JP2007005281A - Positive electrode for battery and its manufacturing method - Google Patents

Positive electrode for battery and its manufacturing method Download PDF

Info

Publication number
JP2007005281A
JP2007005281A JP2006004516A JP2006004516A JP2007005281A JP 2007005281 A JP2007005281 A JP 2007005281A JP 2006004516 A JP2006004516 A JP 2006004516A JP 2006004516 A JP2006004516 A JP 2006004516A JP 2007005281 A JP2007005281 A JP 2007005281A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
manganese dioxide
current collector
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006004516A
Other languages
Japanese (ja)
Inventor
Shinichi Waki
新一 脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006004516A priority Critical patent/JP2007005281A/en
Publication of JP2007005281A publication Critical patent/JP2007005281A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery having high capacity, in relation to a lithium battery using manganese dioxide for a positive electrode and lithium for a negative electrode. <P>SOLUTION: This positive electrode for a battery comprising a collector and single-crystal manganese dioxide particles being an active material is characterized in that the c-axis direction of the single-crystal manganese dioxide particles is oriented vertically to the collector, and is improved in discharge characteristics by improving diffusion of lithium ions in active material particles by increasing the fill of manganese dioxide in the battery. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、正極活物質に二酸化マンガンを用いた電池用正極に関するものである。   The present invention relates to a battery positive electrode using manganese dioxide as a positive electrode active material.

二酸化マンガンは資源的に豊富であり、安価であることから電池用正極活物質として広く用いられており、負極に亜鉛を用いたマンガン電池やアルカリ電池、あるいは負極にリチウム金属を用いたリチウム電池などが知られている。   Manganese dioxide is abundant in resources and inexpensive, so it is widely used as a positive electrode active material for batteries. Manganese batteries and alkaline batteries using zinc as the negative electrode, lithium batteries using lithium metal as the negative electrode, etc. It has been known.

従来の電池用二酸化マンガンの製造方法としては、硫酸などの酸性水溶液にマンガン鉱物を溶解し、その溶液を電気分解し陽極に析出させる電解法や、炭酸マンガンなどのマンガン塩を焼成する固相法が知られている。   Conventional methods for producing manganese dioxide for batteries include electrolytic methods in which manganese minerals are dissolved in an acidic aqueous solution such as sulfuric acid, the solution is electrolyzed and deposited on the anode, and solid phase methods in which manganese salts such as manganese carbonate are baked It has been known.

従来これらの二酸化マンガン1を電池用正極として使用する場合には、図1に示すように結着剤2および導電助材3とともに混合する。この合剤を集電体4であるステンレスメッシュあるいはステンレス箔に塗工し、乾燥後圧延したものを正極極板としている。   Conventionally, when these manganese dioxides 1 are used as positive electrodes for batteries, they are mixed together with a binder 2 and a conductive additive 3 as shown in FIG. The mixture is applied to a stainless mesh or stainless foil as the current collector 4 and dried and rolled to form a positive electrode plate.

また、二次電池用正極活物質であるLiMn24において、真空蒸着法により電極表面上に柱状に成長させた単結晶構造が報告されている(特許文献1参照)。
特開平6−187994号公報
In addition, in LiMn 2 O 4 which is a positive electrode active material for secondary batteries, a single crystal structure has been reported which is grown in a columnar shape on the electrode surface by a vacuum deposition method (see Patent Document 1).
JP-A-6-187994

近年の電子機器のポータブル化、多機能化に伴い、電池に対して高容量化や高出力化などさらなる高性能化が求められている。   As electronic devices have become more portable and multifunctional in recent years, higher performance such as higher capacity and higher output is required for batteries.

従来の製造法で得られる二酸化マンガンは多結晶構造であり結晶欠陥や結晶粒界が存在する。そのため、高出力で電池を放電する場合に二酸化マンガン粒子内でリチウムイオンの拡散が速やかに行われず正極で分極が起こる。   Manganese dioxide obtained by a conventional production method has a polycrystalline structure and has crystal defects and grain boundaries. Therefore, when the battery is discharged at a high output, lithium ions are not diffused quickly in the manganese dioxide particles, and polarization occurs at the positive electrode.

また、極板内に結着剤や導電材など発電に不要な材料を含むため活物質の充填量が制限され放電容量が小さくなるという課題がある。   In addition, since the electrode plate contains a material unnecessary for power generation such as a binder and a conductive material, there is a problem that the amount of filling of the active material is limited and the discharge capacity is reduced.

また特許文献1には、二次電池用正極活物質であるLiMn24において、真空蒸着法により電極表面上に単結晶構造を有する前記正極活物質を析出させる正極板の製造方法が報告されているが、このような方法により電極に対しc軸が垂直に配向した単結晶二酸化マンガンを生成した報告はなされておらず、電池放電の際電解液から単結晶二酸化マンガン粒子へのリチウムイオン挿入は単位格子の(002)面により行われるが、c軸が極板に対し垂直に配向していない場合、電極表面がリチウムイオン挿入が行われない(002)面以外ので覆われ電池の放電特性が低下する。 Patent Document 1 reports a method for producing a positive electrode plate in which LiMn 2 O 4 , which is a positive electrode active material for a secondary battery, deposits the positive electrode active material having a single crystal structure on the electrode surface by vacuum deposition. However, there has been no report that single crystal manganese dioxide having the c-axis oriented perpendicular to the electrode by such a method has been reported, and lithium ion insertion into the single crystal manganese dioxide particles from the electrolyte during battery discharge Is performed by the (002) plane of the unit cell, but when the c-axis is not oriented perpendicular to the electrode plate, the electrode surface is covered with a portion other than the (002) plane where lithium ion insertion is not performed, and the discharge characteristics of the battery Decreases.

本発明は以上の課題を解決するためになされたものである。   The present invention has been made to solve the above problems.

本発明の正極は、集電体と活物質である単結晶二酸化マンガン粒子とからなる電池用正極であって、前記単結晶二酸化マンガン粒子のc軸方向が集電体に対し垂直に配向していることを特徴とし、これにより導電剤や結着剤を使用しないため活物質の充填量が増加し、電池の放電容量が増加する。また、二酸化マンガン粒子内に結晶欠陥や結晶粒界が存在
せず、高出力で電池を放電する場合であっても二酸化マンガン粒子内でのリチウムイオンの拡散が速やかに行われる。また、本発明では単結晶二酸化マンガン粒子のc軸方向がステンレス表面に対し垂直に配向しているため、電極表面が単位格子の(002)面で覆われ放電特性が向上する。
The positive electrode of the present invention is a positive electrode for a battery comprising a current collector and single crystal manganese dioxide particles as an active material, wherein the c-axis direction of the single crystal manganese dioxide particles is oriented perpendicular to the current collector. As a result, no conductive agent or binder is used, so that the amount of active material charged increases, and the discharge capacity of the battery increases. Further, there are no crystal defects or crystal grain boundaries in the manganese dioxide particles, and lithium ions are rapidly diffused in the manganese dioxide particles even when the battery is discharged at a high output. In the present invention, since the c-axis direction of the single crystal manganese dioxide particles is oriented perpendicularly to the stainless steel surface, the electrode surface is covered with the (002) plane of the unit cell, and the discharge characteristics are improved.

また、本発明は単結晶二酸化マンガンを有する電池用正極の製造方法であって、マンガンを溶解した水溶液と集電体とを容器内に密封する密封工程と、前記容器内を250℃以上20MPa以上の高温高圧状態に加熱する水熱処理工程を有することを特徴とし、これによりc軸方向が集電体表面に対し垂直となるように単結晶二酸化マンガン粒子の析出および成長を起こすことが可能となる。   The present invention also relates to a method for producing a positive electrode for a battery having single-crystal manganese dioxide, a sealing step of sealing an aqueous solution in which manganese is dissolved and a current collector in a container, and the interior of the container is 250 ° C. or higher and 20 MPa or higher. It is possible to cause precipitation and growth of single-crystal manganese dioxide particles so that the c-axis direction is perpendicular to the current collector surface. .

本発明は、二酸化マンガンの電池内充填量を増加し、二酸化マンガン粒子内のリチウムイオンの拡散を促進するものであり、低電流および高出力放電時において放電容量を増加させることが可能となる。   The present invention increases the filling amount of manganese dioxide in the battery and promotes the diffusion of lithium ions in the manganese dioxide particles, and can increase the discharge capacity at the time of low current and high power discharge.

本発明の正極は、集電体と活物質である単結晶二酸化マンガン粒子とからなる電池用正極であって、前記単結晶二酸化マンガン粒子のc軸方向が集電体に対し垂直に配向していることを特徴とし、放電特性を向上させることができる。   The positive electrode of the present invention is a positive electrode for a battery comprising a current collector and single crystal manganese dioxide particles as an active material, wherein the c-axis direction of the single crystal manganese dioxide particles is oriented perpendicular to the current collector. The discharge characteristics can be improved.

また、本発明は単結晶二酸化マンガンを有する電池用正極の製造方法であって、マンガンを溶解した水溶液と集電体とを容器内に密封する密封工程と、前記容器内を250℃以上20MPa以上の高温高圧状態に加熱する水熱処理工程を有することを特徴とし、c軸方向が集電体表面に対し垂直となるように単結晶二酸化マンガン粒子の析出および成長を起こすことが可能となる。   The present invention also relates to a method for producing a positive electrode for a battery having single-crystal manganese dioxide, a sealing step of sealing an aqueous solution in which manganese is dissolved and a current collector in a container, and the interior of the container is 250 ° C. or higher and 20 MPa or higher. It is characterized by having a hydrothermal treatment step of heating to a high temperature and high pressure state, and it becomes possible to cause precipitation and growth of single crystal manganese dioxide particles so that the c-axis direction is perpendicular to the current collector surface.

また、本発明において水熱処理の条件は374℃以上、22MPa以上であることがより好ましい。このようにすることにより、溶媒である水は超臨界状態となり、二酸化マンガンの溶解度が低下し生成反応が促進される。また、酸素ガスが水と均一相を形成するため、良好な酸化反応場が形成され、マンガンイオンの2価から4価への酸化が促進される。   In the present invention, the hydrothermal treatment condition is more preferably 374 ° C. or higher and 22 MPa or higher. By doing in this way, the water which is a solvent will be in a supercritical state, the solubility of manganese dioxide will fall, and a production | generation reaction will be accelerated | stimulated. Moreover, since oxygen gas forms a homogeneous phase with water, a good oxidation reaction field is formed, and oxidation of manganese ions from divalent to tetravalent is promoted.

さらに本発明において、反応容器にマンガンイオンを溶解した水溶液と集電体および酸化剤とを密封し、水熱処理することにより二酸化マンガンを正極集電体に析出させる正極の製造方法であって、該酸化剤が酸素ガス、オゾンガス、過酸化水素および硝酸からなる群より選ばれる少なくとも一つの酸化剤を密封することが好ましく、これによりマンガンイオンの酸化が好適に行われる。   Furthermore, in the present invention, a method for producing a positive electrode is provided, wherein an aqueous solution in which manganese ions are dissolved in a reaction vessel, a current collector and an oxidizing agent are sealed and hydrothermally treated to deposit manganese dioxide on the positive electrode current collector, It is preferable to seal at least one oxidant selected from the group consisting of oxygen gas, ozone gas, hydrogen peroxide and nitric acid as the oxidant, whereby manganese ions are suitably oxidized.

また、本発明において水熱処理を行う反応容器の材質は絶縁性無機材料であることが好ましく、これにより、反応槽内側で二酸化マンガンの生成が起こらず集電体表面で選択的に二酸化マンガンを析出させることができる。   Further, in the present invention, the material of the reaction vessel for performing the hydrothermal treatment is preferably an insulating inorganic material, so that manganese dioxide is not generated inside the reaction vessel and the manganese dioxide is selectively deposited on the surface of the current collector. Can be made.

また、本発明において水熱処理を行う反応容器の材質は石英ガラスであることが好ましい。石英ガラスは絶縁体であり、耐熱性が高く、酸性水溶液に対しても安定であることから、反応槽内側で二酸化マンガンの生成が起こらず集電体表面で選択的に二酸化マンガンを析出させることができる。   In the present invention, the material of the reaction vessel for performing the hydrothermal treatment is preferably quartz glass. Quartz glass is an insulator, has high heat resistance, and is stable against acidic aqueous solutions, so that manganese dioxide is not generated inside the reaction tank and manganese dioxide is selectively deposited on the current collector surface. Can do.

以下、本発明を実施例に沿って具体的に説明する。但し、本実施例は本発明の一実施形態を示すものであり、その内容に限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. However, this example shows one embodiment of the present invention and is not limited to the content.

<正極の作製>
本発明の正極の作製方法を以下に示す。石英ガラスにより内壁をコーティングしたステンレス製の反応容器に和光純薬工業(株)製硝酸マンガン(II)六水和物(特級)および和光純薬工業(株)製過酸化水素(特級)を溶解した水溶液と集電体である帯状のステンレス箔を密封する。この容器を電気炉により加熱し、250℃以上、20MPa以上とする。容器内が反応温度に達した後10分間加熱を行い、その後容器を電気炉から取り出し室温まで冷却後、ステンレス箔を取り出しこれを正極とした。この原料水溶液は、容器内の温度において、目的とする圧力になるように調整される。
<Preparation of positive electrode>
A method for manufacturing the positive electrode of the present invention will be described below. Dissolve manganese nitrate (II) hexahydrate (special grade) manufactured by Wako Pure Chemical Industries, Ltd. and hydrogen peroxide (special grade) manufactured by Wako Pure Chemical Industries, Ltd. in a stainless steel reaction vessel whose inner wall is coated with quartz glass. The obtained aqueous solution and a belt-shaped stainless steel foil as a current collector are sealed. This container is heated by an electric furnace to 250 ° C. or higher and 20 MPa or higher. After the inside of the container reached the reaction temperature, heating was performed for 10 minutes, and then the container was taken out of the electric furnace and cooled to room temperature, and then the stainless steel foil was taken out and used as a positive electrode. This raw material aqueous solution is adjusted to a target pressure at the temperature in the container.

ここで、この圧力は、原料水溶液を純水であると仮定し、スチームテーブル(Steam Table)により算出する。例えば、反応温度400℃、反応圧力30MPaの水の密度は、0.35g/cm3であることから、容器の容積が10cm3であれば、容器内の原料水溶液が合計で3.5cm3になるように原料溶液を仕込む。また、ステンレス箔に析出する二酸化マンガンの析出量は原料水溶液の濃度により調節を行った。 Here, this pressure is calculated by a steam table assuming that the raw material aqueous solution is pure water. For example, reaction temperature 400 ° C., the density of water in the reaction pressure 30MPa, since it is 0.35 g / cm 3, if the volume of the container is 10 cm 3, in 3.5 cm 3 raw material aqueous solution is the sum of the vessel The raw material solution is charged so that The amount of manganese dioxide deposited on the stainless steel foil was adjusted by the concentration of the raw material aqueous solution.

<電池の作製>
図4に本実施例において用いた円筒形電池の縦断面図を示す。この電池は、負極にリチウムを用い、正極に二酸化マンガンを用いた円筒形リチウム電池である。
<Production of battery>
FIG. 4 shows a longitudinal sectional view of the cylindrical battery used in this example. This battery is a cylindrical lithium battery using lithium for the negative electrode and manganese dioxide for the positive electrode.

上記方法にて作製された正極9と、リチウム金属からなる帯状の負極11と、これら正負極電極間に介在されたセパレータ13とを渦巻き状に捲回して電極群を構成した。この電極群は負極端子を兼ねる金属製の電池ケース16内に配置されている。電池ケース16の上部開口部には、ガスケット18を介して安全弁を備えた組立封口板17が装着されている。組立封口板17の頂部は正極端子19として用いられる。正極板の芯材に接続された正極リード10は、組立封口板17に連結されている。また、電極群の上部には上部絶縁板14が配置されている。   A positive electrode 9 produced by the above method, a strip-like negative electrode 11 made of lithium metal, and a separator 13 interposed between these positive and negative electrodes were wound in a spiral shape to constitute an electrode group. This electrode group is disposed in a metal battery case 16 that also serves as a negative electrode terminal. An assembly sealing plate 17 having a safety valve is attached to the upper opening of the battery case 16 via a gasket 18. The top of the assembly sealing plate 17 is used as a positive electrode terminal 19. The positive electrode lead 10 connected to the core material of the positive electrode plate is connected to the assembly sealing plate 17. An upper insulating plate 14 is disposed above the electrode group.

電極群は負極リード12をほぼ直角に折り曲げて下部絶縁板15を電極群の底部に沿わせ、電池ケース16内に挿入される。次に負極リード12は、電極群中央の中空部および下部絶縁板15の透孔を通して挿入した溶接電極を用いて電池ケース16の内底面に溶接される。   The electrode group is inserted into the battery case 16 by bending the negative electrode lead 12 at a substantially right angle and placing the lower insulating plate 15 along the bottom of the electrode group. Next, the negative electrode lead 12 is welded to the inner bottom surface of the battery case 16 using a welding electrode inserted through the hollow portion in the center of the electrode group and the through hole of the lower insulating plate 15.

上記のようにして電極群を電池ケース内に組み入れた後、電池ケースの上部に段部を設け、プロピレンカーボネートと1、2−ジメトキシエタンとの混合溶媒に過塩素酸リチウムを1mol/lの割合で溶解させた有機電解液を注入し、電池ケースの開口部にガスケット18および組立封口板17を装着して密閉型電池が完成する。こうして外径17mm、高さ35mmの円筒形二酸化マンガンリチウム一次電池を得た。   After incorporating the electrode group into the battery case as described above, a step is provided at the upper part of the battery case, and a ratio of 1 mol / l of lithium perchlorate to a mixed solvent of propylene carbonate and 1,2-dimethoxyethane. The organic electrolyte dissolved in step 1 is injected, and the gasket 18 and the assembly sealing plate 17 are attached to the opening of the battery case to complete the sealed battery. Thus, a cylindrical lithium manganese dioxide primary battery having an outer diameter of 17 mm and a height of 35 mm was obtained.

前記方法を用いて反応温度を400℃、圧力を30MPaとし正極を作製した。ステンレス箔に析出した二酸化マンガンの膜厚は100μm,膜の空隙率は30%であった。この正極を用いて前述の方法にて作製した電池を電池Aとした。   Using the above method, a positive electrode was produced at a reaction temperature of 400 ° C. and a pressure of 30 MPa. The film thickness of manganese dioxide deposited on the stainless steel foil was 100 μm, and the porosity of the film was 30%. A battery produced by the above-described method using this positive electrode was designated as battery A.

反応温度を250℃、圧力を20MPaとした以外は実施例1と同様に正極を作製した。ステンレス箔に析出した二酸化マンガンの膜厚は100μm,膜の空隙率は30%であった。この正極を用いて前述の方法にて作製した電池を電池Bとした。   A positive electrode was produced in the same manner as in Example 1 except that the reaction temperature was 250 ° C. and the pressure was 20 MPa. The film thickness of manganese dioxide deposited on the stainless steel foil was 100 μm, and the porosity of the film was 30%. A battery produced by the above-described method using this positive electrode was designated as battery B.

反応温度を200℃、圧力を15MPaとした以外は実施例1と同様に正極を作製した。ステンレス箔に析出した二酸化マンガンの膜厚は100μm,膜の空隙率は30%であった。この正極を用いて前述の方法にて作製した電池を電池Cとした。   A positive electrode was produced in the same manner as in Example 1 except that the reaction temperature was 200 ° C. and the pressure was 15 MPa. The film thickness of manganese dioxide deposited on the stainless steel foil was 100 μm, and the porosity of the film was 30%. A battery produced by the above-described method using this positive electrode was designated as a battery C.

過酸化水素を加えない以外は実施例1と同様に正極を作製した。ステンレス箔に析出した二酸化マンガンの膜厚は100μm,膜の空隙率は30%であった。この正極を用いて前述の方法にて作製した電池を電池Dとした。   A positive electrode was produced in the same manner as in Example 1 except that hydrogen peroxide was not added. The film thickness of manganese dioxide deposited on the stainless steel foil was 100 μm, and the porosity of the film was 30%. A battery produced by the above-described method using this positive electrode was designated as battery D.

反応容器の空間を酸素ガスで充填した以外は実施例4と同様に正極を作製した。ステンレス箔に析出した二酸化マンガンの膜厚は100μm,膜の空隙率は30%であった。この正極を用いて前述の方法にて作製した電池を電池Eとした。   A positive electrode was produced in the same manner as in Example 4 except that the reaction vessel space was filled with oxygen gas. The film thickness of manganese dioxide deposited on the stainless steel foil was 100 μm, and the porosity of the film was 30%. A battery produced by the above-described method using this positive electrode was designated as battery E.

反応容器の空間をオゾンガスで充填した以外は実施例4と同様に正極を作製した。ステンレス箔に析出した二酸化マンガンの膜厚は100μm,膜の空隙率は30%であった。この正極を用いて前述の方法にて作製した電池を電池Fとした。   A positive electrode was produced in the same manner as in Example 4 except that the reaction vessel space was filled with ozone gas. The film thickness of manganese dioxide deposited on the stainless steel foil was 100 μm, and the porosity of the film was 30%. A battery produced by the above-described method using this positive electrode was designated as battery F.

マンガン原料として和光純薬工業(株)製硫酸マンガン(II)五水和物を使用した以外は実施例4と同様に正極を作製した。ステンレス箔に析出した二酸化マンガンの膜厚は100μm,膜の空隙率は30%であった。この正極を用いて前述の方法にて作製した電池を電池Gとした。   A positive electrode was produced in the same manner as in Example 4 except that Wako Pure Chemical Industries, Ltd. manganese (II) sulfate pentahydrate was used as the manganese raw material. The film thickness of manganese dioxide deposited on the stainless steel foil was 100 μm, and the porosity of the film was 30%. A battery produced by the above-described method using this positive electrode was designated as a battery G.

反応容器の内側材質をステンレスとした以外は実施例1と同様に正極を作製した。ステンレス箔に析出した二酸化マンガンの膜厚は91μm、膜の空隙率は30%であった。この正極を用いて前述の方法にて作製した電池を電池Hとした。   A positive electrode was produced in the same manner as in Example 1 except that the inner material of the reaction vessel was stainless steel. The film thickness of manganese dioxide deposited on the stainless steel foil was 91 μm, and the porosity of the film was 30%. A battery produced by the above-described method using this positive electrode was designated as a battery H.

(比較例1)
電解二酸化マンガンを400℃で熱処理したものとカーボンとフッ素樹脂を質量比で90:5:5で混合した合剤を水に分散させステンレス箔に塗工及び乾燥した後、合剤厚みは100μm,膜の空隙率は30%となるように圧延した。この正極を用いて前述の方法にて作製した電池を電池Iとした。
(Comparative Example 1)
A mixture prepared by heat treating electrolytic manganese dioxide at 400 ° C. and a mixture of carbon and fluororesin in a mass ratio of 90: 5: 5 was dispersed in water, coated on a stainless steel foil and dried, and then the mixture thickness was 100 μm. The film was rolled so that the porosity of the film was 30%. A battery produced by the above-described method using this positive electrode was designated as battery I.

<電池の評価方法>
実施例1〜実施例5および比較例1の方法により集電体表面に析出した二酸化マンガンについて理学電機株式会社製X線回折装置(RINT−2500)により結晶構造の解析を行った。なお、測定条件としてはX線源としてCuKα線を使用し、2θ=10〜80°の範囲で測定を行った。
<Battery evaluation method>
The crystal structure of manganese dioxide deposited on the current collector surface by the methods of Examples 1 to 5 and Comparative Example 1 was analyzed using an X-ray diffractometer (RINT-2500) manufactured by Rigaku Corporation. As measurement conditions, CuKα rays were used as an X-ray source, and measurement was performed in a range of 2θ = 10 to 80 °.

また、電池A〜電池Iについて各10ケずつ1mA/cm2および10mA/cm2で2.0Vまで放電を行った。 Further, each of Battery A to Battery I was discharged to 2.0 V at 1 mA / cm 2 and 10 mA / cm 2 .

<評価結果>
実施例1〜実施例5で生成した二酸化マンガン試料を電極状態でX線回折測定を行った結果、いずれの試料においても2θ=64.860位置においてβ型MnO2の(002)面に対応するピークのみを確認できた。
<Evaluation results>
As a result of X-ray diffraction measurement of the manganese dioxide samples produced in Examples 1 to 5 in the electrode state, any sample corresponds to the (002) plane of β-type MnO 2 at 2θ = 64.860 position. Only the peak could be confirmed.

次に、各試料を集電体からはがし粉砕後粉末の状態で測定を行ったところ、(002)面以外の面に対応するピークも確認できた。以上の結果より、本発明の方法により集電体に析出した二酸化マンガンは単結晶構造を有しており、c軸方向が集電体に対し垂直に配向していることがわかる。   Next, when each sample was peeled off from the current collector and measured in the state of powder after pulverization, a peak corresponding to a plane other than the (002) plane could be confirmed. From the above results, it can be seen that manganese dioxide deposited on the current collector by the method of the present invention has a single crystal structure, and the c-axis direction is oriented perpendicular to the current collector.

なお、比較例1の電極についても測定を行ったところ、(002)面およびそれ以外の面のβ型MnO2に対応するピークが確認された。このことから、電池Fの電極に塗工された二酸化マンガンは配向していない。 In addition, when the electrode of Comparative Example 1 was also measured, peaks corresponding to β-type MnO 2 on the (002) plane and other planes were confirmed. For this reason, the manganese dioxide applied to the electrode of the battery F is not oriented.

表1に実施例1〜5及び比較例の各放電電流における放電容量を示す。   Table 1 shows the discharge capacities at the respective discharge currents of Examples 1 to 5 and the comparative example.

Figure 2007005281
Figure 2007005281

1mA/cm2で放電した結果、従来の設計である電池Iに対し電池A〜電池Hでは放電容量が増加した。このことから、本発明は正極にバインダーや結着剤を必要としないため、正極活物質の充填量が増加し放電容量の増加が可能となる。 As a result of discharging at 1 mA / cm 2 , the discharge capacities of the batteries A to H increased with respect to the battery I of the conventional design. For this reason, since the present invention does not require a binder or a binder for the positive electrode, the filling amount of the positive electrode active material increases and the discharge capacity can be increased.

また、電池A〜電池Cの結果から反応温度が高いほど放電容量が大きいことから、亜臨界状態さらには超臨界状態にすることにより二酸化マンガンの結晶性が高くなり、利用率が向上したものと考えられる。   Further, from the results of the batteries A to C, the higher the reaction temperature, the larger the discharge capacity, so that the crystallinity of manganese dioxide is increased by using the subcritical state or the supercritical state, and the utilization rate is improved. Conceivable.

また、電池A、D〜Eと電池Gを比較すると電池A、D〜Eの放電容量がより大きいことから、酸化剤を添加することにより二酸化マンガンの結晶性が高くなり、利用率が向上したものと考えられる。   In addition, when batteries A and D to E and battery G are compared, the discharge capacities of batteries A and D to E are larger, so the addition of an oxidizing agent increases the crystallinity of manganese dioxide and improves the utilization rate. It is considered a thing.

一方、10mA/cm2で放電した結果、電池Iに対し電池A〜電池Hで放電容量が増加した。これは本発明の活物質粒子が単結晶構造を成しておりc軸方向が集電体に対し垂直であることから、粒子内におけるリチウムイオンの拡散が速やかに行われているためと思われる。 On the other hand, as a result of discharging at 10 mA / cm 2 , the discharge capacities of the batteries A to H increased with respect to the battery I. This is probably because the active material particles of the present invention have a single crystal structure and the c-axis direction is perpendicular to the current collector, so that lithium ions are rapidly diffused in the particles. .

また、電池A〜電池Cから反応温度が高いほど放電容量が大きいことから、亜臨界状態さらには超臨界状態にすることにより二酸化マンガンの結晶性が高くなり、利用率が向上したものと考えられる。   Moreover, since the discharge capacity increases as the reaction temperature increases from the batteries A to C, the crystallinity of manganese dioxide is increased by using the subcritical state or the supercritical state, and the utilization rate is considered to be improved. .

さらに、電池A、D〜Eと電池Gを比較すると電池A、D〜Eの放電容量がより大きいことから、酸化剤を添加することにより二酸化マンガンの結晶性が高くなり、利用率が向上したものと考えられる。   Furthermore, when batteries A and D to E and battery G are compared, the discharge capacities of batteries A and D to E are larger, so the addition of an oxidizing agent increases the crystallinity of manganese dioxide and improves the utilization rate. It is considered a thing.

また、電池Hの方法で正極を作成した場合に反応容器内面に生成物である二酸化マンガンの析出が確認されたが、電池A〜電池Gの方法では認められなかった。このことから、反応容器の内側材料に石英ガラスあるいはアルミナなどの絶縁性無機材料を使用することにより反応容器内面での生成物析出をより抑制できていると考えられる。   Moreover, when the positive electrode was produced by the method of the battery H, precipitation of manganese dioxide as a product was confirmed on the inner surface of the reaction vessel, but was not recognized by the methods of the batteries A to G. From this, it is considered that product precipitation on the inner surface of the reaction vessel can be further suppressed by using an insulating inorganic material such as quartz glass or alumina as the inner material of the reaction vessel.

本発明にかかる電池用正極は、二酸化マンガンの電池内充填量を増加し、二酸化マンガン粒子内のリチウムイオンの拡散を促進するものであり、低電流および高出力放電時において放電容量増加が可能となるので、リチウム電池用正極として有用である。   The positive electrode for a battery according to the present invention increases the filling amount of manganese dioxide in the battery and promotes the diffusion of lithium ions in the manganese dioxide particles, and can increase the discharge capacity at the time of low current and high power discharge. Therefore, it is useful as a positive electrode for a lithium battery.

従来の電池用電極の断面図Sectional view of a conventional battery electrode 本発明の電池用電極の断面図Sectional view of the battery electrode of the present invention 二酸化マンガンの結晶構造を示す図Diagram showing the crystal structure of manganese dioxide 本発明の実施例における円筒形電池の縦断面図The longitudinal cross-sectional view of the cylindrical battery in the Example of this invention

符号の説明Explanation of symbols

1 二酸化マンガン
2 結着剤
3 導電助剤
4 集電体
5 二酸化マンガン
6 集電体
7 マンガン
8 酸素
9 正極
10 正極リード
11 負極
12 負極リード
13 セパレータ
14 上部絶縁板
15 下部絶縁板
16 電池ケース
17 組立封口板
18 ガスケット
19 正極端子
DESCRIPTION OF SYMBOLS 1 Manganese dioxide 2 Binder 3 Conductive aid 4 Current collector 5 Manganese dioxide 6 Current collector 7 Manganese 8 Oxygen 9 Positive electrode 10 Positive electrode lead 11 Negative electrode 12 Negative electrode lead 13 Separator 14 Upper insulating plate 15 Lower insulating plate 16 Battery case 17 Assembly sealing plate 18 Gasket 19 Positive terminal

Claims (6)

集電体と、活物質である単結晶二酸化マンガン粒子とからなる電池用正極であって、前記単結晶二酸化マンガン粒子のc軸方向が集電体に対し垂直に配向していることを特徴とする電池用正極。 A positive electrode for a battery comprising a current collector and single crystal manganese dioxide particles as an active material, wherein the c-axis direction of the single crystal manganese dioxide particles is oriented perpendicular to the current collector. Battery positive electrode. 単結晶二酸化マンガンを有する電池用正極の製造方法であって、マンガンを溶解した水溶液と集電体とを容器内に密封する密封工程と、前記容器内を250℃以上20MPa以上の高温高圧状態に加熱する水熱処理工程を有する電池用正極の製造方法。 A method for producing a positive electrode for a battery having single-crystal manganese dioxide, wherein a sealing step of sealing an aqueous solution in which manganese is dissolved and a current collector are sealed in a container; The manufacturing method of the positive electrode for batteries which has the hydrothermal treatment process heated. 前記水熱処理工程の条件が374℃以上、22MPa以上であることを特徴とする請求項2に記載の電池用正極の製造方法。 The method for producing a battery positive electrode according to claim 2, wherein the conditions of the hydrothermal treatment step are 374 ° C or higher and 22MPa or higher. 前記密封工程において容器内に酸素ガス、オゾンガス、過酸化水素および硝酸からなる群より選ばれる少なくとも一つの酸化剤を密封することを特徴とする請求項2または3に記載の電池用正極の製造方法。 4. The method for producing a positive electrode for a battery according to claim 2, wherein at least one oxidizing agent selected from the group consisting of oxygen gas, ozone gas, hydrogen peroxide and nitric acid is sealed in the container in the sealing step. . 水熱処理工程を絶縁性無機材料からなる容器内で行うことを特徴とする請求項2〜4のいずれかに記載の電池用正極の製造方法。 The method for producing a positive electrode for a battery according to any one of claims 2 to 4, wherein the hydrothermal treatment step is performed in a container made of an insulating inorganic material. 水熱処理工程を石英ガラスからなる容器内で行うことを特徴とする請求項5に記載の電池用正極の製造方法。 6. The method for producing a positive electrode for a battery according to claim 5, wherein the hydrothermal treatment step is performed in a container made of quartz glass.
JP2006004516A 2005-05-27 2006-01-12 Positive electrode for battery and its manufacturing method Pending JP2007005281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006004516A JP2007005281A (en) 2005-05-27 2006-01-12 Positive electrode for battery and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005155247 2005-05-27
JP2006004516A JP2007005281A (en) 2005-05-27 2006-01-12 Positive electrode for battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007005281A true JP2007005281A (en) 2007-01-11

Family

ID=37690679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006004516A Pending JP2007005281A (en) 2005-05-27 2006-01-12 Positive electrode for battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007005281A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011183526A (en) * 2010-03-10 2011-09-22 Kyushu Univ Manganese oxide nanowire-coated structure and method for producing the same
WO2013005739A1 (en) 2011-07-06 2013-01-10 昭和電工株式会社 Electrode for lithium secondary batteries, lithium secondary battery, and method for producing electrode for lithium secondary batteries
WO2023189083A1 (en) * 2022-03-30 2023-10-05 パナソニックIpマネジメント株式会社 Positive electrode active material for lithium primary battery, and lithium primary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011183526A (en) * 2010-03-10 2011-09-22 Kyushu Univ Manganese oxide nanowire-coated structure and method for producing the same
WO2013005739A1 (en) 2011-07-06 2013-01-10 昭和電工株式会社 Electrode for lithium secondary batteries, lithium secondary battery, and method for producing electrode for lithium secondary batteries
WO2023189083A1 (en) * 2022-03-30 2023-10-05 パナソニックIpマネジメント株式会社 Positive electrode active material for lithium primary battery, and lithium primary battery

Similar Documents

Publication Publication Date Title
JP4404928B2 (en) Method for producing coated positive electrode active material, method for producing positive electrode for non-aqueous secondary battery, and method for producing non-aqueous secondary battery
Qiu et al. Ordered mesoporous TiC–C composites as cathode materials for Li–O 2 batteries
JP2008513972A (en) Battery cathode
JPWO2005104272A1 (en) Alkaline primary battery and method for producing positive electrode material thereof
JP2007173096A (en) Method of manufacturing cathode active substance for lithium secondary battery
JP2011034913A (en) Lithium battery electrode, method of manufacturing the same, and lithium battery
JP2007005281A (en) Positive electrode for battery and its manufacturing method
TW477085B (en) Manganese oxide composition, electrochemical cell and method for manufacturing the same, and method for preparing a lithiated manganese dioxide
JP2009245954A (en) Coated positive electrode active material, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP4339741B2 (en) Layered oxide electrode material and battery using the same
CN114514635A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2008091219A (en) Positive electrode material for lithium/iron disulfide primary battery, and manufacturing method therefor, and the lithium/iron disulfide primary battery
EP1878074A2 (en) Battery cathodes
JP2015189608A (en) Manganese dioxide for production of lithium manganate, and production method thereof
JP2009283291A (en) Manufacturing method of positive electrode for lithium battery and positive electrode for lithium battery
JPWO2020137440A1 (en) Method for Producing Lithium-Containing Composite Oxide
JP2001163622A (en) Lithium manganese oxide, its production process and secondary cell using the same oxide
JP6634831B2 (en) Lithium ion secondary battery
JP2005135849A (en) Positive electrode activator for lithium battery
JP7416897B1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary batteries
JPWO2006040907A1 (en) Alkaline battery
JP7454642B1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary batteries
JP7441998B1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary batteries
JP5142096B2 (en) Positive electrode material for lithium secondary battery and method for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery
JP2004119167A (en) Positive electrode active material for battery and manufacturing method of electrolyte manganese dioxide as well as battery