JP2007026975A - Electrolyte membrane/electrode laminate for solid oxide film fuel cell - Google Patents

Electrolyte membrane/electrode laminate for solid oxide film fuel cell Download PDF

Info

Publication number
JP2007026975A
JP2007026975A JP2005209631A JP2005209631A JP2007026975A JP 2007026975 A JP2007026975 A JP 2007026975A JP 2005209631 A JP2005209631 A JP 2005209631A JP 2005209631 A JP2005209631 A JP 2005209631A JP 2007026975 A JP2007026975 A JP 2007026975A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
electrode
layer
intermediate layer
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005209631A
Other languages
Japanese (ja)
Inventor
Azuma So
東 宋
Masaharu Hatano
正治 秦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005209631A priority Critical patent/JP2007026975A/en
Publication of JP2007026975A publication Critical patent/JP2007026975A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce resistance resulting from electrode reaction while ensuring interfacial adhesion against stress generated in an electrode layer during a high temperature operation. <P>SOLUTION: An electrolyte membrane/electrode laminate 1 for a solid oxide fuel cell has a laminate structure where an electrolyte membrane 2 made of solid oxide is held between an electrode layer 4 of a fuel electrode and an electrode layer 3 of an air electrode. The electrolyte membrane 2 is configured in a one-layer structure comprising only the electrolyte membrane 2 or a two-layer structure comprising an intermediate layer 2B layered between an electrolyte layer 2A and the electrode layer 3. The electrolyte membrane 2 or intermediate layer 2B interfacing with the laminated electrode layer 3 is formed by the burning of a material of an average particle size of 1 [μm] or less for forming the electrolyte membrane 2 or intermediate layer 2B, and is provided on the surface with a plurality of recessed portions 5 of crossing grooves and a plurality of projected portions 6 partitioned by the plurality of recessed portions 5 into a preset form. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固体酸化膜型燃料電池の電解質膜/電極積層体に関し、特に、電解質膜と電極層との界面における密着性向上に好適な固体酸化膜型燃料電池の電解質膜/電極積層体に関するものである。   The present invention relates to an electrolyte membrane / electrode laminate of a solid oxide membrane fuel cell, and more particularly to an electrolyte membrane / electrode laminate of a solid oxide membrane fuel cell suitable for improving adhesion at the interface between the electrolyte membrane and the electrode layer. Is.

従来から電解質膜と電極層との界面における密着性を向上させるため、電解質膜の表面に凹凸や周期的に凹部を形成するものが提案されている(特許文献1、2参照)。   Conventionally, in order to improve the adhesion at the interface between the electrolyte membrane and the electrode layer, there has been proposed one that forms irregularities or periodic depressions on the surface of the electrolyte membrane (see Patent Documents 1 and 2).

特許文献1では、グリーンシート状態の固体電解質膜に作成する凹凸と同等の大きさの固体電解質粒子を所定の密度で均一に付着させた後、焼結若しくはさらに電極組成物を塗布する等により被着させた後に焼結させることにより、固体電解質膜の両面の電極層が形成される範囲全体に0.1〜100[μm]間隔で幅および高さが1〜100[μm]の凹凸が形成される。   In Patent Document 1, solid electrolyte particles having a size equivalent to the unevenness to be formed on a solid electrolyte membrane in a green sheet state are uniformly attached at a predetermined density, and then coated by sintering or further applying an electrode composition. By forming and then sintering, unevenness having a width and height of 1 to 100 [μm] is formed at intervals of 0.1 to 100 [μm] over the entire area where the electrode layers on both sides of the solid electrolyte membrane are formed. Is done.

特許文献2では、例えば、ドクタ−ブレ−ド法により作製した固体電解質膜のグリ−ンシ−ト表面に金属メッシュを押し当てる方法、またグリ−ンシ−トを表面に凹凸がある金属等の表面に押し当てる方法により形成し、これを所定の温度で焼成し、固体電解質膜表面の表面粗さRaを3〜200[μm]としている。
特開平7−245113号公報 特開平9−55215号公報
In Patent Document 2, for example, a method of pressing a metal mesh against the surface of a green sheet of a solid electrolyte membrane produced by a doctor blade method, or a surface of a metal or the like having irregularities on the surface of the green sheet This is fired at a predetermined temperature, and the surface roughness Ra of the solid electrolyte membrane surface is set to 3 to 200 [μm].
JP 7-245113 A Japanese Patent Laid-Open No. 9-55215

しかしながら、上記特許文献1では、固体電解質粒子を固体電解質膜の表面に付着させるものであるため、電極層と電解質膜との接触面積が増加されて両者の接触抵抗や反応抵抗を低減できるものの、その凹凸が0.1〜100[μm]という広範囲にわたるランダムな間隔で形成され、高温での運転時に電極層に発生する応力を吸収できず界面剥離が発生することが懸念される。   However, in Patent Document 1 described above, since the solid electrolyte particles are attached to the surface of the solid electrolyte membrane, the contact area between the electrode layer and the electrolyte membrane can be increased, and the contact resistance and reaction resistance of both can be reduced. The irregularities are formed at random intervals over a wide range of 0.1 to 100 [μm], and it is feared that stress generated in the electrode layer during operation at high temperature cannot be absorbed and interface peeling occurs.

また、上記特許文献2では、固体電解質膜のグリ−ンシ−ト表面に金属メッシュや凹凸金属表面を押し当てるものであるため、表面の凹凸は周期的で規則正しく形成されて電極層の一部を取込み両者の界面同士の密着性が向上し、高温での運転時に電極層に発生する応力を吸収できるものの、電極層の高温焼結時における電解質膜の電極粒子との接触点の増加、即ち、電気化学反応場をなる電極/電解質膜の界面数の増加が見込めず、電極反応に由来する抵抗が低減できない虞がある。   Moreover, in the said patent document 2, since a metal mesh or an uneven | corrugated metal surface is pressed against the green sheet surface of a solid electrolyte membrane, the unevenness | corrugation of a surface is formed regularly and regularly, and a part of electrode layer is formed. Although the adhesion between the interfaces of both the intake is improved and the stress generated in the electrode layer during operation at high temperature can be absorbed, the increase in the contact point with the electrode particles of the electrolyte membrane during high temperature sintering of the electrode layer, that is, There is a possibility that the increase in the number of electrode / electrolyte membrane interfaces that form an electrochemical reaction field cannot be expected, and the resistance derived from the electrode reaction cannot be reduced.

そこで本発明は、上記問題点に鑑みてなされたもので、高温運転時に電極層に発生する応力に対する界面の密着性を確保しつつ電極反応に由来する抵抗を低減するに好適な固体酸化物型燃料電池の電解質膜/電極積層体を提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and is a solid oxide type suitable for reducing resistance derived from an electrode reaction while ensuring adhesion of an interface to stress generated in an electrode layer during high-temperature operation. An object is to provide an electrolyte membrane / electrode laminate for a fuel cell.

本発明は、固体酸化物から成る電解質膜の一方の面に燃料極の電極層を積層し且つ他方の面に空気極の電極層を積層した固体酸化物型燃料電池の電解質膜/電極積層体において、前記電解質膜を電解質膜のみの一層構造若しくは電解質層に積層して電極層との間に中間層を備える二層構造に構成し、前記電極層が界面を接して積層される電解質膜若しくは中間層は平均粒径が1[μm]以下の前記電解質膜若しくは中間層の形成材料の焼成により形成され、その表面に交差する複数の溝からなる凹部およびこの複数の凹部により区画されて予め設定した形状をもつ複数の凸部を備えるようにした。   The present invention relates to an electrolyte membrane / electrode laminate for a solid oxide fuel cell in which an electrode layer of a fuel electrode is laminated on one surface of an electrolyte membrane made of a solid oxide and an electrode layer of an air electrode is laminated on the other surface. The electrolyte membrane is a single-layer structure of only an electrolyte membrane or a two-layer structure having an intermediate layer between the electrode layer and the electrode layer, and the electrode layer is laminated with the interface in contact with the electrolyte membrane or The intermediate layer is formed by firing the electrolyte membrane or the intermediate layer forming material having an average particle size of 1 [μm] or less, and is set in advance by being defined by a plurality of grooves intersecting the surface and the plurality of recesses. A plurality of convex portions having the above-described shape are provided.

したがって、本発明では、電極層が界面を接して積層される電解質膜若しくは中間層は平均粒径が1[μm]以下の電解質膜若しくは中間層の形成材料の焼成により形成され、その表面に、交差する複数の溝からなる凹部およびこの複数の凹部により区画されて予め設定した形状をもつ複数の凸部を備えるようにしたため、前記凹部に電極層が入込み且つ凸部が電極層に包み込まれ、両者の密着性を向上させ、焼成時および高温での燃料電池運転時に、電極層に発生した応力を電解質膜若しくは中間層で均一に吸収でき、境界面全体の密着性が向上する。また、中間層若しくは電解質膜の表面層を構成する粒子の平均粒径を1[μm]以下としているため、高温焼結時に電極粒子との接触点が増え、電極と中間層の密着性が向上し、電気化学反応場をなる電極層との界面数も増え、電極反応に由来する接触抵抗および反応抵抗を低減できる。   Therefore, in the present invention, the electrolyte membrane or intermediate layer in which the electrode layer is laminated in contact with the interface is formed by firing an electrolyte membrane or intermediate layer forming material having an average particle size of 1 [μm] or less, and on its surface, Since the concave portion composed of a plurality of intersecting grooves and a plurality of convex portions having a preset shape partitioned by the plurality of concave portions are provided, the electrode layer enters the concave portion and the convex portion is wrapped in the electrode layer, The adhesion between the two can be improved, and the stress generated in the electrode layer can be uniformly absorbed by the electrolyte membrane or the intermediate layer during firing and when the fuel cell is operated at a high temperature, thereby improving the adhesion of the entire boundary surface. In addition, since the average particle diameter of the particles constituting the intermediate layer or the surface layer of the electrolyte membrane is 1 [μm] or less, the number of contact points with the electrode particles increases during high-temperature sintering, and the adhesion between the electrode and the intermediate layer is improved. In addition, the number of interfaces with the electrode layer constituting the electrochemical reaction field is increased, and the contact resistance and reaction resistance derived from the electrode reaction can be reduced.

以下、本発明の固体酸化膜型燃料電池の電解質膜/電極積層体を一実施形態に基づいて説明する。   Hereinafter, an electrolyte membrane / electrode laminate of a solid oxide membrane fuel cell of the present invention will be described based on one embodiment.

図1〜図4は、本発明を適用した固体酸化物型燃料電池の電解質膜/電極積層体の一実施形態を示し、図1は燃料極、固体電解質および空気極からなる電解質膜/電極積層体の断面図、図2は電解質膜の構造を模式的に示す説明図、図3は実施例1で作成した電解質膜(中間層)表面の光顕微鏡写真、図4は同じく実施例1で作成した電解質膜(中間層)表面の走査型電子顕微鏡写真である。   1 to 4 show an embodiment of an electrolyte membrane / electrode laminate of a solid oxide fuel cell to which the present invention is applied, and FIG. 1 shows an electrolyte membrane / electrode laminate comprising a fuel electrode, a solid electrolyte, and an air electrode. 2 is an explanatory view schematically showing the structure of the electrolyte membrane, FIG. 3 is a light micrograph of the surface of the electrolyte membrane (intermediate layer) prepared in Example 1, and FIG. 4 is also prepared in Example 1. 4 is a scanning electron micrograph of the surface of the electrolyte membrane (intermediate layer).

図1に示すように、本実施形態における発電部としての電解質膜/電極積層体1は、一般の固体酸化物型燃料電池と同様に、固体電解質膜2を挟んで空気電極層3と燃料電極層4とを積層して形成されている。   As shown in FIG. 1, an electrolyte membrane / electrode laminate 1 as a power generation unit in this embodiment includes an air electrode layer 3 and a fuel electrode with a solid electrolyte membrane 2 sandwiched in the same manner as a general solid oxide fuel cell. It is formed by laminating the layer 4.

固体電解質膜2としては、電子を通さず、イオンを通す特性が要求され、酸素イオンが発電の導体である場合は、酸素イオンの導伝特性が高いことが望まれる。さらに、固体電解質膜2の重要な特性として、ガス不透過性であることが挙げられる。以上の点から、固体電解質膜2には、例えば、イットリア(Y23)、酸化ネオジウム(Nd23)、酸化サマリウム(Sm23)、酸化ガドリニウム(Gd23)、酸化スカンジウム(Sc23)などを固溶した安定化ジルコニアや、セリア(CeO2)系固溶体、酸化ビスマスおよびランタンガレート(LaGaO3)などのペロブスカイト型酸化物から成る材料が用いられる。一般的には、YSZ(Yttria Stabilized Zirconia イットリウム−安定化ジルコニア)が使用される。 The solid electrolyte membrane 2 is required to have characteristics of allowing ions to pass therethrough, and when oxygen ions are power generation conductors, it is desirable that oxygen ions have high conductivity. Further, an important characteristic of the solid electrolyte membrane 2 is gas impermeability. In view of the above, the solid electrolyte membrane 2 includes, for example, yttria (Y 2 O 3 ), neodymium oxide (Nd 2 O 3 ), samarium oxide (Sm 2 O 3 ), gadolinium oxide (Gd 2 O 3 ), and oxidation. Materials composed of stabilized zirconia in which scandium (Sc 2 O 3 ) or the like is dissolved, ceria (CeO 2 ) -based solid solution, bismuth oxide, and perovskite oxides such as lanthanum gallate (LaGaO 3 ) are used. Generally, YSZ (Ytria Stabilized Zirconia yttrium-stabilized zirconia) is used.

また、固体電解質膜2は、固体電解質層2Aの表面に空気電極層3の形成時の高温焼成時に電解質層2Aと空気電極層3との反応を防止する機能を備える中間層2Bを形成する2層構造とすることもできる。この中間層2Bは、空気電極層3の活性を増加させるために、例えば、SDC(CeO2にSm23を固溶させたサマリアドープドセリア)等のセリア系固溶体が一般的に用いられる。中間層2Bを構成する材料としては、上記以外に、例えば、ガドリニウムでドープしたセリア、イットリウムでドープしたセリア、イッテルビウムでドープしたセリア等を用いるものであってもよい。 In addition, the solid electrolyte membrane 2 forms an intermediate layer 2B having a function of preventing the reaction between the electrolyte layer 2A and the air electrode layer 3 at the time of high-temperature firing at the time of forming the air electrode layer 3 on the surface of the solid electrolyte layer 2A. It can also be a layered structure. For the intermediate layer 2B, in order to increase the activity of the air electrode layer 3, for example, a ceria-based solid solution such as SDC (Samaria doped ceria in which Sm 2 O 3 is solid-solved in CeO 2 ) is used. . As a material constituting the intermediate layer 2B, other than the above, for example, ceria doped with gadolinium, ceria doped with yttrium, ceria doped with ytterbium, or the like may be used.

空気電極層3に必要な特性としては、酸化に強く、酸化ガスを透過し、電気伝導度が高く、酸素分子を酸素イオンに変換する触媒作用に優れていることが挙げられる。この点から、空気電極層3の材料としては、La(Sr)MnO3(ランタンストロンチウム亜マンガン酸塩、通称、LSM)、Sm(Sr)CoO3(サマリウムストロンチウムコバルトタイト、通称、SSC)やLa(Sr)CoO3(ランタンストロンチウムコバルトタイト、通称、LSC)に代表されるペロブスカイト構造の酸化物材料が用いられる。空気電極層3の材料としては、上記以外に、例えば、LNF(ランタンニッケル鉄酸化物)等を用いるものであってもよい。 The characteristics required for the air electrode layer 3 include that it is resistant to oxidation, permeates the oxidizing gas, has high electrical conductivity, and is excellent in catalytic action for converting oxygen molecules into oxygen ions. From this point, the material of the air electrode layer 3 includes La (Sr) MnO 3 (lanthanum strontium manganite, commonly referred to as LSM), Sm (Sr) CoO 3 (samarium strontium cobaltite, commonly referred to as SSC) and La. An oxide material having a perovskite structure typified by (Sr) CoO 3 (lanthanum strontium cobaltite, commonly known as LSC) is used. As a material for the air electrode layer 3, other than the above, for example, LNF (lanthanum nickel iron oxide) or the like may be used.

また、燃料電極層4としては、還元雰囲気に強く、燃料ガスを透過し、電気伝導度が高く、水素分子をプロトンに変換する触媒作用に優れていることが要求される特性として挙げられる。この点から、燃料電極層4の材料としては、ニッケル(Ni)やニッケルと固体電解質のサーメット(Ni−YSZ)などが用いられる。燃料電極層4の材料としては、上記以外に、例えば、Ni−ScSZ、Ni−GDC、Ni−SDC等を用いるものであってもよい。   Further, the fuel electrode layer 4 has characteristics required to be strong in a reducing atmosphere, permeate fuel gas, have high electrical conductivity, and be excellent in catalytic action for converting hydrogen molecules into protons. From this point, as the material of the fuel electrode layer 4, nickel (Ni), nickel and solid electrolyte cermet (Ni-YSZ), or the like is used. As a material of the fuel electrode layer 4, other than the above, for example, Ni-ScSZ, Ni-GDC, Ni-SDC, or the like may be used.

本実施形態の電解質膜2は、図2に模式的に示すように、固体電解質層2Aの上に中間層2Bを形成する二層構造をなし、中間層2Bの上に空気極を形成する電極層3が形成される。中間層2Bは、電極層3の活性を向上させてその性能を上げる役割を果し、空気電極層3を形成する高温焼成時に、電解質層2Aと空気電極層3とが高温で化学反応を生ずる場合に、その化学反応を防止する反応防止層として機能する。前記電解質層2Aはガスリークを生じない緻密な層に形成するが、前記中間層2Bはガスを透過する多孔質に形成してもよい。   As schematically shown in FIG. 2, the electrolyte membrane 2 of the present embodiment has a two-layer structure in which an intermediate layer 2B is formed on a solid electrolyte layer 2A, and an electrode that forms an air electrode on the intermediate layer 2B. Layer 3 is formed. The intermediate layer 2B plays a role of improving the performance of the electrode layer 3 by improving the activity thereof, and the electrolyte layer 2A and the air electrode layer 3 cause a chemical reaction at a high temperature during high temperature firing for forming the air electrode layer 3. In some cases, it functions as a reaction preventing layer for preventing the chemical reaction. The electrolyte layer 2A is formed as a dense layer that does not cause gas leakage, but the intermediate layer 2B may be formed as a porous material that allows gas to pass therethrough.

前記中間層2Bの表面には、規則的な間隔で凹部5若しくは凸部6に形成されている。図示の例では、等間隔に凹部5としての溝が形成され、溝(凹部5)間において凸部6を構成している。前記溝(凹部5)は格子状に配列され、凸部6は溝(凹部5)で囲まれる四角形の形状をなしている。溝(凹部5)の幅と深さは、例えば、10〜20[μm]であり、溝(凹部5)の間隔は、30[μm]以下に設定されている。このような溝(凹部5)は、中間層2Bのペーストを電解質層2Aの上にスクリーン印刷法により印刷する時に使用するスクリーンマスクの格子状リブにより中間層2B表面に形成できるものであり、リブで囲まれるスクリーンマスクの穴により溝(凹部5)で囲まれた凸部6を形成できる。   On the surface of the intermediate layer 2B, concave portions 5 or convex portions 6 are formed at regular intervals. In the illustrated example, grooves as the concave portions 5 are formed at equal intervals, and the convex portions 6 are formed between the grooves (the concave portions 5). The grooves (recesses 5) are arranged in a lattice pattern, and the protrusions 6 have a quadrangular shape surrounded by the grooves (recesses 5). The width and depth of the groove (recess 5) are, for example, 10 to 20 [μm], and the interval between the grooves (recess 5) is set to 30 [μm] or less. Such grooves (recesses 5) can be formed on the surface of the intermediate layer 2B by grid ribs of a screen mask used when the paste of the intermediate layer 2B is printed on the electrolyte layer 2A by the screen printing method. The convex part 6 enclosed by the groove | channel (recessed part 5) can be formed by the hole of the screen mask enclosed by.

ここで使用するスクリーンマスクは、金属素材の線材と線材とを平織りして形成される一般的なスクリーンメッシュ(平織りメッシュ)でなく、印刷ペーストが通過する穴を形成するリブ同士が交差する穴の各隅部で結合して板厚方向には厚くならない板状をなす、所謂、電鋳法により形成されたスクリーンマスク(電鋳プレートメッシュ)が用いられる。そして、リブ同士の間隔を30[μm]以下に設定したスクリーンマスク(電鋳プレートメッシュ)を使用して中間層材料のペーストをスクリーン印刷することにより、上記中間層2Bの表面に溝(凹部5)に囲まれた凸部6を形成することができる。   The screen mask used here is not a general screen mesh (plain weave mesh) formed by plain weaving of metal wire and wire, but of holes where ribs forming holes through which printing paste passes intersect. A screen mask (electroformed plate mesh) formed by a so-called electroforming method is used, which forms a plate shape that does not become thick in the plate thickness direction by being joined at each corner. Then, a screen mask (electroformed plate mesh) in which the interval between ribs is set to 30 [μm] or less is used to screen-print the intermediate layer material paste, thereby forming grooves (recesses 5 on the surface of the intermediate layer 2B). ) Can be formed.

なお、前者のスクリーンマスク(平織りメッシュ)を使用する場合には、線材(ワイヤ)と線材とが交差する部分が平織りされて厚くなっているために、印刷ペーストが集中的に溜まりやすく、印刷された中間層2Bの表面に大きな突起が生じてしまうことになる。この突起により、電極層3のペーストを印刷する際に、中間層2Bと電極層3との接触面積が減少し、両者の密着性が悪くなる。   When the former screen mask (plain weave mesh) is used, the portion where the wire and wire intersect is plain weaved and thickened, so the printing paste tends to accumulate intensively and printed. Further, a large protrusion is generated on the surface of the intermediate layer 2B. Due to this protrusion, when the paste of the electrode layer 3 is printed, the contact area between the intermediate layer 2B and the electrode layer 3 is reduced, and the adhesion between the two is deteriorated.

一方、後者のスクリーンマスク(電鋳プレートメッシュ)を使用する場合には、印刷されたリブ同士が一枚の板材状に結合されてリブと略同一の厚さとなっているため、リブ同士の交差部分に印刷ペーストが集中的に溜まることがなく、印刷された中間層2Bの表面に大きな突起も生じない。このため、電極層3のペーストを印刷する際に、中間層2Bと電極層3との接触面積が減少したり、両者の密着性が悪くなることが防止される。   On the other hand, when the latter screen mask (electroformed plate mesh) is used, since the printed ribs are combined into a single plate and have the same thickness as the ribs, the ribs intersect. The printing paste does not accumulate intensively at the portion, and no large protrusions are formed on the surface of the printed intermediate layer 2B. For this reason, when printing the paste of the electrode layer 3, it is prevented that the contact area of the intermediate | middle layer 2B and the electrode layer 3 reduces, or both adhesiveness worsens.

また、中間層2Bを形成する粒子材料の粒径は、1[μm]以下のサブミクロンサイズ、例えば、0.2〜0.4[μm]であり、焼成時の成長により0.6[μm]程度の粒径となるようにしている。中間層2Bの表面では、粒子材料の積層状態により粒子同士が密に重なり焼成時に集積して成長した突状部分と、焼成時に粒子が前記成長した突状部分に引かれて集積が疎となった窪み状部分とが無数に形成されている。これらの突状部分および窪み状部分は、以下では、粒状凸部7および粒状凹部8という。   Further, the particle size of the particulate material forming the intermediate layer 2B is a submicron size of 1 [μm] or less, for example, 0.2 to 0.4 [μm], and 0.6 [μm] due to growth during firing. ] So that the particle size is about the same. On the surface of the intermediate layer 2B, the particles are closely stacked due to the lamination state of the particle material, and the protrusions are accumulated and grown during firing, and the particles are attracted by the grown protrusions during firing and the accumulation is sparse. Numerous depressions are formed. These protrusions and depressions are hereinafter referred to as granular convex portions 7 and granular concave portions 8.

従って、中間層2Bの表面状態は、マクロ的には規則的な格子状の凹部(溝)5と、この凹部5により突出状態となった規則的に突出する凸部6とを備えており、また、ミクロ的には焼成時に粒子が集積成長した粒状凸部7と粒子が集積成長した粒状凸部7に引かれて形成された粒状凹部8とを無数に備える。   Accordingly, the surface state of the intermediate layer 2B includes a macroscopic regular lattice-shaped concave portion (groove) 5 and a regularly projecting convex portion 6 that is projected by the concave portion 5. Microscopically, there are an infinite number of granular convex portions 7 in which particles are accumulated and grown during firing and granular concave portions 8 formed by being pulled by the granular convex portions 7 in which particles are accumulated and grown.

以上の構成になる電解質膜2(電解質層2A+中間層2B)においては、その上面に空気電極層3のペーストをスクリーン印刷し、乾燥後に高温で焼成して電解質膜/電極積層体1を構成した際には、以下に記載する効果が期待できる。   In the electrolyte membrane 2 (electrolyte layer 2A + intermediate layer 2B) having the above configuration, the paste of the air electrode layer 3 was screen-printed on the upper surface, dried and fired at a high temperature to constitute the electrolyte membrane / electrode laminate 1. In that case, the effects described below can be expected.

即ち、中間層2Bの表面に規則的な間隔で形成された凹部5および凸部6を備えるため、中間層2Bの凹部5に電極層3が入込み、中間層2Bの凸部6は電極層3に包み込まれることとなって、両者の密着性を向上させ、焼成時および高温での燃料電池運転時に、電極層3に発生した応力を中間層2Bで均一に吸収でき、境界面全体の密着性が向上する。しかも、凹部5の間隔が30[μm]以下とすることで、中間層2Bと電極層3との間に均一に形成される前記入込みおよび包み込みの密度を増加させることができるため、前記境界面全体の密着性がより一層向上する。   That is, since the concave portion 5 and the convex portion 6 formed at regular intervals are provided on the surface of the intermediate layer 2B, the electrode layer 3 enters the concave portion 5 of the intermediate layer 2B, and the convex portion 6 of the intermediate layer 2B Encased in the electrode layer 3, the adhesion between the two is improved, the stress generated in the electrode layer 3 can be uniformly absorbed by the intermediate layer 2 B during firing and when the fuel cell is operated at a high temperature, and the entire boundary surface is adhered. Will improve. Moreover, since the interval between the recesses 5 is 30 [μm] or less, the density of the entrapment and the envelop formed uniformly between the intermediate layer 2B and the electrode layer 3 can be increased. The adhesion of the entire surface is further improved.

また、中間層の粒状凸部7と粒子が集積成長した粒状凸部7に引かれて形成された粒状凹部8とは、電極層3の高温焼結時に電極粒子との接触点を増加させて電極層3と中間層2Bとの密着性を向上させ、電気化学反応場となる電極層3/中間層2Bの界面数も増加し、界面における接触抵抗を低減すると共に電極反応に由来する反応抵抗を低減できる。特に、中間層2Bの粒状凸部7は、電極層3により包み込まれる状態となるため、電極層3の高温焼結時に、電極粒子との間にアンカ効果を発生させて中間層2Bと電極層3との焼結性が向上し、この点でも両者の密着性を向上させる。   Further, the granular convex portion 7 of the intermediate layer and the granular concave portion 8 formed by being pulled by the granular convex portion 7 in which particles are accumulated and grown increase the contact point with the electrode particles during high-temperature sintering of the electrode layer 3. Improves the adhesion between the electrode layer 3 and the intermediate layer 2B, increases the number of interfaces of the electrode layer 3 / intermediate layer 2B, which becomes an electrochemical reaction field, reduces the contact resistance at the interface, and reacts from the electrode reaction. Can be reduced. In particular, since the granular convex portion 7 of the intermediate layer 2B is encased by the electrode layer 3, during the high temperature sintering of the electrode layer 3, an anchor effect is generated between the electrode layer 3 and the intermediate layer 2B and the electrode layer. Sinterability with 3 is improved, and also in this respect, the adhesion between the two is improved.

<実施例>
Ni−YSZよりなる燃料極基板4に、粒径0.5[μm]よりなるYSZ電解質層2Aのペーストをスクリーン印刷法により膜厚10[μm]で印刷し、乾燥後に粒径0.2[μm]よりなるSDC中間層2Bのペーストを、図5に示す印刷有効領域に正方形状の複数の孔(厚さ34[μm]、線幅39[μm]、開幅62[μm]、開口率37[μm])が等間隔に形成された電鋳法により作成した電鋳プレートメッシュを用いてスクリーン印刷法により膜厚10[μm]で印刷し、得られた燃料極基板4上の電解質層2Aと中間層2Bからなる電解質膜2を加熱電気炉で摂氏1400[℃]、2時間加熱し、共焼結させた。得られた中間層2Bの表面の光顕微鏡写真(倍率40倍)と走査型電子顕微鏡写真(SEM写真、倍率5000倍)を図3および図4に示す。中間層2B表面の粒子のサイズは0.6[μm]であった。
<Example>
A paste of YSZ electrolyte layer 2A having a particle size of 0.5 [μm] is printed on the fuel electrode substrate 4 made of Ni—YSZ by a screen printing method with a film thickness of 10 [μm], and after drying, a particle size of 0.2 [ The paste of the SDC intermediate layer 2B made of [mu] m] has a plurality of square holes (thickness 34 [[mu] m], line width 39 [[mu] m], open width 62 [[mu] m], aperture ratio) in the print effective area shown in FIG. 37 [μm]) is formed at an equal interval by electroforming plate mesh prepared by electroforming, and is printed with a film thickness of 10 [μm] by a screen printing method. The electrolyte layer on the fuel electrode substrate 4 obtained The electrolyte membrane 2 composed of 2A and the intermediate layer 2B was heated in a heating electric furnace at 1400 degrees Celsius for 2 hours to be co-sintered. FIGS. 3 and 4 show a light micrograph (40 × magnification) and a scanning electron micrograph (SEM photo, 5000 × magnification) of the surface of the obtained intermediate layer 2B. The size of the particles on the surface of the intermediate layer 2B was 0.6 [μm].

続いて、SDC中間層2Bのベース上に、SSC電極材料3(粒径1[μm])を膜厚約10[μm]でスクリーン印刷により塗布し、1100[℃]まで加熱し、1100[℃]に達した段階で2時間保持した後、5[℃/min]の冷却速度で徐冷して実施例の電解質膜/電極積層体1(燃料極支持型セル)を作成した。   Subsequently, on the base of the SDC intermediate layer 2B, the SSC electrode material 3 (particle diameter 1 [μm]) is applied by screen printing with a film thickness of about 10 [μm], heated to 1100 [° C.], and heated to 1100 [° C. ] Was held for 2 hours, and then gradually cooled at a cooling rate of 5 [° C./min] to prepare the electrolyte membrane / electrode laminate 1 (fuel electrode supported cell) of the example.

<比較例>
実施例と同様に、Ni−YSZよりなる燃料極基板4に、粒径0.5[μm]よりなるYSZ電解質層2Aのペーストをスクリーン印刷法により膜厚10[μm]で印刷した。乾燥後に粒径0.2[μm]よりなるSDC中間層2Bのペーストを、図6に示す印刷有効領域に正方形状の複数の孔(紗厚60[μm]、線径60[μm]、オープニング71[μm]、空間率50[μm])が等間隔に形成された線材と線材とが交差する平織りメッシュからなるスクリーンメッシュを用いてスクリーン印刷法により膜厚10[μm]で印刷し、得られた燃料極基板4上の電解質層2Aと中間層2Bからなる電解質膜2を加熱電気炉で摂氏1400[℃]、2時間加熱し、共焼結させた。得られた中間層2Bの表面の光顕微鏡写真(倍率40倍)と走査型電子顕微鏡写真(SEM写真、倍率5000倍)を図7および図8に示す。中間層2B表面の粒子のサイズは1.5[μm]であった。
<Comparative example>
Similarly to the example, the paste of the YSZ electrolyte layer 2A having a particle size of 0.5 [μm] was printed on the fuel electrode substrate 4 made of Ni—YSZ with a film thickness of 10 [μm] by a screen printing method. After drying, the paste of the SDC intermediate layer 2B having a particle size of 0.2 [μm] is formed into a plurality of square holes (thickness 60 [μm], wire diameter 60 [μm], opening in the effective printing area shown in FIG. 6. 71 [μm], with a space ratio of 50 [μm]) printed at a film thickness of 10 [μm] by a screen printing method using a screen mesh composed of a plain weave mesh in which the wire and the wire intersect at equal intervals. The electrolyte membrane 2 composed of the electrolyte layer 2A and the intermediate layer 2B on the fuel electrode substrate 4 was heated in a heating electric furnace at 1400 degrees Celsius for 2 hours to be co-sintered. FIGS. 7 and 8 show a photomicrograph (40 × magnification) and a scanning electron micrograph (SEM photo, 5000 × magnification) of the surface of the obtained intermediate layer 2B. The size of the particles on the surface of the intermediate layer 2B was 1.5 [μm].

続いて、SDC中間層2Bのベース上に、SSC電極材料3(粒径1[μm])を膜厚約15[μm]でスクリーン印刷により塗布し、摂氏1100[℃]まで加熱し、摂氏1100[℃]に達した段階で2時間保持した後、5[℃/min]の冷却速度で徐冷して比較例の電解質膜/電極積層体1(燃料極支持型セル)を作成した。   Subsequently, on the base of the SDC intermediate layer 2B, the SSC electrode material 3 (particle size 1 [μm]) was applied by screen printing with a film thickness of about 15 [μm], heated to 1100 degrees Celsius, and heated to 1100 degrees Celsius. After reaching [° C.] for 2 hours, it was gradually cooled at a cooling rate of 5 [° C./min] to prepare a comparative electrolyte membrane / electrode laminate 1 (fuel electrode supported cell).

得られた実施例および比較例の電解質膜/電極積層体1(固体電解質セル)を隔壁として両側からセパレータで挟み、外部から燃料極4の側に5%のH2Oで加湿した水素からなる燃料ガスを供給し、空気極3には空気からなる酸化剤ガスを供給して、セル電圧0.6[V]となるよう、摂氏600[℃]において、100時間連続運転させる長期安定性試験を実施した。これらの性能比較した結果を、製造過程も対比させて図9に示す。 The obtained electrolyte membrane / electrode laminate 1 (solid electrolyte cell) of Examples and Comparative Examples was sandwiched between separators from both sides as partition walls, and consisted of hydrogen humidified with 5% H 2 O from the outside to the fuel electrode 4 side. A long-term stability test in which fuel gas is supplied and an oxidant gas composed of air is supplied to the air electrode 3 and is continuously operated at 600 [deg.] C. for 100 hours so that the cell voltage becomes 0.6 [V]. Carried out. The results of these performance comparisons are shown in FIG.

上記の発電実験において、実施例の電極/電解質積層体1を用いた燃料電池セルでの出力密度は、250[mw/cm2]であったが、比較例の電極/電解質積層体1を用いた燃料電池セルでの出力密度は、130[mw/cm2]であった。 In the above power generation experiment, the output density of the fuel cell using the electrode / electrolyte laminate 1 of the example was 250 [mw / cm 2 ], but the electrode / electrolyte laminate 1 of the comparative example was used. The output density of the existing fuel cell was 130 [mw / cm 2 ].

上記結果は、比較例では、図7に示すように、中間層2Aの表面に形成される平織りメッシュの線材により形成される凹凸が存在し、凸部の線材同士が交差する隅部分で盛上って突起となっており、このために、その上に印刷された電極層3との接触面積が減少して両者の密着性が悪くなったこと、および、図8に示すように、中間層2Bの表面の焼成後の粒子の大きさが1.5[μm]と大きく成長していることにより電極層3の粒子との接触点が減少して電極層3と中間層2Bとの密着性が低下され、電極層3と中間層2Bとの界面数が減少して電極反応に由来する接触抵抗および反応抵抗の減少に限界があったこと、に起因していると予想される。   In the comparative example, as shown in FIG. 7, the above results show that unevenness formed by the plain weave mesh wire formed on the surface of the intermediate layer 2 </ b> A exists and rises at the corner where the protruding wire intersects each other. For this reason, the contact area with the electrode layer 3 printed thereon has decreased, and the adhesion between the two has deteriorated, and as shown in FIG. Since the size of the particles after firing on the surface of 2B grows as large as 1.5 [μm], the contact point with the particles of the electrode layer 3 decreases, and the adhesion between the electrode layer 3 and the intermediate layer 2B. This is presumably due to the fact that the number of interfaces between the electrode layer 3 and the intermediate layer 2B is reduced and there is a limit to the reduction in contact resistance and reaction resistance resulting from the electrode reaction.

他方、実施例では、図3に示すように、中間層2Bの表面に形成される電鋳プレートメッシュのリブにより形成される凹部5が規則的な格子状の溝により形成され、凸部6のリブ同士が交差する隅部分で盛上る突起も存在せず、その上に印刷された電極層3との接触面積が増加して両者の密着性がよくなったこと、および、図4に示すように、中間層2Bの表面の焼成後の粒子の大きさが0.6[μm]と小さく、しかも、粒子同士の成長により粒状凸部7および粒状凹部8が存在していることにより電極層3の粒子との接触点が増加して電極層3と中間層2Bとの密着性が向上し、電極層3と中間層2Bとの界面数が増加して電極反応に由来する接触抵抗および反応抵抗が大きく減少されたこと、に起因していると予想される。   On the other hand, in the embodiment, as shown in FIG. 3, the concave portions 5 formed by the ribs of the electroformed plate mesh formed on the surface of the intermediate layer 2B are formed by regular grid-like grooves, and the convex portions 6 There are no protrusions that rise at the corners where the ribs intersect, the contact area with the electrode layer 3 printed thereon increases, and the adhesion between them is improved, as shown in FIG. Furthermore, the size of the particles after firing on the surface of the intermediate layer 2B is as small as 0.6 [μm], and the granular convex portions 7 and the granular concave portions 8 are present due to the growth of the particles, whereby the electrode layer 3. Contact point between the electrode layer 3 and the intermediate layer 2B is improved, the number of interfaces between the electrode layer 3 and the intermediate layer 2B is increased, and contact resistance and reaction resistance derived from the electrode reaction Is expected to be due to a significant decrease.

なお、上記実施形態において、固体酸化物型燃料電池の電解質膜/電極積層体1の構造として、燃料極4を支持基板材料とする電極支持型の電解質膜/電極積層体1について説明したが、図示はしないが、電解質層を支持基板材料とする電解質支持型の電解質膜/電極積層体の構造をもつものであっても、同様に適用できるものである。   In the above embodiment, as the structure of the electrolyte membrane / electrode stack 1 of the solid oxide fuel cell, the electrode-supported electrolyte membrane / electrode stack 1 using the fuel electrode 4 as a support substrate material has been described. Although not shown in the drawings, the present invention can be similarly applied to an electrolyte-supported electrolyte membrane / electrode laminate structure having an electrolyte layer as a support substrate material.

本実施形態においては、以下に記載する効果を奏することができる。   In the present embodiment, the following effects can be achieved.

(ア)固体酸化物から成る電解質膜2の一方の面に燃料極の電極層4を積層し且つ他方の面に空気極の電極層3を積層した固体酸化物型燃料電池の電解質膜/電極積層体1において、前記電解質膜2を電解質膜2のみの一層構造若しくは電解質層2Aに積層して電極層3との間に中間層2Bを備える二層構造に構成し、前記電極層3が界面を接して積層される電解質膜2若しくは中間層2Bは平均粒径が1[μm]以下の前記電解質膜2若しくは中間層2Bの形成材料の焼成により形成され、その表面に交差する複数の溝からなる凹部5およびこの複数の凹部5により区画されて予め設定した形状をもつ複数の凸部6を備える。   (A) Electrolyte membrane / electrode of a solid oxide fuel cell in which an electrode layer 4 of a fuel electrode is laminated on one surface of an electrolyte membrane 2 made of a solid oxide and an electrode layer 3 of an air electrode is laminated on the other surface In the laminate 1, the electrolyte membrane 2 is constituted by a single layer structure of the electrolyte membrane 2 alone or a two-layer structure in which an intermediate layer 2 B is provided between the electrolyte layer 2 A and the electrode layer 3. The electrolyte membrane 2 or the intermediate layer 2B laminated in contact with each other is formed by firing the forming material of the electrolyte membrane 2 or the intermediate layer 2B having an average particle diameter of 1 [μm] or less, and is formed from a plurality of grooves intersecting the surface. And a plurality of convex portions 6 which are partitioned by the plurality of concave portions 5 and have a preset shape.

このため、前記凹部5に電極層3が入込み且つ凸部6が電極層3に包み込まれ、両者の密着性を向上させ、焼成時および高温での燃料電池運転時に、電極層3に発生した応力を電解質膜2若しくは中間層2Bで吸収でき、境界面全体の密着性が向上する。また、中間層2B若しくは電解質膜2の表面層を構成する粒子の平均粒径を1[μm]以下としているため、高温焼結時に電極粒子との接触点が増え、電極層3と中間層2Bの密着性が向上し、電気化学反応場をなる電極層3との界面数も増え、電極反応に由来する接触抵抗および反応を低減できる。   For this reason, the electrode layer 3 enters the concave portion 5 and the convex portion 6 is wrapped in the electrode layer 3 to improve the adhesion between them, and the stress generated in the electrode layer 3 during firing and during fuel cell operation at high temperature Can be absorbed by the electrolyte membrane 2 or the intermediate layer 2B, and the adhesion of the entire boundary surface is improved. Further, since the average particle diameter of the particles constituting the intermediate layer 2B or the surface layer of the electrolyte membrane 2 is 1 [μm] or less, the number of contact points with the electrode particles during high-temperature sintering increases, and the electrode layer 3 and the intermediate layer 2B Thus, the number of interfaces with the electrode layer 3 forming an electrochemical reaction field is increased, and the contact resistance and reaction derived from the electrode reaction can be reduced.

(イ)複数の凹部5および凸部6は、電解質膜2若しくは中間層2Bの表面に規則的に整列させて配置されているため、高温時の電極層3の発生した応力を均一的に吸収でき、界面全体の密着性が上がる。   (A) Since the plurality of concave portions 5 and convex portions 6 are regularly arranged on the surface of the electrolyte membrane 2 or the intermediate layer 2B, the stress generated by the electrode layer 3 at high temperature is uniformly absorbed. This improves the adhesion of the entire interface.

(ウ)電極層3が界面を接して積層される電解質膜2若しくは中間層2Bの凹部5および凸部6の表面は、前記平均粒径が1[μm]以下の前記電解質膜2若しくは中間層2Bの形成材料の焼成により形成される無数の粒状凸部7および粒状凹部8を備えることにより、電極層3の高温焼結時に電極粒子との接触点を増加させて電極層3との密着性を向上させ、電気化学反応場となる電極層3との界面数も増加し、界面における接触抵抗を低減すると共に電極反応に由来する反応抵抗を低減できる。特に、粒状凸部7は、電極層3により包み込まれる状態となるため、電極層3の高温焼結時に、電極粒子との間にアンカ効果を発生させて中間層2Bと電極層3との焼結性が向上し、両者の密着性を向上させる。   (C) The surface of the concave portion 5 and the convex portion 6 of the electrolyte membrane 2 or intermediate layer 2B on which the electrode layer 3 is laminated in contact with the interface is the electrolyte membrane 2 or intermediate layer having the average particle size of 1 [μm] or less. By providing innumerable granular convex portions 7 and granular concave portions 8 formed by firing the forming material of 2B, the contact point with the electrode particles is increased at the time of high-temperature sintering of the electrode layer 3, and the adhesion with the electrode layer 3 is increased. And the number of interfaces with the electrode layer 3 serving as an electrochemical reaction field is increased, so that the contact resistance at the interface can be reduced and the reaction resistance derived from the electrode reaction can be reduced. In particular, since the granular convex portion 7 is encased by the electrode layer 3, during the high-temperature sintering of the electrode layer 3, an anchor effect is generated between the electrode particles 3 and the intermediate layer 2B and the electrode layer 3 are sintered. This improves the adhesion and improves the adhesion between them.

(エ)電極層3が界面を接して積層される電解質膜2若しくは中間層2Bの表面に形成される複数の凹部5は、互いの間隔が30[μm]以下とした平行な複数の溝同士を前記表面に交差させて配列することにより、電極層3との接触面積が凹部5および凸部6による入込みが多くでき、高温時に電極層3に生じる応力をより一層吸収できる構造となる。   (D) The plurality of recesses 5 formed on the surface of the electrolyte membrane 2 or the intermediate layer 2B on which the electrode layer 3 is laminated in contact with each other are parallel to each other with a plurality of parallel grooves whose intervals are 30 [μm] or less. Are arranged so as to intersect the surface, the contact area with the electrode layer 3 can be increased by the recesses 5 and the protrusions 6, and the stress generated in the electrode layer 3 at a high temperature can be further absorbed.

(オ)互いの間隔が30[μm]以下とした平行な複数の溝(凹部5)同士を前記表面に交差させての配列は、平行な複数のリブを交差させて備える電鋳プレートメッシュを用いて、前記電極層3と界面を接して積層される電解質膜2若しくは中間層2Bの材料ペーストをスクリーン印刷法により印刷することでえるようにすると、溝による凹部5および凸部6を形成する工程を新たに持つ必要がなく、従来より実施している工程により上記(ア)〜(エ)の効果を発揮する電解質膜/電極積層体1をえることができる。   (E) An arrangement in which a plurality of parallel grooves (recesses 5) having an interval of 30 [μm] or less intersecting the surface includes an electroformed plate mesh provided with a plurality of parallel ribs intersecting each other. When the material paste of the electrolyte membrane 2 or the intermediate layer 2B laminated with the electrode layer 3 in contact with the interface is printed by a screen printing method, the concave portion 5 and the convex portion 6 are formed by the grooves. It is not necessary to have a new process, and the electrolyte membrane / electrode laminate 1 that exhibits the effects (a) to (d) can be obtained by a process that has been performed conventionally.

本発明の一実施形態を示す固体酸化膜型燃料電池の電解質膜/電極積層体の概略断面図。1 is a schematic cross-sectional view of an electrolyte membrane / electrode laminate of a solid oxide membrane fuel cell showing one embodiment of the present invention. 同じく電解質膜の構造を模式的に示す説明図。Explanatory drawing which shows the structure of an electrolyte membrane similarly. 実施例で作成した電解質膜(中間層)表面の光学顕微鏡写真。The optical microscope photograph of the electrolyte membrane (intermediate layer) surface created in the Example. 同じく実施例で作成した電解質膜(中間層)表面の走査型電子顕微鏡写真。The scanning electron micrograph of the electrolyte membrane (intermediate layer) surface similarly created in the Example. 実施例で使用する電鋳プレートメッシュの光学顕微鏡写真。The optical microscope photograph of the electroformed plate mesh used in an Example. 比較例で使用する平織りワイヤメッシュの光学顕微鏡写真。An optical micrograph of a plain weave wire mesh used in a comparative example. 比較例で作成した電解質膜(中間層)表面の光学顕微鏡写真。The optical microscope photograph of the electrolyte membrane (intermediate layer) surface created by the comparative example. 同じく比較例で作成した電解質膜(中間層)表面の走査型電子顕微鏡写真。The scanning electron micrograph of the electrolyte membrane (intermediate layer) surface similarly created in the comparative example. 実施例および比較例との性能比較した結果を、製造過程も対比させて表示する比較図。The comparison figure which displays the result of having compared the performance with an Example and a comparative example, also contrasting a manufacturing process.

符号の説明Explanation of symbols

1 電解質膜/電極積層体
2 電解質膜
2A 電解質層
2B 中間層
3 空気極の電極層
4 燃料極の電極層
5 凹部
6 凸部
7 粒状凸部
8 粒状凹部
DESCRIPTION OF SYMBOLS 1 Electrolyte membrane / electrode laminated body 2 Electrolyte membrane 2A Electrolyte layer 2B Intermediate layer 3 Electrode layer of air electrode 4 Electrode layer of fuel electrode 5 Concave part 6 Convex part 7 Granular convex part 8 Granular concave part

Claims (5)

固体酸化物から成る電解質膜の一方の面に燃料極の電極層を積層し且つ他方の面に空気極の電極層を積層した固体酸化物型燃料電池の電解質膜/電極積層体において、
前記電解質膜を電解質膜のみの一層構造若しくは電解質層に積層して電極層との間に中間層を備える二層構造に構成し、
前記電極層が界面を接して積層される電解質膜若しくは中間層は平均粒径が1[μm]以下の前記電解質膜若しくは中間層の形成材料の焼成により形成され、その表面に、交差する複数の溝からなる凹部およびこの複数の凹部により区画されて予め設定した形状をもつ複数の凸部を備えることを特徴とする固体酸化膜型燃料電池の電解質膜/電極積層体。
In an electrolyte membrane / electrode laminate of a solid oxide fuel cell in which an electrode layer of a fuel electrode is laminated on one surface of an electrolyte membrane made of a solid oxide and an electrode layer of an air electrode is laminated on the other surface,
The electrolyte membrane is configured as a single-layer structure of only an electrolyte membrane or a two-layer structure including an intermediate layer between the electrode layer and an electrode layer,
The electrolyte membrane or intermediate layer on which the electrode layers are laminated in contact with each other is formed by firing the forming material of the electrolyte membrane or intermediate layer having an average particle size of 1 [μm] or less, and a plurality of crossing the surface An electrolyte membrane / electrode laminate for a solid oxide membrane fuel cell, comprising: a concave portion comprising a groove; and a plurality of convex portions that are partitioned by the plurality of concave portions and have a preset shape.
前記複数の凹部および凸部は、電解質膜若しくは中間層の表面に規則的に整列させて配置されていることを特徴とする請求項1に記載の固体酸化膜型燃料電池の電解質膜/電極積層体。   2. The electrolyte membrane / electrode stack of a solid oxide film fuel cell according to claim 1, wherein the plurality of concave portions and convex portions are regularly arranged on the surface of the electrolyte membrane or the intermediate layer. body. 前記電極層が界面を接して積層される電解質膜若しくは中間層の凹部および凸部の表面は、前記平均粒径が1[μm]以下の前記電解質膜若しくは中間層の形成材料の焼成により形成される無数の粒状凸部および粒状凹部を備えることを特徴とする請求項1または請求項2に記載の固体酸化膜型燃料電池の電解質膜/電極積層体。   The surface of the concave portion and convex portion of the electrolyte membrane or intermediate layer laminated with the electrode layer in contact with the interface is formed by firing the electrolyte membrane or intermediate layer forming material having an average particle size of 1 [μm] or less. 3. The electrolyte membrane / electrode laminate of a solid oxide film fuel cell according to claim 1, comprising innumerable granular convex portions and granular concave portions. 前記電極層が界面を接して積層される電解質膜若しくは中間層の表面に形成される複数の凹部は、互いの間隔が30[μm]以下とした平行な複数の溝同士を前記表面に交差させて配列することを特徴とする請求項請求項1から請求項3のいずれか一つに記載の固体酸化膜型燃料電池の電解質膜/電極積層体。   The plurality of recesses formed on the surface of the electrolyte membrane or intermediate layer in which the electrode layers are laminated in contact with each other have a plurality of parallel grooves whose intervals are 30 [μm] or less intersecting the surface. The electrolyte membrane / electrode stack of a solid oxide membrane fuel cell according to any one of claims 1 to 3, wherein the electrolyte membrane / electrode laminate is arranged as described above. 前記互いの間隔が30[μm]以下とした平行な複数の溝同士を前記表面に交差させての配列は、平行な複数のリブを交差させて備える電鋳プレートメッシュを用いて、前記電極層と界面を接して積層される電解質膜若しくは中間層の材料ペーストをスクリーン印刷法により印刷することでえるものであることを特徴とする請求項4に記載の固体酸化膜型燃料電池の電解質膜/電極積層体。   The electrode layer is formed by using an electroformed plate mesh having a plurality of parallel ribs intersecting the surface, the plurality of parallel grooves each having an interval of 30 [μm] or less intersecting the surface. The electrolyte membrane / solid oxide membrane fuel cell according to claim 4, wherein the electrolyte membrane or intermediate layer material paste laminated in contact with the interface is printed by a screen printing method. Electrode laminate.
JP2005209631A 2005-07-20 2005-07-20 Electrolyte membrane/electrode laminate for solid oxide film fuel cell Pending JP2007026975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005209631A JP2007026975A (en) 2005-07-20 2005-07-20 Electrolyte membrane/electrode laminate for solid oxide film fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005209631A JP2007026975A (en) 2005-07-20 2005-07-20 Electrolyte membrane/electrode laminate for solid oxide film fuel cell

Publications (1)

Publication Number Publication Date
JP2007026975A true JP2007026975A (en) 2007-02-01

Family

ID=37787471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005209631A Pending JP2007026975A (en) 2005-07-20 2005-07-20 Electrolyte membrane/electrode laminate for solid oxide film fuel cell

Country Status (1)

Country Link
JP (1) JP2007026975A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110056573A (en) * 2009-11-23 2011-05-31 주식회사 코미코 Method of manufacturing plate-typed solid oxide fuel cell
WO2011093168A1 (en) * 2010-01-27 2011-08-04 日本碍子株式会社 Fuel cell
JP2012506127A (en) * 2008-10-14 2012-03-08 ユニバーシティ オブ フロリダ リサーチ ファンデーション インコーポレーティッド New materials and structures for low temperature SOFC
JP2012181928A (en) * 2011-02-28 2012-09-20 Kyocera Corp Solid oxide fuel cell and fuel cell module
JP2013041809A (en) * 2011-07-21 2013-02-28 Ngk Insulators Ltd Fuel cell
JP2014060161A (en) * 2008-10-09 2014-04-03 Ceramic Fuel Cells Ltd Solid oxide fuel cell or solid oxide fuel cell sub-component, and method for manufacturing the same
JP2017010709A (en) * 2015-06-19 2017-01-12 日本特殊陶業株式会社 Fuel battery unit cell and fuel battery cell
JP2018029023A (en) * 2016-08-18 2018-02-22 日本特殊陶業株式会社 Electrochemical reaction single cell and electrochemical cell stack

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060161A (en) * 2008-10-09 2014-04-03 Ceramic Fuel Cells Ltd Solid oxide fuel cell or solid oxide fuel cell sub-component, and method for manufacturing the same
JP2012506127A (en) * 2008-10-14 2012-03-08 ユニバーシティ オブ フロリダ リサーチ ファンデーション インコーポレーティッド New materials and structures for low temperature SOFC
KR20110056573A (en) * 2009-11-23 2011-05-31 주식회사 코미코 Method of manufacturing plate-typed solid oxide fuel cell
KR101678371B1 (en) * 2009-11-23 2016-11-23 주식회사 미코 Method of manufacturing plate-typed solid oxide fuel cell
WO2011093168A1 (en) * 2010-01-27 2011-08-04 日本碍子株式会社 Fuel cell
JP4779064B1 (en) * 2010-01-27 2011-09-21 日本碍子株式会社 Fuel cell
US8349522B2 (en) 2010-01-27 2013-01-08 Ngk Insulators, Ltd. Fuel cell
JP2012181928A (en) * 2011-02-28 2012-09-20 Kyocera Corp Solid oxide fuel cell and fuel cell module
JP2013041809A (en) * 2011-07-21 2013-02-28 Ngk Insulators Ltd Fuel cell
JP2017010709A (en) * 2015-06-19 2017-01-12 日本特殊陶業株式会社 Fuel battery unit cell and fuel battery cell
JP2018029023A (en) * 2016-08-18 2018-02-22 日本特殊陶業株式会社 Electrochemical reaction single cell and electrochemical cell stack

Similar Documents

Publication Publication Date Title
KR101768775B1 (en) Method for manufacturing solid oxide fuel cell
EP1791211B1 (en) Solid electrolyte fuel cell comprising a fired anode and a multi-layered porous cathode
JP6658754B2 (en) Solid oxide fuel cell and method for producing electrolyte layer-anode assembly
JP2007026975A (en) Electrolyte membrane/electrode laminate for solid oxide film fuel cell
KR20160087516A (en) Low and intermediate-temperature type proton-conducting ceramic fuel cells containing bi-layer electrolyte structure for preventing performance degradation and method for manufacturing the same
JP2017174516A (en) Electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and method of manufacturing electrochemical element
KR20200135835A (en) Metal support for electrochemical devices, electrochemical devices, electrochemical modules, electrochemical devices, energy systems, solid oxide fuel cells, solid oxide electrolytic cells, and methods of manufacturing metal supports
JP2010238432A (en) Power generation cell of fuel battery
KR102111859B1 (en) Solid oxide fuel cell and a battery module comprising the same
KR101644701B1 (en) Method for manufacturing anode support of solid oxide fuel cell and anode support of solid oxide fuel cell
JP4748971B2 (en) Fuel cell and fuel cell
WO2021192412A1 (en) Solid oxide fuel cell, solid oxide fuel cell stack, and solid oxide fuel cell production method
JP2006127973A (en) Fuel battery cell
JP6277897B2 (en) Solid oxide fuel cell
JP6350068B2 (en) Solid oxide fuel cell
JP4925574B2 (en) Fuel cell and fuel cell
JP6601700B2 (en) Manufacturing method of fuel cell stack
KR102103053B1 (en) Flat-type solid oxide fuel cell
JP2009087539A (en) Fuel battery cell and fuel battery cell stack, as well as fuel battery
CN111801827B (en) Electrolyte layer-anode composite member and battery structure
KR102642175B1 (en) Solid oxide fuel cell and manufacturing method thereof
JP2012074305A (en) Power generation cell for solid oxide fuel cell
JP6273306B2 (en) Ceramic cell structure
JP4761704B2 (en) Fuel cell and fuel cell
JP2022054071A (en) Solid oxide fuel cell and method of manufacturing the same