JP2009283291A - Manufacturing method of positive electrode for lithium battery and positive electrode for lithium battery - Google Patents

Manufacturing method of positive electrode for lithium battery and positive electrode for lithium battery Download PDF

Info

Publication number
JP2009283291A
JP2009283291A JP2008134125A JP2008134125A JP2009283291A JP 2009283291 A JP2009283291 A JP 2009283291A JP 2008134125 A JP2008134125 A JP 2008134125A JP 2008134125 A JP2008134125 A JP 2008134125A JP 2009283291 A JP2009283291 A JP 2009283291A
Authority
JP
Japan
Prior art keywords
manganese dioxide
positive electrode
lithium battery
boron
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008134125A
Other languages
Japanese (ja)
Inventor
Hiroji Maeda
廣二 前田
Takayuki Hattori
高幸 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008134125A priority Critical patent/JP2009283291A/en
Publication of JP2009283291A publication Critical patent/JP2009283291A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode for a lithium battery that allows the prevention of the increase of the internal resistance of the lithium battery, after a long-term storage, without performing a thermal treatment precess at a high temperature after adding an additive to manganese dioxide, and that also allows a long-term good maintenance of the properties that the lithium battery has when a large current is drawn therefrom. <P>SOLUTION: Boron oxide is dissolved in water, and an aqueous solution of boron oxide is prepared (S1). The boron oxide aqueous solution is mixed with manganese dioxide, to be fully impregnated (S2). After the mixing, drying is performed to prepare manganese dioxide containing boron is prepared (S3). The manganese dioxide containing boron, carbon powder as a conductive agent, tetrafluoroethylene and water are mixed together to be kneaded (S4). The thus prepared kneaded mixture is formed into a sheet (S5), and adhered to a lath core with pressure, which is then dried and extended by applying pressure to form a positive electrode plate (S6). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウム一次電池に関するものであり、特に活物質に二酸化マンガンを用いたリチウム電池用正極の製造方法に関する。   The present invention relates to a lithium primary battery, and more particularly to a method for producing a positive electrode for a lithium battery using manganese dioxide as an active material.

リチウム電池には、さまざまな形状のものが存在し、カメラに使われる円筒形、腕時計、電卓、電子手帳などに使われるコイン形などがあり、電子機器のメモリのバックアップにも使用されている。
リチウム電池は、負極材料としてリチウム金属やリチウムアルミ合金が使用され、正極材料として二酸化マンガンが使用され、電解液に有機溶媒が用いられている。そして、3Vまでの起電力を持ち、非水溶媒を電解液として使用している関係から、低温特性と保存特性に優れている。
Lithium batteries come in a variety of shapes, including cylindrical shapes used in cameras, coin shapes used in wristwatches, calculators, electronic notebooks, etc., and are also used for backing up memory in electronic devices.
In lithium batteries, lithium metal or lithium aluminum alloy is used as a negative electrode material, manganese dioxide is used as a positive electrode material, and an organic solvent is used as an electrolytic solution. And since it has an electromotive force of up to 3 V and uses a non-aqueous solvent as an electrolyte, it has excellent low-temperature characteristics and storage characteristics.

一方、リチウム電池は、長期保存時に内部抵抗が上昇する傾向がある。
内部抵抗が上昇すると電池特性が低下するので、リチウム電池の内部抵抗上昇を抑制し、電池の長期保存特性を良好にする技術が開発されている。
例えば、特許文献1には、リチウム電池において、二酸化マンガンに、リン酸、ホウ酸、炭酸、硫酸もしくはこれらの塩から選択されたものを添加して、その二酸化マンガンを300℃〜400℃で熱処理したものを正極活物質として用いることによって、二酸化マンガンの結晶再配列効果が得られ、高い電池電圧が得られることが開示されている。
On the other hand, a lithium battery tends to increase internal resistance during long-term storage.
Since the battery characteristics deteriorate when the internal resistance increases, a technique has been developed that suppresses the increase in internal resistance of the lithium battery and improves the long-term storage characteristics of the battery.
For example, in Patent Document 1, in a lithium battery, manganese dioxide is added to manganese dioxide selected from phosphoric acid, boric acid, carbonic acid, sulfuric acid, or a salt thereof, and the manganese dioxide is heat treated at 300 ° C. to 400 ° C. It has been disclosed that by using the above as a positive electrode active material, a crystal rearrangement effect of manganese dioxide can be obtained and a high battery voltage can be obtained.

特許文献2には、リチウム電池において、ホウ素を二酸化マンガンに原子比 0.02〜0.1の割合で添加し、350℃〜480℃で熱処理をして用いることによって、サイクル可逆性、貯蔵性を向上できることが開示されている。
特許文献3には、ホウ素あるいはアルミウムを二酸化マンガンに0.1重量%〜1.0重量%添加し、350℃〜480℃で熱処理をして正極活物質として用いることによって、内部抵抗の上昇を抑えて良好な電池性能が得られることが開示されている。
In Patent Document 2, in a lithium battery, boron is added to manganese dioxide at an atomic ratio of 0.02 to 0.1, and heat treatment is performed at 350 ° C. to 480 ° C., thereby providing cycle reversibility and storage properties. It is disclosed that can be improved.
In Patent Document 3, boron or aluminum is added to manganese dioxide in an amount of 0.1 wt% to 1.0 wt%, heat-treated at 350 ° C. to 480 ° C. and used as a positive electrode active material, thereby increasing the internal resistance. It is disclosed that good battery performance can be obtained by suppressing.

特許文献4には、二酸化マンガンに、リンを0.2〜2%含有させ、ホウ素を0.1〜2%含有させ、熱処理することによって電池の保存特性を向上できることが開示されている。
特開平2−253560号公報 特開平3−297058号公報 特開平11−339794号公報 特開平2003−217579号公報
Patent Document 4 discloses that the storage characteristics of a battery can be improved by heat-treating manganese dioxide with 0.2-2% phosphorus and 0.1-2% boron.
JP-A-2-253560 Japanese Patent Laid-Open No. 3-297058 JP 11-339794 A Japanese Patent Laid-Open No. 2003-217579

このような技術を用いることよって、リチウム電池の長期保存時における内部抵抗上昇が抑えられ、長期保存特性が良好となるが、上記従来技術においてはいずれも、正極を作製する上で、正極活物質としての二酸化マンガンに、ホウ素やリンやアルミニウムなどの添加剤を固体状態で添加混合しているので、添加混合した添加物を二酸化マンガンと反応させるための熱処理工程が欠かせない。従って、より簡単な製造工程で、リチウム電池の長期保存特性を良好にする技術が望まれる。   By using such a technique, an increase in internal resistance during long-term storage of a lithium battery is suppressed, and long-term storage characteristics are improved. In any of the above conventional techniques, a positive electrode active material Since an additive such as boron, phosphorus, or aluminum is added and mixed in the solid state with manganese dioxide, a heat treatment step for reacting the added additive with manganese dioxide is indispensable. Therefore, a technique for improving the long-term storage characteristics of a lithium battery with a simpler manufacturing process is desired.

また従来、リチウム電池は主に小電流が使用されていたが、近年は煙感知器用、緊急車載用、AED(自動対外式除細動機)など、低温下で大電流を要求する用途が増える傾向にあり、特にこのような用途では、長時間保存後においても電池から大電流を取り出して機器を作動できるようにする必要もある。
本発明は、このような背景のもとで、リチウム電池の正極を製造する際に、二酸化マンガンに添加物を添加した後に高温で熱処理する工程を行わなくても、リチウム電池の長期保存時における内部抵抗上昇を抑え、且つ、リチウム電池から大電流が取り出したときの特性を長期にわたって良好にすることを目的とする。
Conventionally, lithium batteries have mainly used small currents, but in recent years, applications that require large currents at low temperatures, such as smoke detectors, emergency vehicle-mounted devices, and AEDs (automatic external defibrillators), have been increasing. In particular, in such an application, it is necessary to take out a large current from the battery even after storage for a long time so that the device can be operated.
Under the above circumstances, the present invention provides a lithium battery positive electrode that can be used for long-term storage of a lithium battery without performing a heat treatment process at a high temperature after adding an additive to manganese dioxide. The purpose is to suppress the increase in internal resistance and to improve the characteristics when a large current is taken out from the lithium battery over a long period of time.

本発明は、上記目的を達成するため、リチウム電池用正極の製造方法において、ホウ素化合物を水溶液の状態で二酸化マンガンと混合してホウ素含有二酸化マンガンを製造する第1ステップと、第1ステップで製造したホウ素含有二酸化マンガンを芯材に保持させる第2ステップとを設けた。
ホウ素化合物としては、ホウ酸(H3BO3),酸化ホウ素(B23),ホウ素塩(例えばLiBO3)などが挙げられる。
In order to achieve the above object, according to the present invention, in a method for producing a positive electrode for a lithium battery, a boron compound is mixed with manganese dioxide in an aqueous solution to produce boron-containing manganese dioxide, and produced in the first step. And a second step of holding the boron-containing manganese dioxide on the core material.
Examples of the boron compound include boric acid (H 3 BO 3 ), boron oxide (B 2 O 3 ), and a boron salt (for example, LiBO 3 ).

ここで、第1ステップにおいて、二酸化マンガン(MnO2)に対するホウ素(B)の添加混合量が0.05〜2重量%となるようにホウ素化合物の水溶液を二酸化マンガンと混合することが望ましい。
第1ステップで用いる二酸化マンガンは、比表面積が15〜40m2/gの範囲内にあることが好ましい。
Here, in the first step, it is desirable to mix an aqueous solution of a boron compound with manganese dioxide so that the amount of boron (B) added to manganese dioxide (MnO 2 ) is 0.05 to 2% by weight.
The manganese dioxide used in the first step preferably has a specific surface area in the range of 15 to 40 m 2 / g.

第2ステップでは、第1ステップで製造したホウ素含有二酸化マンガンに、導電材と、バインダとを混合して合剤とし、これを芯体に圧着することにより、ホウ素含有二酸化マンガンを芯材に保持させることが好ましい。
本発明のリチウム電池の製造方法では、上記製造方法で製造したリチウム電池用正極と、リチウムを含む負極とを用いてリチウム電池を製造することとした。
In the second step, the boron-containing manganese dioxide produced in the first step is mixed with a conductive material and a binder to form a mixture, and this is crimped to the core to hold the boron-containing manganese dioxide in the core. It is preferable to make it.
In the method for producing a lithium battery of the present invention, a lithium battery is produced using the positive electrode for a lithium battery produced by the production method described above and a negative electrode containing lithium.

本発明のリチウム電池用正極の製造方法では、第1ステップでホウ素化合物と二酸化マンガンをと混合してホウ素含有二酸化マンガンを製造する際に、ホウ素化合物を水溶液の状態で混合するので、ホウ素化合物水溶液が、二酸化マンガン粒子の表面に付着するのはもちろん、二酸化マンガン粒子の微細孔内にも容易に浸入する。従って、二酸化マンガンにホウ素化合物を添加した後に熱処理を行わなくても、二酸化マンガン粒子の表面や、微細孔内の表面にホウ素化合物が付着して、マンガン−ホウ素酸化物の薄い皮膜が形成される。   In the method for producing a positive electrode for a lithium battery according to the present invention, when a boron compound and manganese dioxide are mixed in the first step to produce boron-containing manganese dioxide, the boron compound is mixed in the form of an aqueous solution. However, it adheres to the surface of the manganese dioxide particles and easily penetrates into the fine pores of the manganese dioxide particles. Therefore, even if the heat treatment is not performed after adding the boron compound to manganese dioxide, the boron compound adheres to the surface of the manganese dioxide particles and the surface in the micropores, and a thin film of manganese-boron oxide is formed. .

よって、第2ステップで、このホウ素含有二酸化マンガンを芯材に保持してリチウム電池用正極を作製し、当該リチウム電池用正極と、リチウムを含む負極とを用いてリチウム電池を製造すれば、リチウム電池の長期保存時における内部抵抗上昇が抑えられ、且つ、低温下でも良好な大電流放電特性が得られる。
なお、上記従来技術のようにホウ素化合物の固体を二酸化マンガンに添加し混合した後、高温で熱処理をする方法であれば、二酸化マンガン粒子の表面にはホウ素化合部が付着してマンガン−ホウ素酸化物皮膜が生じるが、二酸化マンガンの微細孔にはホウ素化合物が浸入しにくいので、当該微細孔内にマンガン−ホウ素酸化物皮膜を形成するのは困難と考えられる。
Therefore, in the second step, if this boron-containing manganese dioxide is held in the core material to produce a lithium battery positive electrode, and a lithium battery is produced using the lithium battery positive electrode and a negative electrode containing lithium, lithium lithium An increase in internal resistance during battery long-term storage can be suppressed, and good large current discharge characteristics can be obtained even at low temperatures.
If the boron compound solid is added to and mixed with manganese dioxide as in the above prior art, and then heat treated at a high temperature, the boron compound portion adheres to the surface of the manganese dioxide particles and the manganese-boron oxidation is performed. Although a physical film is formed, it is considered difficult to form a manganese-boron oxide film in the fine pores because the boron compound hardly enters the fine pores of manganese dioxide.

比表面積が15〜40m2/gの範囲にある二酸化マンガンには、30〜3000オングストロームの微細孔が0.04〜0.08cc/g存在するが、このような二酸化マンガンを用いれば、リチウム電池の長期保存時における内部抵抗上昇を抑える効果と、リチウム電池から大電流を取り出したときの特性を長期にわたって良好に保つことができる。
特に、比表面積の大きな二酸化マンガンを用いた場合、低温下での大電流放電特性が良好になる。これは、用いる二酸化マンガンの比表面積が大きいほど、正極における化学反応面積が大きくなるからである。
Manganese dioxide having a specific surface area of 15 to 40 m 2 / g has micropores of 30 to 3,000 angstroms in an amount of 0.04 to 0.08 cc / g. If such manganese dioxide is used, a lithium battery The effect of suppressing the increase in internal resistance during long-term storage and the characteristics when a large current is taken out from the lithium battery can be kept good over a long period of time.
In particular, when manganese dioxide having a large specific surface area is used, large current discharge characteristics at low temperatures are improved. This is because the chemical reaction area in the positive electrode increases as the specific surface area of the manganese dioxide used increases.

[リチウム電池の構成]
図1は、本発明の実施形態にかかる円筒型リチウム電池の構成を示す図である。
このリチウム電池は、正極12および負極13がセパレータを介して重ねられスパイラル状に捲回されてなる電極群が、金属ケース8内に収納され、金属ケース8の開口部が封口体5で封口されて構成されている。当該電極群には非水電解液が含浸されており、金属ケース8の開口縁と封口体5とは、レーザ溶接部4で溶接されて封止されている。
[Configuration of lithium battery]
FIG. 1 is a diagram showing a configuration of a cylindrical lithium battery according to an embodiment of the present invention.
In this lithium battery, an electrode group in which a positive electrode 12 and a negative electrode 13 are stacked via a separator and wound in a spiral shape is housed in a metal case 8, and an opening of the metal case 8 is sealed with a sealing body 5. Configured. The electrode group is impregnated with a non-aqueous electrolyte, and the opening edge of the metal case 8 and the sealing body 5 are welded and sealed by the laser welding portion 4.

電極群と封口体5との間には上部絶縁板7が介挿され、金属ケース8の底と電極群との間には、下部絶縁板9が介挿されている。
金属ケース8側面と正極リード6とはスポット溶接され、金属ケース8は正極端子を兼ねている。一方、封口体5には、負極端子2がパッキング3で絶縁された状態で装着されている。この負極端子2に負極リード1がスポット溶接されている。
An upper insulating plate 7 is interposed between the electrode group and the sealing body 5, and a lower insulating plate 9 is interposed between the bottom of the metal case 8 and the electrode group.
The side surface of the metal case 8 and the positive electrode lead 6 are spot-welded, and the metal case 8 also serves as a positive electrode terminal. On the other hand, the negative electrode terminal 2 is attached to the sealing body 5 while being insulated by the packing 3. A negative electrode lead 1 is spot welded to the negative electrode terminal 2.

なお、金属ケース8の底部には排気弁10が設けられている。
正極12は、二酸化マンガン粉末にホウ素化合物が含浸されたホウ素含有二酸化マンガンに、導電材と、フッ素樹脂バインダとを混合して、芯体に圧着して形成されたものである。
負極13は、リチウム金属もしくはリチウムーアルミニウム合金を成形したものである。
An exhaust valve 10 is provided at the bottom of the metal case 8.
The positive electrode 12 is formed by mixing a boron-containing manganese dioxide in which a manganese dioxide powder is impregnated with a boron compound, and mixing a conductive material and a fluororesin binder and pressing the mixture on a core.
The negative electrode 13 is formed by molding lithium metal or a lithium-aluminum alloy.

[リチウム電池の製造方法]
図2は、正極12を作製する工程を示す図である。
酸化ホウ素を水に溶解して酸化ホウ素水溶液を作製する(S1)。
二酸化マンガン粉末と上記酸化ホウ素水溶液を混合して、二酸化マンガン粉末に酸化ホウ素水溶液を十分含浸させる(S2)。ここで、酸化ホウ素水溶液の添加量は、二酸化マンガンMnO2に対するホウ素Bの添加混合量が0.05〜2重量%となるように設定する。
[Method of manufacturing lithium battery]
FIG. 2 is a diagram illustrating a process of manufacturing the positive electrode 12.
Boron oxide is dissolved in water to prepare an aqueous boron oxide solution (S1).
The manganese dioxide powder and the boron oxide aqueous solution are mixed, and the manganese dioxide powder is sufficiently impregnated with the boron oxide aqueous solution (S2). Here, the addition amount of the boron oxide aqueous solution is set so that the addition mixture amount of boron B to manganese dioxide MnO 2 is 0.05 to 2% by weight.

混合後、乾燥することによって、ホウ素含有二酸化マンガンが作製される(S3)。
上記S2の工程で、酸化ホウ素水溶液は、二酸化マンガン粒子の表面並びに微細孔に速やかに浸入するので、二酸化マンガンに酸化ホウ素を添加した後に高温で熱処理しなくても、二酸化マンガン粒子の表面や微細孔の内面にホウ素酸化物が付着して皮膜が形成される。
Boron-containing manganese dioxide is produced by drying after mixing (S3).
In the step S2, the boron oxide aqueous solution quickly penetrates into the surface and fine pores of the manganese dioxide particles. Therefore, even if boron oxide is added to manganese dioxide and it is not heat-treated at a high temperature, Boron oxide adheres to the inner surface of the hole to form a film.

上記のホウ素含有二酸化マンガン、導電剤としての炭素粉末、テトラフルオロエチレンの各原料と、水とを加えて混練する(S4)。
この混練合剤をシートに仕上げ(S5)、ラス芯体に圧着して、乾燥・圧延を行うことによって正極板に仕上げる。(S6)。この正極板に正極リード6をスポット溶接する。
以上のように作製した正極12と、リチウム金属もしくはリチウムーアルミニウム合金からなる負極13とを、セパレータを介在させてスパイラル状に巻回して電極群を作製する。この電極群を、下部絶縁板9の入った金属ケース8に収納し、ケース側面に正極リード6をスポット溶接する。
The above boron-containing manganese dioxide, carbon powder as a conductive agent, tetrafluoroethylene raw materials, and water are added and kneaded (S4).
The kneaded mixture is finished into a sheet (S5), pressed onto the lath core, dried and rolled to finish the positive electrode plate. (S6). The positive electrode lead 6 is spot welded to the positive electrode plate.
The positive electrode 12 produced as described above and the negative electrode 13 made of lithium metal or lithium-aluminum alloy are wound in a spiral shape with a separator interposed therebetween to produce an electrode group. This electrode group is housed in a metal case 8 containing a lower insulating plate 9, and the positive electrode lead 6 is spot welded to the side surface of the case.

電極群上に上部絶縁板7を置き、非水電解液を注入し、パッキング3で絶縁された封口体5の負極端子2に負極リード1をスポット溶接する。
金属ケース8を封口板5で仮封口する。金属ケース8と封口体5とをレーザ溶接して電池を完成させる。
以上の製法によれば、正極活物質である二酸化マンガン粒子の表面および微細孔の内面に、マンガン−ホウ素酸化物の薄い皮膜が形成されるので、製造されたリチウム電池は、長期保存時における内部抵抗上昇が抑えられ、且つ、低温下で大電流放電特性が得られる。
The upper insulating plate 7 is placed on the electrode group, a non-aqueous electrolyte is injected, and the negative electrode lead 1 is spot welded to the negative electrode terminal 2 of the sealing body 5 insulated by the packing 3.
The metal case 8 is temporarily sealed with the sealing plate 5. The metal case 8 and the sealing body 5 are laser welded to complete the battery.
According to the above production method, a thin film of manganese-boron oxide is formed on the surface of the manganese dioxide particles as the positive electrode active material and on the inner surface of the fine pores. An increase in resistance is suppressed, and a large current discharge characteristic can be obtained at a low temperature.

上記S2工程において用いる二酸化マンガン粉末は、比表面積が15〜40m2/gの範囲にあることが好ましい。比表面積がこの範囲にある二酸化マンガンを用いれば、作製したリチウム電池を保存した時に、内部抵抗上昇を抑える効果と、リチウム電池から大電流を取り出すときの特性を維持する効果を、長期にわたって良好に保つことができる。
特に、比表面積の大きな二酸化マンガンを用いると、低温下での大電流放電特性が良好となる。これは、二酸化マンガンの比表面積が大きいほど、正極における化学反応面積が大きくなるからである。
It is preferable that the manganese dioxide powder used in the step S2 has a specific surface area of 15 to 40 m 2 / g. When manganese dioxide with a specific surface area in this range is used, the effect of suppressing the increase in internal resistance when storing the produced lithium battery and the effect of maintaining the characteristics when taking out a large current from the lithium battery are improved over a long period of time. Can keep.
In particular, when manganese dioxide having a large specific surface area is used, a large current discharge characteristic at a low temperature is improved. This is because the chemical reaction area in the positive electrode increases as the specific surface area of manganese dioxide increases.

実施例1〜4では、比表面積が40m2/gの二酸化マンガンを用いて正極を作製する。
(実施例1)
酸化ホウ素濃度が2重量%の酸化ホウ素水溶液(水温20℃)を作製した。比表面積が40m2/g、熱処理後の二酸化マンガンに対して、ホウ素含有量が0.05重量%となるように、酸化ホウ素水溶液を加えて十分含浸させ混合した。混合後、120℃で乾燥することによって、ホウ素含有二酸化マンガンを作製した。
In Examples 1 to 4, a positive electrode is produced using manganese dioxide having a specific surface area of 40 m 2 / g.
Example 1
A boron oxide aqueous solution (water temperature 20 ° C.) having a boron oxide concentration of 2% by weight was prepared. A boron oxide aqueous solution was added and sufficiently impregnated and mixed so that the boron content was 0.05% by weight relative to manganese dioxide after heat treatment with a specific surface area of 40 m 2 / g. After mixing, drying at 120 ° C. produced boron-containing manganese dioxide.

上記ホウ素含有二酸化マンガン、導電剤としての炭素粉末、テトラフルオロエチレンの各原料を、重量比が91:4:5となるように秤量しておいて、混錬槽に、二酸化マンガンと、炭素粉末とを入れ、純水30重量%を加え、更に、テトラフルオロエチレンを添加して混練した。
この混練合剤を粉砕して整粒し、120℃に加熱した二対のホットロールのホッパーに入れ、混線合剤を0.18mmの薄いシートに仕上げた。それと同時にSUS316製のラス芯体を中央にして両側よりシートを圧着し、乾燥・圧延工程を行った。圧延により正極板の厚みを0.20mmに仕上げた。
The raw materials of boron-containing manganese dioxide, carbon powder as a conductive agent, and tetrafluoroethylene are weighed so that the weight ratio is 91: 4: 5, and manganese dioxide and carbon powder are placed in a kneading tank. And 30% by weight of pure water was added, and tetrafluoroethylene was further added and kneaded.
The kneaded mixture was pulverized and sized, put into two pairs of hot roll hoppers heated to 120 ° C., and the mixed mixture was finished into a thin sheet of 0.18 mm. At the same time, the sheet was pressed from both sides with a lath core made of SUS316 at the center, and a drying / rolling process was performed. The thickness of the positive electrode plate was finished to 0.20 mm by rolling.

この正極板を長さ 350mm、幅35mmに切断し、正極リード溶接部分を剥離して正極リード6をスポット溶接し、剥離部分に絶縁用のテープを貼り正極12とした。
リチウム金属にアルミニウムを0.5重量%含有したLi−Al合金を、厚み0.15mm、長さ360mm、幅33mmに成形し、電流取り出し用の負極リード1を圧着し、テープを貼り付けて負極13とした。
This positive electrode plate was cut into a length of 350 mm and a width of 35 mm, the positive electrode lead welded portion was peeled off, the positive electrode lead 6 was spot welded, and an insulating tape was attached to the peeled portion to form the positive electrode 12.
Li-Al alloy containing 0.5% by weight of aluminum in lithium metal is formed into a thickness of 0.15 mm, a length of 360 mm, and a width of 33 mm, a negative electrode lead 1 for taking out current is pressure-bonded, and a tape is attached to the negative electrode It was set to 13.

エチレンカーボネート(EC)とブチレンカーボネート(BC)と1,2-ジメトキシエタン(DME)とが体積比率15:15:70で混合された混合溶媒に、溶質としてトリフルオロメタンスルホン酸リチウム(LiCF3SO3)を0.6モル/リットル溶解して非水電解液とした。
上記のように作製した正極12を、250℃減圧下で2時間熱処理を施して水分を除去した後、この正極12と負極13とをセパレータを介してスパイラル状に捲回して電極群を作製した。セバレータにはポリエチレン製の微多孔膜を使用した。
In a mixed solvent in which ethylene carbonate (EC), butylene carbonate (BC) and 1,2-dimethoxyethane (DME) are mixed at a volume ratio of 15:15:70, lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) is used as a solute. ) Was dissolved at 0.6 mol / liter to obtain a non-aqueous electrolyte.
The positive electrode 12 produced as described above was heat-treated at 250 ° C. under reduced pressure for 2 hours to remove moisture, and then the positive electrode 12 and the negative electrode 13 were spirally wound through a separator to produce an electrode group. . A microporous membrane made of polyethylene was used for the separator.

排気弁10を備えた金属ケース8に下部絶縁板9を収納した後、電極群を収納し、金属ケース8の側面に正極リード6をスポット溶接した。
次に、電極群の上に上部絶縁板7を置き、非水電解液を注入し、パッキング3で絶縁された封口体5の負極端子2に負極リード1をスポット溶接し、金属ケース8を封口体5で仮封口した。
After housing the lower insulating plate 9 in the metal case 8 provided with the exhaust valve 10, the electrode group was housed, and the positive electrode lead 6 was spot welded to the side surface of the metal case 8.
Next, the upper insulating plate 7 is placed on the electrode group, a nonaqueous electrolyte is injected, the negative electrode lead 1 is spot welded to the negative electrode terminal 2 of the sealing body 5 insulated by the packing 3, and the metal case 8 is sealed. The body 5 was temporarily sealed.

密封度を上げ保存特性を向上させるために、レーザ溶接部4で金属ケース8と封口体5とを溶接してリチウム電池(外径17mm、高さ450mm、電池容量1700mAh)を組み立てた。組み立てた電池に対して1000mAで5分間化成処理を施すことによってリチウム電池を完成させた。
(実施例2)
比表面積が40m2/g、熱処理後の二酸化マンガンを用いて、実施例1と同様に正極を製造した。ただし、酸化ホウ素水溶液を二酸化マンガンに添加するときの添加量を、二酸化マンガンに対するホウ素含有量が0.5重量%となるように設定した。
In order to increase the sealing degree and improve the storage characteristics, the metal case 8 and the sealing body 5 were welded by the laser welding part 4 to assemble a lithium battery (outer diameter 17 mm, height 450 mm, battery capacity 1700 mAh). A lithium battery was completed by subjecting the assembled battery to a chemical conversion treatment at 1000 mA for 5 minutes.
(Example 2)
A positive electrode was produced in the same manner as in Example 1 using a specific surface area of 40 m 2 / g and manganese dioxide after heat treatment. However, the addition amount when adding the boron oxide aqueous solution to manganese dioxide was set so that the boron content with respect to manganese dioxide was 0.5% by weight.

続いて負極の製作並びに電池の製作を実施例1と同様の方法で行った。
(実施例3)
比表面積が40m2/g、熱処理後の二酸化マンガンを用いて、実施例1と同様に正極を製造した。ただし、酸化ホウ素水溶液を二酸化マンガンに添加するときの添加量を、二酸化マンガンに対するホウ素含有量が1重量%となるように設定した。
Subsequently, the negative electrode and the battery were manufactured in the same manner as in Example 1.
(Example 3)
A positive electrode was produced in the same manner as in Example 1 using a specific surface area of 40 m 2 / g and manganese dioxide after heat treatment. However, the addition amount when adding the boron oxide aqueous solution to manganese dioxide was set so that the boron content with respect to manganese dioxide was 1% by weight.

続いて負極の製作並びに電池の製作を実施例1と同様の方法で行った。
(実施例4)
比表面積が40m2/g、熱処理後の二酸化マンガンを用いて、実施例1と同様に正極を製造した。ただし、酸化ホウ素水溶液を二酸化マンガンに添加するときの添加量を、二酸化マンガンに対するホウ素含有量が2重量%となるように設定した。
Subsequently, the negative electrode and the battery were manufactured in the same manner as in Example 1.
Example 4
A positive electrode was produced in the same manner as in Example 1 using a specific surface area of 40 m 2 / g and manganese dioxide after heat treatment. However, the addition amount when the boron oxide aqueous solution was added to manganese dioxide was set so that the boron content with respect to manganese dioxide was 2% by weight.

続いて負極の製作並びに電池の製作を実施例1と同様の方法で行った。
(比較例1)
二酸化マンガンに酸化ホウ素を添加しないで、その他は実施例1と同様に正極を製造した。
続いて負極の製作並びに電池の製作を実施例1と同様の方法で行った。
Subsequently, the negative electrode and the battery were manufactured in the same manner as in Example 1.
(Comparative Example 1)
A positive electrode was produced in the same manner as in Example 1 except that boron oxide was not added to manganese dioxide.
Subsequently, the negative electrode and the battery were manufactured in the same manner as in Example 1.

以下の実施例5〜8では、比表面積が15m2/gの二酸化マンガンを用いて正極を作製した。
(実施例5)
比表面積が15m2/g、熱処理後の二酸化マンガンを用いる以外は実施例1と同様にして、二酸化マンガンに対するホウ素含有量が0.05重量%となるように正極を製造した。
In the following Examples 5 to 8, positive electrodes were produced using manganese dioxide having a specific surface area of 15 m 2 / g.
(Example 5)
A positive electrode was produced in the same manner as in Example 1 except that the specific surface area was 15 m 2 / g and the heat-treated manganese dioxide was used so that the boron content with respect to manganese dioxide was 0.05% by weight.

続いて負極の製作並びに電池の製作を実施例1と同様の方法で行った。
(実施例6)
比表面積が15m2/g、熱処理後の二酸化マンガンを用いる以外は実施例2と同様にして、二酸化マンガンに対するホウ素含有量が0.5重量%となるように正極を製造した。
Subsequently, the negative electrode and the battery were manufactured in the same manner as in Example 1.
(Example 6)
A positive electrode was produced in the same manner as in Example 2 except that the specific surface area was 15 m 2 / g and the heat-treated manganese dioxide was used so that the boron content with respect to manganese dioxide was 0.5% by weight.

続いて負極の製作並びに電池の製作を実施例1と同様の方法で行った。
(実施例7)
比表面積が15m2/g、熱処理後の二酸化マンガンを用いる以外は実施例3と同様にして、二酸化マンガンに対するホウ素含有量が1重量%となるように正極を製造した。
続いて負極の製作並びに電池の製作を実施例1と同様の方法で行った。
Subsequently, the negative electrode and the battery were manufactured in the same manner as in Example 1.
(Example 7)
A positive electrode was produced in the same manner as in Example 3 except that the specific surface area was 15 m 2 / g and the heat-treated manganese dioxide was used so that the boron content with respect to manganese dioxide was 1% by weight.
Subsequently, the negative electrode and the battery were manufactured in the same manner as in Example 1.

(実施例8)
比表面積が15m2/g、熱処理後の二酸化マンガンを用いる以外は実施例4と同様にして、二酸化マンガンに対するホウ素含有量が2重量%となるように正極を製造した。
続いて負極の製作並びに電池の製作を実施例1と同様の方法で行った。
(比較例2)
比表面積が15m2/g、熱処理後の二酸化マンガンを用い、二酸化マンガンに酸化ホウ素を添加しないで、その他は実施例1と同様に正極を製造した。
(Example 8)
A positive electrode was produced in the same manner as in Example 4 except that the specific surface area was 15 m 2 / g and the heat-treated manganese dioxide was used so that the boron content with respect to manganese dioxide was 2% by weight.
Subsequently, the negative electrode and the battery were manufactured in the same manner as in Example 1.
(Comparative Example 2)
A positive electrode was produced in the same manner as in Example 1 except that the specific surface area was 15 m 2 / g, manganese dioxide after heat treatment was used, and boron oxide was not added to manganese dioxide.

続いて負極の製作並びに電池の製作を実施例1と同様の方法で行った。
[電池の保存特性評価]
上記のように作製した実施例及び比較例の各電池について、製造直後に内部抵抗及び低温下での大電流放電特性を測定した。また、各電池を80℃で30日間保存し、経時的に内部抵抗及び低温下での大電流放電特性を測定した。
Subsequently, the negative electrode and the battery were manufactured in the same manner as in Example 1.
[Evaluation of battery storage characteristics]
About each battery of the Example and comparative example produced as mentioned above, the internal resistance and the large current discharge characteristic under low temperature were measured immediately after manufacture. Each battery was stored at 80 ° C. for 30 days, and the internal resistance and large current discharge characteristics at low temperatures were measured over time.

電池の内部抵抗は、室温下で測定した。
低温下での大電流放電特性については、−30℃/において1.5Aで5秒間放電を行いながら電池電圧を測定した。そして、その5秒間における最低電圧値を記録した。その結果を表1,2及び図3〜6に示す。

Figure 2009283291
Figure 2009283291
表1は、各電池を放電深度0%で30日保存した後における低温下での大電流放電特性(低温下で5秒間放電したときの最低電圧値)であり、図3,4は、保存日数経過に伴って低温下での大電流放電特性がどのように変化したかを示す特性図である。また表2は、各電池を放電深度0%で30日保存した後における内部抵抗の値であり、図5,6は、保存日数に伴って内部抵抗がどのように変化したかを示す特性図である。 The internal resistance of the battery was measured at room temperature.
Regarding the large current discharge characteristics at low temperature, the battery voltage was measured while discharging at 1.5 A at −30 ° C. for 5 seconds. And the minimum voltage value in the 5 second was recorded. The results are shown in Tables 1 and 2 and FIGS.
Figure 2009283291
Figure 2009283291
Table 1 shows the large current discharge characteristics (lowest voltage value when discharged for 5 seconds at a low temperature) after each battery was stored for 30 days at a discharge depth of 0%. FIGS. It is a characteristic view which shows how the large current discharge characteristic under low temperature changed with progress of days. Table 2 shows the values of internal resistance after each battery was stored for 30 days at a discharge depth of 0%. FIGS. 5 and 6 are characteristic diagrams showing how the internal resistance changed with the number of storage days. It is.

表1及び図3,4の結果を見ると、いずれの電池も、保存日数の経過に伴って、低温下大電流の放電特性が低下する傾向が見られるが、実施例1〜4では比較例1と比べて、低温下大電流放電特性の低下が少なく、実施例5〜8でも、比較例2と比べて、低温下大電流放電特性の低下が少ない。また、実施例1,2,3,4の順、並びに実施例5,6,7,8の順で低温下大電流放電特性の低下が少なくなっている。   Looking at the results in Table 1 and FIGS. 3 and 4, all batteries have a tendency to decrease the discharge characteristics of large currents at low temperatures as the number of storage days elapses. Compared to 1, there is little decrease in low-current large current discharge characteristics, and in Examples 5 to 8, there is less decrease in low-temperature large current discharge characteristics than Comparative Example 2. In addition, the decrease in the large current discharge characteristics at low temperatures decreases in the order of Examples 1, 2, 3, 4 and in the order of Examples 5, 6, 7, and 8.

これは、実施例のリチウム電池用正極の製造方法によって製造されたリチウム電池は、二酸化マンガンにホウ素を含有しない比較例のリチウム電池と比べて、電池保存時における低温下大電流放電特性の低下を抑える効果があり、ホウ素の添加量が大きいほどその効果が大きいことを示している。
また表1及び図3,4の結果において、二酸化マンガンの比表面積が40m2/gの場合の方が、15m2/gの場合と比べて、電池保存時における低温下における大電流放電特性の低下が少ない。これは、正極に用いる二酸化マンガンの比表面積が大きい方が、電池保存時における低温下大電流放電特性の低下を抑える効果が大きいことを示している。
This is because the lithium battery produced by the method for producing a positive electrode for a lithium battery in the example has a lower low-temperature, large-current discharge characteristic during battery storage than the comparative lithium battery containing no boron in manganese dioxide. The effect is to suppress, and the larger the amount of boron added, the greater the effect.
Further, in the results of Table 1 and FIGS. 3 and 4, the case where the specific surface area of manganese dioxide is 40 m 2 / g is higher than that of 15 m 2 / g in terms of large current discharge characteristics at low temperatures during battery storage. There is little decrease. This indicates that the larger the specific surface area of manganese dioxide used for the positive electrode is, the greater the effect of suppressing the decrease in the high-current discharge characteristics at low temperatures during battery storage.

一方、表2及び図5,6の結果を見ると、いずれの電池も、保存日数の経過に伴って、電池の内部抵抗が上昇する傾向が見られるが、実施例1〜4では比較例1と比べて内部抵抗の上昇が抑えられ、実施例5〜8でも比較例2と比べて内部抵抗の上昇が抑えられている。また、実施例1,2,3,4の順、並びに実施例5,6,7,8の順で、内部抵抗の上昇が少なくなっている。   On the other hand, when looking at the results of Table 2 and FIGS. 5 and 6, all the batteries tend to increase in internal resistance with the passage of the storage days. The increase in internal resistance is suppressed as compared with the above, and the increase in internal resistance is suppressed in Examples 5 to 8 as compared with Comparative Example 2. Further, the increase in internal resistance is reduced in the order of Examples 1, 2, 3, and 4 and in the order of Examples 5, 6, 7, and 8.

これは、実施例のリチウム電池用正極の製造方法によって製造されたリチウム電池は、二酸化マンガンにホウ素を含有しない比較例のリチウム電池と比べて、電池保存時における内部抵抗の上昇を抑える効果があり、ホウ素の添加量が大きいほどその効果が大きいことを示している。
また表2及び図5,6の結果において、二酸化マンガンの比表面積が40m2/gの場合と15m2/gの場合とを比べると、比表面積が15m2/gの場合の方が内部抵抗の上昇が抑えられていることがわかる。これは、正極に用いる二酸化マンガンの比表面積が小さい方が、保存日数の経過に伴う内部抵抗の上昇を抑える効果が大きいことを示している。
This is because the lithium battery produced by the method for producing a positive electrode for a lithium battery of the example has an effect of suppressing an increase in internal resistance during battery storage, as compared with a lithium battery of a comparative example that does not contain boron in manganese dioxide. This shows that the larger the amount of boron added, the greater the effect.
In the results of Table 2 and FIGS. 5 and 6, when the specific surface area of manganese dioxide is 40 m 2 / g and 15 m 2 / g, the internal resistance is higher when the specific surface area is 15 m 2 / g. It can be seen that the rise in is suppressed. This indicates that the smaller the specific surface area of manganese dioxide used for the positive electrode, the greater the effect of suppressing the increase in internal resistance with the passage of storage days.

以上のように、本発明の製造方法によれば、リチウム電池において、電池保存に伴う内部抵抗の上昇を抑制すると共に低温大電流での初期電圧降下を防ぐ効果があるので、緊急車載用、AED(自動対外式除細動機)など低温下で大電流が要求される機器に適している。   As described above, according to the manufacturing method of the present invention, in a lithium battery, there is an effect of suppressing an increase in internal resistance accompanying battery storage and preventing an initial voltage drop at a low temperature and a large current. (Automatic external defibrillator) Suitable for devices that require a large current at low temperatures.

実施の形態にかかる円筒型リチウム電池の構成を示す図である。It is a figure which shows the structure of the cylindrical lithium battery concerning embodiment. 正極12を作製する工程を示す図である。It is a figure which shows the process of producing the positive electrode 12. FIG. 実施例にかかるリチウム電池(二酸化マンガンの比表面積40m2/g)において、保存日数に伴う低温下での大電流放電特性変化を示す特性図である。In the lithium battery (Example specific surface area of manganese dioxide 40m < 2 > / g) concerning an Example, it is a characteristic view which shows the large current discharge characteristic change under low temperature accompanying a storage day. 実施例にかかるリチウム電池(二酸化マンガンの比表面積15m2/g)において、保存日数に伴う低温下での大電流放電特性変化を示す特性図である。In the lithium battery concerning an Example (specific surface area of manganese dioxide 15m < 2 > / g), it is a characteristic view which shows the large current discharge characteristic change under the low temperature accompanying a storage day. 実施例にかかるリチウム電池(二酸化マンガンの比表面積40m2/g)において、保存日数に伴う内部抵抗の変化を示す特性図である。In the lithium battery (specific surface area of manganese dioxide 40m < 2 > / g) concerning an Example, it is a characteristic view which shows the change of internal resistance with a storage day. 実施例にかかるリチウム電池(二酸化マンガンの比表面積15m2/g)において、保存日数に伴う内部抵抗の変化を示す特性図である。In the lithium battery (specific surface area of manganese dioxide 15m < 2 > / g) concerning an Example, it is a characteristic view which shows the change of internal resistance with a storage day.

符号の説明Explanation of symbols

1 負極リード
2 負極端子
4 レーザ溶接部
5 封口体
6 正極リード
8 金属ケース
12 正極
13 負極
DESCRIPTION OF SYMBOLS 1 Negative electrode lead 2 Negative electrode terminal 4 Laser welding part 5 Sealing body 6 Positive electrode lead 8 Metal case 12 Positive electrode 13 Negative electrode

Claims (5)

ホウ素化合物を水溶液の状態で二酸化マンガンと混合してホウ素含有二酸化マンガンを製造する第1ステップと、
前記第1ステップで製造したホウ素含有二酸化マンガンを芯材に保持させる第2ステップとを備えることを特徴とするリチウム電池用正極の製造方法。
A first step of producing a boron-containing manganese dioxide by mixing a boron compound with manganese dioxide in an aqueous solution;
And a second step of holding the boron-containing manganese dioxide produced in the first step on a core material. A method for producing a positive electrode for a lithium battery.
前記第1ステップにおいて、
二酸化マンガンに対するホウ素の添加混合量が0.05〜2重量%となるようにホウ素化合物の水溶液を二酸化マンガンと混合する請求項1記載のリチウム電池用正極の製造方法。
In the first step,
The method for producing a positive electrode for a lithium battery according to claim 1, wherein an aqueous solution of a boron compound is mixed with manganese dioxide so that the amount of boron added to manganese dioxide is 0.05 to 2% by weight.
前記第1ステップで用いる二酸化マンガンは、比表面積が15〜40m2/gであることを特徴とする請求項1または2記載のリチウム電池用正極の製造方法。 3. The method for producing a positive electrode for a lithium battery according to claim 1, wherein the manganese dioxide used in the first step has a specific surface area of 15 to 40 m 2 / g. 請求項1〜3のいずれか記載の製造方法で製造したリチウム電池用正極と、リチウムを含む負極とを用いてリチウム電池を製造することを特徴とするリチウム電池の製造方法。   A lithium battery is manufactured using the positive electrode for lithium batteries manufactured with the manufacturing method in any one of Claims 1-3, and the negative electrode containing lithium, The manufacturing method of the lithium battery characterized by the above-mentioned. ホウ素化合物水溶液を二酸化マンガンと混合することによって作製したホウ素含有二酸化マンガンが芯材に保持されてなることを特徴とするリチウム電池用正極。   A positive electrode for a lithium battery, characterized in that boron-containing manganese dioxide produced by mixing an aqueous boron compound solution with manganese dioxide is held in a core material.
JP2008134125A 2008-05-22 2008-05-22 Manufacturing method of positive electrode for lithium battery and positive electrode for lithium battery Pending JP2009283291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008134125A JP2009283291A (en) 2008-05-22 2008-05-22 Manufacturing method of positive electrode for lithium battery and positive electrode for lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008134125A JP2009283291A (en) 2008-05-22 2008-05-22 Manufacturing method of positive electrode for lithium battery and positive electrode for lithium battery

Publications (1)

Publication Number Publication Date
JP2009283291A true JP2009283291A (en) 2009-12-03

Family

ID=41453539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008134125A Pending JP2009283291A (en) 2008-05-22 2008-05-22 Manufacturing method of positive electrode for lithium battery and positive electrode for lithium battery

Country Status (1)

Country Link
JP (1) JP2009283291A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180301701A1 (en) * 2017-04-12 2018-10-18 Fdk Corporation Method for preparing cathode material for lithium primary battery, cathode material for lithium primary battery, and lithium primary battery
CN110277551A (en) * 2019-06-28 2019-09-24 陕西科技大学 One kind is by nonmetallic ion B3+Ion doping MnO2Preparation method
CN112470307A (en) * 2018-07-23 2021-03-09 松下知识产权经营株式会社 Lithium primary battery and intelligent instrument

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115515A (en) * 1995-10-13 1997-05-02 Sanyo Electric Co Ltd Lithium secondary battery
JPH11339794A (en) * 1998-05-29 1999-12-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115515A (en) * 1995-10-13 1997-05-02 Sanyo Electric Co Ltd Lithium secondary battery
JPH11339794A (en) * 1998-05-29 1999-12-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180301701A1 (en) * 2017-04-12 2018-10-18 Fdk Corporation Method for preparing cathode material for lithium primary battery, cathode material for lithium primary battery, and lithium primary battery
JP2018181585A (en) * 2017-04-12 2018-11-15 Fdk株式会社 Manufacturing method of positive electrode material for lithium primary battery, positive electrode material for lithium primary battery, and lithium primary battery
US10790507B2 (en) * 2017-04-12 2020-09-29 Fdk Corporation Method for preparing cathode material for lithium primary battery, cathode material for lithium primary battery, and lithium primary battery
TWI751323B (en) * 2017-04-12 2022-01-01 日商Fdk股份有限公司 Method for manufacturing cathode material for lithium primary battery
JP7045801B2 (en) 2017-04-12 2022-04-01 Fdk株式会社 Manufacturing method of positive electrode for lithium primary battery
CN112470307A (en) * 2018-07-23 2021-03-09 松下知识产权经营株式会社 Lithium primary battery and intelligent instrument
CN112470307B (en) * 2018-07-23 2024-04-02 松下知识产权经营株式会社 Lithium primary battery and intelligent instrument
CN110277551A (en) * 2019-06-28 2019-09-24 陕西科技大学 One kind is by nonmetallic ion B3+Ion doping MnO2Preparation method

Similar Documents

Publication Publication Date Title
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JP2007516568A (en) Lithium battery with improved cathode
JP2010073580A (en) Nonaqueous electrolyte battery
JP5224083B2 (en) Secondary battery and manufacturing method thereof
JP2007052935A (en) Nonaqueous electrolyte battery
JP2010250969A (en) Lithium battery
WO2020026525A1 (en) Lithium primary battery
JP2009283291A (en) Manufacturing method of positive electrode for lithium battery and positive electrode for lithium battery
JP2006092820A (en) Cathode active material for nonaqueous electrolyte secondary battery, cathode, and the nonaqueous electrolyte secondary battery
JP6178758B2 (en) Lithium air secondary battery
JPWO2015141120A1 (en) Lithium primary battery
JP2950924B2 (en) Non-aqueous electrolyte battery
JP5278332B2 (en) Electrolytic manganese dioxide for lithium primary battery, production method thereof and lithium primary battery using the same
JP3717698B2 (en) Non-aqueous electrolyte battery
JP2009152030A (en) Method of manufacturing nonaqueous electrolyte cell
JP3717697B2 (en) Non-aqueous electrolyte battery
JP3613025B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP4924860B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP4508756B2 (en) Lithium primary battery
JP2006024412A (en) Battery
JP4440130B2 (en) Method for producing positive electrode for organic electrolyte battery
JP2000294231A (en) Organic electrolyte battery
JP5002933B2 (en) Method for producing non-aqueous electrolyte battery
CN104766991B (en) Nonaqueous electrolytic solution secondary battery
JP5596722B2 (en) Sodium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130528