、液層Lおよび分離羽根4の垂直断面を示す模式図である。図6中、上向きの矢印は水分の上向流を、横向きの矢印は汚泥層M中の水分が液層Lに向かう流れを、そして下向きの矢印は汚泥の沈降を表している。また、汚泥層M中の丸は沈降する汚泥を表しており、丸の密度で濃度分布を表している。なお、分離羽根4近傍については、水分および汚泥の移動する方向を示す矢印を見やすくするため便宜上薄く表記したものであり、濃度分布に関係するものではない。分離羽根4によって形成された筒状の液層Lによって周囲の汚泥層M中の水分が集まると、固液分離が促進されるとともに、汚泥の圧密工程への移行が早まるため、濃縮汚泥層Dの高濃度化が可能となる。 Further, as the rotating body 3 rotates at a low speed, the sludge layer M formed on the outside of the rotating body 3 and the separation blade 4 come into contact with each other, so that the sludge layer M near the outer surface of the separation blade 4 is physically formed. A tubular liquid layer L is formed in the vertical direction. FIG. 6 is a schematic view showing a vertical cross section of the separation liquid layer SP, the sludge layer M, the liquid layer L, and the separation blade 4 formed on the outside of the rotating body 3. In FIG. 6, the upward arrow indicates the upward flow of water, the horizontal arrow indicates the flow of water in the sludge layer M toward the liquid layer L, and the downward arrow indicates the sedimentation of sludge. Further, the circles in the sludge layer M represent the settling sludge, and the density of the circles represents the concentration distribution. The vicinity of the separation blade 4 is shown thinly for convenience so that the arrow indicating the moving direction of water and sludge can be easily seen, and is not related to the concentration distribution. When the water in the surrounding sludge layer M is collected by the tubular liquid layer L formed by the separation blade 4, solid-liquid separation is promoted and the transition of the sludge to the consolidation process is accelerated, so that the concentrated sludge layer D It is possible to increase the concentration of sludge.

筒8は、図1に示されるように、筒状(上面と下面が開口)であり、その側面に一以上の開孔8aを有している。筒8は、その内部に供給管2から供給される原水を受け入れ、開孔8aを介して原水の一部を回転体3の内部に供給する。開孔8aの直径は、例えば、Φ100~200mmとすることができる。なお、開孔8aは、全ての開孔8aの面積を合計した面積と筒8の下端の開口の面積との比が1対1となるように形成することが好ましい。
筒8は、回転体3の内部に原水を供給できるのであればいかなる位置に設置しても良いが、実施形態においては、回転体3の内部に、回転体3と同軸上になるように配設するものを例としている。また、かき寄せ機6に設けた図示しない支持体によって筒8を支持させることにより、筒8は、駆動機を動力として回転駆動することができるようになる。
なお、筒8を回転体3の内部に設置するため、筒8の直径は、回転体3の内径よりも小径とする。
As shown in FIG. 1, the cylinder 8 has a cylindrical shape (upper surface and lower surface are openings), and has one or more openings 8a on its side surface. The cylinder 8 receives the raw water supplied from the supply pipe 2 inside the cylinder 8, and supplies a part of the raw water to the inside of the rotating body 3 through the opening 8a. The diameter of the opening 8a can be, for example, Φ100 to 200 mm. The openings 8a are preferably formed so that the ratio of the total area of the areas of all the openings 8a to the area of the openings at the lower end of the cylinder 8 is 1: 1.
The cylinder 8 may be installed at any position as long as raw water can be supplied to the inside of the rotating body 3, but in the embodiment, the cylinder 8 is arranged inside the rotating body 3 so as to be coaxial with the rotating body 3. The example is the one to be installed. Further, by supporting the cylinder 8 by a support (not shown) provided on the scraping machine 6, the cylinder 8 can be rotationally driven by using the drive machine as a power source.
Since the cylinder 8 is installed inside the rotating body 3, the diameter of the cylinder 8 is smaller than the inner diameter of the rotating body 3.

前述のように、汚泥の固液分離性や濃縮の効率は、回転体3の内部に保持される汚泥と分離羽根4との接触機会が多いほど良好になる。ところが、供給管2から供給された原水の多くは下方向に流出するため下向流が発生し、この下向流が、回転体3の内部に汚泥を保持することを難しくさせたり、回転体3の内部に保持される汚泥と分離羽根4との接触機会を減少させたり、水槽1の底部で乱流を発生させたりするおそれがある。
ここで、側面に一以上の開孔8aを有する筒8を回転体3の内部に設けることにより、供給管2から供給された原水の一部は、これらの開孔8aから流出できるようになる。開孔8aによって原水の一部が水平方向へと流出することにより、回転体3の内部に原水を保持しやすくなるため、供給管2の鉛直部2bの下端開口の位置は従来の固液分離装置と比較して浅い位置に設置することが可能となり、回転体3の内部において下向流の発生が抑制されるため水槽1の底部における乱流の発生を抑制することもできる。また、原水の一部が開孔8aから水平方向に分散流出する際に形成される水平方向の水流により、原水や回転体3内部に保持された汚泥が分離羽根4に到達しやすくなるため、汚泥と分離羽根4との接触機会が増加して、汚泥フロックが形成されやすくなる。このように、ある程度の大きさの“開孔8aから水平方向に分散流出する際に形成される水平方向の水流”が形成されることは、汚泥フロックの形成促進に有用であるが、その水流が強くなりすぎると、水流が汚泥フロックを破壊し、逆効果となるおそれがある。本実施形態の固液分離装置では、下端が開口している筒8を用いると共に、以下に説明するように、部材9を配することによって、“開孔8aから水平方向に分散流出する際に形成される水平方向の水流”を最適化することを可能としているものである。
As described above, the solid-liquid separability and concentration efficiency of sludge become better as the sludge held inside the rotating body 3 has more contact opportunities with the separation blade 4. However, most of the raw water supplied from the supply pipe 2 flows downward, so that a downward flow is generated, and this downward flow makes it difficult to hold sludge inside the rotating body 3 or the rotating body. There is a risk of reducing the chance of contact between the sludge held inside the water tank 3 and the separation blade 4, or causing turbulence at the bottom of the water tank 1.
Here, by providing the cylinder 8 having one or more openings 8a on the side surface inside the rotating body 3, a part of the raw water supplied from the supply pipe 2 can flow out from these openings 8a. .. Since a part of the raw water flows out horizontally due to the opening 8a, it becomes easier to hold the raw water inside the rotating body 3, so that the position of the lower end opening of the vertical portion 2b of the supply pipe 2 is the conventional solid-liquid separation. It can be installed at a shallower position than the device, and the generation of downward flow is suppressed inside the rotating body 3, so that the generation of turbulent flow at the bottom of the water tank 1 can also be suppressed. Further, the horizontal water flow formed when a part of the raw water is dispersed and discharged in the horizontal direction from the opening 8a makes it easier for the raw water and sludge held inside the rotating body 3 to reach the separation blade 4. The chance of contact between the sludge and the separation blade 4 increases, and sludge flocs are more likely to be formed. In this way, the formation of a "horizontal water flow formed when the sludge flocs flow out horizontally from the opening 8a" having a certain size is useful for promoting the formation of sludge flocs, but the water flow If it becomes too strong, the water flow may destroy the sludge flocs and have the opposite effect. In the solid-liquid separation device of the present embodiment, a cylinder 8 having an open lower end is used, and as described below, by arranging the member 9, "when dispersed and outflowing from the opening 8a in the horizontal direction". It makes it possible to optimize the "horizontal water flow" that is formed.

部材9は、鉛直方向に対して傾斜面を有しており、供給管2から筒8に供給された原水の一部を鉛直方向または水平方向に分散させる。部材9の形状は、供給管2から筒8に供給された原水の一部を鉛直方向または水平方向に分散させることができる形状であればいかなる形状でもよく、例えば、板状、円錐形や四角錐形などの錐形状、逆V字状または傘状や、中心部は鉛直に近く、外周部に行くに従い水平に近くなる傾斜面を有する形状等にできるが、錐形状とするのが好ましい。また、部材9は、回転体3の内部であればいかなる位置に配設しても良いが、開孔8aから流出する原水の流速を過度に大きくすることなく、供給管2から筒8に供給された原水の一部を鉛直方向または水平方向に効率よく分散させるには、部材9によって筒8を閉塞しないように配設することが好ましい。
例えば、筒8の内部または下端に部材9を配設する場合は、部材9によって筒8を閉塞しないようにするため、部材9は筒8の直径より小さくする。このようにすることで、供給管2から筒8に供給された原水は、筒8の下端の開口から流出するまでに部材9と接触し、その一部が水平方向に誘導され、残部は部材9の縁部から水槽の底部に向けて流出することになる。これにより、供給管2から原水が供給される際に形成された下向流の流速を緩和できるとともに、開孔8aから流出する原水の流速が過度に大きくなることを防ぐことも可能となる。
一方で、筒8の下方に部材9を配設する場合においては、供給管2から筒8に供給された原水のうち、一部は開孔8aから流出するが、残部は筒8の下端の開口から流出することになる。そこで、部材9を筒8の直径以上の大きさとし、筒8の下端の開口から流出する原水の全量を部材9と接触させる。これにより、供給管2から原水が供給される際に形成された下向流の流速を緩和することができる。
以上のように、部材9を筒8の下端を閉塞させないように配設することにより、供給管2から筒8に供給された原水が回転体3の下部に多く供給されることを抑制することができるので、回転体3の内部に汚泥フロックを保持することが容易となる。
The member 9 has an inclined surface with respect to the vertical direction, and a part of the raw water supplied from the supply pipe 2 to the cylinder 8 is dispersed in the vertical direction or the horizontal direction. The shape of the member 9 may be any shape as long as it can disperse a part of the raw water supplied from the supply pipe 2 to the cylinder 8 in the vertical direction or the horizontal direction. It can be a pyramid shape such as a pyramid shape, an inverted V shape or an umbrella shape, or a shape having an inclined surface whose central portion is close to vertical and which becomes closer to horizontal toward the outer peripheral portion, but the conical shape is preferable. Further, the member 9 may be arranged at any position as long as it is inside the rotating body 3, but the member 9 is supplied from the supply pipe 2 to the cylinder 8 without excessively increasing the flow velocity of the raw water flowing out from the opening 8a. In order to efficiently disperse a part of the raw water in the vertical direction or the horizontal direction, it is preferable to dispose of the cylinder 8 so as not to be blocked by the member 9.
For example, when the member 9 is arranged inside or at the lower end of the cylinder 8, the member 9 is made smaller than the diameter of the cylinder 8 so that the member 9 does not block the cylinder 8. By doing so, the raw water supplied from the supply pipe 2 to the cylinder 8 comes into contact with the member 9 until it flows out from the opening at the lower end of the cylinder 8, a part of the raw water is guided in the horizontal direction, and the rest is the member. It will flow out from the edge of 9 toward the bottom of the water tank. As a result, the flow velocity of the downward flow formed when the raw water is supplied from the supply pipe 2 can be relaxed, and it is also possible to prevent the flow velocity of the raw water flowing out from the opening 8a from becoming excessively large.
On the other hand, when the member 9 is arranged below the cylinder 8, part of the raw water supplied from the supply pipe 2 to the cylinder 8 flows out from the opening 8a, but the rest is at the lower end of the cylinder 8. It will flow out from the opening. Therefore, the member 9 is set to a size equal to or larger than the diameter of the cylinder 8, and the total amount of raw water flowing out from the opening at the lower end of the cylinder 8 is brought into contact with the member 9. As a result, the flow velocity of the downward flow formed when the raw water is supplied from the supply pipe 2 can be relaxed.
As described above, by arranging the member 9 so as not to block the lower end of the cylinder 8, it is possible to prevent a large amount of raw water supplied from the supply pipe 2 to the cylinder 8 from being supplied to the lower portion of the rotating body 3. Therefore, it becomes easy to hold the sludge floc inside the rotating body 3.

次に、実施の形態1における部材9の作用を、図1に基づいて説明する。
筒8の下方に部材9を配設することにより、供給管2から筒8に供給された原水は、供給管2の開口から鉛直下方向に流下した後、その一部は開孔8aを通過することにより水平方向に分散して回転体3の内部に流出し、残部は筒8の内部を流下して部材9と接触することにより、水平方向に分散して回転体3の内部に流出する。
Next, the operation of the member 9 in the first embodiment will be described with reference to FIG.
By disposing the member 9 below the cylinder 8, the raw water supplied from the supply pipe 2 to the cylinder 8 flows vertically downward from the opening of the supply pipe 2, and then a part of the raw water passes through the opening 8a. By doing so, it is dispersed in the horizontal direction and flows out to the inside of the rotating body 3, and the rest flows down the inside of the cylinder 8 and comes into contact with the member 9, so that it is dispersed in the horizontal direction and flows out to the inside of the rotating body 3. ..

このような作用を有する部材9は、供給管2から供給された原水が、筒8の内部を流下してそのまま水槽1の底部に向けて供給されることを抑制する。すなわち、部材9の配設により、原水の処理量が多く、大口径となる水槽においても底部における乱流の発生を抑制することができる。 The member 9 having such an action suppresses the raw water supplied from the supply pipe 2 from flowing down the inside of the cylinder 8 and being supplied as it is toward the bottom of the water tank 1. That is, by arranging the members 9, it is possible to suppress the generation of turbulent flow at the bottom even in a water tank having a large amount of raw water to be treated and having a large diameter.

また、部材9を筒8の下端を閉塞させないように配設することで、供給管2から筒8に供給された原水は、供給管2の開口から鉛直下方向に流下した後、その一部は開孔8aから、残部は筒8の内部を流下して筒8の下端から、回転体3の内部へと流出するため、原水の全量が開孔8aから流出されることを抑制できる。つまり、部材9によって筒8の下端を閉塞させるように配設した場合、供給管2によって供給された原水は、その全量が開孔8aから流出することになるが、開孔8aの直径はΦ100~200mmと小径であるため、供給された原水が開孔8aから回転体3の内部に向けて流出する際の流速は大きくなる。
ここで、回転体3の内部には汚泥フロックが保持されているが、回転体3内部の中間から上部付近に存在する汚泥フロックは形成途中のものであり、沈降性が低く、圧密性も高くない。また、この汚泥フロックの結合は不安定であり破壊されやすい。開孔8aから流出した原水の流速が過度に大きければ、不安定な汚泥フロックの結合が破壊されて汚泥の沈降性を悪化させるおそれが高まるとともに、破壊されて小粒となった汚泥フロックをスリット3aから回転体3の外部へ押し出してしまうおそれも高まるため、分離液の水質を悪化させるおそれがある。そこで、部材9を筒8の下端を閉塞させないように配設することにより、汚泥フロックの結合を破壊することや、汚泥フロックがスリット3aから回転体3の外部へと流出することを抑制することができる。
Further, by arranging the member 9 so as not to block the lower end of the cylinder 8, the raw water supplied from the supply pipe 2 to the cylinder 8 flows vertically downward from the opening of the supply pipe 2 and then a part thereof. Since the remaining portion flows down the inside of the cylinder 8 from the opening 8a and flows out from the lower end of the cylinder 8 to the inside of the rotating body 3, it is possible to prevent the entire amount of raw water from flowing out from the opening 8a. That is, when the member 9 is arranged so as to close the lower end of the cylinder 8, the entire amount of the raw water supplied by the supply pipe 2 flows out from the opening 8a, but the diameter of the opening 8a is Φ100. Since the diameter is as small as about 200 mm, the flow velocity when the supplied raw water flows out from the opening 8a toward the inside of the rotating body 3 becomes large.
Here, sludge flocs are held inside the rotating body 3, but sludge flocs existing from the middle to the upper part inside the rotating body 3 are in the process of being formed, have low settling property, and have high compaction property. do not have. In addition, this sludge floc bond is unstable and easily destroyed. If the flow velocity of the raw water flowing out from the opening 8a is excessively large, there is a high possibility that the binding of unstable sludge flocs will be broken and the sludge sedimentation property will be deteriorated, and the sludge flocs that have been destroyed and become small particles will be slit 3a. Since there is a high possibility that the sludge will be pushed out of the rotating body 3, the water quality of the separation liquid may be deteriorated. Therefore, by disposing the member 9 so as not to block the lower end of the cylinder 8, it is possible to prevent the sludge flocs from breaking the bond and to prevent the sludge flocs from flowing out from the slit 3a to the outside of the rotating body 3. Can be done.

さらに、部材9を、図1に示すような錐形状に形成した場合、供給管2から筒8に供給された原水は、その一部が開孔8aを通過することにより水平方向に分散して回転体3の内部に流出するため、筒8の内部の降下流速が徐々に減少し、さらに部材9と接触して部材9の傾斜面に沿って流下するにつれて、水平方向に分散する。そして、部材9は回転軸5と連結されて回転駆動しているため、部材9と接触した原水は、部材9の回転方向に押されながら部材9の傾斜面に沿って流下することになる。原水は、その流速が減少した状態で、回転駆動される部材9と接触することで、部材9の回転に同伴して部材9の回転方向と同じ方向に低速で流動しながら部材9の傾斜面に沿って流下して、部材9の縁部まで到達し、回転体3の内部へと供給される。原水は、部材9に接触してから部材9の縁部から流出するまでの間、部材9の回転方向と同じ方向に低速で流動しながら部材9の傾斜面に沿って流下することで、部材9の表面において徐々に分散した状態となり、その状態で部材9の縁部から回転体3の内部へと供給されることになる。すなわち、部材9の配設により、原水は、回転体3の内部に流出する際の流速が減少するとともに、より分散した状態で回転体3に供給されることになり、回転体3の内部に保持された汚泥フロックを破壊することを防ぐことができる。
加えて、原水がより分散した状態で回転体3に供給されることは、回転体3の内部の特定の場所で汚泥が偏在すること、言い換えると分離羽根4の表面付近を除く回転体3の内部の特定の場所に汚泥粒子や汚泥フロックが偏って存在している状態になることを防ぐことも可能とする。この点、回転体3の内部の特定の場所に汚泥が偏在するようになると、回転体3に配設された分離羽根4に対する汚泥との接触頻度は、分離羽根4が汚泥が偏在している付近を移動する間は高く、分離羽根4が他の部分を移動する間は低くなることとなり、汚泥のフロック化の効率が悪くなることとなる。すなわち、部材9の配設により、原水がより分散した状態で回転体3に供給されることになり、回転体3の内部における汚泥の偏在を防ぐことができ、汚泥と分離羽根4との接触機会が万遍なく確保される結果、汚泥のフロック化を効率よく促進することができるようになる。
Further, when the member 9 is formed in a cone shape as shown in FIG. 1, the raw water supplied from the supply pipe 2 to the cylinder 8 is dispersed in the horizontal direction by a part of the raw water passing through the opening 8a. Since it flows out to the inside of the rotating body 3, the descent flow velocity inside the cylinder 8 gradually decreases, and further disperses in the horizontal direction as it comes into contact with the member 9 and flows down along the inclined surface of the member 9. Since the member 9 is connected to the rotating shaft 5 and driven to rotate, the raw water in contact with the member 9 flows down along the inclined surface of the member 9 while being pushed in the rotational direction of the member 9. When the raw water comes into contact with the member 9 which is rotationally driven in a state where the flow velocity is reduced, the raw water flows at a low speed in the same direction as the rotation direction of the member 9 along with the rotation of the member 9, and the inclined surface of the member 9 is formed. It flows down along the line, reaches the edge of the member 9, and is supplied to the inside of the rotating body 3. The raw water flows down along the inclined surface of the member 9 while flowing at a low speed in the same direction as the rotation direction of the member 9 from the contact with the member 9 to the outflow from the edge of the member 9. It gradually becomes dispersed on the surface of 9, and is supplied from the edge of the member 9 to the inside of the rotating body 3 in that state. That is, due to the arrangement of the members 9, the flow velocity when the raw water flows out to the inside of the rotating body 3 is reduced, and the raw water is supplied to the rotating body 3 in a more dispersed state, and is supplied to the inside of the rotating body 3. It is possible to prevent the sludge flocs held from being destroyed.
In addition, the fact that the raw water is supplied to the rotating body 3 in a more dispersed state means that sludge is unevenly distributed in a specific place inside the rotating body 3, in other words, the rotating body 3 except for the vicinity of the surface of the separating blade 4. It is also possible to prevent sludge particles and sludge flocs from being unevenly distributed in a specific place inside. In this regard, when sludge is unevenly distributed in a specific place inside the rotating body 3, the frequency of contact with the sludge with respect to the separating blades 4 arranged on the rotating body 3 is such that the sludge is unevenly distributed in the separating blades 4. It will be high while moving in the vicinity, and will be low while the separation blade 4 is moving in other parts, and the efficiency of sludge flocking will be deteriorated. That is, due to the arrangement of the member 9, the raw water is supplied to the rotating body 3 in a more dispersed state, the sludge can be prevented from being unevenly distributed inside the rotating body 3, and the sludge and the separation blade 4 come into contact with each other. As a result of ensuring even opportunities, sludge flocking can be efficiently promoted.

以上のように、筒8の下方に部材9を配設することは、供給管2から供給された原水の流速を減じて水槽1の底部における乱流の発生を抑制したり汚泥フロックの破壊を防いだりするとともに、回転体3の内部における汚泥の偏在を防いで汚泥と分離羽根4との接触機会を確保することによって、汚泥のフロック化を促進することができる。 As described above, disposing the member 9 below the cylinder 8 reduces the flow velocity of the raw water supplied from the supply pipe 2 to suppress the generation of turbulent flow at the bottom of the water tank 1 and to destroy sludge flocs. Flocking of sludge can be promoted by preventing sludge from being unevenly distributed inside the rotating body 3 and ensuring an opportunity for contact between sludge and the separation blade 4.

(実施の形態2)
図2は、本発明を実施するための実施の形態2における固液分離装置を説明するための概略側面図である。なお、図1に示すものと同一の構成要素に関しては同一の符号を用いて重複説明を省略する。
実施の形態2の固液分離装置は、実施の形態1の固液分離装置に対して、円周上に複数枚の短冊状の分離羽根が間隔をもって設けられた内回転体10が設けられている点が異なる。
(Embodiment 2)
FIG. 2 is a schematic side view for explaining the solid-liquid separation device according to the second embodiment for carrying out the present invention. For the same components as those shown in FIG. 1, the same reference numerals are used and duplicate explanations are omitted.
The solid-liquid separating device of the second embodiment is provided with an inner rotating body 10 in which a plurality of strip-shaped separating blades are provided at intervals on the circumference of the solid-liquid separating device of the first embodiment. The difference is that they are.

前述のように、回転体3の内部に保持される汚泥と分離羽根4との接触機会が多いほど、汚泥の固液分離性や濃縮の効率が良好になる。そして、汚泥と分離羽根4との接触機会は分離羽根4の表面積を増加させることで増加させることができる。
となると、回転体3の直径を大きくすれば、回転体3の外表面積が増加するため、回転体3の円周上に配設する分離羽根4の表面積の積算値も増加し、分離性能をさらに高めることができるとも考えられる。この点、原水の処理量が多くなれば、当該水槽に適用する回転体3の直径も、回転体内部に汚泥フロックを保持するため大きくする必要があり、その結果として上述のとおり分離性能が高まるため十分な汚泥のフロック化がなされるとも思える。しかし、回転体3の直径が大きくなると、回転体3の中心部から回転体3の円周上に配設された分離羽根4までの水平距離が長くなり、原水中の汚泥粒子や回転体3の内部に保持された汚泥フロックが分離羽根4に到達するまでに通常の重力沈降により水槽底部に沈降してしまい、その結果、原水中の汚泥粒子や回転体3の内部に保持された汚泥フロックの分離羽根4と接触する機会は減少してしまうことになる。
そこで、回転体3と筒8の間にさらに内回転体10を設けることにより、回転体3の内部に保持された汚泥と接触しうる分離羽根の表面積は、内回転体10の円周上に配設する分離羽根10aの表面積を積算した分だけ増加し、筒8と分離羽根10aの水平距離も筒8と分離羽根4の水平距離よりも短くなる(分離羽根10aは分離羽根4よりも筒8に近い位置にある。)ため、回転体3の内部に保持される汚泥と分離羽根との接触機会が減少することを防ぐことができる。
As described above, the greater the chance of contact between the sludge held inside the rotating body 3 and the separation blade 4, the better the solid-liquid separability and concentration efficiency of the sludge. The contact opportunity between sludge and the separation blade 4 can be increased by increasing the surface area of the separation blade 4.
Then, if the diameter of the rotating body 3 is increased, the outer surface area of the rotating body 3 increases, so that the integrated value of the surface area of the separating blades 4 arranged on the circumference of the rotating body 3 also increases, and the separation performance is improved. It is thought that it can be further enhanced. In this regard, if the amount of raw water treated increases, the diameter of the rotating body 3 applied to the water tank also needs to be increased in order to hold sludge flocs inside the rotating body, and as a result, the separation performance is improved as described above. Therefore, it seems that sufficient sludge is made into flocs. However, as the diameter of the rotating body 3 increases, the horizontal distance from the center of the rotating body 3 to the separating blades 4 arranged on the circumference of the rotating body 3 becomes longer, and sludge particles and the rotating body 3 in the raw water become longer. By the time the sludge flocs held inside the body reach the separation blade 4, they settle to the bottom of the water tank due to normal gravity settling, and as a result, sludge particles in the raw water and sludge flocs held inside the rotating body 3 are settled. The chance of contact with the separation blade 4 of the above will be reduced.
Therefore, by further providing the inner rotating body 10 between the rotating body 3 and the cylinder 8, the surface area of the separation blade that can come into contact with the sludge held inside the rotating body 3 is on the circumference of the inner rotating body 10. The surface area of the separated blades 10a to be arranged is increased by the integrated surface area, and the horizontal distance between the cylinder 8 and the separation blade 10a is shorter than the horizontal distance between the cylinder 8 and the separation blade 4 (the separation blade 10a is a cylinder than the separation blade 4). Since it is located close to 8), it is possible to prevent the chance of contact between the sludge held inside the rotating body 3 and the separating blades from being reduced.

内回転体10は、回転体3と筒8の間に設置される。また、内回転体10は、回転体3と同様にかき寄せ機6と連結されており、かき寄せ機6と連結する回転軸5が図示しない駆動機によって低速度で回転駆動されることによって回転する。
そして、図2で示されるように、内回転体10には、複数枚の短冊状の分離羽根10aが所定間隔をおいて同一円周上に隣接配置され、隣接する分離羽根10a同士の間に形成された隙間は鉛直方向に細長いスリット(以下「分離羽根10aスリット」という)となっている。
The inner rotating body 10 is installed between the rotating body 3 and the cylinder 8. Further, the inner rotating body 10 is connected to the scraping machine 6 like the rotating body 3, and the rotating shaft 5 connected to the scraping machine 6 is rotationally driven at a low speed by a driving machine (not shown) to rotate.
Then, as shown in FIG. 2, on the inner rotating body 10, a plurality of strip-shaped separation blades 10a are arranged adjacent to each other on the same circumference at predetermined intervals, and between the adjacent separation blades 10a. The formed gap is a slit elongated in the vertical direction (hereinafter referred to as "separation blade 10a slit").

内回転体10は、その上端が筒8の上端より下方に位置するように設定する。
内回転体10の直径は回転体3の直径と比較して小径であり、分離羽根10aスリットの総面積は、スリット3aの総面積よりも狭くなるため、筒8を介して供給される原水の全量を受け入れた場合、分離羽根10aスリットの単位面積当たりの原水の通過水量はスリット3aの単位面積当たりの原水の通過水量よりも相対的に大きくなる。この結果、分離羽根10aスリットを介して流出する水分の流速も相対的に大きくなり、固液分離装置の分離性能に支障を来すおそれがある。
そこで、内回転体10の上端が筒8の上端よりも下方に位置するように設置することにより、内回転体10の内部には、筒8の下方に設けられた開孔8aおよび筒8の下端から流出する原水、またはそのいずれかのみが供給されることとなる。このような構成とすることにより、内回転体10の内部に筒8から流出する原水の全量が供給されることを回避できる結果、分離羽根10aスリットから流出する水分中に汚泥粒子が混入したり、分離羽根10aスリットを通過する水分の流速によって回転体3の内部に保持された汚泥フロックが破壊されてしまったりすることを防ぎ、内回転体10がなければ回転体3の分離羽根4に到達するまでに通常の重力沈降により水槽底部に沈降していた汚泥フロックが分離羽根10aと接触して沈降性や圧密性の高い、安定した汚泥フロックとして形成されるようになる。
例えば、内回転体10を、内回転体10の上端が筒8の上端より下方かつ筒8の下端より上方、かつ内回転体10の下端が回転体3の下端より上方に位置するように設置した場合にあっては、上述した汚泥フロックと分離羽根10aの接触という作用効果の他、分離羽根10aが、回転体3の内部の中間から上部付近に保持される汚泥粒子や汚泥フロックと接触しやすくなる。そして、回転体3の内部の中間から上部付近には、形成途中の汚泥フロック、すなわち沈降性が低く圧密性も高くない汚泥が多く保持されている。したがって、内回転体10の上端が筒8の上端より下方かつ筒8の下端より上方、かつ内回転体10の下端が回転体3の下端より上方に位置するように設置した場合、内回転体10が回転体3の内部の中間から上部付近に存在する形成途中の汚泥フロックと接触しやすくなり、その結果、沈降性や圧密性の高い、安定した汚泥フロックが形成されやすくなる。
The inner rotating body 10 is set so that the upper end thereof is located below the upper end of the cylinder 8.
The diameter of the inner rotating body 10 is smaller than the diameter of the rotating body 3, and the total area of the separation blade 10a slit is smaller than the total area of the slit 3a. Therefore, the raw water supplied through the cylinder 8 is used. When the total amount is accepted, the amount of raw water passing through the separation blade 10a slit per unit area is relatively larger than the amount of raw water passing through the slit 3a per unit area. As a result, the flow velocity of the water flowing out through the separation blade 10a slit also becomes relatively large, which may hinder the separation performance of the solid-liquid separation device.
Therefore, by installing the inner rotating body 10 so that the upper end is located below the upper end of the cylinder 8, the inside of the inner rotating body 10 is the opening 8a and the cylinder 8 provided below the cylinder 8. Only the raw water that flows out from the lower end, or either, will be supplied. With such a configuration, it is possible to avoid supplying the entire amount of raw water flowing out of the cylinder 8 to the inside of the inner rotating body 10, and as a result, sludge particles may be mixed in the water flowing out from the separation blade 10a slit. , Prevents sludge flocs held inside the rotating body 3 from being destroyed by the flow velocity of water passing through the separation blade 10a slit, and reaches the separation blade 4 of the rotating body 3 without the inner rotating body 10. The sludge flocs that have settled at the bottom of the water tank due to normal gravity settling come into contact with the separation blades 10a and are formed as stable sludge flocs with high settling property and compaction.
For example, the inner rotating body 10 is installed so that the upper end of the inner rotating body 10 is located below the upper end of the cylinder 8 and above the lower end of the cylinder 8, and the lower end of the inner rotating body 10 is located above the lower end of the rotating body 3. In this case, in addition to the action and effect of contact between the sludge flocs and the separation blades 10a described above, the separation blades 10a come into contact with sludge particles and sludge flocs held from the middle to the upper part of the inside of the rotating body 3. It will be easier. A large amount of sludge flocs in the process of formation, that is, sludge having low sedimentation and not high consolidation, is held in the middle to the upper part of the inside of the rotating body 3. Therefore, when the upper end of the inner rotating body 10 is installed below the upper end of the cylinder 8 and above the lower end of the cylinder 8, and the lower end of the inner rotating body 10 is located above the lower end of the rotating body 3, the inner rotating body 10 is installed. 10 tends to come into contact with sludge flocs in the process of forming from the middle to the upper part of the inside of the rotating body 3, and as a result, stable sludge flocs having high sedimentation and compaction tend to be formed.

また、内回転体10を、内回転体10の上端が筒8の下端以下に位置するように設置した場合にあっては、内回転体10が低速度で回転することにより、内回転体10の外部に形成された汚泥層M2と分離羽根10aとが接触するため、分離羽根10aの外表面付近にある汚泥層M2が物理的にかき分けられて縦方向に筒状の液層L2が形成される。図13は内回転体10の外部に形成された分離液層SP2、汚泥層M2、液層L2および分離羽根10aの垂直断面を示す模式図である。図13中、上向きの矢印は水分の上向流を、横向きの矢印は汚泥層M2中の水分が液層L2に向かう流れを、そして下向きの矢印は汚泥の沈降を表している。また、汚泥層M2中の丸は沈降する汚泥を表しており、丸の密度で濃度分布を表している。なお、分離羽根10a近傍については、水分および汚泥の移動する方向を示す矢印を見やすくするため便宜上薄く表記したものであり、濃度分布に関係するものではない。分離羽根10aによって形成された筒状の液層L2によって周囲の汚泥層M2中の水分が集まると、固液分離が促進されるとともに、汚泥の圧密工程への移行が早まるため、濃縮汚泥層D2の高濃度化が可能となる。 Further, when the inner rotating body 10 is installed so that the upper end of the inner rotating body 10 is located below the lower end of the cylinder 8, the inner rotating body 10 rotates at a low speed, so that the inner rotating body 10 is rotated. Since the sludge layer M2 formed on the outside of the blade and the separation blade 10a come into contact with each other, the sludge layer M2 near the outer surface of the separation blade 10a is physically separated to form a cylindrical liquid layer L2 in the vertical direction. To. FIG. 13 is a schematic view showing a vertical cross section of the separation liquid layer SP2, the sludge layer M2, the liquid layer L2, and the separation blade 10a formed on the outside of the inner rotating body 10. In FIG. 13, the upward arrow indicates the upward flow of water, the horizontal arrow indicates the flow of water in the sludge layer M2 toward the liquid layer L2, and the downward arrow indicates the sedimentation of sludge. Further, the circles in the sludge layer M2 represent the settling sludge, and the density of the circles represents the concentration distribution. The vicinity of the separation blade 10a is shown thinly for convenience so that the arrow indicating the moving direction of water and sludge can be easily seen, and is not related to the concentration distribution. When the water in the surrounding sludge layer M2 is collected by the tubular liquid layer L2 formed by the separation blade 10a, solid-liquid separation is promoted and the transition of the sludge to the consolidation process is accelerated, so that the concentrated sludge layer D2 It is possible to increase the concentration of sludge.

(実施の形態3)
図3は、本発明を実施するための実施の形態3における固液分離装置を説明するための概略側面図である。なお、図1及び図2に示すものと同一の構成要素に関しては同一の符号を用いて重複説明を省略する。
実施の形態3の固液分離装置は、実施の形態1の固液分離装置または実施の形態2の固液分離装置に対して、一以上の板状の部材11が設けられている点が異なる。
(Embodiment 3)
FIG. 3 is a schematic side view for explaining the solid-liquid separation device according to the third embodiment for carrying out the present invention. For the same components as those shown in FIGS. 1 and 2, the same reference numerals are used and duplicate description will be omitted.
The solid-liquid separation device of the third embodiment is different from the solid-liquid separation device of the first embodiment or the solid-liquid separation device of the second embodiment in that one or more plate-shaped members 11 are provided. ..

図5に示されるように、部材11は、筒8の回転方向および鉛直方向に対して傾斜した状態で固定される一対の板状の部材である部材11bおよび部材11cを備える。部材11は、筒8の外周に固定された支持体11aに一以上配設される。また、部材11は、一対の部材11b、11cのそれぞれの中央部から伸びた部材と、支持体11aから鉛直上方向に伸びた部材11dとが接合されることによって形成され、その外形は略Y字状となる。なお、支持体11aは、部材11が回転体3の内部を周回することができるように固定するものであれば良く、筒8以外にも、例えばかき寄せ機6、回転軸5、回転体10または回転体3等に配設することができる。
また、部材11の形状は略Y字状に限定されるものではなく、回転体10の内部において、板状の部材を回転方向および鉛直方向に対して傾斜した状態で配設することができるのであれば、いかなる形状でもよい。
加えて、ここでは部材11が回転するものを例としているが、部材11が回転しないように固定されるものであっても構わない。汚泥は回転体3や10と共回りするため、部材11が回転しないように固定されるものであっても、以下で説明する作用効果を得られるものである。
As shown in FIG. 5, the member 11 includes a member 11b and a member 11c, which are a pair of plate-shaped members fixed in a state of being inclined with respect to the rotation direction and the vertical direction of the cylinder 8. One or more members 11 are arranged on the support 11a fixed to the outer periphery of the cylinder 8. Further, the member 11 is formed by joining a member extending from the central portion of each of the pair of members 11b and 11c and a member 11d extending vertically upward from the support 11a, and the outer shape thereof is substantially Y. It becomes a character. The support 11a may be fixed so that the member 11 can orbit the inside of the rotating body 3, and other than the cylinder 8, for example, a scraper 6, a rotating shaft 5, a rotating body 10 or It can be arranged on the rotating body 3 or the like.
Further, the shape of the member 11 is not limited to a substantially Y shape, and the plate-shaped member can be arranged inside the rotating body 10 in a state of being inclined with respect to the rotation direction and the vertical direction. Any shape may be used as long as it is available.
In addition, although the member 11 is taken as an example of rotation here, the member 11 may be fixed so as not to rotate. Since sludge rotates together with the rotating bodies 3 and 10, even if the member 11 is fixed so as not to rotate, the effects described below can be obtained.

次に、実施の形態3における部材11の作用を説明する。
図3に示すように、実施例3においては、筒8の外周から伸びた支持体11aに部材11が固定されているため、部材11は、筒8が回転することにより、筒8の外部を周回する。そして、図5に示すように、一対の部材11b、11cの間には、その形状が略V字状の間隙部11eが形成されており、間隙部11eは沈降性を悪化させる原因となる汚泥粒子や不安定な汚泥フロックを、部材11が周回する間に捕捉することができる。そして、略V字状の間隙部11eは、回転方向および鉛直方向に対して傾斜した部材11bおよび部材11cにより形成されているため、部材11が周回することにより、間隙部11eには不規則な流れが生じる。このような不規則な流れにより、間隙部11eに捕捉された汚泥粒子同士の接触機会は増加し、汚泥のフロック化が促進される。また、汚泥に付着する気泡は間隙部11eで生じる不規則な流れによって汚泥から分離して浮上し、その結果、汚泥は脱気されることになる。
以上のように、部材11は、間隙部11eにおいて汚泥粒子同士の接触機会を増加させることによって汚泥のフロック化を促すことで汚泥の沈降性を向上させるとともに、固形物滞留時間が長くなり、腐敗によって生じる汚泥に付着した気泡同士の接触機会を増加させることによって汚泥の脱気を促すことで汚泥の沈降性を回復させることができる。このような作用を有する部材11は、回転体3内部に保持された汚泥の沈降性が悪化して汚泥界面が上昇した場合においても、部材11は回転体3内部に保持された汚泥を横方向にかき分け、汚泥粒子や不安定な汚泥フロックの接触機会を増加させて、汚泥の沈降性を回復させることができる。
Next, the operation of the member 11 in the third embodiment will be described.
As shown in FIG. 3, in the third embodiment, since the member 11 is fixed to the support 11a extending from the outer periphery of the cylinder 8, the member 11 can rotate the cylinder 8 to the outside of the cylinder 8. Go around. As shown in FIG. 5, a gap portion 11e having a substantially V-shaped shape is formed between the pair of members 11b and 11c, and the gap portion 11e causes sludge to deteriorate the sedimentation property. Particles and unstable sludge flocs can be captured while the member 11 orbits. Since the substantially V-shaped gap portion 11e is formed by the member 11b and the member 11c inclined with respect to the rotation direction and the vertical direction, the gap portion 11e is irregular due to the rotation of the member 11. A flow occurs. Due to such an irregular flow, the chances of contact between sludge particles trapped in the gap 11e are increased, and sludge flocking is promoted. Further, the bubbles adhering to the sludge are separated from the sludge by the irregular flow generated in the gap 11e and float, and as a result, the sludge is degassed.
As described above, the member 11 improves the sedimentation property of sludge by increasing the contact opportunity between sludge particles in the gap portion 11e and promoting the flocking of sludge, and also prolongs the retention time of solid matter and causes putrefaction. It is possible to restore the sedimentation property of sludge by promoting the degassing of sludge by increasing the contact opportunity between the bubbles adhering to the sludge generated by the sludge. The member 11 having such an action allows the member 11 to laterally move the sludge held inside the rotating body 3 even when the sludge settling property held inside the rotating body 3 deteriorates and the sludge interface rises. Sewage sludge can be squeezed out to increase the chances of contact with sludge particles and unstable sludge flocs to restore sludge sedimentation.

<実施例1>
実施例1では、実施の形態1による固液分離装置を、下水処理施設における混合汚泥を対象に適用し、その性能を調査した。
実施例1の固液分離装置は、水槽直径17,000mm、水槽容積681m、回転体3の直径が7,000mmであり、流入汚泥量2,800m/日、かき寄せ機6先端の標準周速は2.4m/分とした。なお、かき寄せ機6先端の標準周速を2.4m/分とした場合、回転体3の周速は約1.0m/分、筒8の周速は約0.2m/分となる。流入汚泥濃度については、TSが平均1.0%程度、VTSが平均85%程度である。そして、実施例1の固液分離装置では、側面に直径150mmの開孔を有する筒8と、底部の直径を筒8の直径と同一とした部材9を配設した。なお、筒8の側面に形成した開孔8aの総面積と筒8の断面積(筒8の下端の開口面積)との面積比は1対1とした。
<Example 1>
In Example 1, the solid-liquid separation device according to the first embodiment was applied to a mixed sludge in a sewage treatment facility, and its performance was investigated.
The solid-liquid separator of Example 1 has a water tank diameter of 17,000 mm, a water tank volume of 681 m 3 , a diameter of the rotating body 3 of 7,000 mm, an inflow sludge amount of 2,800 m 3 / day, and a standard circumference of the tip of the scraper 6. The speed was 2.4 m / min. Assuming that the standard peripheral speed of the tip of the scraper 6 is 2.4 m / min, the peripheral speed of the rotating body 3 is about 1.0 m / min, and the peripheral speed of the cylinder 8 is about 0.2 m / min. Regarding the inflow sludge concentration, TS is about 1.0% on average and VTS is about 85% on average. Then, in the solid-liquid separation device of Example 1, a cylinder 8 having an opening with a diameter of 150 mm on the side surface and a member 9 having the same bottom diameter as the diameter of the cylinder 8 are arranged. The area ratio between the total area of the openings 8a formed on the side surface of the cylinder 8 and the cross-sectional area of the cylinder 8 (the opening area at the lower end of the cylinder 8) was set to 1: 1.

上記のような構成の実施例1の固液分離装置と従来の固液分離装置(実施例1と同様の条件であるが、筒8および部材9を有さないもの。)について、濃縮汚泥濃度と分離液SS濃度を比較したところ、図7に示す結果が得られた。図7では縦軸のうち左側主軸に濃縮汚泥濃度(%)および右側第2軸に分離液濃度(mg/L)をとり、横軸に週間変動として日ごとの計測値を示した。
まず、濃縮汚泥濃度について比較したところ、実施例1の固液分離装置を適用した水槽から排出される汚泥の濃縮汚泥濃度は、従来の固液分離装置を適用した水槽から排出される汚泥の濃縮汚泥濃度よりも高い値で推移していた。また、分離液SS濃度について比較したところ、従来の固液分離装置を適用した水槽では、分離液のSS濃度が上昇し、分離液の水質が悪化する期間があった。一方で、これと同時期における実施例1の固液分離装置を適用した水槽では、分離液のSS濃度の上昇はなかった。
上記のように、濃縮汚泥が高濃度化し分離液の水質は安定したことから、実施例1の固液分離装置を適用した水槽は、従来の固液分離装置と比べて、汚泥の沈降性や圧密性を高くすることができる。すなわち、筒8および部材9を備え、部材9を、開孔8aを有する筒8の下部に設けることにより、回転体3の内部に保持された汚泥フロックが破壊されることを防ぐことができるようになり、汚泥の沈降性を悪化させにくくなった結果、分離液の水質が悪化することを防ぎつつ、安定した濃縮性能を得ることができる固液分離装置を提供することができる。
Concentrated sludge concentration for the solid-liquid separator of Example 1 and the conventional solid-liquid separator (those with the same conditions as in Example 1 but without the cylinder 8 and member 9) having the above configuration. When the SS concentration of the separated liquid was compared with that of the separated liquid SS, the result shown in FIG. 7 was obtained. In FIG. 7, the concentration of concentrated sludge (%) is shown on the left main axis of the vertical axis, and the concentration of the separated liquid (mg / L) is shown on the second axis on the right side.
First, when the concentration of concentrated sludge was compared, the concentration of concentrated sludge discharged from the water tank to which the solid-liquid separation device of Example 1 was applied was the concentration of sludge discharged from the water tank to which the conventional solid-liquid separation device was applied. The value remained higher than the sludge concentration. Further, when the SS concentration of the separation liquid was compared, in the water tank to which the conventional solid-liquid separation device was applied, there was a period in which the SS concentration of the separation liquid increased and the water quality of the separation liquid deteriorated. On the other hand, in the water tank to which the solid-liquid separation device of Example 1 was applied at the same time, the SS concentration of the separation liquid did not increase.
As described above, since the concentration of concentrated sludge became high and the water quality of the separation liquid was stable, the water tank to which the solid-liquid separation device of Example 1 was applied had a sludge sedimentation property as compared with the conventional solid-liquid separation device. The compaction can be increased. That is, by providing the cylinder 8 and the member 9 and providing the member 9 at the lower part of the cylinder 8 having the opening 8a, it is possible to prevent the sludge flocs held inside the rotating body 3 from being destroyed. As a result, it becomes difficult to deteriorate the sedimentation property of sludge, and as a result, it is possible to provide a solid-liquid separation device capable of obtaining stable concentration performance while preventing the water quality of the separation liquid from deteriorating.

さらに、実施例1の固液分離装置を適用した水槽および従来の固液分離装置を適用した水槽について、それぞれの水槽の回転体内外の濃度分布を確認したところ、図8に示す結果が得られた。図8では、側水深4.0mの水槽に対し、水深4.0mを起点として起点から水面にかけての汚泥濃度の分布を示している。これによると、実施例1では水槽底部にかけて濃縮汚泥濃度が増加している一方で、従来の固液分離装置を適用した水槽では水深1m付近に濃縮汚泥層が形成され、水槽底部の濃縮汚泥濃度は実施例1と比較して極めて低い傾向を示した。
従来の固液分離装置を適用した水槽では、汚泥フロックを回転体の内部に保持することを容易にするため、供給管2をその開口部が回転体の内側に位置するように設置する。しかし、このような配置にした場合、原水の供給位置が深くなり、鉛直下方に向かう水流の到達位置が深くなるため、水槽底部で乱流が発生しやすくなる。従来の固液分離装置を適用した水槽で確認された槽全体における濃度分布の逆転は、乱流の発生によって沈殿槽の底部付近に形成された濃縮汚泥層が攪乱されて巻き上げられたことが要因である。濃度分布が逆転することで、濃縮汚泥を引抜口まで掻き寄せることが困難となり水槽中間に長期間にわたって濃縮汚泥が滞留し続けることとなる。その結果、汚泥の腐敗が進行して槽上部ではガスが付着し浮上した汚泥と分離液が混合され分離液の水質を悪化させる。
これに対し、実施例1の固液分離装置を適用した水槽では、筒8および部材9により、供給された原水が鉛直方向および水平方向に分散されたことで、水槽底部における濃縮汚泥層が攪乱されず、水槽底部にかけて濃縮汚泥濃度が増加することが可能となった。図7において、実施例1の固液分離装置を適用した水槽における濃縮汚泥濃度が常に高い値で推移していたのは、部材9による乱流抑制作用が奏した効果によるものである。
Further, when the concentration distribution inside and outside the rotating body of each of the water tank to which the solid-liquid separation device of Example 1 was applied and the water tank to which the conventional solid-liquid separation device was applied was confirmed, the results shown in FIG. 8 were obtained. rice field. FIG. 8 shows the distribution of sludge concentration from the starting point to the water surface with the water depth of 4.0 m as the starting point for the water tank having a side water depth of 4.0 m. According to this, while the concentration of concentrated sludge increased toward the bottom of the water tank in Example 1, the concentrated sludge layer was formed at a depth of about 1 m in the water tank to which the conventional solid-liquid separation device was applied, and the concentration of concentrated sludge at the bottom of the water tank was increased. Showed an extremely low tendency as compared with Example 1.
In the water tank to which the conventional solid-liquid separation device is applied, the supply pipe 2 is installed so that the opening thereof is located inside the rotating body in order to facilitate holding the sludge floc inside the rotating body. However, in such an arrangement, the supply position of raw water becomes deeper and the arrival position of the water flow going vertically downward becomes deeper, so that turbulent flow is likely to occur at the bottom of the water tank. The reversal of the concentration distribution in the entire tank, which was confirmed in the water tank to which the conventional solid-liquid separator was applied, was due to the fact that the concentrated sludge layer formed near the bottom of the settling tank was disturbed and rolled up by the generation of turbulence. Is. By reversing the concentration distribution, it becomes difficult to scrape the concentrated sludge to the extraction port, and the concentrated sludge will continue to stay in the middle of the water tank for a long period of time. As a result, the sludge decays, gas adheres to the upper part of the tank, and the sludge that has floated up is mixed with the separation liquid, which deteriorates the water quality of the separation liquid.
On the other hand, in the water tank to which the solid-liquid separation device of Example 1 was applied, the supplied raw water was dispersed vertically and horizontally by the cylinder 8 and the member 9, and the concentrated sludge layer at the bottom of the water tank was disturbed. However, it became possible to increase the concentration of concentrated sludge toward the bottom of the water tank. In FIG. 7, the concentrated sludge concentration in the water tank to which the solid-liquid separation device of Example 1 was applied always remained at a high value because of the effect of the turbulence suppressing action of the member 9.

<実施例2>
実施例2では、実施の形態2による固液分離装置を、下水処理施設における混合汚泥を対象に適用し、その性能を調査した。
実施例2の固液分離装置は、水槽直径17,000mm、水槽容積681m、回転体3の直径が7,000mmであり、流入汚泥量2,800m/日、かき寄せ機6先端の標準周速は2.4m/分とした。なお、かき寄せ機6先端の標準周速を2.4m/分とした場合、回転体3の周速は約1.0m/分、筒8の周速は約0.2m/分となる。そして、実施例2の固液分離装置では、側面に直径150mmの開孔8aを有する筒8と、底部の直径を筒8の直径と同一とした部材9を配設し、さらに直径3,500mmの内回転体10を設けた。なお、内回転体10に配設した分離羽根同士の間に形成されたスリットの短手方向の幅については、当該スリットを通過する水分の流速が1000m/日以下となるように設定した。
<Example 2>
In Example 2, the solid-liquid separation device according to the second embodiment was applied to a mixed sludge in a sewage treatment facility, and its performance was investigated.
The solid-liquid separator of Example 2 has a water tank diameter of 17,000 mm, a water tank volume of 681 m 3 , a diameter of the rotating body 3 of 7,000 mm, an inflow sludge amount of 2,800 m 3 / day, and a standard circumference of the tip of the scraper 6. The speed was 2.4 m / min. Assuming that the standard peripheral speed of the tip of the scraper 6 is 2.4 m / min, the peripheral speed of the rotating body 3 is about 1.0 m / min, and the peripheral speed of the cylinder 8 is about 0.2 m / min. Then, in the solid-liquid separation device of the second embodiment, a cylinder 8 having an opening 8a having a diameter of 150 mm on the side surface and a member 9 having the same bottom diameter as the diameter of the cylinder 8 are arranged, and further having a diameter of 3,500 mm. The inner rotating body 10 was provided. The width of the slit formed between the separating blades arranged on the inner rotating body 10 in the lateral direction was set so that the flow velocity of the water passing through the slit was 1000 m / day or less.

上記のような構成の実施例2の固液分離装置と実施例1の固液分離装置について、汚泥界面に対する濃縮汚泥濃度と分離液のSS濃度の関係を調査し、比較したところ、図9に示す結果が得られた。図9のグラフ中、縦軸のうち左側主軸は濃縮汚泥濃度、右側第2軸は分離液のSS濃度、横軸は汚泥界面の高さ(水深4.0mを起点として起点から汚泥界面にかけての距離)を示す。なお、原水は水槽前段の分配槽を経由して等配分され投入されているため、それぞれの固液分離装置に流入する流入汚泥量は等量である。
図9によると、実施例2の固液分離装置は実施例1の固液分離装置と比較して、汚泥界面が低い傾向を示した。また、実施例2の固液分離装置では、実施例1の固液分離装置よりも濃縮汚泥濃度が高く分離液の水質は良好であった。
前述の通り、水槽径が大型になると、汚泥の投入位置から回転体に配設された分離羽根までの水平距離が長くなり、原水中の汚泥粒子が分離羽根の表面付近まで到達することが困難となる。しかし、実施例2の固液分離装置では内回転体を有するため、実施例1と比較して汚泥と分離羽根との接触機会が増加する。したがって、汚泥のフロック化が促進され、実施例1の固液分離装置と比較して短時間で沈降してより高い濃縮汚泥濃度を得ることが可能となった。また、汚泥のフロック化の促進によって沈降性が向上するため、分離液のSS濃度もより低くすることが可能となった。
The relationship between the concentrated sludge concentration with respect to the sludge interface and the SS concentration of the separated liquid was investigated and compared with respect to the solid-liquid separating device of Example 2 and the solid-liquid separating device of Example 1 having the above configuration. The results shown are obtained. In the graph of FIG. 9, the left main axis of the vertical axis is the concentrated sludge concentration, the right second axis is the SS concentration of the separation liquid, and the horizontal axis is the height of the sludge interface (starting from a water depth of 4.0 m from the starting point to the sludge interface). Distance) is shown. Since the raw water is equally distributed and charged via the distribution tank in the front stage of the water tank, the amount of inflow sludge flowing into each solid-liquid separation device is the same amount.
According to FIG. 9, the solid-liquid separator of Example 2 tended to have a lower sludge interface as compared with the solid-liquid separator of Example 1. Further, in the solid-liquid separation device of Example 2, the concentration of concentrated sludge was higher than that of the solid-liquid separation device of Example 1, and the water quality of the separation liquid was good.
As described above, when the diameter of the water tank becomes large, the horizontal distance from the sludge charging position to the separation blades arranged on the rotating body becomes long, and it is difficult for sludge particles in the raw water to reach the vicinity of the surface of the separation blades. Will be. However, since the solid-liquid separation device of Example 2 has an internal rotating body, the chance of contact between sludge and the separation blade increases as compared with Example 1. Therefore, sludge flocking was promoted, and it became possible to obtain a higher concentrated sludge concentration by settling in a short time as compared with the solid-liquid separation device of Example 1. In addition, since the sedimentation property is improved by promoting the flocking of sludge, it is possible to lower the SS concentration of the separation liquid.

<実施例3>
実施例3では、実施の形態3による固液分離装置を、下水処理施設における混合汚泥を対象に適用し、その性能を調査した。
実施例2の固液分離装置と同様の構成に、さらに部材11bおよび部材11cの面積を1部材あたり0.12mとした部材11を筒8の周囲上に均等に計16部材配設し(4部材/1方向×4方向),総面積3.84mとした構成とした。実施例3の固液分離装置と実施例2の固液分離装置とを比較したところ、以下のような結果が得られた。
まず、図10は、実施例3の固液分離装置を適用した水槽と実施例2の固液分離装置を適用した水槽における分離液SS濃度の測定結果を比較したものである。図10の縦軸には分離液SS濃度をとり、横軸に日ごとの計測値を示した。図10によると、実施例2の固液分離装置を適用した水槽の分離液のSS濃度の平均は223mg/Lであった一方で、実施例3の固液分離装置を適用した水槽の分離液のSS濃度の平均は137mg/Lあった。よって、部材11を配設することにより分離液のSS濃度を下げることが可能となる。
さらに、調査3日目について見ると、実施例2の固液分離装置を適用した水槽の分離液のSS濃度が250mg/Lと高い状態にあっただけでなく、実施例3の固液分離装置を適用した水槽の分離液のSS濃度もまた150mg/Lを超える高い状態にあった。図11には図10の調査と同日の当該施設への流入汚泥の分析結果を、図12には実施例3の固液分離装置を適用した水槽の濃縮汚泥濃度と、実施例2の固液分離装置を適用した水槽の濃縮汚泥濃度の比較を示した。図12のグラフでは縦軸に濃縮汚泥濃度をとり、横軸に日ごとの計測値を示した。
図11に示す通り、調査期間中の流入汚泥量および濃度に大きな変化がなかった一方で、図12に示す通り、比較を行った両水槽とも濃縮汚泥濃度が低下していた。つまり、調査期間中は汚泥の腐敗などを原因として汚泥の沈降性が悪化している状態であった。しかし、実施例3の固液分離装置に配設された部材11は、間隙部11eにおいて汚泥粒子同士の接触機会を増加させることによって汚泥のフロック化を促すことで汚泥の沈降性を向上させるとともに、汚泥に付着する気泡同士の接触機会を増加させることによって汚泥の脱気を促すことで汚泥の沈降性を回復させ、実施例2の固液分離装置の水槽の分離液のSS濃度よりも常に分離液のSS濃度を低く保つことを可能とした。
<Example 3>
In Example 3, the solid-liquid separation device according to the third embodiment was applied to a mixed sludge in a sewage treatment facility, and its performance was investigated.
In the same configuration as the solid-liquid separation device of the second embodiment, the members 11 having the area of the members 11b and the members 11c set to 0.12 m 2 per member are evenly arranged on the periphery of the cylinder 8 (a total of 16 members). 4 members / 1 direction x 4 directions), with a total area of 3.84 m 2 . When the solid-liquid separator of Example 3 and the solid-liquid separator of Example 2 were compared, the following results were obtained.
First, FIG. 10 compares the measurement results of the separation liquid SS concentration in the water tank to which the solid-liquid separation device of Example 3 was applied and the water tank to which the solid-liquid separation device of Example 2 was applied. The vertical axis of FIG. 10 shows the concentration of the separated liquid SS, and the horizontal axis shows the measured values for each day. According to FIG. 10, the average SS concentration of the separation liquid in the water tank to which the solid-liquid separation device of Example 2 was applied was 223 mg / L, while the separation liquid in the water tank to which the solid-liquid separation device of Example 3 was applied. The average SS concentration was 137 mg / L. Therefore, by disposing the member 11, it is possible to reduce the SS concentration of the separation liquid.
Further, looking at the third day of the investigation, not only the SS concentration of the separation liquid in the water tank to which the solid-liquid separation device of Example 2 was applied was as high as 250 mg / L, but also the solid-liquid separation device of Example 3 was found. The SS concentration of the separation liquid in the water tank to which was applied was also in a high state exceeding 150 mg / L. FIG. 11 shows the analysis results of sludge flowing into the facility on the same day as the survey of FIG. 10, and FIG. 12 shows the concentration of concentrated sludge in the water tank to which the solid-liquid separation device of Example 3 was applied, and the solid-liquid of Example 2. The comparison of the concentrated sludge concentration of the water tank to which the separation device was applied was shown. In the graph of FIG. 12, the vertical axis shows the concentration of concentrated sludge, and the horizontal axis shows the daily measurement values.
As shown in FIG. 11, there was no significant change in the amount and concentration of inflow sludge during the survey period, while as shown in FIG. 12, the concentration of concentrated sludge decreased in both of the compared tanks. In other words, during the survey period, sludge sedimentation was deteriorating due to sludge putrefaction and the like. However, the member 11 disposed in the solid-liquid separation device of the third embodiment improves the sludge sedimentation property by promoting the flocking of sludge by increasing the contact opportunity between sludge particles in the gap portion 11e. By increasing the chance of contact between air bubbles adhering to sludge, the sludge sedimentation property is restored by promoting deaeration of sludge, and the concentration is always higher than the SS concentration of the separation liquid in the water tank of the solid-liquid separation device of Example 2. It was possible to keep the SS concentration of the separation liquid low.

なお、各実施形態では、回転体3、筒8、部材9が同軸上に設けられるものを例としているが、本発明をこれに限るものではなく、それぞれ若しくは何れかが同軸に設けられないものであっても構わない。同様に、内回転体10についても、回転体3、筒8、部材9の何れかに対して同軸でないものであっても構わない。
また、回転体3の内側に設けられる筒8、部材9や内回転体10について、それぞれ若しくは何れかが複数設けられるものであってもよい。
In each embodiment, the rotating body 3, the cylinder 8, and the member 9 are provided coaxially, but the present invention is not limited to this, and each or any of them is not provided coaxially. It doesn't matter. Similarly, the inner rotating body 10 may not be coaxial with any of the rotating body 3, the cylinder 8, and the member 9.
Further, each or a plurality of cylinders 8, members 9, and inner rotating bodies 10 provided inside the rotating body 3 may be provided.

1 水槽
2 供給管
2a 本体
2b 鉛直部
3 回転体
3a スリット
3b 汚泥フロック
4 分離羽根
4a 第1短辺
4b 第2短辺
4c 屈曲部
5 回転軸
6 かき寄せ機
8 筒
8a 開孔
9 部材
10 内回転体
10a 分離羽根
11 部材
11a 支持体
11b 部材
11c 部材
11d 部材
11e 間隙部
12 反応部
13 沈殿部
D,D2 濃縮汚泥層
L,L2 液層
S,S2 間隔
M,M2 汚泥層
1 Water tank 2 Supply pipe 2a Main body 2b Vertical part 3 Rotating body 3a Slit 3b Sewage sludge 4 Separation blade 4a 1st short side 4b 2nd short side 4c Bending part 5 Rotating shaft 6 Squeezing machine 8 Cylinder 8a Opening hole 9 Member 10 Inward rotation Body 10a Separation blade 11 Member 11a Support 11b Member 11c Member 11d Member 11e Gap 12 Reaction section 13 Sedimentation section D, D2 Concentrated sludge layer L, L2 Liquid layer S, S2 Spacing M, M2 Sludge layer

Claims (4)

水槽と、
前記水槽に原水を供給する供給管と、
前記水槽内に配設され、円周上に複数枚の短冊状の分離羽根が間隔をもって設けられた筒状の回転体と、
前記回転体の中心に、軸線を鉛直方向に向けて配設された回転軸と、
前記水槽の底部に配設され、汚泥を前記水槽外に排出する汚泥排出管と
を有する固液分離装置において、
前記回転体の内側に、
側面に一以上の開孔を有する筒と、
前記供給管から供給された原水を鉛直方向または水平方向に分散させる部材と
を備えることを特徴とする固液分離装置。
With an aquarium
A supply pipe that supplies raw water to the aquarium,
A cylindrical rotating body arranged in the water tank and having a plurality of strip-shaped separating blades provided at intervals on the circumference.
A rotating shaft arranged at the center of the rotating body with its axis directed in the vertical direction,
In a solid-liquid separation device provided at the bottom of the water tank and having a sludge discharge pipe for discharging sludge to the outside of the water tank.
Inside the rotating body,
A cylinder with one or more openings on the side,
A solid-liquid separation device including a member that disperses raw water supplied from the supply pipe in the vertical direction or the horizontal direction.
前記分散させる部材が、前記回転軸に連結されて回転駆動することを特徴とする請求項1に記載の固液分離装置。The solid-liquid separation device according to claim 1, wherein the member to be dispersed is connected to the rotating shaft and driven to rotate. 円周上に複数枚の短冊状の分離羽根が間隔をもって設けられた、前記分散させる部材を内側に備える内回転体を有し、
前記内回転体は前記回転体の内径より小径である
ことを特徴とする請求項1又は2に記載の固液分離装置。
It has an internal rotating body having a member to be dispersed inside, in which a plurality of strip-shaped separation blades are provided at intervals on the circumference.
The solid-liquid separation device according to claim 1 or 2 , wherein the inner rotating body has a diameter smaller than the inner diameter of the rotating body.
表面を水平方向および鉛直方向に対して傾斜させた複数の板状の部材が、前記回転体、前記回転軸、前記回転体と前記筒の間に設けられた内回転体、又は、前記水槽内で沈降した汚泥をかき寄せるかき寄せ機、の何れかに配設された支持体に設けられていることにより、回転するように設けられ、隣り合う前記板状の部材によって形成された間隙部において不規則な流れを形成させるように構成されていることを特徴とする請求項1から3の何れかに記載の固液分離装置。 A plurality of plate-shaped members whose surfaces are inclined in the horizontal and vertical directions are the rotating body, the rotating shaft, an inner rotating body provided between the rotating body and the cylinder, or the inside of the water tank. It is provided so as to rotate by being provided on a support arranged in any of the scrapers for scraping the sludge settled in the above, and is not provided in the gap formed by the adjacent plate-shaped members. The solid-liquid separation device according to any one of claims 1 to 3, wherein the solid-liquid separation device is configured to form a regular flow .
JP2018009679A 2018-01-24 2018-01-24 Solid-liquid separator Active JP7083650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018009679A JP7083650B2 (en) 2018-01-24 2018-01-24 Solid-liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018009679A JP7083650B2 (en) 2018-01-24 2018-01-24 Solid-liquid separator

Publications (2)

Publication Number Publication Date
JP2019126770A JP2019126770A (en) 2019-08-01
JP7083650B2 true JP7083650B2 (en) 2022-06-13

Family

ID=67471586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018009679A Active JP7083650B2 (en) 2018-01-24 2018-01-24 Solid-liquid separator

Country Status (1)

Country Link
JP (1) JP7083650B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114044573B (en) * 2021-12-06 2022-08-30 北京东方启源环保科技有限公司 Dynamic circulation anaerobic ammonium oxidation biological denitrification system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263670A (en) 2005-03-25 2006-10-05 Nishihara Environment Technology Inc Solid-liquid separator
JP2007029801A (en) 2005-07-22 2007-02-08 Nishihara Environment Technology Inc Solid-liquid separator and solid-liquid separation system
KR101552506B1 (en) 2015-01-14 2015-09-11 주식회사 아쿠아테크 Apparatus for Concentrating Microorganism Sludge
WO2015146181A1 (en) 2014-03-26 2015-10-01 株式会社 東芝 Sedimentation tank

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019327Y1 (en) * 1970-03-05 1975-06-12
JPS5946645B2 (en) * 1977-03-07 1984-11-14 日本ソリッド株式会社 Sedimentation tank
JPS5673503U (en) * 1979-11-12 1981-06-16
JP2916921B2 (en) * 1988-03-11 1999-07-05 日本ソリッド株式会社 Sedimentation separation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263670A (en) 2005-03-25 2006-10-05 Nishihara Environment Technology Inc Solid-liquid separator
JP2007029801A (en) 2005-07-22 2007-02-08 Nishihara Environment Technology Inc Solid-liquid separator and solid-liquid separation system
WO2015146181A1 (en) 2014-03-26 2015-10-01 株式会社 東芝 Sedimentation tank
KR101552506B1 (en) 2015-01-14 2015-09-11 주식회사 아쿠아테크 Apparatus for Concentrating Microorganism Sludge

Also Published As

Publication number Publication date
JP2019126770A (en) 2019-08-01

Similar Documents

Publication Publication Date Title
JP4765022B2 (en) Solid-liquid separator
KR100344879B1 (en) Fluid treatment equipment and fluid treatment methods
JP4696646B2 (en) Sedimentation tank
JP4765045B2 (en) Solid-liquid separation device and solid-liquid separation system
BR112016000097B1 (en) DISSOLVED AIR FLOTATION DEVICE FOR WATER TREATMENT
JP2005125138A (en) Concentrator
AU2009246040A1 (en) Apparatus and method for mechanical deaeration
JP4774491B2 (en) Solid-liquid separation system
US8808548B2 (en) Magnetic separation apparatus and magnetic separation method, and wastewater treatment apparatus and wastewater treatment method
JP5393065B2 (en) Levitation separator
JP2011005375A (en) Solid-liquid separator
JP5497873B2 (en) Levitation separator
JP4885169B2 (en) Levitation separator
JP7083650B2 (en) Solid-liquid separator
JP2011072936A (en) Fluidized bed type biological treatment apparatus
JP5478843B2 (en) Rotation separator
JP4825850B2 (en) Floating separator, rectifier, and split cell for rectifier
JP5468316B2 (en) Solid-liquid separator
KR101772194B1 (en) Scum Skimmer Having Scum Crusher
KR101796454B1 (en) Separation filtrate cleanliness increase type centrifuge
JP2002186962A (en) Pressurized whirl type floatation and separation wastewater treatment equipment
KR102066510B1 (en) Inclined spiral sludge collector
JP2006198571A (en) Precipitator
JP5697920B2 (en) Levitation separator
JP5886518B2 (en) Levitation separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220601

R150 Certificate of patent or registration of utility model

Ref document number: 7083650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150