JP2001276844A - Water producing method and water producing system - Google Patents

Water producing method and water producing system

Info

Publication number
JP2001276844A
JP2001276844A JP2000092064A JP2000092064A JP2001276844A JP 2001276844 A JP2001276844 A JP 2001276844A JP 2000092064 A JP2000092064 A JP 2000092064A JP 2000092064 A JP2000092064 A JP 2000092064A JP 2001276844 A JP2001276844 A JP 2001276844A
Authority
JP
Japan
Prior art keywords
water
separation membrane
membrane
raw water
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000092064A
Other languages
Japanese (ja)
Other versions
JP4408524B2 (en
JP2001276844A5 (en
Inventor
Yoshikimi Watanabe
義公 渡辺
Genzo Ozawa
源三 小澤
Shigehide Hirata
茂英 平田
Shinichi Minegishi
進一 峯岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Toray Industries Inc
Original Assignee
Kawasaki Heavy Industries Ltd
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Toray Industries Inc filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2000092064A priority Critical patent/JP4408524B2/en
Publication of JP2001276844A publication Critical patent/JP2001276844A/en
Publication of JP2001276844A5 publication Critical patent/JP2001276844A5/ja
Application granted granted Critical
Publication of JP4408524B2 publication Critical patent/JP4408524B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease the frequency of clogging of a using separation membrane and to stably feed purified water. SOLUTION: To raw water, a pH adjusting agent and a flocculant are added and mixed, the pH of the water is controlled to be in the range of 6 to 7, and flocculated impurities are settled and settled impurities are separated, and further filtered with the separation membrane having 1 mm to 10 μm fine pore diameters, and then remaining impurities are removed to produce purified water. By a flocculating and settling separation operation, both contamination substances of a turbid component and humic matter in river water and lake and marsh water are separated and removed simultaneously and on a high level. Thus, rapid increase of filter resistance of a fine filter membrane and an ultrafiltration membrane, etc., used as the successive filter means; is prevented and the service life of the separation membrane becomes long and setting of the operation condition is easy and excellent quality of water be stably supplied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、河川水、湖沼水、
排水等を浄化し、上水道や飲料・産業用水として供給す
るための造水方法および造水システムに関する。
The present invention relates to river water, lake water,
The present invention relates to a fresh water producing method and a fresh water producing system for purifying waste water and the like and supplying the same as water supply, drinking water, and industrial water.

【0002】[0002]

【従来の技術】精密ろ過膜や限外ろ過膜などを利用した
ろ過装置は食品分野、医療分野をはじめとする産業用
水、飲料水などの供給、排水浄化等に広く利用されてい
る。ところで、前記の分離膜は、ろ過操作を続けるのに
伴って不純物が膜面や細孔内に蓄積され、次第にろ過操
作が困難になるので、定期的に物理洗浄や薬液による洗
浄で汚れを除去する必要がある。通常、分離膜面の堆積
物を剥離させたり閉塞した細孔から閉塞物を取り除くた
めに、膜面のフラッシングやエアスクラッピング等の物
理洗浄を行い、物理洗浄だけでは除去できない汚れに対
しては、酸、アルカリ、界面活性剤、塩素等の酸化剤、
酵素等による薬液洗浄を実施する。これらの除去操作
は、当然、造水装置の処理能率の低下をもたらすので、
特開平10−202010号公報や特開平11−196
89号公報には、分離膜ろ過装置の前段に凝集沈殿装置
を設けて原水を処理し、沈殿する不純物を除去してから
前記ろ過装置に給水し、分離膜の負荷を低減して洗浄操
作の頻度を減らす提案がなされている。
2. Description of the Related Art Filtration apparatuses using microfiltration membranes or ultrafiltration membranes are widely used for supplying industrial water and drinking water in the food and medical fields, and for purifying wastewater. By the way, in the above-mentioned separation membrane, impurities are accumulated on the membrane surface and pores as the filtration operation is continued, and the filtration operation gradually becomes difficult. There is a need to. Normally, physical cleaning such as flushing or air scraping of the membrane surface is performed to remove sediment on the separation membrane surface and remove clogging from closed pores. Oxidizing agents such as acids, alkalis, surfactants and chlorine,
Perform chemical cleaning with enzymes or the like. Since these removal operations naturally lower the processing efficiency of the fresh water generator,
JP-A-10-202010 and JP-A-11-196
No. 89 discloses that a coagulating sedimentation device is provided in front of a separation membrane filtration device to treat raw water, remove impurities that precipitate, and then feed water to the filtration device to reduce the load on the separation membrane and perform a washing operation. Suggestions have been made to reduce the frequency.

【0003】[0003]

【発明が解決しようとする課題】しかし、たとえば、亀
井らの報告(水道協会誌、64巻、8号、p26〜33
(1995))に記載されているように、凝集分離操作
を膜ろ過の前処理として利用するためには凝集剤の注入
率に最適値があってその添加量が不足しても過剰であっ
ても分離膜のろ過能力が低下する。また、不純物の種
類、濃度、原水温度、使用する凝集剤の種類等、たとえ
ば、粘土系コロイドの含有量の多い原水に対する場合
と、フミン質などに起因する色度成分の多い原水を処理
する場合とでは凝集条件が異なるので、その条件設定は
容易ではない。しかも、その凝集条件を誤るとろ過膜の
目詰りが逆に促進され、円滑に造水することができなく
なる。
However, for example, a report by Kamei et al. (Journal of Water Works Association, Vol. 64, No. 8, pp. 26-33)
As described in (1995)), in order to use the coagulation / separation operation as a pretreatment for membrane filtration, the injection rate of the coagulant has an optimum value, and even if the addition amount is insufficient, it is excessive. Also, the filtration capacity of the separation membrane is reduced. In addition, the type of impurities, the concentration, the temperature of raw water, the type of coagulant to be used, and the like, for example, for raw water having a large content of clay-based colloid, and for processing raw water having a large chromaticity component due to humic substances and the like Since the aggregation conditions are different between and, setting the conditions is not easy. In addition, if the coagulation conditions are incorrect, clogging of the filtration membrane is promoted on the contrary, and water cannot be produced smoothly.

【0004】一方、原水として処理することの多い河川
水、湖沼水等には、砂や粘土などの汚濁物質類、フミン
質に代表される有機物類、鉄、マンガン、シリカ、カル
シウム、アルミニウム等の金属類などが様々の形態で不
規則に含まれ、その種類や濃度の変動が大きく、とくに
気象の変化によって急激に原水の性状が変化してしまう
という宿命があって、凝集条件の設定は容易ではなく、
ろ過膜の目詰まりによるろ過手段の操業率低下が大きな
問題であった。
On the other hand, river water, lake water and the like, which are often treated as raw water, include pollutants such as sand and clay, organic substances such as humic substances, iron, manganese, silica, calcium, and aluminum. It is easy to set coagulation conditions because metals and the like are irregularly contained in various forms and their types and concentrations fluctuate greatly, and the nature of raw water changes drastically, especially due to weather changes. not,
A major problem was a decrease in the operation rate of the filtration means due to clogging of the filtration membrane.

【0005】そこで本発明は、使用する分離膜の目詰り
頻度を減少させ、安定して浄水を供給することのできる
造水方法の提供を目的として研究した結果、完成された
ものである。
Accordingly, the present invention has been completed as a result of research aimed at providing a desalination method capable of reducing the frequency of clogging of a separation membrane to be used and stably supplying purified water.

【0006】[0006]

【課題を解決するための手段】前記の課題を解決する目
的で分離膜の目詰り等に関する研究を行った過程で、物
理洗浄によって除去できる汚れ(可逆ファウリングとい
う)は主として濁度成分として測定される粘土系コロイ
ドであり、物理洗浄では除去できず薬液洗浄によって除
去する汚れ(不可逆ファウリングという)の主体は高分
子量のフミン質であることを見出した。また、粘土系コ
ロイドなどの濁度成分は、pH7前後で最もよく凝集沈
殿され、フミン質等の色度成分はpH5前後で最もよく
凝集沈殿されることが知られている。そして、凝集沈殿
操作中のpHと分離膜の目詰まりの度合いとの関係を詳
細に試験し解析し検討した結果、pH6〜7の範囲で前
記の濁度成分とフミン質の両者をともに高いレベルで分
離、除去し、操業中の分離膜ろ過抵抗の上昇速度を極め
て小さくできることを見出した。
In the course of conducting research on clogging of separation membranes for the purpose of solving the above problems, dirt (reversible fouling) that can be removed by physical washing is measured mainly as a turbidity component. It has been found that the main component of soil (irreversible fouling) that cannot be removed by physical cleaning but is removed by chemical cleaning is high molecular weight humic substances. It is also known that turbid components such as clay-based colloids are best coagulated and precipitated at around pH 7, and chromatic components such as humic substances are best coagulated and precipitated at around pH 5. As a result of detailed examination and analysis of the relationship between the pH during the coagulation and sedimentation operation and the degree of clogging of the separation membrane, both the turbidity component and the humic substance were at a high level in the range of pH 6 to 7. It was found that the rate of increase in filtration resistance of the separation membrane during operation can be extremely reduced.

【0007】そこで、本発明は、前記課題を解決する手
段として、原水をpH6〜7の範囲で凝集沈殿した後
に、細孔径が1nm〜10μmの範囲の分離膜を用いて
ろ過して不純物を除去することを特徴とする造水方法を
提案する。本発明においては、アルミニウム系又は鉄系
の凝集剤を用いて凝集沈殿させることが好ましい。
In order to solve the above-mentioned problems, the present invention provides a method for removing impurities by coagulating and sedimenting raw water in a pH range of 6 to 7, followed by filtration using a separation membrane having a pore size in a range of 1 nm to 10 μm. We propose a method for making fresh water. In the present invention, it is preferable to coagulate and precipitate using an aluminum-based or iron-based coagulant.

【0008】また、本発明は、原水をpH6〜7の範囲
で凝集沈殿する凝集沈殿手段(1,2,3)と、その凝
集沈殿手段による処理水を通過させて不純物を除去す
る、細孔径が1nm〜10μmの範囲の分離膜14を有
するろ過手段4とを備えていることを特徴とする造水シ
ステムを提供する。このうち、凝集沈殿手段としては、
原水、凝集剤およびpH調整剤を混合撹拌する混合装置
1と、混合装置により処理された原水に含まれる不純物
をフロックに形成する噴流撹拌式のフロック形成装置2
と、形成されたフロックを分離する上向流交互傾斜管式
の沈殿池3とを備えていることが好ましい。また、分離
膜14としては、ポリアクリロニトリル、酢酸セルロー
ス又はポリスルフォンからなるものが好適であって、そ
の使用形態には中空糸膜が好ましい。
Further, the present invention provides a coagulating sedimentation means (1, 2, 3) for coagulating and sedimenting raw water in a pH range of 6 to 7, and a pore diameter for removing impurities by passing water treated by the coagulating sedimentation means. And a filtration means 4 having a separation membrane 14 in a range of 1 nm to 10 μm. Among these, as the coagulation sedimentation means,
A mixing device 1 for mixing and stirring raw water, a flocculant and a pH adjuster, and a jet stirring type floc forming device 2 for forming impurities contained in raw water treated by the mixing device into flocs
And a sedimentation basin 3 of an upwardly flowing alternately inclined pipe type for separating formed flocs. Further, the separation membrane 14 is preferably made of polyacrylonitrile, cellulose acetate or polysulfone, and is preferably a hollow fiber membrane in its use form.

【0009】なお、本発明における分離膜の細孔径は、
膜透過速度(Jv:m3/m2・s)および透過膜による
圧力差(ΔP:Pa)から(1)式により膜の透水性
(Lp:m3/m2・s・Pa)を求め、(2)式から算
出した細孔径(Rp:m)の値である。
The pore size of the separation membrane in the present invention is as follows:
From the membrane permeation speed (Jv: m 3 / m 2 · s) and the pressure difference (ΔP: Pa) by the permeable membrane, the water permeability (Lp: m 3 / m 2 · s · Pa) of the membrane is obtained by the formula (1). , (2) calculated from the pore diameter (Rp: m).

【0010】 Jv=Lp・ΔP (1) Lp=(H/L)・Rp2/(8η) (2) ただし、H:膜含水率[−] L:膜の厚さ[m] η:水の粘度[Pa・s]Jv = Lp · ΔP (1) Lp = (H / L) · Rp 2 / (8η) (2) where H: film moisture content [−] L: film thickness [m] η: water Viscosity [Pa · s]

【0011】[0011]

【発明の実施の形態】さらに本発明を、実施形態例を挙
げながら具体的に説明する。図1は本発明造水システム
の一実施形態を示すフローシートである。図1に示され
る造水システムは、凝集沈殿手段として、処理する原水
を所定のpHに調整して凝集剤を添加し、撹拌、混合し
て原水中の不純物質をマイクロフロック化する急速撹拌
槽1、マイクロフロックを粗大化する噴流攪拌装置2、
粗大化したフロックを沈降分離する上向流交互傾斜管式
の沈殿地3を、不純物質を沈降分離した前記の原水から
残りの不純物質を分離するろ過手段として、分離膜を用
いたろ過装置4を備えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Further, the present invention will be specifically described with reference to embodiments. FIG. 1 is a flow sheet showing one embodiment of the fresh water generating system of the present invention. The desalination system shown in FIG. 1 is a rapid stirring tank that adjusts raw water to be treated to a predetermined pH, adds a flocculant, stirs and mixes the impurities into microflocs in the raw water as coagulation and sedimentation means. 1. Jet stirrer 2, which coarsens micro flocs
A filtration device 4 using a separation membrane as a filtering means for separating the remaining impurities from the raw water from which the impurities are settled and separated, using the upwardly flowing alternately inclined pipe type sediment 3 for settling and separating coarse flocs. It has.

【0012】まず、原水を供給配管5からpH計7を装
着した急速撹拌槽1に連続的に供給する。急速撹拌槽1
には、パドル式、プロペラ式、タービン式等の攪拌機が
装着され、さらにpH計7の測定値によりpH調整剤貯
槽9から添加するpH調整剤量を制御して、内部の原液
pHを6〜7の範囲内に制御する制御手段8が取り付け
られている。供給された原液は、急速撹拌槽1内におい
て凝集剤貯槽10から供給される所要量の凝集剤、およ
びpH制御手段8の制御下に供給されるpH調整剤とを
添加して撹拌混合されてpH6〜7の範囲内に制御さ
れ、含有する不純物質がマイクロフロック化される。
First, raw water is continuously supplied from a supply pipe 5 to a rapid stirring tank 1 equipped with a pH meter 7. Rapid stirring tank 1
Is equipped with a stirrer such as a paddle type, a propeller type, a turbine type, etc., and further controls the amount of the pH adjusting agent added from the pH adjusting agent storage tank 9 based on the measured value of the pH meter 7 to adjust the internal undiluted solution pH to 6 to 10. 7 is provided with a control means 8 for performing control within the range. The supplied undiluted solution is stirred and mixed by adding a required amount of a flocculant supplied from the flocculant storage tank 10 and a pH adjuster supplied under the control of the pH control means 8 in the rapid stirring tank 1. The pH is controlled within the range of 6 to 7, and the contained impurities are microflocated.

【0013】凝集剤としては、使いやすく沈降性のよい
フロックを形成することからポリ塩化アルミニウム、硫
酸アルミニウム等のアルミニウム系凝集剤が好ましく、
また、鉄系の凝集剤も好ましく用いられる。これらの凝
集剤は、pH6〜7の範囲でフミン質及び濁度物質を適
度に沈降・沈殿させ膜ろ過手段の前処理としての効果が
高い。前記の凝集剤は、河川表流水、湖沼水、地下水な
どの自然水の浄水化処理に向いており、本発明処理対象
の原水と一致するケースが多いものと考えられる。
As the flocculant, an aluminum-based flocculant such as polyaluminum chloride and aluminum sulfate is preferable because it forms a floc which is easy to use and has good sedimentation.
Further, an iron-based flocculant is also preferably used. These flocculants have a high effect as a pretreatment of the membrane filtration means by appropriately sedimenting and precipitating humic substances and turbid substances in the pH range of 6 to 7. The coagulant described above is suitable for purification treatment of natural water such as river surface water, lake water, groundwater, and the like, and is considered to often coincide with the raw water to be treated in the present invention.

【0014】マイクロフロックを含む原水は、噴流撹拌
式や左右迂流形、上下迂流形、ボルテックス形、直角流
式パドル形、軸流式パドル形等のフロック形成装置2に
送られて緩流速撹拌され、含有するマイクロフロックが
粗大化される。好ましいフロック形成装置2として具体
例を挙げ説明すると、水槽を多数の直径5〜30mmの
円形孔又は幅数mm、長さ数〜数十cmのスリット状孔
が配列された多孔板11で仕切り、マイクロフロックを
含む原水を通過させる。多孔板11は、孔を噴流となっ
て通過する原水を緩速撹拌し、マイクロフロックを粗大
フロックに形成する無動力のフロッキュレーターとして
の作用を奏する。
The raw water containing microfloc is sent to a floc forming device 2 such as a jet stirring type, a left / right detour type, a vertical detour type, a vortex type, a right angle type paddle type, an axial type paddle type, etc. The mixture is stirred to coarsen the microflocs contained therein. When a specific example is described as a preferred floc forming device 2, a water tank is partitioned by a perforated plate 11 in which a large number of circular holes having a diameter of 5 to 30 mm or several mm in width and slit-like holes having a length of several to several tens cm are arranged, Pass raw water containing microfloc. The perforated plate 11 acts as a non-powered flocculator that slowly agitates the raw water passing through the holes as a jet and forms microflocs into coarse flocs.

【0015】不純物のフロックを形成した原水は、上向
流交互傾斜管式の沈殿池3においてフロックを沈降分離
して処理水となる。沈殿池3としては、長方形沈殿池、
円形沈殿池、2階層沈殿池、3階層沈殿池、傾斜管沈殿
池、傾斜板沈殿池、中間取出沈殿池、高速凝集沈殿池等
の様々な形状、方式のものを利用することができる。上
向流交互傾斜管式の沈殿池3の具体例を挙げ簡単に説明
すると、図1中の12に示すように断面が50mm程度
で矩形状の管を水槽内に鉛直方向に対して60度程度、
1列ごとに交互に逆方向に傾斜させて取り付け、使用す
ることができる。
The raw water in which the flocs of impurities are formed is settled and separated into flocs in a sedimentation basin 3 of an upwardly-flowing alternately inclined tube type to become treated water. As the sedimentation basin 3, a rectangular sedimentation basin,
Various types and types of circular sedimentation basins, two-level sedimentation basins, three-level sedimentation basins, inclined-tube sedimentation basins, inclined plate sedimentation basins, intermediate extraction sedimentation basins, high-speed coagulation sedimentation basins, and the like can be used. Briefly describing a specific example of the upward-flow alternating inclined pipe type sedimentation basin 3, a rectangular pipe having a cross section of about 50 mm as shown at 12 in FIG. degree,
It can be mounted and used by inclining in the opposite direction alternately for each row.

【0016】凝集沈殿手段として、本発明では前記の装
置を適宜に組み合わせて使用することができる。なかで
も、急速撹拌槽1と噴流撹拌式のフロック形成装置2と
上向流交互傾斜管式の沈殿池3とを組み合わせた図1に
例示する造水システムが好適である。被処理水の流れが
処理工程で噴流から上向き流に変わるために密度流が起
こりにくく、精密にフロックを分離できるので、原水の
水質が急激に変化する場合にも、処理水の水質変動が小
さく、分離膜ろ過装置に安定した水質の処理水を供給で
きるからである。さらに滞留時間が短く、コンパクトな
装置にまとめられる利点がある。
In the present invention, the above-mentioned devices can be appropriately combined and used as a coagulation-sedimentation means. Above all, a desalination system illustrated in FIG. 1 in which a rapid stirring tank 1, a jet stirring type floc forming device 2, and a sedimentation basin 3 of an upwardly flowing alternately inclined tube type are combined is preferable. Since the flow of the water to be treated changes from a jet to an upward flow in the treatment process, density flow is unlikely to occur and flocs can be separated precisely, so that even if the quality of the raw water changes rapidly, water quality fluctuations in the treated water are small. This is because treated water of stable water quality can be supplied to the separation membrane filtration device. Furthermore, there is an advantage that the residence time is short and the apparatus can be combined into a compact device.

【0017】つぎに、本発明造水システム又は造水方法
は、飲料水、一般用水、排水処理などの低コスト・大量
処理が要求される分野で用いられるため、ろ過手段4に
使用する分離膜14は、細孔径が1nm〜10μm程度
のいわゆる精密ろ過膜又は限外ろ過膜が好ましい。ろ過
して不純物を除去された浄水は、浄水導出配管15から
系外に取り出される。
Next, the desalination system or desalination method of the present invention is used in fields requiring low-cost and large-scale treatment such as drinking water, general water and wastewater treatment. 14 is preferably a so-called microfiltration membrane or ultrafiltration membrane having a pore diameter of about 1 nm to 10 μm. The purified water from which impurities have been removed by filtration is taken out of the system from the purified water outlet pipe 15.

【0018】分離膜の形態にとくに制限はなく、中空糸
膜、管状膜、平膜などを用いることができるが、一般的
に装置単位容積当たりの有効膜面積が大きい外径が2m
m未満の中空糸膜が好適である。
The form of the separation membrane is not particularly limited, and a hollow fiber membrane, a tubular membrane, a flat membrane, or the like can be used. In general, the outer diameter is 2 m, which has a large effective membrane area per unit volume of the apparatus.
m is preferred.

【0019】本発明に使用する分離膜の素材としては、
ポリアクリロニトリル、ポリスルフォン、ポりフェニレ
ンスルフォン、ポリフェニレンスルフィドスルフォン、
ポリフッ化ビニリデン、酢酸セルロース、ポリエチレ
ン、ポリプロピレンなどや、セラミック等の無機素材を
あげることができる。なかでも親水性素材のポリアクリ
ロニトリル、酢酸セルロースは、汚れにくく洗浄回復性
がよいという特長があって好ましく、ポリスルフォンは
比較的耐品性が高く、殺菌のために各種薬剤を使用する
浄水処理に好適である。
Materials for the separation membrane used in the present invention include:
Polyacrylonitrile, polysulfone, polyphenylene sulfone, polyphenylene sulfide sulfone,
Examples include inorganic materials such as polyvinylidene fluoride, cellulose acetate, polyethylene, polypropylene, and ceramics. Above all, hydrophilic materials such as polyacrylonitrile and cellulose acetate are preferable because they have the characteristics of being resistant to soiling and have good cleaning recovery properties.Polysulfone is relatively high in resistance to water and is used for water purification treatment using various chemicals for sterilization. It is suitable.

【0020】本発明に用いるろ過手段では定圧ろ過方
式、定流ろ過方式のいずれでもよい。一般的には一定量
の浄水を得られる定量ろ過方式が採用されるが、目的に
より適宜に選択すればよい。また、ろ過手段の操業方法
は、被処理水の全量をろ過する全ろ過運転でも被処理水
の一部を被処理水に返送するクロスフローろ過運転のい
ずれも採用できるが、全ろ過運転の方が、操作が単純で
凝集沈殿手段での処理量やエネルギーコストが小さく一
般的に有利である。
The filtration means used in the present invention may be either a constant pressure filtration method or a constant flow filtration method. Generally, a quantitative filtration method capable of obtaining a certain amount of purified water is employed, but may be appropriately selected depending on the purpose. The operation method of the filtering means can be either a full filtration operation for filtering the entire amount of the water to be treated or a cross-flow filtration operation for returning a part of the water to the water to be treated. However, it is generally advantageous because the operation is simple and the processing amount and energy cost in the coagulation / sedimentation means are small.

【0021】[0021]

【実施例】原水として河川水を用い、図1に例示したの
と同じ構成の本発明造水システムを用い、河川水からの
造水試験を行ったので、その結果を説明する。
EXAMPLE A fresh water test from river water was performed using river water as raw water and a fresh water generating system of the present invention having the same configuration as illustrated in FIG. 1, and the results will be described.

【0022】実施例1 原水をpH計を取り付けた急速撹拌槽内に連続供給し、
これにpH計からの信号によりpH調整剤として使用し
た水酸化ナトリウム溶液の流量を調整しながら加えて槽
内のpHを6.1に保持した。凝集剤には、ポリ塩化ア
ルミニウムを用い、濃度が10ppmになるように添加
した。つぎにこの原水を、噴流撹拌式のフロック形成装
置に導いてフロックを形成し、つづいて上向流交互傾斜
管式の沈殿池でフロックを沈殿分離し、清澄水を溢流さ
せてトラフにより集水した。集水した凝集沈殿処理水の
濁度(度)、及び高分子量フミン質の含有量に関係する
溶解性有機炭素量DOC(mg/l)と波長が260n
mの紫外線吸光度E260(cm-1)とを測定した。測
定結果を表1に示す。
Example 1 Raw water was continuously supplied into a rapid stirring tank equipped with a pH meter.
The pH of the tank was maintained at 6.1 by adding a flow rate of the sodium hydroxide solution used as a pH adjuster while adjusting the flow rate of the solution according to a signal from the pH meter. Polyaluminum chloride was used as the coagulant, and was added so as to have a concentration of 10 ppm. Next, the raw water is guided to a jet-stirring type floc forming device to form flocs. Subsequently, the flocs are separated by sedimentation in a sedimentation basin of an upwardly flowing alternately inclined tube type, and the clear water is overflowed and collected by a trough. Watered. The turbidity (degree) of the collected coagulated sedimentation treated water, the amount of soluble organic carbon DOC (mg / l) related to the content of high molecular weight humic substances and the wavelength of 260 n
m of ultraviolet ray absorbance E260 (cm -1 ). Table 1 shows the measurement results.

【0023】上記の凝集沈殿処理水を分離膜を用いて連
続ろ過処理を行い、ろ過抵抗の上昇速度を測定して目詰
まり評価を行った。分離膜には、細孔径が0.01μm
のポリアクリロニトリル中空糸限外ろ過膜を使用し、有
効長が20cm程度の中空糸膜を20本束ね小型モジュ
ールにして用いた。加圧窒素を用いて約2000mlの
凝集沈殿処理水をろ過圧力50kPaで定圧ろ過し、透
過水量の変化を電子天秤で測定、ろ過抵抗上昇速度(l
/(m・s)を算出した。測定結果を表1に示す。
The coagulated sedimentation water was subjected to continuous filtration using a separation membrane, and the rate of increase in filtration resistance was measured to evaluate clogging. The separation membrane has a pore size of 0.01 μm
The polyacrylonitrile hollow fiber ultrafiltration membrane was used, and 20 hollow fiber membranes having an effective length of about 20 cm were bundled and used as a small module. Approximately 2,000 ml of coagulated sedimented water was filtered at a constant pressure of 50 kPa using pressurized nitrogen, and the change in the amount of permeated water was measured with an electronic balance.
/ (Ms) was calculated. Table 1 shows the measurement results.

【0024】実施例2 実施例1と同じ原水を用い同じ処理条件で、ただし、急
速撹拌槽内のpH値を6.4に保持して造水試験を実施
し、測定を行った。測定結果を表1に示す。
Example 2 A fresh water test was carried out using the same raw water as in Example 1 under the same treatment conditions, except that the pH value in the rapid stirring tank was maintained at 6.4. Table 1 shows the measurement results.

【0025】実施例3 実施例1と同じ原水を用い同じ処理条件で、ただし、急
速撹拌槽内のpH値を6.9に保持して造水試験を実施
し、測定を行った。測定結果を表1に示す。
Example 3 A fresh water test was carried out using the same raw water as in Example 1 under the same treatment conditions, except that the pH value in the rapid stirring tank was maintained at 6.9. Table 1 shows the measurement results.

【0026】比較例1 実施例1と同じ原水を用い同じ処理条件で、ただし、急
速撹拌槽内のpH値を5.5に保持して造水試験を実施
し、測定を行った。測定結果を表1に示す。
Comparative Example 1 A fresh water test was carried out using the same raw water as in Example 1 and under the same treatment conditions, except that the pH value in the rapid stirring tank was maintained at 5.5. Table 1 shows the measurement results.

【0027】比較例2 実施例1と同じ原水を用い同じ処理条件で、ただし、急
速撹拌槽内のpH値を7.1に保持して造水試験を実施
し、測定を行った。測定結果を表1に示す。
Comparative Example 2 A fresh water test was carried out using the same raw water as in Example 1 under the same treatment conditions, except that the pH value in the rapid stirring tank was maintained at 7.1. Table 1 shows the measurement results.

【0028】比較例3 実施例1と同じ原水を用い同じ処理条件で、ただし、急
速撹拌槽内のpH値を7.3に保持して造水試験を実施
し、測定を行った。測定結果を表1に示す。
Comparative Example 3 A fresh water test was carried out using the same raw water as in Example 1 under the same treatment conditions, except that the pH value in the rapid stirring tank was maintained at 7.3. Table 1 shows the measurement results.

【0029】比較例4 実施例1と同じ原水を用い同じ処理条件で、ただし、急
速撹拌槽内のpH値を7.8に保持して造水試験を実施
し、測定を行った。測定結果を表1に示す。
Comparative Example 4 A fresh water test was carried out using the same raw water as in Example 1 under the same treatment conditions, except that the pH value in the rapid stirring tank was maintained at 7.8. Table 1 shows the measurement results.

【0030】実施例4 実施例1で処理したのと同じ原水を急速撹拌槽内に連続
供給し撹拌して、凝集剤を添加、pHを6.5に調整し
た。凝集剤にはポリ塩化アルミニウムを用い、濃度が5
ppmになるように添加した。pHは、急速撹拌槽内に
取り付けたpHセンサーと、pHコントローラーとを用
い、pH調整剤として使用した水酸化ナトリウム溶液の
添加流量を制御して調整した。ついで急速撹拌槽からの
原水を噴流撹拌式のフロック形成装置に導いてフロック
を形成し、さらに上向流交互傾斜管式の沈殿池に導いて
フロックを沈殿分離し、清澄水を溢流させてトラフによ
り集水した。
Example 4 The same raw water as that treated in Example 1 was continuously supplied into a rapid stirring tank and stirred, a coagulant was added, and the pH was adjusted to 6.5. Polyaluminum chloride is used as a flocculant and the concentration is 5
ppm. The pH was adjusted by controlling the addition flow rate of a sodium hydroxide solution used as a pH adjuster, using a pH sensor and a pH controller mounted in a rapid stirring tank. Next, the raw water from the rapid stirring tank is led to a jet-stirring type floc forming device to form flocs, and further guided to an upwardly-flowing alternately inclined pipe type sedimentation basin to separate and separate the flocs and overflow clear water. Water was collected by trough.

【0031】そして、集水した凝集沈殿処理水を分離膜
を用いて連続ろ過処理を行い、ろ過抵抗の上昇速度を測
定して目詰まりについて評価した。分離膜として、細孔
径が0.01μm、膜面積12m2の高重合度ポリアク
リロニトリル中空糸限外ろ過膜モジュール1本を使用
し、膜ろ過流速1.04×10-5m/sの定流量ろ過運
転を約2200時間続け、この間、60分に1回の割合
で膜透過水による逆洗とエアスクラビングによる洗浄と
を実施した。この間のろ過差圧の変化を測定したので結
果を図2に示す。また、運転期間中における、膜透過水
のE260平均値が0.035cm-1、除去率が74%
であり、DOCの平均値が2.06mg/l、除去率が
45%であった。
Then, the collected coagulated sediment-treated water was subjected to continuous filtration using a separation membrane, and the rate of increase in filtration resistance was measured to evaluate clogging. As a separation membrane, one high-polymerization degree polyacrylonitrile hollow fiber ultrafiltration membrane module having a pore size of 0.01 μm and a membrane area of 12 m 2 was used, and a constant flow rate of a membrane filtration flow rate of 1.04 × 10 −5 m / s was used. The filtration operation was continued for about 2200 hours, during which time backwashing with membrane permeated water and washing by air scrubbing were performed once every 60 minutes. The change in the filtration pressure difference during this time was measured, and the results are shown in FIG. During the operation period, the average value of E260 of the membrane permeated water was 0.035 cm -1 and the removal rate was 74%.
And the average DOC was 2.06 mg / l and the removal rate was 45%.

【0032】比較例5 実施例1で処理したのと同じ原水を凝集沈殿処理を行わ
ないで、直接、細孔径が0.01μm、膜面積12m
の高重合度ポリアクリロニトリル中空糸限外ろ過膜モジ
ュール1本を使用し、膜ろ過流速1.04×10-5m/
sの定流量ろ過運転を約1000時間続けた。この間、
60分に1回の割合で膜透過水による逆洗とエアスクラ
ビングによる洗浄とを実施し、ろ過差圧の変化を測定し
たので結果を図2に示す。また、運転期間中における、
膜透過水のE260平均値が0.091cm-1、除去率
が35%であり、DOCの平均値が2.24mg/l、
除去率が14%であった。
Comparative Example 5 The same raw water as in Example 1 was directly subjected to a coagulation / sedimentation treatment without a coagulation / sedimentation treatment, with a pore diameter of 0.01 μm and a membrane area of 12 m.
Using one polyacrylonitrile hollow fiber ultrafiltration membrane module having a high degree of polymerization and a membrane filtration flow rate of 1.04 × 10 −5 m /
s was continued for about 1000 hours. During this time,
Backwashing with membrane permeated water and cleaning by air scrubbing were performed once every 60 minutes, and the change in filtration differential pressure was measured. The results are shown in FIG. Also, during the driving period,
E260 average value of membrane permeated water is 0.091 cm -1 , removal rate is 35%, DOC average value is 2.24 mg / l,
The removal rate was 14%.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】本発明の造水方法又は造水システムにお
いては、前段階の凝集沈降分離手段によって、河川水や
湖沼水中の濁度成分及び高分子量のフミン質の両汚染物
質が同時に、かつ高レベルで分離、除去されてしまい、
つづくろ過手段に使用する精密ろ過膜や限外ろ過膜等の
分離膜の過抵抗の急速な上昇を防止して分離膜の寿命を
長く、操業条件の設定を容易にして、良質の水を安定し
て供給することができる。
In the fresh water producing method or fresh water producing system of the present invention, the turbidity component and the high molecular weight humic contaminants in the river water or the lake water are simultaneously and simultaneously produced by the coagulation sedimentation separation means in the preceding stage, and Separated and removed at a high level,
Prevents rapid rise in overresistance of separation membranes such as microfiltration membranes and ultrafiltration membranes used for subsequent filtration means, prolongs the life of separation membranes, facilitates setting of operating conditions, and stabilizes high quality water. Can be supplied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明造水システムの一実施形態を示すフロ
ーシート
FIG. 1 is a flow sheet showing an embodiment of the fresh water generating system of the present invention.

【図2】 実施例4及び比較例5におけるろ過差圧の経
時変化を示す図
FIG. 2 is a diagram showing the change over time in the filtration pressure difference in Example 4 and Comparative Example 5.

【符号の説明】[Explanation of symbols]

1:混合撹拌装置(急速撹拌槽) 2:フロック形成
装置(噴流撹拌装置) 3:沈殿池 4:ろ過手段
5:原水供給配管 6:攪拌機 7:pH計
8:pH制御手段 9:pH調整剤槽 10:凝集剤槽 1
1:多孔板 12:上向流傾斜管 13:ポンプ 1
4:分離膜 15:浄水導出配管
1: mixing stirrer (rapid stirring tank) 2: floc forming device (jet stirrer) 3: sedimentation tank 4: filtration means
5: Raw water supply pipe 6: Stirrer 7: pH meter
8: pH control means 9: pH adjuster tank 10: Coagulant tank 1
1: Perforated plate 12: Upflow inclined pipe 13: Pump 1
4: Separation membrane 15: Water purification pipe

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 61/16 B01D 61/16 69/08 69/08 C02F 1/44 C02F 1/44 H (71)出願人 000003159 東レ株式会社 東京都中央区日本橋室町2丁目2番1号 (72)発明者 渡辺 義公 北海道札幌市豊平区西岡5条11丁目12番8 号 (72)発明者 小澤 源三 北海道札幌市北区北33条西12丁目3番23号 (72)発明者 平田 茂英 兵庫県神戸市中央区東川崎町1丁目1番3 号川崎重工業株式会社内 (72)発明者 峯岸 進一 滋賀県大津市園山1丁目1番1号東レ株式 会社滋賀事業場内 Fターム(参考) 4D006 GA06 GA07 HA01 HA95 KA02 KA03 KA43 KA64 KB13 KC03 KC13 KD08 KE05Q KE06P KE06Q KE12P KE13P KE15R KE24Q KE28Q KE30P MA01 MA22 MB11 MC03 MC18 MC22 MC23 MC29 MC39X MC61 MC62 PA01 PB04 PB05 PB08 PB70 4D015 BA04 BA23 BB05 CA14 DA04 DA12 EA14 EA32 FA02 FA17 4D062 BA04 BA23 BB05 CA14 DA04 DA12 EA14 EA32 FA02 FA17──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01D 61/16 B01D 61/16 69/08 69/08 C02F 1/44 C02F 1/44 H (71) Application Person 000003159 Toray Industries, Inc. 2-2-1 Nihombashi Muromachi, Chuo-ku, Tokyo (72) Inventor Yoshiko Watanabe 5-11-11-12-8 Nishioka, Toyohira-ku, Sapporo, Hokkaido (72) Inventor Genzo Ozawa, Kita, Sapporo, Hokkaido (72) Inventor Shigehide Hirata 1-1-3 Higashikawasaki-cho, Chuo-ku, Kobe-shi, Hyogo Prefecture Kawasaki Heavy Industries Co., Ltd. (72) Inventor Shinichi Minegishi Sonoyama, Otsu-shi, Shiga 1-1-1 1-1 Toray Industries, Inc. Shiga Plant F-term (reference) 4D006 GA06 GA07 HA01 HA95 KA02 KA03 KA43 KA64 KB13 KC03 KC13 KD08 KE05Q KE06P KE06Q KE12P KE13P KE15R KE24Q KE28Q KE30P MA01 MA01 B11 MC03 MC18 MC22 MC23 MC29 MC39X MC61 MC62 PA01 PB04 PB05 PB08 PB70 4D015 BA04 BA23 BB05 CA14 DA04 DA12 EA14 EA32 FA02 FA17 4D062 BA04 BA23 BB05 CA14 DA04 DA12 EA14 EA32 FA02 FA17

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】原水をpH6〜7の範囲で凝集沈殿した後
に、細孔径が1nm〜10μmの範囲の分離膜を用いて
ろ過して不純物を除去することを特徴とする造水方法。
1. A method for producing fresh water, comprising coagulating and sedimenting raw water at a pH in the range of 6 to 7, followed by filtration using a separation membrane having a pore size in the range of 1 nm to 10 μm to remove impurities.
【請求項2】アルミニウム系又は鉄系の凝集剤を用いて
凝集沈殿を行う、請求項1に記載の造水方法。
2. The fresh water producing method according to claim 1, wherein the coagulation precipitation is performed using an aluminum-based or iron-based coagulant.
【請求項3】原水をpH6〜7の範囲で凝集沈殿する凝
集沈殿手段(1,2,3)と、その凝集沈殿手段による
処理水を通過させて不純物を除去する、細孔径が1nm
〜10μmの範囲の分離膜(14)を有するろ過手段
(4)とを備えていることを特徴とする造水システム。
3. A coagulation and sedimentation means (1, 2, 3) for coagulating and sedimenting raw water in a pH range of 6 to 7, and an impurity which is removed by passing water treated by the coagulation and sedimentation means to remove impurities.
A filtration means (4) having a separation membrane (14) in the range of 10 to 10 μm.
【請求項4】凝集沈殿手段は、原水、凝集剤およびpH
調整剤を混合撹拌する混合装置(1)と、混合装置によ
り処理された原水に含まれる不純物をフロックに形成す
る噴流撹拌式のフロック形成装置(2)と、形成された
フロックを分離する上向流交互傾斜管式の沈殿池(3)
とを備えている、請求項3に記載の造水システム。
4. The coagulation / sedimentation means comprises raw water, a coagulant and a pH
A mixing device (1) for mixing and stirring the adjusting agent, a jet-stirring type floc forming device (2) for forming impurities contained in raw water treated by the mixing device into flocs, and an upward separator for separating the formed flocs Flow alternating inclined pipe type sedimentation basin (3)
The desalination system according to claim 3, comprising:
【請求項5】分離膜が、ポリアクリロニトリル、酢酸セ
ルロース又はポリスルフォンからなるものである、請求
項3または4に記載の造水システム。
5. The fresh water producing system according to claim 3, wherein the separation membrane is made of polyacrylonitrile, cellulose acetate or polysulfone.
【請求項6】分離膜が中空糸膜である、請求項3〜5の
いずれかに記載の造水システム。
6. The fresh water producing system according to claim 3, wherein the separation membrane is a hollow fiber membrane.
JP2000092064A 2000-03-29 2000-03-29 Fresh water system Expired - Lifetime JP4408524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000092064A JP4408524B2 (en) 2000-03-29 2000-03-29 Fresh water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000092064A JP4408524B2 (en) 2000-03-29 2000-03-29 Fresh water system

Publications (3)

Publication Number Publication Date
JP2001276844A true JP2001276844A (en) 2001-10-09
JP2001276844A5 JP2001276844A5 (en) 2007-04-26
JP4408524B2 JP4408524B2 (en) 2010-02-03

Family

ID=18607456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000092064A Expired - Lifetime JP4408524B2 (en) 2000-03-29 2000-03-29 Fresh water system

Country Status (1)

Country Link
JP (1) JP4408524B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136851A (en) * 2004-11-15 2006-06-01 Ngk Insulators Ltd Coagulation membrane filtration method
JP2008221168A (en) * 2007-03-14 2008-09-25 Fuji Electric Water Environmental Systems Co Ltd Membrane filtration method and membrane filtration apparatus
CN100500255C (en) * 2005-11-10 2009-06-17 财团法人工业技术研究院 Apparatus and method for removing particle from water
JP2009160513A (en) * 2008-01-04 2009-07-23 Metawater Co Ltd Method for charging flocculant in water purification
JP2009226285A (en) * 2008-03-21 2009-10-08 Metawater Co Ltd Flocculation-membrane filtration method
WO2013187038A1 (en) 2012-06-11 2013-12-19 川崎重工業株式会社 Wastewater treatment device, wastewater treatment system, exhaust gas recirculation unit, engine system, and ship
WO2013187378A1 (en) * 2012-06-15 2013-12-19 株式会社明電舎 Solid-liquid separation method
WO2014034845A1 (en) * 2012-08-30 2014-03-06 東レ株式会社 Water production method
JP2016013537A (en) * 2014-06-09 2016-01-28 三菱レイヨン株式会社 Method and apparatus for treating humin-containing waste water
JP2017039118A (en) * 2015-08-17 2017-02-23 三菱レイヨンアクア・ソリューションズ株式会社 Method and apparatus for treating humin-containing waste water
JP2017159199A (en) * 2016-03-07 2017-09-14 株式会社東芝 Solid-liquid separator and control device
CN111072188A (en) * 2020-02-28 2020-04-28 福州福龙膜科技开发有限公司 Integrated water purification and ultrafiltration membrane equipment and treatment method thereof
JP2020108874A (en) * 2019-01-07 2020-07-16 オルガノ株式会社 Membrane filtration apparatus and membrane filtration method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104587833B (en) * 2015-01-22 2017-05-10 浙江至美环境科技有限公司 Ultrafiltration membrane module and method for treating high-turbidity water by using same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136851A (en) * 2004-11-15 2006-06-01 Ngk Insulators Ltd Coagulation membrane filtration method
JP4517165B2 (en) * 2004-11-15 2010-08-04 メタウォーター株式会社 Aggregation membrane filtration method
CN100500255C (en) * 2005-11-10 2009-06-17 财团法人工业技术研究院 Apparatus and method for removing particle from water
JP2008221168A (en) * 2007-03-14 2008-09-25 Fuji Electric Water Environmental Systems Co Ltd Membrane filtration method and membrane filtration apparatus
JP2009160513A (en) * 2008-01-04 2009-07-23 Metawater Co Ltd Method for charging flocculant in water purification
JP2009226285A (en) * 2008-03-21 2009-10-08 Metawater Co Ltd Flocculation-membrane filtration method
KR20170026637A (en) 2012-06-11 2017-03-08 카와사키 주코교 카부시키 카이샤 Wastewater treatment device, wastewater treatment system, exhaust gas recirculation unit, engine system, and ship
WO2013187038A1 (en) 2012-06-11 2013-12-19 川崎重工業株式会社 Wastewater treatment device, wastewater treatment system, exhaust gas recirculation unit, engine system, and ship
KR101705555B1 (en) * 2012-06-15 2017-02-10 메이덴샤 코포레이션 Solid-liquid separation method
JP5660255B2 (en) * 2012-06-15 2015-01-28 株式会社明電舎 Solid-liquid separation method
KR20150023522A (en) * 2012-06-15 2015-03-05 메이덴샤 코포레이션 Solid-liquid separation method
AU2013275302B2 (en) * 2012-06-15 2015-10-15 Meidensha Corporation Solid-liquid separation method
WO2013187378A1 (en) * 2012-06-15 2013-12-19 株式会社明電舎 Solid-liquid separation method
WO2014034845A1 (en) * 2012-08-30 2014-03-06 東レ株式会社 Water production method
JP2016013537A (en) * 2014-06-09 2016-01-28 三菱レイヨン株式会社 Method and apparatus for treating humin-containing waste water
JP2017039118A (en) * 2015-08-17 2017-02-23 三菱レイヨンアクア・ソリューションズ株式会社 Method and apparatus for treating humin-containing waste water
JP2017159199A (en) * 2016-03-07 2017-09-14 株式会社東芝 Solid-liquid separator and control device
JP2020108874A (en) * 2019-01-07 2020-07-16 オルガノ株式会社 Membrane filtration apparatus and membrane filtration method
JP7270383B2 (en) 2019-01-07 2023-05-10 オルガノ株式会社 MEMBRANE FILTRATION DEVICE AND MEMBRANE FILTRATION METHOD
CN111072188A (en) * 2020-02-28 2020-04-28 福州福龙膜科技开发有限公司 Integrated water purification and ultrafiltration membrane equipment and treatment method thereof

Also Published As

Publication number Publication date
JP4408524B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
RU2421407C2 (en) Method and device for water treatment
Ghernaout et al. Water reuse: Extenuating membrane fouling in membrane processes
JP4874231B2 (en) Water treatment system
US20090107915A1 (en) Treatment process and system for wastewater, process waters, and produced waters applications
JP2009507626A (en) Water purification apparatus and method of implementation
JP4408524B2 (en) Fresh water system
US20220234930A1 (en) Method for Purifying Contaminated Water
Ben Aim et al. Recent development of membrane processes for water and waste water treatment
JP5106723B2 (en) Organic wastewater treatment apparatus and treatment method
JP2001191086A (en) Water treating apparatus
KR20130132020A (en) High-recovery nf/ro water purification system with inter-stage demineralization process
JP5103747B2 (en) Water treatment apparatus and water treatment method
JP2003080246A (en) Apparatus and method for treating water
JPH10323674A (en) Organic matter-containing water treatment apparatus
JPS649071B2 (en)
JP2002346347A (en) Method and apparatus for filtration
Qrenawi et al. Membrane Bioreactor (MBR) as a Reliable Technology for Wastewater Treatment
KR20030020052A (en) Water treatment method for using membrane separation device
JP3697938B2 (en) Wastewater treatment equipment
JPH1119696A (en) Treatment of sludge waste water and water purifier
JP2016093789A (en) Water treatment method and water treatment system
JP3697529B2 (en) Membrane-based wastewater treatment method and water purification apparatus
JPH10202010A (en) Water treatment device
Xu et al. Evaluation of dynamic membrane formation and filtration models at constant pressure in a combined coagulation/dynamic membrane process in treating polluted river water
JP3874635B2 (en) Sewage treatment method and treatment apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070309

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091110

R150 Certificate of patent or registration of utility model

Ref document number: 4408524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term