JP2005135849A - Positive electrode activator for lithium battery - Google Patents

Positive electrode activator for lithium battery Download PDF

Info

Publication number
JP2005135849A
JP2005135849A JP2003372926A JP2003372926A JP2005135849A JP 2005135849 A JP2005135849 A JP 2005135849A JP 2003372926 A JP2003372926 A JP 2003372926A JP 2003372926 A JP2003372926 A JP 2003372926A JP 2005135849 A JP2005135849 A JP 2005135849A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003372926A
Other languages
Japanese (ja)
Inventor
Kenji Suzuoka
健司 鈴岡
Keisuke Miyanohara
啓祐 宮之原
Shingo Kikukawa
真吾 菊川
Koichi Numata
幸一 沼田
Akira Koyama
昭 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003372926A priority Critical patent/JP2005135849A/en
Publication of JP2005135849A publication Critical patent/JP2005135849A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode activator for a lithium battery having an excellent battery life property because of the relation between iron contained in positive electrode activator powder and the battery life property. <P>SOLUTION: On the positive electrode activator for the lithium battery, the quantity of iron in aqueous solution of hydrochloric acid (quantity of iron eluted in 2N hydrochloric acid), after adding 5g of the powder of the positive electrode activator in 15g of 2N aqueous solution of hydrochloric acid, stirring for 10 minutes at 25°C and filtrated, is to be not more than 5 ppm to the total quantity of the positive electrode activator powder. It is confirmed that the iron eluted when immersing the powder of the positive electrode activator in a prescribed acid has a close relation with the life property of the battery. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、リチウム一次電池、リチウム二次電池、リチウムイオン二次電池などのリチウム電池に用いる正極活物質に関する。   The present invention relates to a positive electrode active material used for a lithium battery such as a lithium primary battery, a lithium secondary battery, or a lithium ion secondary battery.

リチウム電池、特にリチウム二次電池は、単位電気量当たりの重量が小さく、それでいてエネルギー密度が高いため、ビデオカメラ、ノートパソコン、携帯電話などの携帯型電子機器の電源や、自動車用に搭載する電池などとして急速に普及しつつある。   Lithium batteries, especially lithium secondary batteries, are low in weight per unit of electricity and yet high in energy density, so they are used as power sources for portable electronic devices such as video cameras, laptop computers, and mobile phones, and batteries used in automobiles. And so on.

この種のリチウム二次電池は、一般に、負極に、リチウムの挿入脱離が可能なカーボンやグラファイトを用い、正極には各種リチウム複合酸化物が用いて構成される。
充電時には、正極の結晶の中に存在するリチウム原子がリチウムイオンとして電解液中に溶出し、同時に電解液中のリチウムイオンが負極の結晶の中に侵入する。放電時には、負極中のリチウム原子が正極中に戻るように動作する。例えば、正極活物質としてコバルト酸リチウム、負極活物質として黒鉛を用いた場合、次のように充放電反応する。
正極: LiCoO2 ⇔ xLi+ + Li1−xCoO2 + xe−
負極: 6xC+xLi++xe− ⇔ xC6Li
電池: LiCoO2 + 6xC ⇔ Li1−xCoO2 + xC6Li
This type of lithium secondary battery is generally configured by using carbon or graphite capable of lithium insertion / extraction for the negative electrode and various lithium composite oxides for the positive electrode.
At the time of charging, lithium atoms present in the positive electrode crystal are eluted as lithium ions into the electrolytic solution, and at the same time, lithium ions in the electrolytic solution enter the negative electrode crystal. At the time of discharging, it operates so that lithium atoms in the negative electrode return to the positive electrode. For example, when lithium cobaltate is used as the positive electrode active material and graphite is used as the negative electrode active material, the charge / discharge reaction is performed as follows.
Positive electrode: LiCoO 2 x xLi + + Li1-xCoO 2 + xe-
Negative electrode: 6xC + xLi ++ xe-−xC 6 Li
Battery: LiCoO 2 + 6xC ⇔ Li1- xCoO 2 + xC 6 Li

リチウム二次電池の高いエネルギー密度は主に正極材料の電位に起因する。この正極活物質には、層状構造をもつLiCoO2、LiNiO2、LiMnO2のほか、スピネル構造をもつリチウムマンガン酸化物など、リチウム複合酸化物(LiMXY)が用いられている。中でも、資源的に豊富で比較的安価に入手できるMnを用いたリチウムマンガン酸化物は特に注目されている。 The high energy density of the lithium secondary battery is mainly due to the potential of the positive electrode material. As this positive electrode active material, LiCoO 2 , LiNiO 2 , LiMnO 2 having a layered structure and lithium composite oxide (LiM X O Y ) such as lithium manganese oxide having a spinel structure are used. Among these, lithium manganese oxide using Mn, which is abundant in resources and available at a relatively low cost, has attracted particular attention.

また、リチウム複合酸化物(LiMXY)のMの一部を異種金属で置換することで特性が向上することが知られるようになり、例えばリチウムマンガン酸化物(LiMn24)のMnの一部をNi、Cr、Fe、Coなどの異種金属で置換することで結晶構造が安定化し、サイクル特性も向上することなどが開示されている(特開平4−141954、特開平4−160758、特開平4−160769、特開平4−169076、特開平4−237970、特開平4−282560、特開平4−289662、特開平5−28991、特開平7−14572、特開平9−213333、特開平9−270259等参照)。
さらにまた、リチウムマンガン酸化物(LiMn24)のMnの一部を異種金属で置換することで5V級の電位で動作することも報告されている(芳尾真幸/小沢昭弥編「リチウムイオン二次電池」2000年1月27日 日刊工業新聞社p53の表3.9参照)。
In addition, it is known that the characteristics are improved by substituting a part of M of the lithium composite oxide (LiM X O Y ) with a different metal, for example, Mn of lithium manganese oxide (LiMn 2 O 4 ). It is disclosed that the crystal structure is stabilized and the cycle characteristics are improved by substituting a part of the metal with a dissimilar metal such as Ni, Cr, Fe, and Co (Japanese Patent Laid-Open Nos. Hei 4-141954 and Hei 4-160758). JP-A-4-160769, JP-A-4-16976, JP-A-4-237970, JP-A-4-282560, JP-A-4-28962, JP-A-5-28991, JP-A-7-14572, JP-A-9-213333, Special (See Kaihei 9-270259).
Furthermore, it has been reported that a part of Mn of lithium manganese oxide (LiMn 2 O 4 ) is replaced with a dissimilar metal to operate at a potential of 5 V class (Masayuki Yoshio / Akiya Ozawa, “Lithium Ion”). Secondary battery ", January 27, 2000, see Nikkan Kogyo Shimbun, p53, Table 3.9).

この種のリチウム複合酸化物の製造方法としては、リチウム塩粉末(LiOH、Li2Co3等)と遷移金属酸化物(MnO2、CoO、NiO等)粉末とを混合し、これを焼成して合成するのが一般的であり、得られたリチウム複合酸化物は正極活物質として、電気伝導性の良い炭素粉等の導電助材やPVDF等の結着剤などと混練してペ−スト状とし、これを集電体箔に塗布し、その後プレスするなどして正電極を形成することができる。 As a method for producing this type of lithium composite oxide, lithium salt powder (LiOH, Li 2 Co 3 etc.) and transition metal oxide (MnO 2 , CoO, NiO etc.) powder are mixed and fired. The resulting lithium composite oxide is generally paste-like by kneading it as a positive electrode active material with a conductive aid such as carbon powder having good electrical conductivity or a binder such as PVDF. The positive electrode can be formed by applying this to a current collector foil and then pressing it.

ところで、リチウム二次電池(リチウムイオン電池を含む)においては、充放電回数が進むに連れ、負極においてデンドライトが成長して電極間で短絡を起すという課題があり、電池寿命や充放電効率の点で問題があった。このようなデンドライトの成長には様々な原因が考えられるが、正極活物質中の鉄が寄与しているという有力な指摘があった。すなわち、正極活物質中に混入している鉄やSUSが負極に付着してデンドライトを生成すると言うものである。   By the way, in the lithium secondary battery (including the lithium ion battery), as the number of charging / discharging progresses, there is a problem that dendrite grows in the negative electrode and causes a short circuit between the electrodes. There was a problem. There are various causes for such dendrite growth, but there has been a strong indication that iron in the positive electrode active material contributes. That is, iron or SUS mixed in the positive electrode active material adheres to the negative electrode to generate dendrites.

そこで従来、電池材料への鉄の混入を防止すべく、リチウム化合物と遷移金属化合物を含む混合物を焼成する前に、リチウム化合物乃至遷移金属化合物を、所定の強度の磁場を通過させて鉄の除去を図る方法が各種提案されている(特許文献1、特許文献2、特許文献3参照)
特開2003−119026号公報 特開2003−119029号公報 特開2003−313520号公報
Therefore, conventionally, in order to prevent iron from being mixed into the battery material, the lithium compound or the transition metal compound is passed through a magnetic field having a predetermined strength before the mixture containing the lithium compound and the transition metal compound is baked to remove the iron. Various methods have been proposed (see Patent Document 1, Patent Document 2, and Patent Document 3).
JP 2003-1119026 A JP 2003-1119029 A JP 2003-313520 A

本発明は、電池の寿命特性を更に高めるべく、正極活物質粉体に含まれている鉄と電池の寿命特性との関係について鋭意研究を進め、その結果得られた新たな知見に基づいて本発明を為したものである。   In order to further improve the life characteristics of the battery, the present invention has been earnestly researched on the relationship between the iron contained in the positive electrode active material powder and the life characteristics of the battery, and based on the new knowledge obtained as a result, Invented.

本発明は、正極活物質粉体(例えば焼成後のリチウム遷移金属化合物粉体)5gを、2Nの塩酸水溶液15gに加え、液温25℃にて10分間攪拌して正極活物質を濾別した時の塩酸水溶液中の鉄量(2N塩酸溶出鉄量)が、正極活物質粉体全量の5ppm以下に相当する量となる正極活物質粉体を、リチウム電池用正極活物質として提案すると共に、リチウム電池用正極活物質の評価方法として、所定量の正極活物質粉体を、所定濃度の塩酸水溶液に加え、所定の液温にて所定時間攪拌して正極活物質を濾別した時の塩酸水溶液中の鉄量を評価する方法を提案する。   In the present invention, 5 g of a positive electrode active material powder (for example, a lithium transition metal compound powder after firing) is added to 15 g of a 2N hydrochloric acid aqueous solution and stirred at a liquid temperature of 25 ° C. for 10 minutes to separate the positive electrode active material by filtration. A positive electrode active material powder in which the amount of iron in the aqueous hydrochloric acid solution (the amount of iron eluted from 2N hydrochloric acid) corresponds to 5 ppm or less of the total amount of the positive electrode active material powder is proposed as a positive electrode active material for lithium batteries, As a method for evaluating a positive electrode active material for a lithium battery, hydrochloric acid obtained by adding a predetermined amount of a positive electrode active material powder to an aqueous hydrochloric acid solution having a predetermined concentration and stirring the mixture for a predetermined time at a predetermined liquid temperature and filtering the positive electrode active material A method for evaluating the amount of iron in aqueous solution is proposed.

また、本発明は、正極活物質粉体中に含まれる全鉄量に対する、2N塩酸溶出鉄量の比率が、0.5以下となる正極活物質粉体を、リチウム電池用正極活物質として提案すると共に、リチウム電池用正極活物質の評価方法として、所定量の正極活物質粉体を、所定濃度の塩酸水溶液に加え、所定の液温にて所定時間攪拌して正極活物質を濾別した時の塩酸水溶液中の鉄量を、正極活物質粉体中に含まれる全鉄量に対する比率でもって評価する方法を提案する。   In addition, the present invention proposes a positive electrode active material powder in which the ratio of the 2N hydrochloric acid-eluting iron amount to the total iron amount contained in the positive electrode active material powder is 0.5 or less as a positive electrode active material for a lithium battery. In addition, as a method for evaluating a positive electrode active material for a lithium battery, a predetermined amount of a positive electrode active material powder was added to a hydrochloric acid aqueous solution having a predetermined concentration, and the positive electrode active material was filtered by stirring for a predetermined time at a predetermined liquid temperature. We propose a method for evaluating the amount of iron in the aqueous hydrochloric acid solution at a time ratio relative to the total amount of iron contained in the positive electrode active material powder.

従来は、正極活物質に含まれている鉄が電池の寿命特性に影響を与えるものと漠然と考えられてきたが、本発明に係る研究の結果、正極活物質粉体に含まれる鉄の中でも、正極活物質粉体を所定の酸に浸漬した時に溶出する鉄(「酸溶出鉄」ともいう)が電池の寿命特性に密接に影響することが判明した。すなわち、正極活物質に固溶している鉄が多くても、酸溶出鉄が少なければ電池寿命には影響がないことが分ったのである。この際、酸溶出鉄のほとんどは、正極活物質と独立して粉体中に混在している鉄と、正極活物質の表面に付着している鉄であると考えられるが、詳細は未だ分っていない。   Conventionally, it has been vaguely considered that iron contained in the positive electrode active material affects the life characteristics of the battery, but as a result of the research according to the present invention, among the iron contained in the positive electrode active material powder, It has been found that iron eluted when the positive electrode active material powder is immersed in a predetermined acid (also referred to as “acid-eluting iron”) closely affects the life characteristics of the battery. That is, it has been found that even if a large amount of iron is dissolved in the positive electrode active material, the battery life is not affected if the amount of acid-eluting iron is small. At this time, most of the acid-eluting iron is considered to be iron mixed in the powder independently of the positive electrode active material and iron adhering to the surface of the positive electrode active material. Not.

本発明により、鉄を比較的多く含んでいる原料(例えば正極活物質中の全鉄濃度10ppm以上)であっても、酸溶出鉄量を低減する処理を施すことにより電池材料として使用することができるようになるから、原料の選択幅が広がり、安価で、しかも寿命特性に優れたリチウム電池を提供することができるようになる。
したがって、本発明の正極活物質を用いた電池は、携帯電話機や、PDA(携帯情報端末)などの各種携帯型コンピュータ、電気自動車(ハイブリッド自動車を含む)などの駆動用電源として好適であるから、本発明は、本発明の正極活物質を用いた電池を駆動用電源とする携帯電話機、携帯型コンピュータ及び電気自動車をも提案する。
According to the present invention, even a raw material containing a relatively large amount of iron (for example, the total iron concentration in the positive electrode active material of 10 ppm or more) can be used as a battery material by performing a treatment for reducing the amount of acid-eluting iron. As a result, it is possible to provide a lithium battery that has a wide range of raw material selection, is inexpensive, and has excellent life characteristics.
Therefore, the battery using the positive electrode active material of the present invention is suitable as a power source for driving mobile phones, various portable computers such as PDAs (personal digital assistants), and electric vehicles (including hybrid vehicles). The present invention also proposes a mobile phone, a portable computer, and an electric vehicle using a battery using the positive electrode active material of the present invention as a driving power source.

なお、正極活物質の中でも、LiFePO4に代表されるオリビン系酸化物は、塩酸耐性がほとんどなく、2Nの塩酸水溶液に全溶解してしまうため、上記のように2Nの塩酸水溶液に正極活物質粉体を加える方法ではリチウム電池用正極活物質を評価することができない。ただしこの場合でも、所定の鉄可溶溶液、すなわち、その鉄可溶溶液に正極活物質粉体を浸漬した際に溶解される鉄量が特定の電池特性と相関するような鉄可溶溶液を検索し、上記の2Nの塩酸水溶液に代えて当該鉄可溶溶液を用いることにより、上記同様にリチウム電池に適した正極活物質を見出すことができる。
そこで本発明は、オリビン系酸化物など2Nの塩酸水溶液では評価できない正極活物質を包含する評価方法として、定量の正極活物質粉体を、所定濃度の鉄可溶溶液に加え、所定温度にて所定時間攪拌して正極活物質を濾別した時の当該鉄可溶溶液中の鉄量を評価することを特徴とするリチウム電池用正極活物質の評価方法を提案する。
Among the positive electrode active materials, olivine oxides typified by LiFePO 4 have little hydrochloric acid resistance and are completely dissolved in a 2N hydrochloric acid aqueous solution, so that the positive electrode active material is added to the 2N hydrochloric acid aqueous solution as described above. The positive electrode active material for lithium batteries cannot be evaluated by the method of adding powder. However, even in this case, a predetermined iron-soluble solution, that is, an iron-soluble solution in which the amount of iron dissolved when the positive electrode active material powder is immersed in the iron-soluble solution correlates with specific battery characteristics. By searching and using the iron-soluble solution in place of the 2N hydrochloric acid aqueous solution, a positive electrode active material suitable for a lithium battery can be found as described above.
Therefore, the present invention is an evaluation method including a positive electrode active material that cannot be evaluated with a 2N hydrochloric acid aqueous solution such as an olivine-based oxide, and a fixed amount of positive electrode active material powder is added to a predetermined concentration of iron-soluble solution at a predetermined temperature. A method for evaluating a positive electrode active material for a lithium battery, characterized by evaluating the amount of iron in the iron-soluble solution when the positive electrode active material is filtered off by stirring for a predetermined time, is proposed.

本発明における「リチウム電池」は、リチウム一次電池、リチウム二次電池、リチウムイオン二次電池、リチウムポリマー電池など、電池内にリチウムを含有する電池を全て包含する意である。
また、本発明が特定する数値範囲の上限値及び下限値は、特定する数値範囲から僅かに外れる場合であっても、当該数値範囲内と同様の作用効果を備えている限り本発明の範囲に含まる意を包含する。
The “lithium battery” in the present invention is intended to include all batteries containing lithium in the battery, such as a lithium primary battery, a lithium secondary battery, a lithium ion secondary battery, and a lithium polymer battery.
Further, the upper and lower limits of the numerical range specified by the present invention are within the scope of the present invention as long as they have the same operational effects as those within the numerical range, even when slightly deviating from the specified numerical range. Includes intent to include.

以下、本発明の正極活物質の一例としてリチウム遷移金属化合物について説明するが、本発明の正極活物質がリチウム遷移金属化合物だけに限定されるものではない。   Hereinafter, although a lithium transition metal compound is demonstrated as an example of the positive electrode active material of this invention, the positive electrode active material of this invention is not limited only to a lithium transition metal compound.

本発明で対象とする「リチウム遷移金属化合物」は、リチウム電池の正極活物質となる化合物であれば特にその種類を限定するものではなく、例えばリチウムマンガン酸化物、リチウムニッケル複合酸化物、リチウムコバルト複合酸化物、リチウムニッケルマンガン複合酸化物などが挙げられる。中でも、資源的に豊富で比較的安価に入手できるMnを用いたリチウムマンガン酸化物が好ましい。
なお、二種類以上のリチウム遷移金属化合物の混合物を用いることもできる。例えば、リチウムマンガン酸化物と、他のリチウム遷移金属酸化物との混合物を正極活物質とすることもできる。
リチウムマンガン酸化物としては、LiMn24を基本組成とするスピネル構造のマンガン酸リチウムや、LiMnO2を有する層状構造のマンガン酸リチウムを挙げることができるが、サイクル特性などの点でスピネル型のマンガン酸リチウム(LiMn24)が好ましい。
The “lithium transition metal compound” targeted in the present invention is not particularly limited as long as it is a compound that becomes a positive electrode active material of a lithium battery. For example, lithium manganese oxide, lithium nickel composite oxide, lithium cobalt Examples thereof include composite oxides and lithium nickel manganese composite oxides. Among these, lithium manganese oxide using Mn which is abundant in resources and can be obtained relatively inexpensively is preferable.
A mixture of two or more types of lithium transition metal compounds can also be used. For example, a mixture of lithium manganese oxide and another lithium transition metal oxide can be used as the positive electrode active material.
Examples of the lithium manganese oxide include a spinel type lithium manganate having a basic composition of LiMn 2 O 4 and a layered structure lithium manganate having LiMnO 2 , but in terms of cycle characteristics, the spinel type Lithium manganate (LiMn 2 O 4 ) is preferred.

リチウム遷移金属化合物は、リチウム、遷移金属(Co、Mn、Ni等)及び酸素を基本元素として構成されるが、さらに他の添加元素を構成元素として含有してもよい。
添加元素としては、Cr、Fe、B、Al、Sn、Cu、Ti、Zn、Co、Ni等の金属元素を挙げることができる。このような置換元素は、一般に基本組成の遷移金属、例えばリチウムマンガン酸化物であればマンガンのサイトの一部と置換して結晶構造を安定化させることができる。
The lithium transition metal compound is composed of lithium, transition metal (Co, Mn, Ni, etc.) and oxygen as basic elements, but may further contain other additive elements as constituent elements.
Examples of the additive element include metal elements such as Cr, Fe, B, Al, Sn, Cu, Ti, Zn, Co, and Ni. Such a substitution element can generally be substituted with a part of the site of manganese in the case of a transition metal having a basic composition, for example, lithium manganese oxide, to stabilize the crystal structure.

リチウム遷移金属化合物は、原料のリチウム塩化合物、遷移金属化合物及び置換元素化合物を、所望のリチウム遷移金属化合物の金属組成となるように配合し、焼成することにより製造することができる。   The lithium transition metal compound can be produced by blending the raw material lithium salt compound, transition metal compound, and substitution element compound so as to have a desired metal composition of the lithium transition metal compound, and firing.

この際、リチウム塩化合物としては、LiOH、Li2CO3、LiNO3、LiOH・H2O、Li2O、その他脂肪酸リチウムやリチウムハロゲン化物等が挙げられる。中でもリチウムの水酸化物塩、炭酸塩、硝酸塩が好ましい。
遷移金属化合物としては、遷移金属の酸化物、水酸化物塩、炭酸塩、硝酸塩、蓚酸塩、脂肪酸塩等が挙げられる。
置換元素化合物としては、置換元素の酸化物、水酸化物、硝酸塩、炭酸塩、ジカルボン酸塩、脂肪酸塩、アンモニウム塩等が挙げられる。
In this case, examples of the lithium salt compound include LiOH, Li 2 CO 3 , LiNO 3 , LiOH · H 2 O, Li 2 O, and other fatty acid lithium and lithium halide. Of these, lithium hydroxide salts, carbonates and nitrates are preferred.
Examples of the transition metal compound include transition metal oxides, hydroxide salts, carbonates, nitrates, oxalates, and fatty acid salts.
Examples of the substitution element compound include substitution element oxides, hydroxides, nitrates, carbonates, dicarboxylates, fatty acid salts, ammonium salts, and the like.

例えばリチウムマンガン酸化物の場合であれば、Li原料としての炭酸リチウム或いは水酸化リチウム等と、Mn原料としての化学合成二酸化マンガン(CMD),電解二酸化マンガン(EMD)、炭酸マンガン或いは天然二酸化マンガン等と、必要に応じて更に添加元素としての酸化物或いは炭酸塩等とを、乾式又は湿式で混合し、これを箱形炉、管状炉、トンネル炉、ロータリーキルン等の加熱炉内で空気等の酸素ガス雰囲気或いは窒素やアルゴン等の不活性ガス雰囲気下で加熱焼成し、必要に応じて解砕することにより、正極活物質粉体としてのリチウムマンガン酸化物粉体を製造することができる。
この際、正極活物質粉体としてのリチウムマンガン酸化物粉体は、そのほとんどが正極活物質(LiMn24であればスピネル)であるが、中に不可避不純物(鉄も含まれる)を含む集合体である。
なお、Mn原料としての電解二酸化マンガン(EMD)は、化学合成二酸化マンガン(CMD)などに比べ、タップ密度が高い特質を備えている反面、不純物(鉄を含む)を多く含んでいるため、その意味で本発明の対象として特に好ましい。
For example, in the case of lithium manganese oxide, lithium carbonate or lithium hydroxide as a Li raw material, chemically synthesized manganese dioxide (CMD), electrolytic manganese dioxide (EMD), manganese carbonate or natural manganese dioxide as a Mn raw material, etc. And, if necessary, an oxide or carbonate as an additional element is mixed in a dry or wet manner, and this is mixed with oxygen such as air in a heating furnace such as a box furnace, a tubular furnace, a tunnel furnace, or a rotary kiln. Lithium manganese oxide powder as a positive electrode active material powder can be produced by heating and firing in a gas atmosphere or an inert gas atmosphere such as nitrogen or argon and crushing as necessary.
At this time, most of the lithium manganese oxide powder as the positive electrode active material powder is the positive electrode active material (spinel if LiMn 2 O 4 ), but contains inevitable impurities (including iron). It is an aggregate.
In addition, electrolytic manganese dioxide (EMD) as a Mn raw material has a high tap density compared to chemically synthesized manganese dioxide (CMD), but contains many impurities (including iron). In particular, it is particularly preferred as a subject of the present invention.

さて、本発明における「正極活物質粉体」は、所定の酸に溶出される酸溶出鉄量が所定値以下であることを特徴とする。
すなわち、焼成後のリチウム遷移金属化合物粉体5gを、2Nの塩酸水溶液15gに加え、液温25℃にて10分間攪拌して正極活物質を濾別した時の塩酸水溶液中に溶出された鉄量(「2N塩酸溶出鉄量」)が、リチウム遷移金属化合物(5g)に対する濃度に換算して5ppm以下(すなわち0〜5ppm)、好ましくは3ppm以下(すなわち0〜3ppm)であることを特徴とする。
Now, the “positive electrode active material powder” in the present invention is characterized in that the amount of acid-eluting iron eluted in a predetermined acid is not more than a predetermined value.
That is, 5 g of the lithium transition metal compound powder after firing was added to 15 g of 2N hydrochloric acid aqueous solution, stirred for 10 minutes at a liquid temperature of 25 ° C., and the positive electrode active material was filtered off. The amount (“2N hydrochloric acid-eluting iron amount”) is 5 ppm or less (that is, 0 to 5 ppm), preferably 3 ppm or less (that is, 0 to 3 ppm) in terms of the concentration with respect to the lithium transition metal compound (5 g). To do.

2N塩酸溶出鉄量が5ppm以下であれば、たとえリチウム遷移金属化合物に含まれる鉄量が多くても、正極活物質粉体としてリチウム電池を構成した場合、充分なサイクル寿命が得られ、初期容量に対してサイクルを重ねる毎の容量を維持することができる。   If the amount of iron eluted from 2N hydrochloric acid is 5 ppm or less, even if the amount of iron contained in the lithium transition metal compound is large, when a lithium battery is constructed as the positive electrode active material powder, a sufficient cycle life can be obtained and the initial capacity can be obtained. Therefore, the capacity of each cycle can be maintained.

この際、2N塩酸溶出鉄量は、塩酸溶液を遠心分離により回収し、ICP(Inductively Coupled Plasma;誘導結合プラズマ)発光分光法にて溶液中の鉄元素濃度を測定することにより求めることができる。
なお、塩酸以外の酸、例えば硫酸や硝酸などを使用して酸溶出鉄量について測定した結果、硫酸や硝酸の場合には、溶出速度が遅いために浸漬時間が長時間必要となる上、浸漬時間によって溶出鉄量が変化するため、電池寿命と相関のある溶出鉄量を特定するのが難しいという問題があった。
これに対して、塩酸の場合には、2Nの塩酸水溶液に液温約25℃にて10分間攪拌すれば、正確に塩酸水溶液に溶出される鉄量を測定することができ、しかも、塩酸水溶液の濃度が2N以上(少なくとも2N〜4N)であれば、浸漬攪拌時間を10分以上としても溶出鉄量が変化しないという安定した結果が得られることを確認している。また、2N以上(少なくとも2N〜4N)の塩酸水溶液であれば、液温が少なくとも20〜40℃の間で同じ結果が得られることも確認している。
At this time, the amount of iron eluted from 2N hydrochloric acid can be determined by collecting the hydrochloric acid solution by centrifugation and measuring the concentration of iron element in the solution by ICP (Inductively Coupled Plasma) emission spectroscopy.
As a result of measuring the amount of acid-eluting iron using an acid other than hydrochloric acid, such as sulfuric acid or nitric acid, in the case of sulfuric acid or nitric acid, the elution rate is slow, so that a long immersion time is required. Since the amount of iron eluted changes with time, there is a problem that it is difficult to specify the amount of iron eluted correlated with the battery life.
On the other hand, in the case of hydrochloric acid, the amount of iron eluted in the aqueous hydrochloric acid solution can be accurately measured by stirring for 10 minutes in a 2N aqueous hydrochloric acid solution at a liquid temperature of about 25 ° C. It is confirmed that a stable result that the amount of eluted iron does not change is obtained even when the immersion stirring time is 10 minutes or more, if the concentration of is 2N or more (at least 2N to 4N). It has also been confirmed that the same result can be obtained when the hydrochloric acid aqueous solution is 2N or higher (at least 2N to 4N) and the liquid temperature is at least 20 to 40 ° C.

本発明の正極活物質粉体は、2N塩酸溶出鉄量が5ppm以下であればよく、その際、リチウム遷移金属化合物の全鉄量は特に制限はない。例えばリチウム遷移金属化合物中に全鉄量として5ppm以上、更には10ppm以上、更には20ppm以上、更には40ppm以上含有していても、2N塩酸溶出鉄量が5ppm以下であればよい。
例えば電解マンガンの場合、20ppm程度或いはそれ以上の鉄を含有するものもあるから、このような電解マンガンでも使用可能となるから、原料の選択の幅を広げることができ、ひいては安価なリチウム遷移金属化合物を提供することができる。
The positive electrode active material powder of the present invention may have a 2N hydrochloric acid-eluting iron amount of 5 ppm or less, and the total iron amount of the lithium transition metal compound is not particularly limited. For example, even if the total amount of iron in the lithium transition metal compound is 5 ppm or more, 10 ppm or more, 20 ppm or more, and even 40 ppm or more, the amount of 2N hydrochloric acid-eluting iron may be 5 ppm or less.
For example, in the case of electrolytic manganese, there are those containing about 20 ppm or more of iron, so that even such electrolytic manganese can be used, so that the range of selection of raw materials can be widened, and thus an inexpensive lithium transition metal. A compound can be provided.

また、全鉄量と2N塩酸溶出鉄量との比率で言えば、本発明の正極活物質粉体は、正極活物質粉体中に含まれる全鉄量に対する2N塩酸溶出鉄量の比率が0.5以下、特に0.3以下であるのが好ましい。   Further, in terms of the ratio between the total iron amount and the 2N hydrochloric acid-eluting iron amount, the positive electrode active material powder of the present invention has a ratio of the 2N hydrochloric acid-eluting iron amount to the total iron amount contained in the positive electrode active material powder of 0. .5 or less, and particularly preferably 0.3 or less.

なお、正極活物質粉体(リチウム遷移金属化合物)中の全鉄量の測定は、正極活物質粉体(リチウム遷移金属化合物)を酸(例えば塩酸)で全溶解させた後、溶液中の鉄濃度をICP(Inductively Coupled Plasma;誘導結合プラズマ)発光分光法にて溶液中の鉄元素濃度を測定し、所定の換算をすることにより求めることができる。
また、本発明において、2N塩酸溶出鉄量の「鉄」及び全鉄量の「鉄」は、鉄元素の意味であり、鉄単体、ステンレス(SUS)などの鉄化合物として含まれる「鉄」も包含し、全て鉄元素量に換算して鉄量とする。
The total amount of iron in the positive electrode active material powder (lithium transition metal compound) is measured by dissolving the positive electrode active material powder (lithium transition metal compound) with an acid (for example, hydrochloric acid) and then iron in the solution. The concentration can be determined by measuring the concentration of iron element in the solution by ICP (Inductively Coupled Plasma) emission spectroscopy and performing a predetermined conversion.
Further, in the present invention, “iron” of 2N hydrochloric acid-eluting iron amount and “iron” of the total iron amount mean iron elements, and “iron” contained as iron compounds such as iron alone and stainless steel (SUS) is also included. All of them are converted into the amount of iron element and the amount of iron.

焼成後のリチウム遷移金属化合物が、本発明の2N塩酸溶出鉄量条件、或いは全鉄量に対する2N塩酸溶出鉄量の比率条件を満足するものであれば、そのまま、別途処理することなくリチウム電池用の正極活物質として使用することができる。
その一方、焼成後のリチウム遷移金属化合物が当該条件を満足しない場合には、原料を選択し直すか、或いは焼成後のリチウム遷移金属化合物に所定の処理を施す必要がある。
If the lithium transition metal compound after firing satisfies the 2N hydrochloric acid-eluting iron amount condition of the present invention or the ratio condition of the 2N hydrochloric acid-eluting iron amount to the total iron amount, the lithium transition metal compound is used for a lithium battery without further treatment as it is. It can be used as a positive electrode active material.
On the other hand, when the fired lithium transition metal compound does not satisfy the conditions, it is necessary to reselect raw materials or to perform a predetermined treatment on the fired lithium transition metal compound.

正極活物質粉体の2N塩酸溶出鉄量を低減する処理方法としては、例えば、原料のリチウム塩化合物、遷移金属化合物及び置換元素化合物、或いは焼成後のリチウム遷移金属化合物を所定の酸で洗浄する方法を挙げることができる。
この場合、使用する酸としては、無機酸、有機酸を問わない。例えば、無機酸であればフッ化水素酸、臭化水素酸、塩酸、硫酸、硝酸およびそれらの亜または次亜の酸でもよい。有機酸は、蓚酸、カルボン酸、安息香酸がよい。工業上安全且つ蒸気圧が低いかもしくは熱分解温度が低い酸が好ましく、塩酸、硝酸、蓚酸、カルボン酸、安息香酸が好ましい。特に短時間、低濃度で効果を得るためには塩酸、その中でも2N以上の塩酸が最も適している。
As a treatment method for reducing the amount of 2N hydrochloric acid eluted from the positive electrode active material powder, for example, a raw material lithium salt compound, transition metal compound and substitution element compound, or a fired lithium transition metal compound is washed with a predetermined acid. A method can be mentioned.
In this case, the acid used may be an inorganic acid or an organic acid. For example, hydrofluoric acid, hydrobromic acid, hydrochloric acid, sulfuric acid, nitric acid and their sub- or hypo-subacids may be used as long as they are inorganic acids. The organic acid is preferably succinic acid, carboxylic acid, or benzoic acid. Acids that are industrially safe and have a low vapor pressure or low thermal decomposition temperature are preferred, and hydrochloric acid, nitric acid, oxalic acid, carboxylic acid, and benzoic acid are preferred. In particular, hydrochloric acid, particularly hydrochloric acid of 2N or more is most suitable for obtaining an effect at a low concentration for a short time.

本発明の2N塩酸溶出鉄量条件、或いは全鉄量に対する2N塩酸溶出鉄量の比率条件を満足する正極活物質粉体(リチウム遷移金属化合物)は、必要に応じて振動ミルやローラーミルで解砕処理した後、これに導電材、結着剤、充填材等を配合して混練して合剤(ペースト)とし、これを例えばアルミニウム、ステンレス鋼、ニッケルメッキ鋼等、ステンレスメッシュなどからなる正極集電体に塗布し、ロールプレスした後、減圧下で加熱乾燥させて正極を形成することができる。
また、必要に応じて、上記合剤を円板状等、適宜の形状に加圧成形し、必要に応じて真空下で熱処理して正極を製造することもできる。
The positive electrode active material powder (lithium transition metal compound) satisfying the 2N hydrochloric acid-eluting iron amount condition of the present invention or the ratio condition of the 2N hydrochloric acid-eluting iron amount to the total iron amount can be solved with a vibration mill or a roller mill as necessary. After the pulverization treatment, a conductive material, a binder, a filler and the like are mixed and kneaded to obtain a mixture (paste). This is a positive electrode made of, for example, aluminum, stainless steel, nickel-plated steel, stainless mesh, etc. After apply | coating to a collector and roll-pressing, it can be heat-dried under reduced pressure and a positive electrode can be formed.
In addition, if necessary, the above mixture may be pressure-molded into an appropriate shape such as a disk shape, and heat treated under vacuum as necessary to produce a positive electrode.

本発明の正極活物質粉体(リチウム遷移金属化合物)は、リチウム電池(リチウム一次電池、リチウム二次電池、リチウムイオン二次電池を含む)、特に非水溶媒系リチウムイオン電池の正極材料として好適である。
例えば、本発明のリチウム遷移金属化合物からなる正極材料と、カーボンブラック等からなる導電材と、テフロン(登録商標)バインダー等からなる結着剤とを混合して正極合剤とし、また、負極にはリチウムまたはカーボン等のリチウムを吸蔵、脱蔵できる材料を用い、非水系電解質には六フッ化リン酸リチウム(LiPF6)等のリチウム塩をエチレンカーボネート−ジメチルカーボネート等の混合溶媒に溶解したものを用いて、非水溶媒系リチウムイオン電池を構成することができる。
The positive electrode active material powder (lithium transition metal compound) of the present invention is suitable as a positive electrode material for lithium batteries (including lithium primary batteries, lithium secondary batteries, lithium ion secondary batteries), particularly non-aqueous solvent type lithium ion batteries. It is.
For example, a positive electrode material made of the lithium transition metal compound of the present invention, a conductive material made of carbon black or the like, and a binder made of Teflon (registered trademark) binder or the like are mixed to form a positive electrode mixture. Uses a material that can occlude and desorb lithium, such as lithium or carbon, and a non-aqueous electrolyte in which a lithium salt such as lithium hexafluorophosphate (LiPF6) is dissolved in a mixed solvent such as ethylene carbonate-dimethyl carbonate. By using it, a non-aqueous solvent type lithium ion battery can be constituted.

このように構成した非水溶媒系リチウムイオン電池は、例えばノート型パソコン、携帯電話、コードレスフォン子機、ビデオムービー、液晶テレビ、電気シェーバー、携帯ラジオ、ヘッドホンステレオ、バックアップ電源、メモリーカード等の電子機器、ペースメーカー、補聴器等の医療機器、電気自動車搭載用の駆動電源に使用することができる。中でも、特に寿命特性が要求され、しかもデンドライトにより短絡を生じ易い携帯電話機や、PDA(携帯情報端末)などの各種携帯型コンピュータ、電気自動車(ハイブリッド自動車を含む)などの駆動用電源として特に好適であり、新たな携帯電話機や、PDA(携帯情報端末)などの各種携帯型コンピュータ、電気自動車(ハイブリッド自動車を含む)などを提供することができる。   Non-aqueous solvent type lithium ion batteries configured in this way are electronic devices such as notebook computers, mobile phones, cordless phones, video movies, LCD TVs, electric shavers, portable radios, headphone stereos, backup power supplies, memory cards, etc. It can be used as a driving power source for devices, pacemakers, medical devices such as hearing aids, and electric vehicles. In particular, it is particularly suitable as a power source for driving mobile phones, which require particularly long life characteristics, and which are easily short-circuited by dendrites, various portable computers such as PDAs (personal digital assistants), and electric vehicles (including hybrid vehicles). In addition, new mobile phones, various portable computers such as PDAs (personal digital assistants), electric vehicles (including hybrid vehicles), and the like can be provided.

なお、本発明における「正極活物質粉体」は、リチウム電池(リチウム一次電池、リチウム二次電池、リチウムイオン二次電池を含む)を構成する前の正極活物質粉体、電池構成後、充放電させる前の正極活物質粉体、充放電させた後の正極活物質粉体も包含する。よって、電池を解体して正極板を回収し、正極板を細かく粉砕するか、或いは正極板に塗布された正極材料を剥離し、これら粉砕正極板或いは剥離正極材料5gを2Nの塩酸水溶液15gに加え、液温25℃にて10分間攪拌して正極活物質を濾別した時の塩酸水溶液中の鉄量(2N塩酸溶出鉄量)が、正極活物質粉体全量の5ppm以下に相当する量であるか否かを判定することにより、本発明における「正極活物質粉体」を使用していたか否かを判断することができる。   The “positive electrode active material powder” in the present invention is a positive electrode active material powder before constituting a lithium battery (including a lithium primary battery, a lithium secondary battery and a lithium ion secondary battery). The positive electrode active material powder before discharging and the positive electrode active material powder after charging and discharging are also included. Therefore, the battery is disassembled and the positive electrode plate is collected, and the positive electrode plate is finely pulverized, or the positive electrode material applied to the positive electrode plate is peeled off, and 5 g of the pulverized positive electrode plate or exfoliated positive electrode material is added to 15 g of 2N hydrochloric acid aqueous solution. In addition, the amount of iron in the hydrochloric acid aqueous solution (2N hydrochloric acid-eluting iron amount) when the positive electrode active material is filtered off by stirring at a liquid temperature of 25 ° C. for 10 minutes is equivalent to 5 ppm or less of the total amount of the positive electrode active material powder It is possible to determine whether or not the “positive electrode active material powder” in the present invention has been used.

(電池評価の方法)
正極は、正極活物質0.20gとアセチレンブッラク0.28g及びテフロンバインダー0.12gを正確に秤量して充分に混合し、プレス成形でディスク状に成形し、これを120℃で12時間以上乾燥させて水分を充分に除去したものを正極合材とした。負極には、金属Liを活物質として用いた。
(Method of battery evaluation)
For the positive electrode, 0.20 g of the positive electrode active material, 0.28 g of acetylene black and 0.12 g of Teflon binder are accurately weighed and mixed thoroughly, and formed into a disk shape by press molding, which is dried at 120 ° C. for 12 hours or more. The positive electrode mixture was obtained by sufficiently removing moisture. For the negative electrode, metal Li was used as an active material.

これらの材料を使用して図1に示す2016型コイン電池を作製した。
図1のコイン電池は、耐有機電解液性のステンレンス鋼製の正極ケース11の内側に、同じくステンレス鋼製の集電体13がスポット溶接されている。この集電体13の上面には前記正極合材からなる正極15が圧着されている。この正極15の上面には、電解液を含浸した微孔性のポリプロピレン樹脂製のセパレータ16が配置されている。前記正極ケース22の開口部には、下方に金属Liからなる負極14を接合した封口板12がポリプロピレン製のガスケット17をはさんで配置され、これにより電池は密封されている。前記封口板12は負極端子をかね、正極ケースと同様ステンレス製である。
電池の直径は20mm、電池の総高は1.6mmとした。電解液は、エチレンカーボネートと1,3−ジメトキシエタンを等体積混合したものを溶媒とし、これに溶質としてLiPF6を1mol/L溶解させたものを用いた。
充放電条件は下記の通りとした。
電圧範囲は3.0〜4.3V、0.2Cレートとし、温度は45℃とした。充放電サイクルを100回繰り返し、初期の充放電容量に対する100サイクルでの容量維持率を評価した。
The 2016 type coin battery shown in FIG. 1 was produced using these materials.
In the coin battery of FIG. 1, a current collector 13 made of stainless steel is spot-welded inside a positive electrode case 11 made of stainless steel that is resistant to organic electrolyte. A positive electrode 15 made of the positive electrode mixture is pressure-bonded to the upper surface of the current collector 13. On the upper surface of the positive electrode 15, a separator 16 made of a microporous polypropylene resin impregnated with an electrolytic solution is disposed. In the opening of the positive electrode case 22, a sealing plate 12 with a negative electrode 14 made of metal Li bonded below is disposed with a polypropylene gasket 17 interposed therebetween, thereby sealing the battery. The sealing plate 12 serves as a negative electrode terminal and is made of stainless steel like the positive electrode case.
The battery diameter was 20 mm and the total battery height was 1.6 mm. The electrolytic solution used was a solvent in which an equal volume of ethylene carbonate and 1,3-dimethoxyethane was mixed, and 1 mol / L of LiPF6 was dissolved therein as a solute.
The charge / discharge conditions were as follows.
The voltage range was 3.0 to 4.3 V, 0.2 C rate, and the temperature was 45 ° C. The charge / discharge cycle was repeated 100 times, and the capacity retention rate at 100 cycles with respect to the initial charge / discharge capacity was evaluated.

(実施例1)
鉄濃度が0.1ppm以下の1mol/L硫酸マンガンと0.4mol/L硫酸の混合溶液を準備し、陽極をTiとし、陰極をカーボン板として、浴温95℃、電解電流密度0.4mA/cm2で陽極上に二酸化マンガンを析出させた。析出した二酸化マンガンをメノー乳鉢で粗粉砕後、アルミナ製のボールを充填したボールミルで24時間微粉砕した。
このようにして得られた二酸化マンガンと炭酸リチウムをMn:Li=1.1:1.9となるように秤量および混合して大気中で900℃で20時間焼成した。
(Example 1)
A mixed solution of 1 mol / L manganese sulfate and 0.4 mol / L sulfuric acid with an iron concentration of 0.1 ppm or less is prepared, the anode is Ti, the cathode is a carbon plate, the bath temperature is 95 ° C., the electrolytic current density is 0.4 mA / Manganese dioxide was deposited on the anode at cm 2 . The precipitated manganese dioxide was coarsely ground in a menor mortar and then finely ground in a ball mill filled with alumina balls for 24 hours.
The manganese dioxide and lithium carbonate thus obtained were weighed and mixed so that Mn: Li = 1.1: 1.9, and fired at 900 ° C. for 20 hours in the air.

スピネル型マンガン酸リチウム粉体10gを12N塩酸中で煮沸させて全溶解させた。溶解後ろ過して100mlを分取し、100ml中の鉄量をICP(セイコーインスツルメンツ社製ICP−SPS3000)発光分光法で測定したところ、得られた鉄量は、スピネル型マンガン酸リチウム粉体の12ppmに相当する量であった。
また、このスピネル型マンガン酸リチウム粉体5gを2N-HCl水溶液15gに加え、液温25℃で10分間攪拌した。静置後上澄みを抜き出してスピネル型マンガン酸リチウムを濾別し、ICP(セイコーインスツルメンツ社製ICP−SPS3000)発光分光法で2N塩酸溶出鉄量を分析したところ、スピネル型マンガン酸リチウム粉体の1ppmに相当する量であった。
電池評価の結果、容量維持率は98%を示した。
10 g of spinel type lithium manganate powder was boiled in 12N hydrochloric acid and completely dissolved. After dissolution, the solution was filtered to obtain 100 ml, and the amount of iron in 100 ml was measured by ICP (ICP-SPS3000, manufactured by Seiko Instruments Inc.) emission spectroscopy. As a result, the obtained amount of iron was obtained from the spinel type lithium manganate powder. The amount was equivalent to 12 ppm.
Further, 5 g of this spinel type lithium manganate powder was added to 15 g of 2N-HCl aqueous solution and stirred at a liquid temperature of 25 ° C. for 10 minutes. After standing, the supernatant was extracted, spinel-type lithium manganate was separated by filtration, and the amount of iron eluted from 2N hydrochloric acid was analyzed by ICP (Seiko Instruments ICP-SPS3000) emission spectroscopy. The amount was equivalent to
As a result of battery evaluation, the capacity retention rate was 98%.

(実施例2)
鉄濃度が0.3ppmの1mol/L硫酸マンガンと0.4mol/L硫酸の混合溶液を準備し、陽極をTiとし、陰極をカーボン板として、浴温95℃、電解電流密度0.4mA/cm2で陽極上に二酸化マンガンを析出させた。析出した二酸化マンガンをメノー乳鉢で粗粉砕後、アルミナ製のボールを充填したボールミルで24時間微粉砕した。
このようにして得られた二酸化マンガンと炭酸リチウムをMn:Li=1.1:1.9となるように秤量および混合して大気中で900℃で20時間焼成した。
(Example 2)
A mixed solution of 1 mol / L manganese sulfate and 0.4 mol / L sulfuric acid with an iron concentration of 0.3 ppm is prepared, the anode is Ti, the cathode is a carbon plate, the bath temperature is 95 ° C., and the electrolysis current density is 0.4 mA / cm. 2 deposited manganese dioxide on the anode. The precipitated manganese dioxide was coarsely ground in a menor mortar and then finely ground in a ball mill filled with alumina balls for 24 hours.
The manganese dioxide and lithium carbonate thus obtained were weighed and mixed so that Mn: Li = 1.1: 1.9, and fired at 900 ° C. for 20 hours in the atmosphere.

得られたスピネル型マンガン酸リチウム粉体中の鉄量を、実施例1と同様に分析したところ、スピネル型マンガン酸リチウム粉体の30ppmに相当する量であった。
また、このスピネル型マンガン酸リチウム粉体5gを2N-HCl水溶液15gに加え、液温25℃にて10分間攪拌した。静置後上澄みを抜き出してスピネル型マンガン酸リチウムを濾別し、実施例1と同様に2N塩酸溶出鉄量を分析したところ、スピネル型マンガン酸リチウム粉体の2ppmに相当する量であった。
電池評価の結果、容量維持率は98%を示した。
When the amount of iron in the obtained spinel type lithium manganate powder was analyzed in the same manner as in Example 1, it was an amount corresponding to 30 ppm of the spinel type lithium manganate powder.
Further, 5 g of this spinel type lithium manganate powder was added to 15 g of 2N-HCl aqueous solution and stirred at a liquid temperature of 25 ° C. for 10 minutes. After standing, the supernatant was taken out and spinel-type lithium manganate was separated by filtration. The amount of iron eluted from 2N hydrochloric acid was analyzed in the same manner as in Example 1. As a result, the amount was equivalent to 2 ppm of the spinel-type lithium manganate powder.
As a result of battery evaluation, the capacity retention rate was 98%.

(実施例3)
鉄濃度が0.3ppmの1mol/L硫酸マンガンと0.4mol/L硫酸の混合溶液を準備し、陽極をTiとし、陰極をカーボン板として、浴温95℃、電解電流密度0.4mA/cm2で陽極上に二酸化マンガンを析出させた。析出した二酸化マンガンをメノー乳鉢で粗粉砕後、鉄製のボールを充填したボールミルで24時間微粉砕した。
このようにして得られた二酸化マンガンと炭酸リチウムをMn:Li=1.1:1.9となるように秤量および混合して大気中で900℃で20時間焼成した。
(Example 3)
A mixed solution of 1 mol / L manganese sulfate and 0.4 mol / L sulfuric acid with an iron concentration of 0.3 ppm is prepared, the anode is Ti, the cathode is a carbon plate, the bath temperature is 95 ° C., and the electrolysis current density is 0.4 mA / cm. 2 deposited manganese dioxide on the anode. The precipitated manganese dioxide was coarsely pulverized in a menor mortar and then finely pulverized for 24 hours in a ball mill filled with iron balls.
The manganese dioxide and lithium carbonate thus obtained were weighed and mixed so that Mn: Li = 1.1: 1.9, and fired at 900 ° C. for 20 hours in the atmosphere.

得られたスピネル型マンガン酸リチウム粉体100gを、2N-HCl水溶液100gに加え、液温25℃で10分間攪拌し、ろ過で固液分離後イオン交換水で十分に洗浄を行った。洗浄後120℃で乾燥した。   100 g of the obtained spinel type lithium manganate powder was added to 100 g of 2N-HCl aqueous solution, stirred at a liquid temperature of 25 ° C. for 10 minutes, solid-liquid separated by filtration, and sufficiently washed with ion exchange water. It dried at 120 degreeC after washing | cleaning.

このスピネル型マンガン酸リチウム粉体中の鉄量を、実施例1同様に分析したところ、スピネル型マンガン酸リチウム粉体の40ppmに相当する量であった。
また、このスピネル型マンガン酸リチウム粉体5gを、2N-HCl水溶液15gに加え、液温25℃にて10分間攪拌した。静置後上澄みを抜き出してスピネル型マンガン酸リチウムを濾別し、実施例1と同様に2N塩酸溶出鉄量を分析したところ、スピネル型マンガン酸リチウム粉体の1ppm未満に相当する量であった。
電池評価の結果、容量維持率は98%を示した。
When the amount of iron in the spinel type lithium manganate powder was analyzed in the same manner as in Example 1, it was an amount corresponding to 40 ppm of the spinel type lithium manganate powder.
Further, 5 g of this spinel type lithium manganate powder was added to 15 g of 2N-HCl aqueous solution and stirred at a liquid temperature of 25 ° C. for 10 minutes. After standing, the supernatant was extracted and spinel-type lithium manganate was separated by filtration. The amount of iron eluted from 2N hydrochloric acid was analyzed in the same manner as in Example 1. As a result, the amount was less than 1 ppm of the spinel-type lithium manganate powder. .
As a result of battery evaluation, the capacity retention rate was 98%.

(実施例4)
鉄濃度が0.3ppmの1mol/L硫酸マンガンと0.4mol/L硫酸の混合溶液を準備し、陽極をTiとし、陰極をカーボン板として、浴温95℃、電解電流密度0.4mA/cm2で陽極上に二酸化マンガンを析出させた。析出した二酸化マンガンをメノー乳鉢で粗粉砕後、鉄製のボールを充填したボールミルで24時間微粉砕した。得られた二酸化マンガン粉末100gを2N―HCl100mLに加え25℃で10分間攪拌し、ろ過で固液分離後イオン交換水で十分に洗浄を行った。洗浄後120℃で乾燥した。
Example 4
A mixed solution of 1 mol / L manganese sulfate and 0.4 mol / L sulfuric acid with an iron concentration of 0.3 ppm is prepared, the anode is Ti, the cathode is a carbon plate, the bath temperature is 95 ° C., and the electrolysis current density is 0.4 mA / cm. 2 deposited manganese dioxide on the anode. The precipitated manganese dioxide was coarsely pulverized in a menor mortar and then finely pulverized for 24 hours in a ball mill filled with iron balls. 100 g of the obtained manganese dioxide powder was added to 100 mL of 2N HCl, stirred at 25 ° C. for 10 minutes, separated into solid and liquid by filtration, and thoroughly washed with ion-exchanged water. It dried at 120 degreeC after washing | cleaning.

このようにして得られた二酸化マンガンと炭酸リチウムをMn:Li=1.1:1.9となるように秤量および混合して大気中で900℃で20時間焼成した。
得られたスピネル型マンガン酸リチウム粉体中の鉄量を、実施例1同様に分析したところ、スピネル型マンガン酸リチウム粉体の27ppmに相当する量であった。
また、このスピネル型マンガン酸リチウム粉体5gを2N-HCl水溶液15gに加え、液温25℃にて10分間攪拌した。静置後上澄みを抜き出し、静置後上澄みを抜き出してスピネル型マンガン酸リチウムを濾別し、実施例1と同様に2N塩酸溶出鉄量を分析したところ、スピネル型マンガン酸リチウム粉体の1ppm未満に相当する量であった。
電池評価の結果、容量維持率は99%を示した。
The manganese dioxide and lithium carbonate thus obtained were weighed and mixed so that Mn: Li = 1.1: 1.9, and fired at 900 ° C. for 20 hours in the atmosphere.
When the amount of iron in the obtained spinel-type lithium manganate powder was analyzed in the same manner as in Example 1, it was an amount corresponding to 27 ppm of the spinel-type lithium manganate powder.
Further, 5 g of this spinel type lithium manganate powder was added to 15 g of 2N HCl aqueous solution and stirred at a liquid temperature of 25 ° C. for 10 minutes. The supernatant was extracted after standing, the supernatant was extracted after standing, the spinel-type lithium manganate was filtered off, and the amount of iron eluted from 2N hydrochloric acid was analyzed in the same manner as in Example 1. The amount of spinel-type lithium manganate was less than 1 ppm. The amount was equivalent to
As a result of battery evaluation, the capacity retention rate was 99%.

(実施例5)
鉄濃度が0.1ppm未満の1mol/L硫酸マンガンと0.4mol/L硫酸の混合溶液とを準備し、陽極をTiとし、陰極をカーボン板として、浴温95℃、電解電流密度0.4mA/cm2で陽極上に二酸化マンガンを析出させた。析出した二酸化マンガンをメノー乳鉢で粗粉砕後、鉄製のボールを充填したボールミルで10時間微粉砕した。
このようにして得られた二酸化マンガンと炭酸リチウムをMn:Li=1.1:1.9となるように秤量および混合して大気中で900℃で20時間焼成した。
(Example 5)
A mixed solution of 1 mol / L manganese sulfate and 0.4 mol / L sulfuric acid having an iron concentration of less than 0.1 ppm is prepared, the anode is Ti, the cathode is a carbon plate, the bath temperature is 95 ° C., and the electrolysis current density is 0.4 mA. Manganese dioxide was deposited on the anode at / cm 2 . The precipitated manganese dioxide was roughly pulverized in a menor mortar and then finely pulverized for 10 hours in a ball mill filled with iron balls.
The manganese dioxide and lithium carbonate thus obtained were weighed and mixed so that Mn: Li = 1.1: 1.9, and fired at 900 ° C. for 20 hours in the air.

得られたスピネル型マンガン酸リチウム粉体中の鉄量を、実施例1同様に分析したところ、スピネル型マンガン酸リチウム粉体の11ppmに相当する量であった。
また、このスピネル型マンガン酸リチウム5gを、2N-HCl水溶液15gに加え、液温25℃にて10分間攪拌した。静置後上澄みを抜き出し、実施例1と同様に2N塩酸溶出鉄量を分析したところ、スピネル型マンガン酸リチウム粉体の4ppmに相当する量であった。
電池評価の結果、容量維持率は97%を示した。
When the amount of iron in the obtained spinel type lithium manganate powder was analyzed in the same manner as in Example 1, it was an amount corresponding to 11 ppm of the spinel type lithium manganate powder.
Further, 5 g of this spinel type lithium manganate was added to 15 g of 2N HCl aqueous solution and stirred at a liquid temperature of 25 ° C. for 10 minutes. After standing, the supernatant was extracted, and the amount of 2N hydrochloric acid-eluting iron was analyzed in the same manner as in Example 1. The amount was equivalent to 4 ppm of the spinel type lithium manganate powder.
As a result of battery evaluation, the capacity retention rate was 97%.

(実施例6)
水酸化コバルト、水酸化ニッケル、実施例2で得られた二酸化マンガン及び炭酸リチウムを、モル比Li:Co:Ni:Mn=1.1:0.3:0.3:0.3になるように秤量し、純水を加えて固形分濃度50%のスラリーを準備した。このスラリーをビーズミルで分散混合し、スプレードライヤーで乾燥した。
このようにして得た乾燥粉を950℃で20時間焼成し、組成式Li1.1(Co0.3Ni0.3Mn0.3)O2で表される粉体を得た。
(Example 6)
Cobalt hydroxide, nickel hydroxide, manganese dioxide and lithium carbonate obtained in Example 2 were used in a molar ratio of Li: Co: Ni: Mn = 1.1: 0.3: 0.3: 0.3. Then, pure water was added to prepare a slurry with a solid content concentration of 50%. This slurry was dispersed and mixed with a bead mill and dried with a spray dryer.
The dry powder thus obtained was fired at 950 ° C. for 20 hours to obtain a powder represented by the composition formula Li 1.1 (Co 0.3 Ni 0.3 Mn 0.3 ) O 2 .

この粉体中の鉄量を、実施例1同様に分析したところ、Li1.1(Co0.3Ni0.3Mn0.3)O2粉体の15ppmであった。
また、このLi1.1(Co0.3Ni0.3Mn0.3)O2粉体5gを、2N-HCl水溶液15gに加え、液温25℃にて10分間攪拌した。静置後上澄みを抜き出し、実施例1と同様に2N塩酸溶出鉄量を分析したところ、層構造材料の5ppmに相当する量であった。
電池評価の結果、容量維持率は94%を示した。
When the amount of iron in the powder was analyzed in the same manner as in Example 1, it was 15 ppm of the Li 1.1 (Co 0.3 Ni 0.3 Mn 0.3 ) O 2 powder.
Further, 5 g of this Li 1.1 (Co 0.3 Ni 0.3 Mn 0.3 ) O 2 powder was added to 15 g of 2N-HCl aqueous solution and stirred at a liquid temperature of 25 ° C. for 10 minutes. After standing, the supernatant was extracted, and the amount of iron eluted from 2N hydrochloric acid was analyzed in the same manner as in Example 1. As a result, the amount was equivalent to 5 ppm of the layer structure material.
As a result of battery evaluation, the capacity retention rate was 94%.

(比較例1)
鉄濃度が0.1ppmの1mol/L硫酸マンガンと0.4mol/L硫酸の混合溶液を準備し、陽極をTiとし、陰極をカーボン板として、浴温95℃、電解電流密度0.4mA/cm2で陽極上に二酸化マンガンを析出させた。析出した二酸化マンガンをメノー乳鉢で粗粉砕後、鉄製のボールを充填したボールミルで24時間微粉砕した。得られた二酸化マンガン粉末100gを2N―HCl100mLに加え25℃で10分間攪拌し、ろ過で固液分離後イオン交換水で十分に洗浄を行った。洗浄後120℃で乾燥した。
このようにして得られた二酸化マンガンと炭酸リチウムをMn:Li=1.1:1.9となるように秤量および混合して大気中で900℃で20時間焼成した。
(Comparative Example 1)
A mixed solution of 1 mol / L manganese sulfate and 0.4 mol / L sulfuric acid with an iron concentration of 0.1 ppm is prepared, the anode is Ti, the cathode is a carbon plate, the bath temperature is 95 ° C., and the electrolytic current density is 0.4 mA / cm. 2 deposited manganese dioxide on the anode. The precipitated manganese dioxide was coarsely pulverized in a menor mortar and then finely pulverized for 24 hours in a ball mill filled with iron balls. 100 g of the obtained manganese dioxide powder was added to 100 mL of 2N HCl, stirred at 25 ° C. for 10 minutes, separated into solid and liquid by filtration, and thoroughly washed with ion-exchanged water. It dried at 120 degreeC after washing | cleaning.
The manganese dioxide and lithium carbonate thus obtained were weighed and mixed so that Mn: Li = 1.1: 1.9, and fired at 900 ° C. for 20 hours in the atmosphere.

得られたスピネル型マンガン酸リチウム粉体中の鉄量を、実施例1同様に分析したところ、スピネル型マンガン酸リチウム粉体の41ppmに相当する量であった。
また、このスピネル型マンガン酸リチウム粉体5gを2N-HCl水溶液15gに加え、液温25℃にて10分間攪拌した。静置後上澄みを抜き出してスピネル型マンガン酸リチウムを濾別し、実施例1と同様に2N塩酸溶出鉄量を分析したところ、スピネル型マンガン酸リチウム粉体の7ppmに相当する量であった。
電池評価の結果、容量維持率は88%を示した。
When the amount of iron in the obtained spinel-type lithium manganate powder was analyzed in the same manner as in Example 1, it was an amount corresponding to 41 ppm of the spinel-type lithium manganate powder.
Further, 5 g of this spinel type lithium manganate powder was added to 15 g of 2N HCl aqueous solution and stirred at a liquid temperature of 25 ° C. for 10 minutes. After standing, the supernatant was extracted, and spinel-type lithium manganate was filtered off. The amount of 2N hydrochloric acid-eluting iron was analyzed in the same manner as in Example 1. As a result, the amount was equivalent to 7 ppm of the spinel-type lithium manganate powder.
As a result of battery evaluation, the capacity retention rate was 88%.

(比較例2)
鉄濃度が0.3ppmの1mol/L硫酸マンガンと0.4mol/L硫酸の混合溶液を準備し、陽極をTiとし、陰極をカーボン板として、浴温95℃、電解電流密度0.4mA/cm2で陽極上に二酸化マンガンを析出させた。析出した二酸化マンガンをメノー乳鉢で粗粉砕後、鉄製のボールを充填したボールミルで24時間微粉砕した。
このようにして得られた二酸化マンガンと炭酸リチウムをMn:Li=1.1:1.9となるように秤量および混合して大気中で900℃で20時間焼成した。
(Comparative Example 2)
A mixed solution of 1 mol / L manganese sulfate and 0.4 mol / L sulfuric acid with an iron concentration of 0.3 ppm is prepared, the anode is Ti, the cathode is a carbon plate, the bath temperature is 95 ° C., and the electrolysis current density is 0.4 mA / cm. 2 deposited manganese dioxide on the anode. The precipitated manganese dioxide was coarsely pulverized in a menor mortar and then finely pulverized for 24 hours in a ball mill filled with iron balls.
The manganese dioxide and lithium carbonate thus obtained were weighed and mixed so that Mn: Li = 1.1: 1.9, and fired at 900 ° C. for 20 hours in the atmosphere.

得られたスピネル型マンガン酸リチウム粉体中の鉄量を、実施例1同様に分析したところ、スピネル型マンガン酸リチウム粉体の60ppmに相当する量であった。
また、このスピネル型マンガン酸リチウム粉体5gを2N-HCl水溶液15gに加え、液温25℃にて10分間攪拌した。静置後上澄みを抜き出してスピネル型マンガン酸リチウムを濾別し、実施例1と同様に2N塩酸溶出鉄量を分析したところ、スピネル型マンガン酸リチウム粉体の11ppmに相当する量であった。
電池評価の結果、容量維持率は87%を示した。
When the amount of iron in the obtained spinel type lithium manganate powder was analyzed in the same manner as in Example 1, it was an amount corresponding to 60 ppm of the spinel type lithium manganate powder.
Further, 5 g of this spinel type lithium manganate powder was added to 15 g of 2N-HCl aqueous solution and stirred at a liquid temperature of 25 ° C. for 10 minutes. After standing, the supernatant was extracted, spinel-type lithium manganate was filtered off, and the amount of 2N hydrochloric acid-eluting iron was analyzed in the same manner as in Example 1. The amount was equivalent to 11 ppm of the spinel-type lithium manganate powder.
As a result of battery evaluation, the capacity retention rate was 87%.

(比較例3)
水酸化コバルト、水酸化ニッケル、比較例1で得られた二酸化マンガン及び炭酸リチウムを、モル比Li:Co:Ni:Mn=1.1:0.3:0.3:0.3になるように秤量し、純水を加えて固形分濃度50%のスラリーを準備した。このスラリーをビーズミルで分散混合し、スプレードライヤーで乾燥した。このようにして得た乾燥粉を950℃で20時間焼成し、組成式Li1.1(Co0.3Ni0.3Mn0.3)O2で表される粉体を得た。
この粉体中の鉄量を、実施例1同様に分析したところ、Li1.1(Co0.3Ni0.3Mn0.3)O2粉体の21ppmに相当する量であった。
また、このLi1.1(Co0.3Ni0.3Mn0.3)O2粉体5gを、2N-HCl水溶液15gに加え、液温25℃にて10分間攪拌した。静置後上澄みを抜き出し、実施例1と同様に2N塩酸溶出鉄量を分析したところ、層構造材料の12ppmに相当する量であった。
電池評価の結果、容量維持率は74%を示した。
(Comparative Example 3)
Cobalt hydroxide, nickel hydroxide, and manganese dioxide and lithium carbonate obtained in Comparative Example 1 were used in a molar ratio of Li: Co: Ni: Mn = 1.1: 0.3: 0.3: 0.3. Then, pure water was added to prepare a slurry with a solid content concentration of 50%. This slurry was dispersed and mixed with a bead mill and dried with a spray dryer. The dry powder thus obtained was fired at 950 ° C. for 20 hours to obtain a powder represented by the composition formula Li 1.1 (Co 0.3 Ni 0.3 Mn 0.3 ) O 2 .
When the amount of iron in the powder was analyzed in the same manner as in Example 1, it was an amount corresponding to 21 ppm of the Li 1.1 (Co 0.3 Ni 0.3 Mn 0.3 ) O 2 powder.
Further, 5 g of this Li 1.1 (Co 0.3 Ni 0.3 Mn 0.3 ) O 2 powder was added to 15 g of 2N-HCl aqueous solution and stirred at a liquid temperature of 25 ° C. for 10 minutes. The supernatant was extracted after standing, and the amount of iron eluted from 2N hydrochloric acid was analyzed in the same manner as in Example 1. As a result, the amount was equivalent to 12 ppm of the layer structure material.
As a result of battery evaluation, the capacity retention rate was 74%.

Figure 2005135849
Figure 2005135849

電池評価のために作製した2016型コイン電池の構成を示す断面図である。It is sectional drawing which shows the structure of the 2016 type coin battery produced for battery evaluation.

符号の説明Explanation of symbols

11 正極ケース
12 封口板
13 集電体
15 正極
16 セパレータ
14 負極
17 ガスケット
22 正極ケース


DESCRIPTION OF SYMBOLS 11 Positive electrode case 12 Sealing plate 13 Current collector 15 Positive electrode 16 Separator 14 Negative electrode 17 Gasket 22 Positive electrode case


Claims (13)

正極活物質粉体5gを2Nの塩酸水溶液15gに加え、液温25℃にて10分間攪拌して正極活物質を濾別した時の塩酸水溶液中の鉄量(2N塩酸溶出鉄量)が、正極活物質粉体全量の5ppm以下に相当する量であることを特徴とするリチウム電池用正極活物質。   The amount of iron in the aqueous hydrochloric acid solution when the positive electrode active material was filtered by adding 5 g of the positive electrode active material powder to 15 g of 2N hydrochloric acid aqueous solution and stirring for 10 minutes at a liquid temperature of 25 ° C. A positive electrode active material for a lithium battery, the amount corresponding to 5 ppm or less of the total amount of the positive electrode active material powder. 正極活物質粉体中に含まれる全鉄量が10ppm以上であることを特徴とする請求項1記載のリチウム電池用正極活物質。   2. The positive electrode active material for a lithium battery according to claim 1, wherein the total amount of iron contained in the positive electrode active material powder is 10 ppm or more. 正極活物質粉体中に含まれる全鉄量に対する、請求項1記載の2N塩酸溶出鉄量の比率が、0.5以下であることを特徴とするリチウム電池用正極活物質。   The ratio of the 2N hydrochloric acid elution iron amount of Claim 1 with respect to the total iron amount contained in positive electrode active material powder is 0.5 or less, The positive electrode active material for lithium batteries characterized by the above-mentioned. 正極活物質が、リチウム遷移金属化合物であることを特徴とする請求項1〜3のいずれかに記載のリチウム電池用正極活物質。   The positive electrode active material for a lithium battery according to claim 1, wherein the positive electrode active material is a lithium transition metal compound. 正極活物質が、リチウムマンガン酸化物であることを特徴とする請求項1〜4のいずれかに記載のリチウム電池用正極活物質。   The positive electrode active material for a lithium battery according to claim 1, wherein the positive electrode active material is lithium manganese oxide. 正極活物質が、電解二酸化マンガンを原料としたリチウムマンガン酸化物であることを特徴とする請求項1〜5のいずれかに記載のリチウム電池用正極活物質。   The positive electrode active material for a lithium battery according to any one of claims 1 to 5, wherein the positive electrode active material is a lithium manganese oxide using electrolytic manganese dioxide as a raw material. 正極活物質が、リチウムマンガン酸化物と、他のリチウム遷移金属酸化物との混合物であることを特徴とする請求項1〜4のいずれかに記載のリチウム電池用正極活物質。   The positive electrode active material for a lithium battery according to any one of claims 1 to 4, wherein the positive electrode active material is a mixture of lithium manganese oxide and another lithium transition metal oxide. 請求項1〜7のいずれかに記載の正極活物質を用いたリチウム電池用電極。   The electrode for lithium batteries using the positive electrode active material in any one of Claims 1-7. 請求項1〜7のいずれかに記載の正極活物質を用いたリチウム電池。   The lithium battery using the positive electrode active material in any one of Claims 1-7. 請求項1〜7のいずれかに記載の正極活物質を用いた電池を駆動用電源とする携帯電話機。   A mobile phone using a battery using the positive electrode active material according to claim 1 as a driving power source. 請求項1〜7のいずれかに記載の正極活物質を用いた電池を駆動用電源とする携帯型コンピュータ。   A portable computer using a battery using the positive electrode active material according to claim 1 as a driving power source. 請求項1〜7のいずれかに記載の正極活物質を用いた電池を、駆動用電源とする電気自動車。   The electric vehicle which uses the battery using the positive electrode active material in any one of Claims 1-7 as a drive power supply. 所定量の正極活物質粉体を、所定濃度の鉄可溶溶液に加え、所定温度にて所定時間攪拌して正極活物質を濾別した時の当該鉄可溶溶液中の鉄量を評価することを特徴とするリチウム電池用正極活物質の評価方法。

A predetermined amount of positive electrode active material powder is added to an iron-soluble solution having a predetermined concentration, and the amount of iron in the iron-soluble solution is evaluated when the positive electrode active material is filtered by stirring at a predetermined temperature for a predetermined time. The evaluation method of the positive electrode active material for lithium batteries characterized by the above-mentioned.

JP2003372926A 2003-10-31 2003-10-31 Positive electrode activator for lithium battery Pending JP2005135849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003372926A JP2005135849A (en) 2003-10-31 2003-10-31 Positive electrode activator for lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003372926A JP2005135849A (en) 2003-10-31 2003-10-31 Positive electrode activator for lithium battery

Publications (1)

Publication Number Publication Date
JP2005135849A true JP2005135849A (en) 2005-05-26

Family

ID=34649164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003372926A Pending JP2005135849A (en) 2003-10-31 2003-10-31 Positive electrode activator for lithium battery

Country Status (1)

Country Link
JP (1) JP2005135849A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038013A (en) * 2007-07-06 2009-02-19 Sanyo Electric Co Ltd Manufacturing device of active material for lithium secondary battery, manufacturing method of active material for lithium secondary battery, manufacturing method of electrode for lithium secondary battery, and manufacturing method of lithium secondary battery
WO2010113403A1 (en) * 2009-03-31 2010-10-07 パナソニック株式会社 Method for producing positive electrode for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery using the positive electrode
JP2011086584A (en) * 2009-10-19 2011-04-28 Nippon Electric Glass Co Ltd Positive electrode material for lithium ion secondary battery
WO2011122663A1 (en) * 2010-03-30 2011-10-06 三井金属鉱業株式会社 Positive electrode active material for lithium-ion battery and lithium-ion battery
JP2013534203A (en) * 2010-07-26 2013-09-02 ジュート−ヒェミー アイピー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コムパニー コマンデットゲゼルシャフト Method for reducing magnetism and / or oxidation impurities in lithium metal oxygen compounds
WO2015002065A1 (en) * 2013-07-05 2015-01-08 旭硝子株式会社 Method for producing positive electrode active material for lithium ion secondary batteries

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038013A (en) * 2007-07-06 2009-02-19 Sanyo Electric Co Ltd Manufacturing device of active material for lithium secondary battery, manufacturing method of active material for lithium secondary battery, manufacturing method of electrode for lithium secondary battery, and manufacturing method of lithium secondary battery
JPWO2010113403A1 (en) * 2009-03-31 2012-10-04 パナソニック株式会社 Method for producing positive electrode for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery using the positive electrode
WO2010113403A1 (en) * 2009-03-31 2010-10-07 パナソニック株式会社 Method for producing positive electrode for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery using the positive electrode
CN102047473A (en) * 2009-03-31 2011-05-04 松下电器产业株式会社 Method for producing positive electrode for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery using the positive electrode
JP2011086584A (en) * 2009-10-19 2011-04-28 Nippon Electric Glass Co Ltd Positive electrode material for lithium ion secondary battery
JP5140193B2 (en) * 2010-03-30 2013-02-06 三井金属鉱業株式会社 Positive electrode active material for lithium ion battery and lithium ion battery
GB2491535A (en) * 2010-03-30 2012-12-05 Mitsui Mining & Smelting Co Positive electrode active material for lithium-ion battery and lithium-ion battery
CN102823032A (en) * 2010-03-30 2012-12-12 三井金属矿业株式会社 Positive electrode active material for lithium-ion battery and lithium-ion battery
WO2011122663A1 (en) * 2010-03-30 2011-10-06 三井金属鉱業株式会社 Positive electrode active material for lithium-ion battery and lithium-ion battery
JP2013041840A (en) * 2010-03-30 2013-02-28 Mitsui Mining & Smelting Co Ltd Positive electrode active material for lithium ion battery and lithium ion battery
US20130134349A1 (en) * 2010-03-30 2013-05-30 Mitsui Mining & Smelting Co., Ltd. Positive Electrode Active Material for Lithium-Ion Battery and Lithium-Ion Battery
GB2491535B (en) * 2010-03-30 2013-07-03 Mitsui Mining & Smelting Co Positive electrode active material for lithium-ion battery and lithium-ion battery
JPWO2011122663A1 (en) * 2010-03-30 2013-07-08 三井金属鉱業株式会社 Positive electrode active material for lithium ion battery and lithium ion battery
US8728343B2 (en) * 2010-03-30 2014-05-20 Mitsui Mining & Smelting Co., Ltd. Positive electrode active material for lithium-ion battery and lithium-ion battery
JP2013534203A (en) * 2010-07-26 2013-09-02 ジュート−ヒェミー アイピー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コムパニー コマンデットゲゼルシャフト Method for reducing magnetism and / or oxidation impurities in lithium metal oxygen compounds
WO2015002065A1 (en) * 2013-07-05 2015-01-08 旭硝子株式会社 Method for producing positive electrode active material for lithium ion secondary batteries
JPWO2015002065A1 (en) * 2013-07-05 2017-02-23 旭硝子株式会社 Method for producing positive electrode active material for lithium ion secondary battery
US10062905B2 (en) 2013-07-05 2018-08-28 Sumitomo Chemical Co., Ltd. Process for producing cathode active material for lithium ion secondary battery

Similar Documents

Publication Publication Date Title
KR101670327B1 (en) Composite cathode materials with controlled irreversible capacity loss for lithium ion batteries
JP2007335325A (en) Cathode active material for nonaqueous electrolyte secondary battery and battery
JP2008034368A (en) Lithium ion storage battery containing contains tio2-b as anode active substance
WO2012035648A1 (en) Active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2005289700A (en) Lithium transition metal oxide for lithium battery
JP2016085953A (en) Method for regenerating lithium composite oxide, lithium composite oxide, electrochemical device, and lithium ion secondary battery
JP6294219B2 (en) Method for producing lithium cobalt composite oxide
JP5083743B2 (en) Lithium battery
JP2007220406A (en) Nonaqueous electrolyte solution battery
JP4900888B2 (en) Lithium transition metal oxides for lithium batteries
WO2002013294A1 (en) Negative electrode for nonaqueous-electrolyte secondary battery and battery employing the same
JP5051770B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP5733550B2 (en) Lithium ion secondary battery
JP6326366B2 (en) Lithium phosphorus composite oxide carbon composite, method for producing the same, electrochemical device, and lithium ion secondary battery
JP2002260722A (en) Lithium secondary battery
JP2005135849A (en) Positive electrode activator for lithium battery
JP2002170566A (en) Lithium secondary cell
JP2017004770A (en) Positive electrode active material for magnesium secondary battery, positive electrode for magnesium secondary battery, and magnesium secondary battery
JP2000327340A (en) Lithium manganese compound oxide particulate composition and its production and utilization for lithium ion secondary battery
JP2012017255A (en) Lithium transition metal oxide for lithium battery
JP2006040572A (en) Positive active material for aqueous lithium secondary battery and aqueous lithium secondary battery
JP5142096B2 (en) Positive electrode material for lithium secondary battery and method for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery
JP3439718B2 (en) Non-aqueous electrolyte secondary battery
WO2015019483A1 (en) Positive electrode active material for nonaqueous secondary batteries, positive electrode for nonaqueous secondary batteries using same, and nonaqueous secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050803

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051024