JP2007001895A - Phosphorescent host compound and organic electroluminescent element using the same - Google Patents

Phosphorescent host compound and organic electroluminescent element using the same Download PDF

Info

Publication number
JP2007001895A
JP2007001895A JP2005182097A JP2005182097A JP2007001895A JP 2007001895 A JP2007001895 A JP 2007001895A JP 2005182097 A JP2005182097 A JP 2005182097A JP 2005182097 A JP2005182097 A JP 2005182097A JP 2007001895 A JP2007001895 A JP 2007001895A
Authority
JP
Japan
Prior art keywords
phosphorescent host
compound
phosphorescent
organic electroluminescent
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005182097A
Other languages
Japanese (ja)
Inventor
Shoichi Nishiyama
正一 西山
Naoki Matsumoto
直樹 松本
Hisao Eguchi
久雄 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2005182097A priority Critical patent/JP2007001895A/en
Publication of JP2007001895A publication Critical patent/JP2007001895A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Indole Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phosphorescent host material with a high stability of thin film and a high heat stability and to provide an organic electroluminescent element expectable of improving luminous efficiency and life of the element. <P>SOLUTION: The organic electroluminescent element uses a mixture of a phosphorescent compound and the phosphorescent host compound represented by general formula (2), at least as an organic luminescent layer between an anode and a cathode. In the formula R<SP>1</SP>, R<SP>2</SP>are each H, an alkyl group, an alkoxy group or a phenyl group, n is an integer of 1-2, m is an integer of 0-2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燐光ホスト化合物及びそれを用いた有機電界発光素子に関する。   The present invention relates to a phosphorescent host compound and an organic electroluminescence device using the same.

有機電界発光素子は、次世代平面ディスプレイとして注目されており、この有機電界発光素子を用いることにより、例えば、直流低電圧駆動、広視野角、自発光などの特徴を有するフルカラー高解像度ディスプレイの実現が可能となる。そのためには、有機電界発光素子の発光効率をさらに向上させる必要がある。   Organic electroluminescent devices are attracting attention as next-generation flat displays, and by using these organic electroluminescent devices, for example, realization of full-color high-resolution displays with features such as direct current low voltage drive, wide viewing angle, and self-light emission Is possible. For that purpose, it is necessary to further improve the luminous efficiency of the organic electroluminescent element.

従来の有機電界発光素子の発光は、主に蛍光を利用したものであった。すなわち、両電極から電子及びホールを注入すると、それらが対電極に向かい、発光層で再結合して励起子を生成し、その励起子の励起状態が基底状態に戻るときに発光が生じる。この励起状態には、電子スピンの向きが反平行である一重項励起状態と、電子スピンの向きが平行となる三重項励起状態とがあるが、上述した蛍光は、一重項励起状態のみが関与する発光形態である。単純な量子力学的推論から、一重項励起状態と三重項励起状態の生成比率は1:3であるので、蛍光を利用した有機電界発光素子の場合には内部量子効率の最大値は25%となる。つまり、励起状態の75%は発光に使用されないことになる。また、外部への取り出し効率(ηext)は、高々20%程度であるため、蛍光を利用した有機電界発光素子においては、その外部量子効率は25%×20%となり、最大5%程度と見積もられる。   The light emission of the conventional organic electroluminescence device mainly uses fluorescence. That is, when electrons and holes are injected from both electrodes, they are directed to the counter electrode, recombined in the light emitting layer to generate excitons, and light emission occurs when the excited state of the excitons returns to the ground state. This excited state includes a singlet excited state in which the direction of electron spin is anti-parallel and a triplet excited state in which the direction of electron spin is parallel, but the above-described fluorescence involves only the singlet excited state. It is a light emission form. From the simple quantum mechanical reasoning, the generation ratio of the singlet excited state and the triplet excited state is 1: 3. Therefore, in the case of an organic electroluminescence device using fluorescence, the maximum value of the internal quantum efficiency is 25%. Become. That is, 75% of the excited state is not used for light emission. Further, since the extraction efficiency (ηext) to the outside is about 20% at the maximum, in the organic electroluminescence device using fluorescence, the external quantum efficiency is 25% × 20%, which is estimated to be about 5% at the maximum. .

このため、外部量子効率をさらに向上させるためには、励起状態のうちの75%を占める三重項励起状態からの発光、すなわち燐光も利用する必要がある。この利用が可能となれば、外部量子効率を最大20%まで向上させることができる。   For this reason, in order to further improve the external quantum efficiency, it is necessary to use light emission from a triplet excited state that occupies 75% of the excited state, that is, phosphorescence. If this utilization becomes possible, the external quantum efficiency can be improved up to 20%.

例えば、イリジウム錯体を燐光発光性化合物として使用した有機電界発光素子が提案されている(例えば、非特許文献1参照)。上記燐光発光性化合物は、単独では成膜性が低く、また励起状態の自己消光を起こしてしまうため、通常、高い効率を実現させるため、燐光ホスト化合物中に分散させる。   For example, an organic electroluminescent element using an iridium complex as a phosphorescent compound has been proposed (see, for example, Non-Patent Document 1). The phosphorescent compound alone has low film-forming properties and causes self-quenching in an excited state. Therefore, the phosphorescent compound is usually dispersed in a phosphorescent host compound in order to achieve high efficiency.

このような燐光ホスト化合物としては、これまでにいくつかのカルバゾール誘導体が報告されている。   As such a phosphorescent host compound, several carbazole derivatives have been reported so far.

例えば、4,4’−N,N’−ジカルバゾール−ビフェニル(CBP、例えば、非特許文献2参照)、3,3’−N,N’−ジカルバゾール−ビフェニル(例えば、特許文献1参照)、1,3−ビス(カルバゾール−9−イル)−ベンゼン(mCP、例えば、非特許文献2参照)、ジメチル基を置換基として導入したCBP、すなわち4,4’−N,N’−ジカルバゾール−2,2’−ジメチル−ビフェニル(CDBP、例えば、非特許文献3参照)が知られている。   For example, 4,4′-N, N′-dicarbazole-biphenyl (CBP, for example, see Non-Patent Document 2), 3,3′-N, N′-dicarbazole-biphenyl (for example, see Patent Document 1) 1,3-bis (carbazol-9-yl) -benzene (mCP, for example, see Non-Patent Document 2), CBP introduced with a dimethyl group as a substituent, that is, 4,4′-N, N′-dicarbazole -2,2'-Dimethyl-biphenyl (CDBP, for example, refer nonpatent literature 3) is known.

これら低分子系の燐光ホスト化合物は、上述のイリジウム錯体と共に真空蒸着法により成膜される。この真空蒸着法は、低分子系発光材料に対して広く用いられている成膜方法ではあるが、真空設備を必要とすること、大面積になるほど有機薄膜を均一の厚さに成膜することが困難になること等の問題点を有しており、必ずしも大面積パネルの量産に適した方法とはいえない。大面積、量産化に適した素子作製方法として、上述の燐光発光性化合物を高分子系燐光ホスト化合物にドーピングした混合物をスピンコート、インクジェットなどにより成膜する方法が開発されている。この高分子系燐光ホスト化合物としては、ポリビニルカルバゾール(PVK)が使用されている。   These low-molecular phosphorescent host compounds are formed into a film by a vacuum deposition method together with the above iridium complex. This vacuum deposition method is a film formation method widely used for low molecular weight light emitting materials, but requires vacuum equipment, and forms an organic thin film with a uniform thickness as the area increases. However, it is not necessarily a method suitable for mass production of large-area panels. As a method for manufacturing an element suitable for large area and mass production, a method of forming a film by spin coating, ink jet or the like of a mixture obtained by doping the above-described phosphorescent compound with a polymer phosphorescent host compound has been developed. Polyvinylcarbazole (PVK) is used as the polymer phosphorescent host compound.

M.A. Baldo,S. Lamanps et al.,Appl.Phys.Lett.,1999,75,4M.M. A. Baldo, S .; Lamanps et al. , Appl. Phys. Lett. 1999, 75, 4 R.Holms et.al.,Appl.Phys.Lett.,2003,82,2422R. Holms et. al. , Appl. Phys. Lett. , 2003, 82, 2422 Shizuo Tokito,Toshiki Iijima,et al., Appl.Phys.Lett.,2003,83,569Shizuo Tokito, Toshiki Iijima, et al. , Appl. Phys. Lett. , 2003, 83, 569 B.E.Koene et al.,Chem. Mater., 10(1998) 2235B. E. Koene et al. , Chem. Mater. , 10 (1998) 2235 特表2003−515897号公報Special table 2003-515897 gazette

しかし、それらホスト化合物は、有機EL(エレクトロルミネッセンス)素子に対する実用性が十分でない。例えば、CBPは薄膜の安定性が低く、均質なアモルファス膜を形成できないことが示されている(例えば、非特許文献4参照)。   However, these host compounds are not sufficiently practical for organic EL (electroluminescence) devices. For example, it has been shown that CBP has low thin film stability and cannot form a homogeneous amorphous film (see, for example, Non-Patent Document 4).

3,3’−N,N’−ジカルバゾール−ビフェニルは、成膜性には優れているものの耐熱性に重大な課題を有する。また、mCP、CDBPは、熱安定性と薄膜安定性が低く、mCPのガラス転移温度は65℃しかなく、発光層自体が結晶化する問題点を有する。   Although 3,3'-N, N'-dicarbazole-biphenyl is excellent in film formability, it has a serious problem in heat resistance. Further, mCP and CDBP have low thermal stability and thin film stability, and the glass transition temperature of mCP is only 65 ° C., which causes a problem that the light emitting layer itself is crystallized.

以上の理由から、燐光発光性化合物を用いた有機EL素子においては、実用化に向けての素子の耐熱性、成膜性、発光効率の両立に大きな課題を抱えている。   For the above reasons, organic EL devices using phosphorescent compounds have major problems in achieving both the heat resistance, film-forming properties, and luminous efficiency of the devices for practical use.

本発明は、上記従来の課題に鑑みなされたものであり、その目的は、高い薄膜安定性と高い熱安定性を有する燐光ホスト材料を提供することであり、しかも発光効率の向上と素子寿命の向上が期待される有機電界発光素子を提供することにある。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a phosphorescent host material having high thin film stability and high thermal stability, and further improving luminous efficiency and device lifetime. An object of the present invention is to provide an organic electroluminescent device expected to be improved.

さらに、上述の従来報告されている低分子系の燐光ホスト材料では困難であった塗布法によっても成膜可能な燐光ホスト材料を提供することにある。   It is another object of the present invention to provide a phosphorescent host material that can be formed by a coating method that has been difficult with the above-described conventionally reported low-molecular phosphorescent host materials.

前記課題を解決するために鋭意検討した結果、本発明を見出したものである。すなわち、本発明の燐光ホスト化合物は、下記一般式(1)または(2)で表される化合物である。   As a result of intensive studies to solve the above problems, the present invention has been found. That is, the phosphorescent host compound of the present invention is a compound represented by the following general formula (1) or (2).

Figure 2007001895
Figure 2007001895

Figure 2007001895
(式中、R,Rは各々水素原子、炭素数1〜8のアルキル基、炭素数1〜8のアルコキシ基、または置換もしくは無置換のフェニル基を表し、nは1〜2の整数、mは0〜2の整数を表す)
アルキル基は、炭素数1〜8の直鎖、分岐または環状のアルキル基であり、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、シクロヘキシル基、イソプロピル基、tert−ブチル基等が例示できる。
Figure 2007001895
(Wherein R 1 and R 2 each represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl group, and n is an integer of 1 to 2) , M represents an integer of 0-2)
The alkyl group is a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, octyl group, cyclohexyl group, isopropyl group. And a tert-butyl group.

アルコキシ基は、炭素数1〜8の直鎖、分岐または環状のアルコキシ基であり、例えば、メトキシ基、エトキシ基、ブトキシ基等が例示できる。   The alkoxy group is a linear, branched or cyclic alkoxy group having 1 to 8 carbon atoms, and examples thereof include a methoxy group, an ethoxy group, and a butoxy group.

,Rが置換もしくは無置換のフェニル基の場合、その際の置換基としては、前記のアルキル基、アルコキシ基に加え、フェニル基、ビフェニル基、ナフチル基等が挙げられる。 In the case where R 1 and R 2 are substituted or unsubstituted phenyl groups, examples of the substituent include phenyl, biphenyl, and naphthyl groups in addition to the alkyl and alkoxy groups.

また、本発明は、陰極と陽極との間に発光を示す有機層を含む有機電界発光素子であって、前記有機層のうち少なくとも一層が、燐光発光性化合物と前記一般式(1)または(2)で表される燐光ホスト化合物との混合物を含んでなる有機電界発光素子である。   The present invention also provides an organic electroluminescent device comprising an organic layer that emits light between a cathode and an anode, wherein at least one of the organic layers comprises a phosphorescent compound and the general formula (1) or ( An organic electroluminescent device comprising a mixture with the phosphorescent host compound represented by 2).

前記一般式(1)または(2)で表される燐光ホスト化合物は、例えば、下記ルートにより合成可能である。   The phosphorescent host compound represented by the general formula (1) or (2) can be synthesized by, for example, the following route.

Figure 2007001895
(式中、R,Rは各々水素原子、炭素数1〜8のアルキル基、炭素数1〜8のアルコキシ基、または置換もしくは無置換のフェニル基を表し、Tfはトリフルオロメチルスルホニルオキシ基を表し、nは1〜2の整数、mは0〜2の整数を表す)
以下、合成法について説明する。
Figure 2007001895
(Wherein R 1 and R 2 each represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl group, and Tf represents trifluoromethylsulfonyloxy. Represents a group, n represents an integer of 1 to 2, m represents an integer of 0 to 2)
Hereinafter, the synthesis method will be described.

燐光ホスト化合物は、前記(11)または(13)で表されるフルオレン誘導体と前記(12)または(14)で表されるボロン酸誘導体及び塩基の混合物を、テトラキス(トリフェニルホスフィン)パラジウム等のパラジウム触媒存在下にカップリング反応を行うことで合成できる。塩基としては、通常、炭酸ナトリウム、水酸化ナトリウム等の無機塩基、トリエチルアミン等の有機塩基が使用できる。また、反応時間、反応温度は特に制限はないが、例えば、50〜120℃で実施できる。反応終了後、溶媒を除去した後、シリカゲルクロマトグラフィー、再結晶及び昇華等の方法により精製される。   The phosphorescent host compound is a mixture of the fluorene derivative represented by (11) or (13) and the boronic acid derivative represented by (12) or (14) and a base, such as tetrakis (triphenylphosphine) palladium. It can be synthesized by performing a coupling reaction in the presence of a palladium catalyst. As the base, usually, an inorganic base such as sodium carbonate or sodium hydroxide, or an organic base such as triethylamine can be used. The reaction time and reaction temperature are not particularly limited, but can be carried out at 50 to 120 ° C., for example. After completion of the reaction, the solvent is removed and the product is purified by a method such as silica gel chromatography, recrystallization and sublimation.

本発明の燐光ホスト化合物は、下記式(3)−(10)のいずれかで表される化合物であることが特に好ましい。   The phosphorescent host compound of the present invention is particularly preferably a compound represented by any of the following formulas (3) to (10).

Figure 2007001895
Figure 2007001895

Figure 2007001895
次に、本発明の燐光ホスト化合物を用いた有機電界発光素子について説明する。
Figure 2007001895
Next, an organic electroluminescent device using the phosphorescent host compound of the present invention will be described.

本発明の燐光ホスト化合物は、高い薄膜安定性と、高いガラス転移温度を有することにより熱安定性に優れる。また、本発明の有機電界発光素子は、通常の燐光発光性化合物と本発明の燐光ホスト化合物とを真空蒸着法により成膜しても良いし、また、燐光発光性化合物と本発明の燐光ホスト化合物とを適当な溶媒に溶解させた混合物をスピンコート、インクジェット等の塗布法により成膜しても良い。   The phosphorescent host compound of the present invention is excellent in thermal stability by having high thin film stability and high glass transition temperature. In addition, the organic electroluminescent device of the present invention may be formed by depositing a normal phosphorescent compound and the phosphorescent host compound of the present invention by a vacuum evaporation method, or the phosphorescent compound and the phosphorescent host of the present invention. A mixture in which a compound is dissolved in an appropriate solvent may be formed by a coating method such as spin coating or ink jet.

前記混合物中の燐光発光性化合物の含有率は特に制限はないが、より高い発光効率を得るためには0.1〜20重量%であり、好ましくは0.5〜15重量%、特に好ましくは1.0〜10重量%である。   The content of the phosphorescent compound in the mixture is not particularly limited, but is 0.1 to 20% by weight, preferably 0.5 to 15% by weight, particularly preferably for obtaining higher luminous efficiency. 1.0 to 10% by weight.

以下、本発明の実施の形態を図面に従って説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明に係る有機電界発光素子の基本構成の断面図である。素子構造は、ITO等により構成される陽極10の上に、ホール輸送層20が形成され、順次、発光層30、電子輸送層40の各薄膜層が形成される。または、発光層30と電子輸送層40は混合されていても良い。そして、陽極10と陰極50との両電極層間で順次積層された多層構造であり、発光層30は燐光発光性化合物と燐光ホスト材料からなる。   FIG. 1 is a cross-sectional view of a basic configuration of an organic electroluminescent element according to the present invention. In the element structure, a hole transport layer 20 is formed on an anode 10 made of ITO or the like, and thin film layers of a light emitting layer 30 and an electron transport layer 40 are sequentially formed. Alternatively, the light emitting layer 30 and the electron transport layer 40 may be mixed. The light emitting layer 30 is composed of a phosphorescent compound and a phosphorescent host material. The multilayer structure is formed by sequentially laminating between the electrode layers of the anode 10 and the cathode 50.

上述したホール輸送層20には、N,N’−(N−フェニル−1−ナフチルアミノ)ビフェニル(NPB)のようなベンジジン骨格を有するトリアリールアミン誘導体、またはPEDOT:PSS(ポリエチレンジオキシチオフェン−ポリスチレンスルホン酸ドープ体溶液)のような高分子化合物も使用できる。   The hole transport layer 20 includes a triarylamine derivative having a benzidine skeleton such as N, N ′-(N-phenyl-1-naphthylamino) biphenyl (NPB), or PEDOT: PSS (polyethylenedioxythiophene- A polymer compound such as a polystyrene sulfonic acid dope solution) can also be used.

上述した発光層30に用いられる燐光発光性化合物としては、燐光発光を生じさせる化合物であれば特に制限はないが、イリジウム、白金、オスミウム、パラジウム等の遷移金属錯体である。特に好ましくはイリジウム錯体、白金錯体であり、イリジウム錯体の具体例としては、青色を出すイリジウム(III)ビス[(4,6−ジフルオロフェニル)ピリジノナト−N,C−2’]ピコリネート(FIrpic、化合物(15))、緑色を出すトリ(2−フェニルピリジナト−N,C)イリジウム(Ir(ppy)、化合物(16))のほか(17)〜(19)で表される化合物が挙げられる。また、白金錯体としては、化合物(20)が挙げられる。 The phosphorescent compound used for the light emitting layer 30 is not particularly limited as long as it is a compound that generates phosphorescence, and is a transition metal complex such as iridium, platinum, osmium, and palladium. Particularly preferred are an iridium complex and a platinum complex, and specific examples of the iridium complex include iridium (III) bis [(4,6-difluorophenyl) pyridinonato-N, C-2 ′] picolinate (FIrpic, a compound that emits blue) (15)), tri (2-phenylpyridinato-N, C 2 ) iridium (Ir (ppy) 3 , compound (16)) that emits green, and compounds represented by (17) to (19) Can be mentioned. Moreover, a compound (20) is mentioned as a platinum complex.

Figure 2007001895
さらに、電子輸送層40としては、例えば、オキサゾール基またはトリアゾール基を有する化合物(化合物(21)〜(26))を使用することができる。また、8−キノリノールアルミニウム錯体(化合物(27)、(28))も使用できる。
Figure 2007001895
Furthermore, as the electron transport layer 40, for example, compounds having an oxazole group or a triazole group (compounds (21) to (26)) can be used. Moreover, 8-quinolinol aluminum complex (compound (27), (28)) can also be used.

Figure 2007001895
Figure 2007001895

Figure 2007001895
また、陰極50としては、例えば、Mg−Ag合金、Al−Li合金、LiF/Al、Al等の金属電極を使用することができる。なお、アルカリフッ化物、アルカリ酸化物あるいは金属をドープした有機層を電子注入層として使用することも好適である。
Figure 2007001895
Moreover, as the cathode 50, metal electrodes, such as Mg-Ag alloy, Al-Li alloy, LiF / Al, Al, can be used, for example. It is also preferable to use an organic layer doped with alkali fluoride, alkali oxide or metal as the electron injection layer.

また、陽極10とホール輸送層20との間には、CuPcやスターバーストアミン型化合物(特開平4−308688公報参照)を挿入することも好適である。   It is also preferable to insert CuPc or a starburst amine type compound (see Japanese Patent Laid-Open No. 4-308688) between the anode 10 and the hole transport layer 20.

本発明による上記一般式(1)または(2)で表される燐光ホスト化合物は、
高い薄膜安定性と高い熱安定性を有する燐光ホスト材料である。また、上述の従来報告されている低分子系の燐光ホスト材料では困難であった塗布法によっても成膜可能な材料である。このことから、有機電界発光素子において、発光効率の向上と素子寿命の向上が期待できる。
The phosphorescent host compound represented by the general formula (1) or (2) according to the present invention is:
It is a phosphorescent host material having high thin film stability and high thermal stability. Further, it is a material that can be formed by a coating method that has been difficult with the above-described conventionally reported low-molecular phosphorescent host materials. From this, in an organic electroluminescent element, improvement in luminous efficiency and improvement in element lifetime can be expected.

以下、実施例によって本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

また、合成した化合物の諸物性は、以下に示す方法により測定した。   Further, various physical properties of the synthesized compound were measured by the following methods.

質量分析は、電界脱離質量分析(FDMS)により行った。   Mass spectrometry was performed by field desorption mass spectrometry (FDMS).

H−NMR,13C−NMRスペクトルは、バリアン社製 Gemini200を用いて測定した。 1 H-NMR and 13 C-NMR spectra were measured using Gemini 200 manufactured by Varian.

LC純度は、高速液体クロマトグラフィーにて測定した。   LC purity was measured by high performance liquid chromatography.

発光スペクトルは、分光蛍光光度計を用いて測定した。   The emission spectrum was measured using a spectrofluorometer.

有機EL素子の発光スペクトル及び外部量子効率は、量子効率測定装置を用いて測定した。   The emission spectrum and external quantum efficiency of the organic EL element were measured using a quantum efficiency measuring device.

さらに、薄膜安定性については、以下の実験を行い評価した。   Furthermore, the following experiments were evaluated for thin film stability.

〜薄膜安定性〜
化合物20mgをトルエン2mlに溶解させた1%溶液を調製し、スピンコート法(回転条件=1000rpm(1分間)、真空加熱条件=100℃(1時間真空加熱)により石英基板上に薄膜を調製し、室温下(1週間)放置して、薄膜の白濁(または凝集)を観察した。
~ Thin film stability ~
A 1% solution in which 20 mg of compound was dissolved in 2 ml of toluene was prepared, and a thin film was prepared on a quartz substrate by spin coating (rotation conditions = 1000 rpm (1 minute), vacuum heating conditions = 100 ° C. (1 hour vacuum heating)). The film was left to stand at room temperature (1 week), and the cloudiness (or aggregation) of the thin film was observed.

合成例1 化合物(7)の合成
窒素雰囲気下、100mlの容器中で、9,9−ビス[4−(トリフルオロメタンスルホニルオキシ)フェニル]フルオレン 1.23g(2.0mmol)をテトラヒドロフラン6mlに溶解させ、20%炭酸ナトリウム水溶液4.7g、4−(N−カルバゾリル)フェニルボロン酸(4.2mmol)、テトラキス(トリフェニルホスフィン)パラジウム23mg(0.02mmol)を加えた。65℃で2時間反応させた後、室温まで冷却し、分液した。有機層を飽和塩化アンモニウム水溶液及び飽和食塩水で洗浄し、減圧下にて溶媒を留去した。残査をシリカゲルクロマトグラフィーに付し、淡黄色粉末1.27g(収率84%、LC純度=99.7%)を得た。質量分析(FDMS)から目的物であることを確認した。尚、化合物(7)は融点を示さないガラス転移温度=193℃のアモルファス材料であった。
Synthesis Example 1 Synthesis of Compound (7) Under a nitrogen atmosphere, 1.23 g (2.0 mmol) of 9,9-bis [4- (trifluoromethanesulfonyloxy) phenyl] fluorene was dissolved in 6 ml of tetrahydrofuran in a 100 ml container. Then, 4.7 g of 20% aqueous sodium carbonate solution, 4- (N-carbazolyl) phenylboronic acid (4.2 mmol), and 23 mg (0.02 mmol) of tetrakis (triphenylphosphine) palladium were added. After reacting at 65 ° C. for 2 hours, the mixture was cooled to room temperature and separated. The organic layer was washed with a saturated aqueous ammonium chloride solution and saturated brine, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel chromatography to obtain 1.27 g (yield 84%, LC purity = 99.7%) of a pale yellow powder. The product was confirmed by mass spectrometry (FDMS). Compound (7) was an amorphous material having a glass transition temperature of 193 ° C. and having no melting point.

FDMS;800
H−NMR(CDCl);7.28−8.15(m)
13C−NMR(CDCl);150.9,145.3,140.8,140.2,139.7,138.6,136.7,128.7,128.2,127.9,127.7,127.2,126.9,126.2,125.9,123.4,120.38,120.33,120.0,109.8,65.15ppm
合成例2 化合物(5)の合成
窒素雰囲気下、100mlの容器中で、9,9−ビス[4−(トリフルオロメタンスルホニルオキシ)フェニル]−2,7−ビス(9−カルバゾリル)フルオレン 1.88g(2.0mmol)をテトラヒドロフラン6mlに溶解させ、20%炭酸ナトリウム水溶液4.7g、フェニルボロン酸0.51g(4.2mmol)、テトラキス(トリフェニルホスフィン)パラジウム23mg(0.02mmol)を加えた。65℃で一晩反応させた後、室温まで冷却し、分液した。有機層を飽和塩化アンモニウム水溶液及び飽和食塩水で洗浄し、減圧下にて溶媒を留去した。残査をシリカゲルクロマトグラフィーに付し、淡黄色粉末1.1g(収率68%、LC純度=99.7%)を得た。質量分析(FDMS)から目的物であることを確認した。尚、化合物(7)は融点を示さないガラス転移温度=193℃のアモルファス材料であった。
FDMS; 800
1 H-NMR (CDCl 3 ); 7.28-8.15 (m)
13 C-NMR (CDCl 3 ); 150.9, 145.3, 140.8, 140.2, 139.7, 138.6, 136.7, 128.7, 128.2, 127.9, 127 7, 127.2, 126.9, 126.2, 125.9, 123.4, 120.38, 120.33, 120.0, 109.8, 65.15 ppm
Synthesis Example 2 Synthesis of Compound (5) In a 100 ml container under a nitrogen atmosphere, 9,9-bis [4- (trifluoromethanesulfonyloxy) phenyl] -2,7-bis (9-carbazolyl) fluorene 1.88 g (2.0 mmol) was dissolved in 6 ml of tetrahydrofuran, and 4.7 g of 20% aqueous sodium carbonate solution, 0.51 g (4.2 mmol) of phenylboronic acid and 23 mg (0.02 mmol) of tetrakis (triphenylphosphine) palladium were added. After reacting overnight at 65 ° C., the mixture was cooled to room temperature and separated. The organic layer was washed with a saturated aqueous ammonium chloride solution and saturated brine, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel chromatography to obtain 1.1 g (yield 68%, LC purity = 99.7%) of a pale yellow powder. The product was confirmed by mass spectrometry (FDMS). Compound (7) was an amorphous material having a glass transition temperature of 193 ° C. and having no melting point.

また、CBP、化合物(5)及び(7)の蛍光スペクトルを測定し、燐光材料の吸収スペクトルと比較した。その結果を図2に示す。   In addition, the fluorescence spectra of CBP and compounds (5) and (7) were measured and compared with the absorption spectra of phosphorescent materials. The result is shown in FIG.

図2から分かるように、化合物(5)及び(7)の蛍光スペクトルは、CBPと同等以上に燐光発光材料Ir(ppy)の吸収スペクトルとの重なりが大きい。これは、化合物(5)及び(7)からのエネルギー移動が効率よく起り得ることを示す。 As can be seen from FIG. 2, the fluorescence spectra of the compounds (5) and (7) have a large overlap with the absorption spectrum of the phosphorescent material Ir (ppy) 3 at least as much as CBP. This indicates that energy transfer from compounds (5) and (7) can occur efficiently.

また、スピンコート膜の薄膜安定性をCBP,化合物(5)及び(7)で比較した。その結果、化合物(5)及び(7)では、全く白濁が観察されなかったものの、CBPは薄膜調製直後に斑模様の不均一な薄膜となっており、また結晶化を示す白濁が見られたことから、化合物(5)及び(7)は、従来材料にはない高い薄膜安定性を有していることを示す。   The thin film stability of the spin coat film was compared between CBP and compounds (5) and (7). As a result, in the compounds (5) and (7), although white turbidity was not observed at all, CBP was a nonuniform thin film immediately after the thin film preparation, and white turbidity indicating crystallization was observed. This shows that the compounds (5) and (7) have high thin film stability not found in conventional materials.

実施例1
ガラス基板上にITOの透明電極を130nm形成し、真空度3×10−7トールの圧力で、真空蒸着法によりCuPcを20nm、ホール輸送層としてのNPBを30nm堆積した。さらに、燐光ホスト材料として上記化合物(5)を30nmの厚さで形成し、ここにドーパントとして化合物(16)を8重量%ドープした。
Example 1
A transparent electrode of ITO was formed to 130 nm on a glass substrate, and CuPc was deposited to 20 nm and NPB as a hole transport layer was deposited to 30 nm by a vacuum deposition method at a vacuum degree of 3 × 10 −7 Torr. Further, the compound (5) was formed as a phosphorescent host material with a thickness of 30 nm, and 8% by weight of the compound (16) as a dopant was doped therein.

さらに、電子輸送材として化合物(24)を30nm蒸着した。最後にLiFを0.5nm、Alを150nm蒸着し、金属電極を形成した。その結果、520nm付近に緑色燐光が観測され、100cd/m時の外部量子効率は8.6%であった。 Furthermore, 30 nm of compound (24) was vapor-deposited as an electron transport material. Finally, LiF was deposited to 0.5 nm and Al was deposited to 150 nm to form a metal electrode. As a result, green phosphorescence was observed in the vicinity of 520 nm, and the external quantum efficiency at 100 cd / m 2 was 8.6%.

実施例2
ガラス基板上にITOの透明電極を130nm形成し、この透明支持基板をエッチング、洗浄した。このITOガラス基板上にホール輸送性のBaytron P(商品名、PEDOT:PSS溶液(ポリエチレンジオキシチオフェン−ポリスチレンスルホン酸ドープ体)、バイエル社製)をスピンコートした後、180℃で1時間乾燥した(膜厚=50nm)。本発明の燐光ホスト化合物(5)20mg、燐光発光性化合物(16)2mg及び電子輸送材として化合物(24)5mgを1,2−ジクロロエタン 2.5gに溶解して得られた溶液を、スピンコート法によって上記導電性高分子層に塗布した。さらに、真空中で発光層を十分に乾燥させた後、LiFを0.5nm、Alを150nm蒸着し、金属電極を形成した。
Example 2
An ITO transparent electrode of 130 nm was formed on a glass substrate, and this transparent support substrate was etched and washed. A hole transportable Baytron P (trade name, PEDOT: PSS solution (polyethylenedioxythiophene-polystyrene sulfonic acid dope), manufactured by Bayer) was spin-coated on the ITO glass substrate and dried at 180 ° C. for 1 hour. (Film thickness = 50 nm). A solution obtained by dissolving 20 mg of the phosphorescent host compound (5) of the present invention, 2 mg of the phosphorescent compound (16) and 5 mg of the compound (24) as an electron transport material in 2.5 g of 1,2-dichloroethane was spin-coated. The conductive polymer layer was applied by the method. Further, after sufficiently evaporating the light emitting layer in a vacuum, LiF was deposited to 0.5 nm and Al was deposited to 150 nm to form a metal electrode.

その結果、520nm付近に緑色発光が観測され、100cd/m時の外部量子効率は8.9%であった。 As a result, green light emission was observed around 520 nm, and the external quantum efficiency at 100 cd / m 2 was 8.9%.

実施例3
化合物(16)の代わりに化合物(15)を用いた以外は実施例2と同様の操作を行い、素子を作成した。その結果、474nm付近に青色発光が観測され、100cd/m時の外部量子効率は7.2%であった。
Example 3
A device was fabricated in the same manner as in Example 2 except that the compound (15) was used instead of the compound (16). As a result, blue light emission was observed around 474 nm, and the external quantum efficiency at 100 cd / m 2 was 7.2%.

実施例4
燐光ホスト化合物(5)の代わりに(7)を用いた以外は、実施例2と同様の操作を行い、素子を作成した。その結果、100cd/m時の外部量子効率は9.0%であった。
Example 4
A device was fabricated in the same manner as in Example 2, except that (7) was used instead of the phosphorescent host compound (5). As a result, the external quantum efficiency at 100 cd / m 2 was 9.0%.

本発明に係る有機電界発光素子の基本構成の断面図である。It is sectional drawing of the basic composition of the organic electroluminescent element which concerns on this invention. CBP、化合物(5)及び(7)の蛍光スペクトルと、燐光材料の吸収スペクトルとを比較した結果である。It is the result of having compared the fluorescence spectrum of CBP and compound (5) and (7), and the absorption spectrum of a phosphorescent material.

Claims (4)

下記一般式(1)または(2)で表される燐光ホスト化合物。
Figure 2007001895
Figure 2007001895
(式中、R,Rは各々水素原子、炭素数1〜8のアルキル基、炭素数1〜8のアルコキシ基、または置換もしくは無置換のフェニル基を表し、nは1〜2の整数、mは0〜2の整数を表す)
A phosphorescent host compound represented by the following general formula (1) or (2).
Figure 2007001895
Figure 2007001895
(Wherein R 1 and R 2 each represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl group, and n is an integer of 1 to 2) , M represents an integer of 0-2)
n=1であることを特徴とする請求項1に記載の燐光ホスト化合物。 2. The phosphorescent host compound according to claim 1, wherein n = 1. 下記一般式(3)〜(10)で表される燐光ホスト化合物。
Figure 2007001895
Figure 2007001895
Phosphorescent host compounds represented by the following general formulas (3) to (10).
Figure 2007001895
Figure 2007001895
陰極と陽極との間に発光を示す有機層を含む有機電界発光素子であって、前記有機層のうち少なくとも一層が、燐光発光性化合物と請求項1乃至3に記載の燐光ホスト化合物との混合物を含んでなることを特徴とする有機電界発光素子。
4. An organic electroluminescence device comprising an organic layer that emits light between a cathode and an anode, wherein at least one of the organic layers is a mixture of a phosphorescent compound and the phosphorescent host compound according to claim 1. An organic electroluminescent device comprising:
JP2005182097A 2005-06-22 2005-06-22 Phosphorescent host compound and organic electroluminescent element using the same Pending JP2007001895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005182097A JP2007001895A (en) 2005-06-22 2005-06-22 Phosphorescent host compound and organic electroluminescent element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005182097A JP2007001895A (en) 2005-06-22 2005-06-22 Phosphorescent host compound and organic electroluminescent element using the same

Publications (1)

Publication Number Publication Date
JP2007001895A true JP2007001895A (en) 2007-01-11

Family

ID=37687820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005182097A Pending JP2007001895A (en) 2005-06-22 2005-06-22 Phosphorescent host compound and organic electroluminescent element using the same

Country Status (1)

Country Link
JP (1) JP2007001895A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102276514A (en) * 2011-01-20 2011-12-14 华中科技大学 Fluorene-bridged blue phosphorescent main body material and preparation method and application thereof
CN102372695A (en) * 2010-08-20 2012-03-14 清华大学 Compound containing aryl pyridine rings, and application thereof
JP2013010730A (en) * 2010-09-08 2013-01-17 Semiconductor Energy Lab Co Ltd Fluorene compound, light-emitting element, light-emitting device, electronic device, lighting system, and organic compound
JP2014033236A (en) * 2011-02-16 2014-02-20 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, luminaire, and electronic apparatus
JP2019036759A (en) * 2011-02-16 2019-03-07 株式会社半導体エネルギー研究所 Light-emitting element
JP2019054270A (en) * 2011-02-28 2019-04-04 株式会社半導体エネルギー研究所 Light-emitting element and light-emitting device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145372A (en) * 1993-10-01 1995-06-06 Toyo Ink Mfg Co Ltd Hole-transport mateiral and its use
JP2002008860A (en) * 2000-04-18 2002-01-11 Mitsubishi Chemicals Corp Organic electroluminescenct element
JP2003231692A (en) * 2001-12-04 2003-08-19 Nippon Hoso Kyokai <Nhk> Organic compound, organic el element and display
JP2004071500A (en) * 2002-08-09 2004-03-04 Konica Minolta Holdings Inc Organic electroluminescent element and display device
JP2004311424A (en) * 2003-03-26 2004-11-04 Konica Minolta Holdings Inc Organic electroluminescent element, lighting device and display device
JP2005026084A (en) * 2003-07-02 2005-01-27 Mitsubishi Chemicals Corp Organic electroluminescent element and manufacturing method of the same
JP2005078896A (en) * 2003-08-29 2005-03-24 Brother Ind Ltd Organic electroluminescent element and its manufacturing method
JP2005085599A (en) * 2003-09-09 2005-03-31 Toyo Ink Mfg Co Ltd Organic electroluminescent element
JP2005104971A (en) * 2003-09-05 2005-04-21 Qinghua Univ Carbazole derivative and its use for organic el element
JP2005132820A (en) * 2003-10-29 2005-05-26 Samsung Sdi Co Ltd Carbazole-containing compound and organic electroluminescnet device using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145372A (en) * 1993-10-01 1995-06-06 Toyo Ink Mfg Co Ltd Hole-transport mateiral and its use
JP2002008860A (en) * 2000-04-18 2002-01-11 Mitsubishi Chemicals Corp Organic electroluminescenct element
JP2003231692A (en) * 2001-12-04 2003-08-19 Nippon Hoso Kyokai <Nhk> Organic compound, organic el element and display
JP2004071500A (en) * 2002-08-09 2004-03-04 Konica Minolta Holdings Inc Organic electroluminescent element and display device
JP2004311424A (en) * 2003-03-26 2004-11-04 Konica Minolta Holdings Inc Organic electroluminescent element, lighting device and display device
JP2005026084A (en) * 2003-07-02 2005-01-27 Mitsubishi Chemicals Corp Organic electroluminescent element and manufacturing method of the same
JP2005078896A (en) * 2003-08-29 2005-03-24 Brother Ind Ltd Organic electroluminescent element and its manufacturing method
JP2005104971A (en) * 2003-09-05 2005-04-21 Qinghua Univ Carbazole derivative and its use for organic el element
JP2005085599A (en) * 2003-09-09 2005-03-31 Toyo Ink Mfg Co Ltd Organic electroluminescent element
JP2005132820A (en) * 2003-10-29 2005-05-26 Samsung Sdi Co Ltd Carbazole-containing compound and organic electroluminescnet device using the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102372695A (en) * 2010-08-20 2012-03-14 清华大学 Compound containing aryl pyridine rings, and application thereof
JP2013010730A (en) * 2010-09-08 2013-01-17 Semiconductor Energy Lab Co Ltd Fluorene compound, light-emitting element, light-emitting device, electronic device, lighting system, and organic compound
US9564597B2 (en) 2010-09-08 2017-02-07 Semiconductor Energy Laboratory Co., Ltd. Fluorene compound, light-emitting element, light-emitting device, electronic device, lighting device, and organic compound
CN102276514A (en) * 2011-01-20 2011-12-14 华中科技大学 Fluorene-bridged blue phosphorescent main body material and preparation method and application thereof
US11038135B2 (en) 2011-02-16 2021-06-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
JP2014033236A (en) * 2011-02-16 2014-02-20 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, luminaire, and electronic apparatus
US9604928B2 (en) 2011-02-16 2017-03-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
JP2019036759A (en) * 2011-02-16 2019-03-07 株式会社半導体エネルギー研究所 Light-emitting element
US11812626B2 (en) 2011-02-16 2023-11-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10573829B2 (en) 2011-02-16 2020-02-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10586934B2 (en) 2011-02-16 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10593895B2 (en) 2011-02-16 2020-03-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10505120B2 (en) 2011-02-28 2019-12-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US10930852B2 (en) 2011-02-28 2021-02-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US11508912B2 (en) 2011-02-28 2022-11-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
JP2019054270A (en) * 2011-02-28 2019-04-04 株式会社半導体エネルギー研究所 Light-emitting element and light-emitting device

Similar Documents

Publication Publication Date Title
TWI507396B (en) Compounds for organic light emitting device and organic light emitting devices having the same
TWI267544B (en) Electroluminescent materials
JP6668755B2 (en) Iridium complex compound, method for producing the compound, composition containing the compound, organic electroluminescent device, display device, and lighting device
KR102201097B1 (en) Novel organic compounds for organic light-emitting diode and organic light-emitting diode including the same
JP5163837B2 (en) Composition for organic electroluminescence device, organic electroluminescence device, display device and lighting device
TWI555734B (en) Phosphorescent materials
KR102240004B1 (en) Novel aromatic amine compounds for organic light-emitting diode and organic light-emitting diode including the same
KR20120117675A (en) Pyrene derivative compounds and organic light-emitting diode including the same
JP4264048B2 (en) Imidazole ring-containing compound and organic electroluminescence device using the same
JP5357872B2 (en) Organic light emitting material and organic light emitting device using the same
KR20100094413A (en) Anthracene derivative and organoelectroluminescent device employing the same
WO2014024856A1 (en) Organic electroluminescent element, and compound, carrier transport material and host material for use in same
TWI609872B (en) Phenanthroline-based compound for organic electroluminescence device
JP2007001895A (en) Phosphorescent host compound and organic electroluminescent element using the same
TW201821429A (en) Organic compound for organic EL device and using the same
US8941099B2 (en) Organic light emitting device and materials for use in same
JP5580733B2 (en) Novel anthracene compound and organic light emitting device using the same
US20070212569A1 (en) Organometallic complex for organic light-emitting layer and organic light-emitting diode using the same
JP5649029B2 (en) Luminescent composition, organic electroluminescent device, and benzodifuran derivative
KR102128299B1 (en) Novel organic electroluminescent compound, organic electroluminescent device including the same and electric apparatus
WO2009107574A1 (en) Organic electroluminescent element, and manufacturing method and uses therefor
Kim et al. Blue organic electroluminescent devices based on the spiro [fluorene-7, 9′-benzofluorene] derivatives as host and dopant materials
KR101779914B1 (en) Naphthalene derivatives and organic light-emitting diode including the same
JP2011504493A (en) Organic electroluminescent compound and display device including the same
US8524381B2 (en) Organometallic complex for organic light-emitting layer and organic light-emitting diode using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120508