JP2006351086A - 光路補正装置とこれを用いた光ピックアップ - Google Patents

光路補正装置とこれを用いた光ピックアップ Download PDF

Info

Publication number
JP2006351086A
JP2006351086A JP2005174373A JP2005174373A JP2006351086A JP 2006351086 A JP2006351086 A JP 2006351086A JP 2005174373 A JP2005174373 A JP 2005174373A JP 2005174373 A JP2005174373 A JP 2005174373A JP 2006351086 A JP2006351086 A JP 2006351086A
Authority
JP
Japan
Prior art keywords
wavelength
linearly polarized
polarized light
optical path
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005174373A
Other languages
English (en)
Inventor
Hiroshi Matsumoto
浩 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2005174373A priority Critical patent/JP2006351086A/ja
Priority to US11/438,075 priority patent/US20060278819A1/en
Priority to CNA2006100915595A priority patent/CN1881007A/zh
Priority to EP06012154A priority patent/EP1736974A3/en
Priority to KR1020060053389A priority patent/KR20060130512A/ko
Priority to TW095121119A priority patent/TW200705429A/zh
Publication of JP2006351086A publication Critical patent/JP2006351086A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • G11B7/1275Two or more lasers having different wavelengths
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1369Active plates, e.g. liquid crystal panels or electrostrictive elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Head (AREA)
  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

【課題】CD、DVD、更にはBDに対応した3波長レーザの光路を補正する光路補正装置を提供すると共に、3波対応の光ピックアップを提供することを目的とする。
【解決手段】光路補正装置14は、第一の波長板15と第一の複屈折板16と第二の波長板17と第二の複屈折板18と第三の波長板19を備えており、3波長レーザ20の前方に配置する。本発明における3波長対応の光路補正装置14は、複屈折板を2枚使用し、3波長レーザが出射する波長λと波長λのレーザ光を第一の服屈折板15を用いて同一光路を伝搬させ、次に、第二の複屈折板18を用いて前記波長λ、及び波長λのレーザ光と、3波長レーザが出射する波長λのレーザ光とを同一の光路を伝搬するよう作用させたものである。
【選択図】 図1

Description

本発明は光路補正装置とこれを用いた光ピックアップに関し、特に3波長レーザが出射する三つの異なる波長の直線偏光の光路を補正する光路補正装置とこれを用いた光ピックアップに関するものである。
光ディスク装置や光磁気ディスク装置に用いられる光ピックアップは、CDやDVDといった種類の異なる光ディスクに対応するため、波長の異なる二つのレーザ光を使用する構造となっている。そのため、モノリシック型集積型の2波長レーザが実用化されており、この2波長レーザは、一つの半導体基板上に二つの異なる波長(例えば、650nm、785nm)のレーザ光源を形成したものである。この二つのレーザ光源は所定の距離(数十〜百数十μm)だけ離れて配置され、二つの異なる波長の平行光を出射しているため、2波長レーザを光ピックアップに用いるためには、二つのレーザ光を同一光路に伝搬させるために光路補正機能が必要となる。
図10は、従来の光路補正装置の例を示す構成図である。光路補正装置1は、波長板2と複屈折板3と波長板4とを備えており、2波長レーザ5の前方に配置する。
2波長レーザ5から出射される波長650nmのレーザ光S101、或いは波長785nmのレーザ光S102は互いに同じ偏光方向を有する直線偏光であり、光路間隔dにて平行に伝搬する。
波長板2は、複屈折性を有する結晶もしくは高分子フィルムであり、2波長レーザ5から出射された一方のレーザ光S102の偏光方向を90°回転させ、他方のレーザ光S101の偏光方向は回転しないままに出射させることにより、レーザ光S102をレーザ光P102に変換し、レーザ光S101とレーザ光P102が互いに直交した直線偏光となるよう構成する。
そこで波長板2は、波長λのレーザ光S102に対して1/2波長板として機能するよう構成され、即ち、波長板2に入射するレーザ光S101に対しては2π・m101の位相差を発生するように、レーザ光S102に対してはπ・(2n101−1)の位相差を発生するような板厚に設定する(m101、n101は整数)。
次に、複屈折板3は、複屈折性を有するリチウムナイオベート若しくはルチル等の結晶もしくは液晶からなり、その主断面は一方のレーザ光S101の直線偏光に対して平行であり、他方のレーザ光P102の直線偏光に対して直交するよう構成されている。
そこで、前記波長板2より入射したレーザ光P102は光学軸Aに対して常光線となりそのまま直進して複屈折板3を透過し、レーザ光P102と偏光方向が直交するレーザ光S101の直線偏光は光学軸Aに対して異常光線となり屈折して透過することになる。この屈折したレーザ光S101が複屈折板3を透過する際にレーザ光P102と同じ光路上を伝搬するよう複屈折板3の板厚tを設定している。
次に、波長板4は、複屈折性を有する結晶もしくは高分子フィルムであり、複屈折板3を透過する互いに偏光方向が直交した直線偏光であるレーザ光S101とレーザ光P102に対して一方のレーザ光P102の偏光方向を90°回転させ、他方のレーザ光S101の偏光方向は回転しないままに出射させることにより、レーザ光P102をレーザ光S102に変換し、レーザ光S101とレーザ光S102とを偏光方向が同一な直線偏光とするよう構成する。
そこで波長板4は、波長λのレーザ光P102に対して1/2波長板として機能するよう構成され、即ち、波長板4を、複屈折板3を透過するレーザ光S101に対しては2π・m201の位相差を発生するように、レーザ光P102に対してはπ・(2n201−1)の位相差を発生するような板厚に設定する(m201、n201は整数)。
従って、この光路補正装置を使用することにより、2波長レーザ5が出射する波長650nmのレーザ光S101と波長785nmのレーザ光S102が同一光路を伝搬するように光路補正することが出来る。
次に、従来の光路補正装置を光ピックアップに用いた実施例を説明する。
図11は、従来の光路補正装置1を光ピックアップに適応した場合の模式図の例を示すものである。光ピックアップ6は、偏光方向が互いに平行である二つの異なる波長の直線偏光を出射する2波長レーザ5と、該2波長レーザ5が出射するレーザ光S101、レーザ光S102が同一の光路上を伝搬するよう光路補正をする光路補正装置1と、該光路補正装置1が出射するレーザ光を所定の比率で分離するハーフミラー7と、該ハーフミラー7の分離面で90°反射するレーザ光を入射し円偏光に変換すると共に後述する対物レンズが出射する光ディスク8からの反射光である円偏光されたレーザ光を直線偏光に変換する波長板9と、該波長板9を出射する円偏光されたレーザ光を光ディスク8に形成されたピット10に集光させると共に、該ピット10上で反射されたレーザ光を入射する対物レンズ11と、前記波長板9を出射する直線偏光されたレーザ光を前記ハーフミラー7を経由して検出する光検出器12と、前記ハーフミラー7の分離面を透過する2波長レーザ5の出射レベルをモニターするモニター光検出器13とにより構成する。
図11の動作を説明すると、2波長レーザ5から出射される、例えば波長650nmのレーザ光S101、或いは波長785nmのレーザ光S102は互いに同じ偏光方向を有する直線偏光であり、所定の光路間隔にて平行に伝搬し、光路補正装置1へ入射する。光路補正装置1においては、前述したように、複数の波長板、及び複屈折板を用いて、2波長レーザ5が出射するレーザ光S101、レーザ光S102が同一の光路上を伝搬するよう光路補正をする。又、光路補正装置1を出射したレーザ光は、レーザ光S101、及びレーザ光S102共に偏光方向が同一な直線偏光であり、二つのレーザ光をまとめてレーザ光Lとする。
次に、光路補正装置1を出射したレーザ光Lはハーフミラー7に入射され、例えば、レーザ光Lのうちの約90%は分離面で90°反射されるレーザ光Lとして、前記レーザ光Lの約10%は分離面を透過するレーザ光Lとして夫々分離される。
次に、ハーフミラー7により反射したレーザ光Lは、波長板9に入射する。波長板9は、1/4波長板として機能し、直線偏光の常光成分と異常光成分との位相差が90°となるよう作用させ、波長板9の出射光は、互いに位相が90°ずれた常光成分と異常光成分とが合成されて2波長共に円偏光のレーザ光Lとなる。
波長板9を出射して円偏光されたレーザ光Lは、集光レンズ11により集光され、レーザ光Lとなり光ディスク8に形成されているピット10に照射される。そこで、円偏光のレーザ光Lは、ピット10の表面において鏡面対称の関係に基づいて逆回転の円偏光となって反射される。反射された円偏光のレーザ光Lは、前記集光レンズ11を介してレーザ光Lとなって波長板9に入射され、直線偏光のレーザ光Lに変換され出射する。該出射した直線偏光のレーザ光Lは、前記ハーフミラー7を反射して波長板9に入射された直線偏光のレーザ光Lと直交する偏光方向の直線偏光となり、光ディスク8に照射するレーザ光と、光ディスク8により反射するレーザ光とが互いに干渉することを防ぎ、光学特性の劣化をきたすことを防止する。
次に、レーザ光Lはハーフミラー7に入射され、該ハーフミラー7をそのまま透過して光検出器12に入射し、光ディスクに書き込まれた情報を読み出す。
一方、ハーフミラー7を透過した所定量の前記レーザ光Lは、モニター光検出器13に入射して2波長レーザ5が出射するレーザ光の出射レベルをモニターする。光ピックアップにおいては、レーザ素子が出射するレーザ光の出射レベルを一定に保つことが必要であり、レーザ光の一部をモニター用の光検出器において受光してAPC回路(図示していない)でレーザ素子の駆動回路を制御し、レーザ光の出射レベルを一定に保っている。図11に示した光ピックアップにおいては、レーザ光の出射レベルをモニターする手段として精度の高いフロントモニター方式を採用している。
特願2004−112507号
近年、従来のCD、DVD等の光ディスクに加えて、更に大容量化されたBlu−rayディスクやHD DVD等のブルーレーザディスク(以降、BDと称す)と呼ばれる光ディスクが実用化されつつあり、光ピックアップにおいても、CD、DVD等の光ディスクの他、BDにも対応することが要求されている。BDは、波長が400nm近辺のレーザ光を使用しており、従来から使用されている660nm、或いは785nmのレーザ光を使用した光ピックアップと互換性を持たせるためには、光ピックアップを構成する光学部品は前記三つの波長のレーザ光に対応することが必要である。
一方、近年、前記三つの波長に対応したレーザダイオードとして、一つのパッケージから波長660nmのレーザ光、波長785nmのレーザ光、及び波長405nmのレーザ光を出射する3波長レーザが開発されており、内蔵する三つのレーザ光源は所定の距離だけ離れて配置され、三つの異なる波長の平行光を出射している。そこで、3波長レーザを光ピックアップに用いるためには、三つのレーザ光を同一光路に伝搬させるために光路補正機能が必要となる。
しかしながら、従来の光ピックアップに用いられている光路補正装置は、2波長対応であり、光ピックアップを3波長対応とするため3波長レーザを使用する際には、3波長に対応した光路補正装置が必要となるため、3波長対応の光路補正装置の開発が望まれていた。
本発明は、上述したような問題を解決するためになされたものであって、CD、DVD、更にはBDに対応した3波長レーザの光路を補正する光路補正装置を提供すると共に、3波対応の光ピックアップを提供することを目的とする。
上記目的を達成するために本発明に係わる光路補正装置とこれを用いた光ピックアップは、以下の構成をとる。
請求項1に記載の光路補正装置は、偏光方向が同一であり光路が平行である三つの異なる波長λ、波長λ、及び波長λの直線偏光を入射する第一の波長板と、該第一の波長板を出射した前記三つの異なる波長の直線偏光を入射する第一の複屈折板と、該第一の複屈折板を透過した前記三つの異なる波長の直線偏光を入射する第二の波長板と、該第二の波長板を出射した前記三つの異なる波長の直線偏光を入射する第二の複屈折板と、該第二の複屈折板を透過した前記三つの異なる波長の直線偏光を入射する第三の波長板とを備えた光路補正装置であって、前記第一の波長板は、波長λの直線偏光に対しては2π・mの位相差を、波長λの直線偏光に対してはπ・(2n−1)の位相差を、波長λの直線偏光に対しては2π・qの位相差を発生するものであり(m、n、qは整数)、 前記第一の複屈折板は、その光学軸に対して前記第一の波長板を出射した波長λの直線偏光が常光線となり、一方、波長λ、及び波長λの直線偏光が異常光線となるよう配置し、光路を補正する距離をd、複屈折板の常光線に対する屈折率をn0、複屈折板の異常光線に対する屈折率をne、複屈折板の主面法線と光学軸とのなす角度をθ、複屈折板の板厚をtとした時、
=d・|(n0・tanθ+ne)/((n0−ne)・tanθ)|
の関係式を満足しているものであり、前記第二の波長板は、波長λの直線偏光に対してはπ・(2m−1)の位相差を、波長λの直線偏光に対しては2π・nの位相差を、波長λの直線偏光に対しては2π・qの位相差を発生するものであり(m、n、qは整数)、前記第二の複屈折板は、その光学軸に対して前記第一の波長板を出射した波長λ、及び波長λの直線偏光が異常光線となり、一方、波長λの直線偏光が常光線となるよう配置し、光路を補正する距離をd、複屈折板の常光線に対する屈折率をn0、複屈折板の異常光線に対する屈折率をne、複屈折板の主面法線と光学軸とのなす角度をθ、複屈折板の板厚をtとした時、
=d・|(n0・tanθ+ne)/((n0−ne)・tanθ)|
の関係式を満足しているものであり、前記第三の波長板は、波長λの直線偏光に対してはπ・(2m−1)の位相差を、波長λの直線偏光に対してはπ・(2n−1)の位相差を、波長λの直線偏光に対しては2π・qの位相差を発生するもの(m、n、qは整数)であるよう構成する。
請求項2に記載の光路補正装置は、前記光路補正装置のレーザ光の出射側に、入射した異なる波長の直線偏光を0次光と±1次光の3ビームに回折するグレーティングを付加するよう構成する。
請求項3に記載の光路補正装置は、前記第一の波長板と前記第一の複屈折板と前記第二の波長板と前記第二の複屈折板と前記第三の波長板とを貼り合わせて一体化した構造を有するよう構成する。
請求項4に記載の光路補正装置は、前記第一の波長板と前記第一の複屈折板と前記第二の波長板と前記第二の複屈折板と前記第三の波長板と前記グレーティングとを貼り合わせて一体化した構造を有するよう構成する。
請求項5に記載の光路補正装置は、前記第一の波長板、第二の波長板、及び第三の波長板が、複屈折性を有する結晶であるよう構成する。
請求項6に記載の光路補正装置は、前記第一の複屈折板、及び第二の複屈折板が、リチウムナイオベート若しくはルチルであるよう構成する。
請求項7に記載の光路補正装置は、前記波長λの直線偏光が、660nmの波長のレーザ光であり、前記波長λの直線偏光が、785nmの波長のレーザ光であり、前記波長λの直線偏光が、405nmの波長のレーザ光であるよう構成する。
請求項8に記載の光ピックアップは、偏光方向が同一であり光路が平行である三つの異なる波長の直線偏光を出射する光源と、該光源から三つの直線偏光を入射する請求項1乃至7に記載の光路補正装置と、該光路補正装置を出射した光線を入射する第四の波長板と、該第四の波長板を出射した光線を光記憶媒体に集光する対物レンズとを備えるよう構成する。
請求項9に記載の光路補正装置は、偏光方向が同一であり光路が平行である三つの異なる波長λ、波長λ、及び波長λの直線偏光を入射する第一の波長板と、該第一の波長板を出射した前記三つの異なる波長の直線偏光を入射する第一の複屈折板と、該第一の複屈折板を透過した前記三つの異なる波長の直線偏光を入射する第二の波長板と、該第二の波長板を出射した前記三つの異なる波長の直線偏光を入射する第二の複屈折板と、該第二の複屈折板を透過した前記三つの異なる波長の直線偏光を入射する第五の波長板とを備えた光路補正装置であって、前記第一の波長板は、波長λの直線偏光に対しては2π・mの位相差を、波長λの直線偏光に対してはπ・(2n−1)の位相差を、波長λの直線偏光に対しては2π・qの位相差を発生するものであり(m、n、qは整数)、前記第一の複屈折板は、その光学軸に対して前記第一の波長板を出射した波長λの直線偏光が常光線となり、一方、波長λ、及び波長λの直線偏光が異常光線となるよう配置し、光路を補正する距離をd、複屈折板の常光線に対する屈折率をn0、複屈折板の異常光線に対する屈折率をne、複屈折板の主面法線と光学軸とのなす角度をθ、複屈折板の板厚をtとした時、
=d・|(n0・tanθ+ne)/((n0−ne)・tanθ)|
の関係式を満足しているものであり、前記第二の波長板は、波長λの直線偏光に対してはπ・(2m−1)の位相差を、波長λの直線偏光に対しては2π・nの位相差を、波長λの直線偏光に対しては2π・qの位相差を発生するものであり(m、n、qは整数)、前記第二の複屈折板は、その光学軸に対して前記第一の波長板を出射した波長λ、及び波長λの直線偏光が異常光線となり、一方、波長λの直線偏光が常光線となるよう配置し、光路を補正する距離をd、複屈折板の常光線に対する屈折率をn0、複屈折板の異常光線に対する屈折率をne、複屈折板の主面法線と光学軸とのなす角度をθ、複屈折板の板厚をtとした時、
=d・|(n0・tanθ+ne)/((n0−ne)・tanθ)|
の関係式を満足しているものであり、前記第五の波長板は、波長λ、波長λ、及び波長λの直線偏光に対してπ/2・(2r−1)の位相差を発生するもの(rは整数)であるよう構成する。
請求項10に記載の光路補正装置は、前記光路補正装置のレーザ光の出射側に、入射した異なる波長の直線偏光を0次光と±1次光の3ビームに回折するグレーティングを付加するよう構成する。
請求項11に記載の光路補正装置は、前記第一の波長板と前記第一の複屈折板と前記第二の波長板と前記第二の複屈折板と前記第五の波長板とを貼り合わせて一体化した構造を有するよう構成する。
請求項12に記載の光路補正装置は、前記第一の波長板と前記第一の複屈折板と前記第二の波長板と前記第二の複屈折板と前記第五の波長板と前記グレーティングとを貼り合わせて一体化した構造を有するよう構成する。
請求項13に記載の光路補正装置は、前記第一の波長板、第二の波長板、及び第五の波長板が、複屈折性を有する結晶であるよう構成する。
請求項14に記載の光路補正装置は、前記第一の複屈折板、及び第二の複屈折板が、リチウムナイオベート若しくはルチルであるよう構成する。
請求項15に記載の光路補正装置は、前記波長λの直線偏光が、660nmの波長のレーザ光であり、前記波長λの直線偏光が、785nmの波長のレーザ光であり、前記波長λの直線偏光が、405nmの波長のレーザ光であるよう構成する。
請求項16に記載の光ピックアップは、偏光方向が同一であり光路が平行である三つの異なる波長の直線偏光を出射する光源と、該光源から三つの直線偏光を入射する請求項9乃至15に記載の光路補正装置と、該光路補正装置を出射した光線を光記憶媒体に集光する対物レンズとを備えるよう構成する。
請求項1、5、6、7及び8に記載の発明は、3波長レーザが出射する偏光方向が同一な三つの異なる波長の直線偏光の光路を補正して、同一な光路を伝搬するよう機能する光路補正装置を実現したので、従来のCD、DVD等の光ディスクに加えて更に大容量化されたBDと呼ばれる光ディスクにも対応した光ピックアップを容易に構成することが出来ることから、光ピックアップを3波長対応とする上で大きな効果を発揮する。
請求項2、及び10に記載の発明は、光路補正装置の出射側に、グレーティングを付加したので、光路補正装置が出射するレーザ光を3ビーム化することが出来ることから、光ディスクを再生するためレーザ光を光ディスクに照射する際に、光ディスクに形成したピットに照射するデータ読み書き用の光と、ピットの両脇の溝に照射するトラッキング用の光とが必要である場合に対応することが可能となり、光ピックアップを構成する上で大きな効果を発揮する。
請求項3、4、11、及び12に記載の発明は、光路補正装置を構成する光学要素を張り合わせて積層一体化したことにより、光路補正装置を小型化すると共にコストを低減することが出来ることから、光ピックアップを構成する上で大きな効果を発揮する。
請求項9、13、14、15及び16に記載の発明は、光路補正装置が出射するレーザ光を円偏光としたので、請求項1に記載した発明の効果の他、光ピックアップを構成する際に使用していた1/4波長板を削除することが出来ることから、光ピックアップの小型化、或いはコストを低減する上で大きな効果を発揮する。
以下、図示した実施例に基づいて本発明を詳細に説明する。
本発明における3波長レーザに対応した光路補正装置は、複屈折板を2枚使用し、3波長レーザが出射する波長λと波長λのレーザ光を第一の服屈折板を用いて同一光路を伝搬させ、次に、第二の複屈折板を用いて前記波長λ、及び波長λのレーザ光と、3波長レーザが出射する波長λのレーザ光とを同一の光路を伝搬するよう作用させたものである。
図1は、本発明に係わる光路補正装置の第一の実施例を示す構成図であり、斜視図を示す。光路補正装置14は、第一の波長板15と第一の複屈折板16と第二の波長板17と第二の複屈折板18と第三の波長板19とを備えており、3波長レーザ20の前方に配置する。本第一の実施例においては、3波長レーザ20として、図1に示すごとく、三つの光源がA、A、A、Aのポイントからなる四辺形のA、A、Aに、例えば、Aのポイントに波長λ=660nmのレーザ光を出射する赤色レーザを配置し、Aのポイントに波長λ=785nmのレーザ光を出射する赤外レーザを配置し、Aのポイントには波長λ=405nmのレーザ光を出射する青紫レーザを配置し、四辺形のAとA間の距離と、AとA間の距離は同一であるものとする。
3波長レーザ20から出射される波長650nmのレーザ光S、波長785nmのレーザ光S、及び波長405nmのレーザ光Sは互いに同じ偏光方向を有する直線偏光であり、レーザ光Sとレーザ光Sは光路間隔d1−1にて、レーザ光Sは前記3波長レーザ20の説明で示したAポイントから導かれる光路との間隔d1−2にて夫々平行に伝搬する。
第一の波長板15は、複屈折性を有する結晶もしくは高分子フィルムであり、3波長レーザ20から出射されたレーザ光Sの偏光方向を90°回転させ、一方、レーザ光S及びレーザ光Sの偏光方向は回転しないままに出射させることにより、レーザ光Sの偏光方向を、レーザ光S及びレーザ光Sと直交した直線偏光となるよう構成する。
そこで第一の波長板15は、波長λのレーザ光Sに対して1/2波長板として機能してレーザ光Pを出射するよう構成され、即ち、第一の波長板15に入射するレーザ光Sに対しては2π・mの位相差を発生するように、レーザ光Sに対してはπ・(2n−1)の位相差を発生するように、レーザ光Sに対しては2π・qの位相差を発生するような板厚に設定する(m、n、qは整数)。
次に、第一の複屈折板16は、複屈折性を有するリチウムナイオベート若しくはルチル等の結晶もしくは液晶からなり、その主断面はレーザ光S及びSの直線偏光に対して平行であり、一方、レーザ光Pの直線偏光に対しては直交するよう構成されている。
そこで、前記第一の波長板15より入射したレーザ光Pは光学軸Aに対して常光線となりそのまま直進して第一の複屈折板16を透過し、レーザ光Pと偏光方向が直交するレーザ光Sの直線偏光は光学軸Aに対して異常光線となり屈折して透過することになる。この屈折したレーザ光Sが、第一の複屈折板16を透過する際に、光路間隔d1−1を有して伝搬するレーザ光Pの光路上を伝搬するよう第一の複屈折板16の板厚t1−1を設定している。
一方、レーザ光Sの直線偏光は、光学軸Aに対して異常光線となり屈折して透過する。そこで、この屈折したレーザ光Sが第一の複屈折板16を透過する際に、レーザ光Sが、レーザ光Sの光路と光路間隔d1−2を有する前述した3波長レーザ20のポイントAの位置より導出した光路上を伝搬するよう第一の複屈折板16の板厚t1−2を設定している。本実施例においては、前述したようにd1−1=d1−2であるので、第一の複屈折板16において、光路間隔をd=d1−1=d1−2とし、板厚をt=t1−1=t1−2とすると次式(1)の関係が成立する。
=d・|(n0・tanθ+ne)/((n0−ne)・tanθ)|・・・(1)
尚、n0は常光線に対する屈折率、neは異常光線に対する屈折率、θは複屈折板の主面法線と光学軸とのなす角度であり、通常45°に設定されるのが望ましい。
次に、第一の複屈折板16を透過したレーザ光S、レーザ光P、及びレーザ光Sは、第二の波長板17に入射する。第二の波長板17は、第一の波長板15と同様に、複屈折性を有する結晶もしくは高分子フィルムであり、第一の複屈折板16を透過したレーザ光Sの偏光方向を90°回転させ、一方、レーザ光Pの偏光方向は回転しないままに出射させることにより、レーザ光Sがレーザ光Pと同じ方向に偏光された直線偏光のレーザ光Pとなるように機能し、一方、レーザ光Sは、偏光方向を回転させないまま出射する。
そこで第二の波長板17は、波長λのレーザ光Sに対して1/2波長板として機能するよう構成され、即ち、第二の波長板17に入射するレーザ光Sに対してはπ・(2m−1)の位相差を発生するように、レーザ光Sに対しては2π・nの位相差を発生するように、レーザ光Sに対しては2π・qの位相差を発生するような板厚に設定する(m、n、qは整数)。
次に、第二の波長板17を出射したレーザ光P、レーザ光P、及びレーザ光Sは、第二の複屈折板18に入射する。第二の複屈折板18は、第一の複屈折板16と同様に、複屈折性を有するリチウムナイオベート若しくはルチル等の結晶もしくは液晶からなり、その主断面はレーザ光P及びレーザ光Pの直線偏光に対して平行であり、一方、レーザ光Sの直線偏光に対しては直交するよう構成されている。
そこで、前記第二の波長板17より入射したレーザ光Sは光学軸Aに対して常光線となりそのまま直進して第二の複屈折板18を透過し、レーザ光Sと偏光方向が直交するレーザ光P及びレーザ光Pの直線偏光は光学軸Aに対して異常光線となり屈折して透過することになる。この屈折したレーザ光P及びレーザ光Pが第二の複屈折板18を透過する際にレーザ光Sと同じ光路上を伝搬するよう第二の複屈折板18の板厚tを設定している。
そこで、前記板厚tと、レーザ光P及びレーザ光Pと、レーザ光Sの直線偏光の光路間隔dとの間には次式(2)の関係が成立する。
=d・|(n0・tanθ+ne)/((n0−ne)・tanθ)|・・・(2)
尚、n0は常光線に対する屈折率、neは異常光線に対する屈折率、θは複屈折板の主面法線と光学軸とのなす角度であり、通常45°に設定されるのが望ましい。
次に、第二の複屈折板18を透過したレーザ光P、レーザ光P、及びレーザ光Sは、第三の波長板19に入射する。第三の波長板19は、第一の波長板15、第二の波長板17と同様に、複屈折性を有する結晶もしくは高分子フィルムであり、第二の複屈折板18を透過したレーザ光P、及びレーザ光Pの偏光方向を90°回転させ、一方、レーザ光Sの偏光方向は回転しないままに出射させることにより、レーザ光Pとレーザ光Pをレーザ光Sと同一な偏向方向のレーザ光S及びレーザ光Sに変換し、三つのレーザ光がすべて同一方向に偏光された直線偏光となるように機能する。
そこで第三の波長板19は、波長λのレーザ光P、及び波長λのレーザ光P2に対して1/2波長板として機能するよう構成され、即ち、第二の複屈折板18を透過するレーザ光Sに対してはπ・(2m−1)の位相差を発生するように、レーザ光Sに対してはπ・(2n−1)の位相差を発生するように、レーザ光S3に対しては2π・qの位相差を発生するような板厚に設定する(m、n、qは整数)。
以上説明したように本第一の実施例における光路補正装置は、三つの波長のレーザ光を同一光路上に伝搬させると共に、出射する三つのレーザ光を偏光方向が同一な直線偏光とする。
尚、図1に示した光路補正装置の動作を説明する図においては、光路補正装置14を構成する光学部品を所定の間隔を開けて配置しているが、光路補正装置14を構成する光学部品を貼り合わせて積層一体化して小型化することも出来る。
又、前述した3波長レーザのAのポイントの位置に、新たな波長の光源を形成して4波長レーザを実現すると、本発明による光路補正装置14を用いて、4波長レーザが平行に出射する四つの異なる波長のレーザ光を同一の光路に伝搬させることが可能である。
次に、本発明に係わる光路補正装置を光ピックアップに用いた実施例を説明する。
図2は、本発明に係わる光路補正装置14を光ピックアップに適応した場合の模式図の例を示すものである。光ピックアップ21は、偏光方向が同一であり互いに平行に伝搬する三つの異なる波長の直線偏光を出射する3波長レーザ20と、該3波長レーザ20が出射するレーザ光S、レーザ光S、及びレーザ光Sが同一の光路上を伝搬するよう光路補正をする光路補正装置14と、該光路補正装置14が出射するレーザ光を所定の比率で分離するハーフミラー7と、該ハーフミラー7の分離面で90°反射するレーザ光を入射し円偏光に変換すると共に後述する対物レンズが出射する光ディスク8からの反射光である円偏光を直線偏光に変換する第四の波長板22と、該第四の波長板22を出射する円偏光を光ディスク8に形成されたピット10に集光させると共に、該ピット10上で反射されたレーザ光を入射する対物レンズ11と、前記第四の波長板22を出射する直線偏光を前記ハーフミラー7を経由して検出する光検出器12と、前記ハーフミラー7の分離面を透過する3波長レーザ20の出射レベルをモニターするモニター光検出器13とにより構成する。
図2の動作を説明すると、3波長レーザ20から出射される、例えば波長650nmのレーザ光S、波長780nmのレーザ光S、及び波長405nmのレーザ光Sは互いに同じ偏光方向を有する直線偏光であり、レーザ光S、レーザ光S、及びレーザ光Sは、所定の光路間隔にて平行に伝搬し、光路補正装置14へ入射する。光路補正装置14においては、前述したように、複数の波長板、複屈折板を用いて、3波長レーザ20が出射するレーザ光S、レーザ光S、及びレーザ光Sが同一の光路上を伝搬するよう光路補正をする。又、光路補正装置14を出射したレーザ光は、レーザ光S、レーザ光S、及びレーザ光S共に偏光方向が同一な直線偏光であり、三つのレーザ光をまとめてレーザ光Lとする。
次に、光路補正装置14を出射したレーザ光Lはハーフミラー7に入射され、例えば、レーザ光Lのうちの約90%は分離面で90°反射されるレーザ光L10として、前記レーザ光Lの約10%は分離面を透過するレーザ光L11として夫々分離される。この時、ハーフミラー7に入射されるレーザ光は3波長の偏光方向が同一な直線偏光であるので、ハーフミラー7に形成した光学薄膜からなる分離面は、偏光方向が同一な直線偏光に対して波長依存性を持たないので、三つの波長のレーザ光の透過率は変化しない。
次に、ハーフミラー7により反射したレーザ光L10は、第四の波長板22に入射する。第四の波長板22は、1/4波長板として機能し位相が90°ずれるので3波長共に円偏光のレーザ光L12となる。
第四の波長板22を出射して円偏光となったレーザ光L12は、集光レンズ11により集光されてレーザ光L13となり、光ディスク8に形成されているピット10に照射する。
そこで、円偏光のレーザ光L13は、ピット10の表面において鏡面対称の関係に基づいて逆回転した円偏光のレーザ光L14となって反射される。反射された円偏光のレーザ光L14は、前記集光レンズ11を介してレーザ光L15となって第四の波長板22に入射し、直線偏光に変換され出射する。該出射した直線偏光のレーザ光L16は、前記ハーフミラー7を反射して第四の波長板22に入射された直線偏光のレーザ光L10と直交する偏光方向の直線偏光となり、光ディスク8に照射するレーザ光と、光ディスク8により反射するレーザ光とが互いに干渉することがないので、光学特性の劣化をきたすことはない。次に、第四の波長板22を出射したレーザ光L16は、ハーフミラー7に入射され、該ハーフミラー7をそのまま透過して光検出器12に入射し、光ディスクに書き込まれた情報を読み出す。
一方、ハーフミラー7を透過した所定量の前記レーザ光L11は、モニター光検出器13に入射して3波長レーザ20が出射するレーザ光の出射レベルをモニターする。光ピックアップにおいては、レーザ素子が出射するレーザ光の出射レベルを一定に保つことが必要であり、レーザ光の一部をモニター用の光検出器において受光してAPC回路(図示していない)でレーザ素子の駆動回路を制御し、レーザ光の出射レベルを一定に保っている。
次に、本発明に係わる光路補正装置において、第二の実施例について説明する。
一般に、光ディスクを再生するためレーザ光を光ディスクに照射する際に、光ディスクに形成したピットに照射するデータ読み書き用の光と、ピットの両脇の溝に照射するトラッキング用の光とが必要である場合、レーザ光を3ビーム化することが要求され、第二の実施例は、光路補正装置の出射光を3ビーム化したものである。そこで、第一の実施例において説明した光路補正装置のレーザ光の出射側に、レーザ光を回折させるグレーティングを付加し、直線偏光を3ビーム化して出射させた。
図3は、本発明に係わる光路補正装置の第二の実施例を示す構成図であり、斜視図を示す。光路補正装置23は、第一の波長板15と第一の複屈折板16と第二の波長板17と第二の複屈折板18と第三の波長板19とグレーティング24とを備えており、3波長レーザ20の前方に配置する。
尚、図3においては、光路補正装置23を構成する光学部品を所定の間隔を開けて配置しているが、光路補正装置23を構成する光学部品を貼り合わせて積層一体化して小型化することも出来る。
本第二の実施例は、図1に示した第一の実施例における光路補正装置と比べて、直線偏光されたレーザ光を出射する第三の波長板19の出射側にグレーティング24を付加したことのみ異なるので、グレーティング24の作用について説明し、他の要素の動作は第一の実施例と同一であるので説明を省略する。
図4は、グレーティングを付加してレーザ光を3ビーム化した例を示す。グレーティング24は、基板の片面に所定の屈折率を有する格子を所定の深さとピッチで一面に形成したもので、前記深さとピッチを適宜設定することにより、所望の波長のレーザ光に対して、入射したレーザ光をメインビームとなる0次光と、サイドビームとなる二つの±1次光とに回折するものである。
そこで、図3に示した本実施例における光路補正装置23は、第三の波長板19が出射する直線偏光のレーザ光をグレーティング24に入射して3ビームのレーザ光に回折する。
図5は、本発明に係わる光路補正装置23を光ピックアップに適応した場合の模式図の例を示すものである。光ピックアップ25は、偏光方向が同一で互いに平行に伝搬する三つの異なる波長の直線偏光を出射する3波長レーザ20と、該3波長レーザ20が出射するレーザ光S、レーザ光S、及びレーザ光Sが同一の光路上を伝搬するよう光路補正をする光路補正装置23と、該光路補正装置23が出射するレーザ光を所定の比率で分離するハーフミラー7と、該ハーフミラー7の分離面で90°反射するレーザ光を入射し円偏光に変換すると共に後述する対物レンズが出射する光ディスク8からの反射光である円偏光のレーザ光を直線偏光に変換する第四の波長板22と、該第四の波長板22を出射する円偏光を光ディスク8に形成されたピット10に集光させると共に、該ピット10上で反射されたレーザ光を入射する対物レンズ11と、前記第四の波長板22を出射する直線偏光を前記ハーフミラー7を経由して検出する光検出器12と、前記ハーフミラー7の分離面を透過する3波長レーザ20の出射レベルをモニターするモニター光検出器13とにより構成する。
本第二の実施例による光路補正装置23を用いた光ピックアップ25は、図2に示した第一の実施例による光路補正装置14を用いた光ピックアップ21と比べて光路補正装置14の出射側にグレーティング24が付加されていることのみ異なるので、これに関連した部分についてのみ説明し、他の部分の動作については光ピックアップ21と同一であるので説明を省略する。
光路補正装置23を出射し、回折作用により3ビーム化されたレーザ光L17はハーフミラー7に入射され、レーザ光L17のうちの約90%は分離面で90°反射されるレーザ光L18として、前記レーザ光L17の約10%は分離面を透過するレーザ光L19として夫々分離される。
次に、ハーフミラー7により反射する3ビーム化されたレーザ光L18は、第四の波長板22に入射する。第四の波長板22は、1/4波長板として機能し、3波長共に円偏光のレーザ光L20に変換する。第四の波長板22を出射した円偏光に変換されたレーザ光L20は、レンズ11により集光されてレーザ光L21となり、光ディスク8に形成されたピット10に照射される。そこで、円偏光のレーザ光L21は、ピット10の表面において鏡面対称の関係に基づいて逆回転した円偏光のレーザ光L22となって反射される。反射された円偏光のレーザ光L22は、前記集光レンズ11を介してレーザ光L23となって第四の波長板22に入射し、直線偏光のレーザ光L24に変換され出射する。該出射した直線偏光のレーザ光L24は、前記ハーフミラー7を反射して第四の波長板22に入射された直線偏光のレーザ光L18と直交する偏光方向の直線偏光である。次に、レーザ光L24はハーフミラー7に入射され、該ハーフミラー7をそのまま透過して光検出器12に入射し、光ディスクに書き込まれた情報を読み出す。
一方、ハーフミラー8を透過した前記レーザ光L19は、モニター光検出器13に入射して3波長レーザ20が出射するレーザ光の出射レベルをモニターする。光ピックアップにおいては、レーザ素子が出射するレーザ光の出射レベルを一定に保つことが必要であり、レーザ光の一部をモニター用の光検出器において受光してAPC回路(図示していない)でレーザ素子の駆動回路を制御し、レーザ光の出射レベルを一定に保っている。
以上説明したように本実施例における光ピックアップは、光路補正装置23を用いて光ディスクに照射するレーザ光を3ビーム化することが出来る。
次に、本発明に係わる光路補正装置において、第三の実施例について説明する。
前述した光ピックアップ21においては、光ディスク8に照射するレーザ光と、光ディスク8により反射するレーザ光とが光ピックアップ21の光学系において、互いに干渉して光学特性の劣化をきたさないように、第四の波長板22を用いて光ディスク8に照射するレーザ光を円偏光としたが、本第三の実施例においては、光路補正装置から出射するレーザ光を円偏光とし、光ピックアップから第四の波長板を削除したことが特徴である。
図6は、本発明に係わる光路補正装置の第三の実施例を示す構成図であり、斜視図を示す。光路補正装置26は、第一の波長板15と第一の複屈折板16と第二の波長板17と第二の複屈折板18と第五の波長板27とを備えており、3波長レーザ20の前方に配置する。本第三の実施例においては、3波長レーザ20の機能、第一の波長板15の機能、第一の複屈折板16の機能、第二の波長板17の機能、第二の複屈折板18の機能は、図1に示したものと同一な機能であるので、説明を省略し、第五の波長板27の機能について説明する。
第二の複屈折板18を透過したレーザ光P、レーザ光P、及びレーザ光Sは、第五の波長板27に入射する。第五の波長板27は、複屈折性を有する結晶もしくは高分子フィルムであり、第二の複屈折板18を透過した三つの直線偏光が入射すると、直線偏光の常光成分と異常光成分との位相差が90°となるよう作用するので、第五の波長板27の出射光は、互いに位相が90°ずれた常光成分と異常光成分とが合成されて円偏光となる。
そこで第五の波長板27は、1/4波長板として機能するよう構成され、波長板を、レーザ光Pに対してはπ/2・(2r−1)の位相差を発生するように、又、レーザ光Pに対してもπ/2・(2r−1)の位相差を発生するように、更に、レーザ光Sに対してもπ/2・(2r−1)の位相差を発生するような板厚に設定する。
以上説明したように本第三の実施例における光路補正装置26は、三つの波長のレーザ光を同一光路上に伝搬させると共に、出射する三つのレーザ光を円偏光とする。
尚、図6に示した光路補正装置の動作を説明する図においては、光路補正装置26を構成する光学部品を所定の間隔を開けて配置しているが、光路補正装置26を構成する光学部品を貼り合わせて積層一体化して小型化することも出来る。
次に、本発明に係わる光路補正装置26を光ピックアップに用いた実施例を説明する。
図7は、本発明に係わる光路補正装置26を光ピックアップに適応した場合の模式図の例を示すものである。光ピックアップ28は、偏光方向が同一であり互いに平行に伝搬する三つの異なる波長の直線偏光を出射する3波長レーザ20と、該3波長レーザ20が出射するレーザ光S、レーザ光S、及びレーザ光Sが同一の光路上を伝搬するよう光路補正を行うと共に、三つのレーザ光を円偏光として出射する光路補正装置26と、該光路補正装置26が出射するレーザ光を所定の比率で分離するハーフミラー7と、該ハーフミラー7の分離面で90°反射するレーザ光を入射し光ディスク8に形成されたピット10に集光させると共に、該ピット10上で反射されたレーザ光を入射する対物レンズ11と、対物レンズ11を透過したレーザ光を前記ハーフミラー7を経由して検出する光検出器12と、前記ハーフミラー7の分離面を透過する3波長レーザ20の出射レベルをモニターするモニター光検出器13とにより構成する。
図7の動作を説明すると、3波長レーザ20から出射される、例えば波長650nmのレーザ光S、波長780nmのレーザ光S、及び波長405nmのレーザ光Sは互いに同じ偏光方向を有する直線偏光であり、レーザ光S、レーザ光S、及びレーザ光Sは、所定の光路間隔にて平行に伝搬し、光路補正装置26へ入射する。光路補正装置26においては、前述したように、複数の波長板、複屈折板を用いて、3波長レーザ20が出射するレーザ光S、レーザ光S、及びレーザ光Sが同一の光路上に伝搬するよう光路補正をすると共に、三つのレーザ光を円偏光として出射する。この三つの円偏光のレーザ光をまとめてレーザ光L25とする。
次に、光路補正装置26を出射したレーザ光L25はハーフミラー7に入射され、例えば、レーザ光L25のうちの約90%は分離面で90°反射されるレーザ光L26として、前記レーザ光L25の約10%は分離面を透過するレーザ光L27として夫々分離される。
次に、ハーフミラー7により反射したレーザ光L26は、集光レンズ11により集光されてレーザ光L28となり、光ディスク8に形成されているピット10に照射する。
そこで、円偏光のレーザ光L28は、ピット10の表面において鏡面対称の関係に基づいて逆回転した円偏光のレーザ光L29となって反射される。反射された円偏光のレーザ光L29は、前記集光レンズ11を透過してレーザ光L30となり、レーザ光L30はハーフミラー7に入射する。レーザ光L30は、該ハーフミラー7をそのまま透過して光検出器12に入射し、光ディスクに書き込まれた情報を読み出す。
一方、ハーフミラー7を透過した所定量の前記レーザ光L27は、モニター光検出器13に入射して3波長レーザ20が出射するレーザ光の出射レベルをモニターする。光ピックアップにおいては、レーザ素子が出射するレーザ光の出射レベルを一定に保つことが必要であり、レーザ光の一部をモニター用の光検出器において受光してAPC回路(図示していない)でレーザ素子の駆動回路を制御し、レーザ光の出射レベルを一定に保っている。
次に、本発明に係わる光路補正装置において、第四の実施例について説明する。
光路補正装置の第二の実施例において説明したように、一般に、光ディスクを再生するためレーザ光を光ディスクに照射する際に、光ディスクに形成したピットに照射するデータ読み書き用の光と、ピットの両脇の溝に照射するトラッキング用の光とが必要である場合、レーザ光を3ビーム化することが要求され、第四の実施例は、光路補正装置の出射光を3ビーム化したものである。そこで、第三の実施例において説明した光路補正装置の出射側に、レーザ光を回折させるグレーティングを付加し、円偏光を3ビーム化して出射させた。
図8は、本発明に係わる光路補正装置の第四の実施例を示す構成図であり、斜視図を示す。光路補正装置29は、第一の波長板15と第一の複屈折板16と第二の波長板17と第二の複屈折板18と第五の波長板27とグレーティング24とを備えており、3波長レーザ20の前方に配置する。
尚、図8においては、光路補正装置29を構成する光学部品を所定の間隔を開けて配置しているが、光路補正装置29を構成する光学部品を貼り合わせて積層一体化して小型化することも出来る。
本第四の実施例は、図6に示した第三の実施例における光路補正装置と比べて、円偏光を出射する第五の波長板27の出射側にグレーティング24を付加したことのみ異なる。又、グレーティング24の機能については、図4を用いて説明したものと同様である。そこで、光路補正装置29は、3波長レーザ20が出射する同一な偏光方向を有し平行に伝搬する三つの異なる波長のレーザ光の光路を補正して同一な光路を伝搬するようにすると共に、第五の波長板27が出射する円偏光をグレーティング24に入射して3ビームのレーザ光に回折して出射する。
次に、図9は、本発明に係わる光路補正装置29を光ピックアップに適応した場合の模式図の例を示すものである。光ピックアップ30は、偏光方向が互いに平行である三つの異なる波長の直線偏光を出射する3波長レーザ20と、該3波長レーザ20が出射するレーザ光S、レーザ光S、及びレーザ光Sが同一の光路上を伝搬するよう光路補正をすると共に、円偏光の3ビーム化されたレーザ光を出射する光路補正装置29と、該光路補正装置29が出射するレーザ光を所定の比率で分離するハーフミラー7と、該ハーフミラー7の分離面で90°反射するレーザ光を入射し光ディスク8に形成されたピット10に集光させると共に、該ピット10上で反射されたレーザ光を入射する対物レンズ11と、該対物レンズ11を透過するレーザ光を前記ハーフミラー7を経由して検出する光検出器12と、前記ハーフミラー7の分離面を透過する3波長レーザ20の出射レベルをモニターするモニター光検出器13とにより構成する。
本第四の実施例による光路補正装置29を用いた光ピックアップ30は、図7に示した第三の実施例による光路補正装置26を用いた光ピックアップ28と比べて光路補正装置26のレーザ光の出射側にグレーティング24が付加されていることのみ異なるので、これに関連した部分についてのみ説明し、他の部分の動作については光ピックアップ28と同一であるので説明を省略する。
光路補正装置29を出射し、回折作用により3ビーム化されたレーザ光L31はハーフミラー7に入射され、レーザ光L31のうちの約90%は分離面で90°反射されるレーザ光L32として、前記レーザ光L31の約10%は分離面を透過するレーザ光L33として夫々分離される。
次に、ハーフミラー7により反射したレーザ光L32は、集光レンズ11により集光されてレーザ光L34となり、光ディスク8に形成されているピット10に照射する。
そこで、円偏光のレーザ光L34は、ピット10の表面において鏡面対称の関係に基づいて逆回転した円偏光のレーザ光L35となって反射される。反射された円偏光のレーザ光L35は、前記集光レンズ11を透過してレーザ光L36となり、次に、レーザ光L36はハーフミラー7に入射され、該ハーフミラー7をそのまま透過して光検出器12に入射し、光ディスクに書き込まれた情報を読み出す。
一方、ハーフミラー7を透過した所定量の前記レーザ光L33は、モニター光検出器13に入射して3波長レーザ20が出射するレーザ光の出射レベルをモニターする。光ピックアップにおいては、レーザ素子が出射するレーザ光の出射レベルを一定に保つことが必要であり、レーザ光の一部をモニター用の光検出器において受光してAPC回路(図示していない)でレーザ素子の駆動回路を制御し、レーザ光の出射レベルを一定に保っている。
以上説明したように本実施例における光ピックアップは、光路補正装置29を用いて光ディスクに照射する円偏光のレーザ光を3ビーム化することが出来る。
本発明に係わる光路補正装置の第一の実施例を示す構成図である。 本発明に係わる光路補正装置14を光ピックアップに適応した場合の模式図の例を示すものである。 本発明に係わる光路補正装置の第二の実施例を示す構成図である。 グレーティングを付加してレーザ光を3ビーム化した例を示す。 本発明に係わる光路補正装置23を光ピックアップに適応した場合の模式図の例を示すものである。 本発明に係わる光路補正装置の第三の実施例を示す構成図である。 本発明に係わる光路補正装置26を光ピックアップに適応した場合の模式図の例を示すものである。 本発明に係わる光路補正装置の第四の実施例を示す構成図である。 本発明に係わる光路補正装置29を光ピックアップに適応した場合の模式図の例を示すものである。 従来の光路補正装置の例を示す構成図である。 従来の光路補正装置1を光ピックアップに適応した場合の模式図の例を示すものである。
符号の説明
1・・光路補正装置、 2・・波長板、
3・・複屈折板、 4・・波長板、
5・・2波長レーザ、 6・・光ピックアップ、
7・・ハーフミラー、 8・・光ディスク、
9・・波長板、 10・・ピット、
11・・集光レンズ、 12・・光検出器、
13・・モニター光検出器、 14・・光路補正装置、
15・・第一の波長板、 16・・第一の複屈折板、
17・・第二の波長板、 18・・第二の複屈折板、
19・・第三の波長板、 20・・3波長レーザ、
21・・光ピックアップ、 22・・第四の波長板、
23・・光路補正装置、 24・・グレーティング、
25・・光ピックアップ、 26・・光路補正装置、
27・・第五の波長板、 28・・光ピックアップ、
29・・光路補正装置、 30・・光ピックアップ

Claims (16)

  1. 偏光方向が同一であり光路が平行である三つの異なる波長λ、波長λ、及び波長λの直線偏光を入射する第一の波長板と、該第一の波長板を出射した前記三つの異なる波長の直線偏光を入射する第一の複屈折板と、該第一の複屈折板を透過した前記三つの異なる波長の直線偏光を入射する第二の波長板と、該第二の波長板を出射した前記三つの異なる波長の直線偏光を入射する第二の複屈折板と、該第二の複屈折板を透過した前記三つの異なる波長の直線偏光を入射する第三の波長板とを備えた光路補正装置であって、
    前記第一の波長板は、波長λの直線偏光に対しては2π・mの位相差を、波長λの直線偏光に対してはπ・(2n−1)の位相差を、波長λの直線偏光に対しては2π・qの位相差を発生するものであり(m、n、qは整数)、
    前記第一の複屈折板は、その光学軸に対して前記第一の波長板を出射した波長λの直線偏光が常光線となり、一方、波長λ、及び波長λの直線偏光が異常光線となるよう配置し、光路を補正する距離をd、複屈折板の常光線に対する屈折率をn0、複屈折板の異常光線に対する屈折率をne、複屈折板の主面法線と光学軸とのなす角度をθ、複屈折板の板厚をtとした時、
    =d・|(n0・tanθ+ne)/((n0−ne)・tanθ)|
    の関係式を満足しているものであり、
    前記第二の波長板は、波長λの直線偏光に対してはπ・(2m−1)の位相差を、波長λの直線偏光に対しては2π・nの位相差を、波長λの直線偏光に対しては2π・qの位相差を発生するものであり(m、n、qは整数)、
    前記第二の複屈折板は、その光学軸に対して前記第一の波長板を出射した波長λ、及び波長λの直線偏光が異常光線となり、一方、波長λの直線偏光が常光線となるよう配置し、光路を補正する距離をd、複屈折板の常光線に対する屈折率をn0、複屈折板の異常光線に対する屈折率をne、複屈折板の主面法線と光学軸とのなす角度をθ、複屈折板の板厚をtとした時、
    =d・|(n0・tanθ+ne)/((n0−ne)・tanθ)|
    の関係式を満足しているものであり、
    前記第三の波長板は、波長λの直線偏光に対してはπ・(2m−1)の位相差を、波長λの直線偏光に対してはπ・(2n−1)の位相差を、波長λの直線偏光に対しては2π・qの位相差を発生するもの(m、n、qは整数)であることを特徴とする光路補正装置。
  2. 前記光路補正装置のレーザ光の出射側に、入射した異なる波長の直線偏光を0次光と±1次光の3ビームに回折するグレーティングを付加したことを特徴とする請求項1に記載の光路補正装置。
  3. 前記第一の波長板と前記第一の複屈折板と前記第二の波長板と前記第二の複屈折板と前記第三の波長板とを貼り合わせて一体化した構造を有することを特徴とする請求項1に記載の光路補正装置。
  4. 前記第一の波長板と前記第一の複屈折板と前記第二の波長板と前記第二の複屈折板と前記第三の波長板と前記グレーティングとを貼り合わせて一体化した構造を有することを特徴とする請求項2に記載の光路補正装置。
  5. 前記第一の波長板、第二の波長板、及び第三の波長板は、複屈折性を有する結晶であることを特徴とする請求項1乃至4に記載の光路補正装置。
  6. 前記第一の複屈折板、及び第二の複屈折板は、リチウムナイオベート若しくはルチルであることを特徴とする請求項1乃至5に記載の光路補正装置。
  7. 前記波長λの直線偏光は、660nmの波長のレーザ光であり、前記波長λの直線偏光は、785nmの波長のレーザ光であり、前記波長λの直線偏光は、405nmの波長のレーザ光であることを特徴とする請求項1乃至6に記載の光路補正装置。
  8. 偏光方向が同一であり光路が平行である三つの異なる波長の直線偏光を出射する光源と、
    該光源から三つの直線偏光を入射する請求項1乃至7に記載の光路補正装置と、
    該光路補正装置を出射した光線を入射する第四の波長板と、
    該第四の波長板を出射した光線を光記憶媒体に集光する対物レンズとを備えたことを特徴とする光ピックアップ。
  9. 偏光方向が同一であり光路が平行である三つの異なる波長λ、波長λ、及び波長λの直線偏光を入射する第一の波長板と、該第一の波長板を出射した前記三つの異なる波長の直線偏光を入射する第一の複屈折板と、該第一の複屈折板を透過した前記三つの異なる波長の直線偏光を入射する第二の波長板と、該第二の波長板を出射した前記三つの異なる波長の直線偏光を入射する第二の複屈折板と、該第二の複屈折板を透過した前記三つの異なる波長の直線偏光を入射する第五の波長板とを備えた光路補正装置であって、
    前記第一の波長板は、波長λの直線偏光に対しては2π・mの位相差を、波長λの直線偏光に対してはπ・(2n−1)の位相差を、波長λの直線偏光に対しては2π・qの位相差を発生するものであり(m、n、qは整数)、
    前記第一の複屈折板は、その光学軸に対して前記第一の波長板を出射した波長λの直線偏光が常光線となり、一方、波長λ、及び波長λの直線偏光が異常光線となるよう配置し、光路を補正する距離をd、複屈折板の常光線に対する屈折率をn0、複屈折板の異常光線に対する屈折率をne、複屈折板の主面法線と光学軸とのなす角度をθ、複屈折板の板厚をtとした時、
    =d・|(n0・tanθ+ne)/((n0−ne)・tanθ)|
    の関係式を満足しているものであり、
    前記第二の波長板は、波長λの直線偏光に対してはπ・(2m−1)の位相差を、波長λの直線偏光に対しては2π・nの位相差を、波長λの直線偏光に対しては2π・qの位相差を発生するものであり(m、n、qは整数)、
    前記第二の複屈折板は、その光学軸に対して前記第一の波長板を出射した波長λ、及び波長λの直線偏光が異常光線となり、一方、波長λの直線偏光が常光線となるよう配置し、光路を補正する距離をd、複屈折板の常光線に対する屈折率をn0、複屈折板の異常光線に対する屈折率をne、複屈折板の主面法線と光学軸とのなす角度をθ、複屈折板の板厚をtとした時、
    =d・|(n0・tanθ+ne)/((n0−ne)・tanθ)|
    の関係式を満足しているものであり、
    前記第五の波長板は、波長λ、波長λ、及び波長λの直線偏光に対してπ/2・(2r−1)の位相差を発生するもの(rは整数)であることを特徴とする光路補正装置。
  10. 前記光路補正装置のレーザ光の出射側に、入射した異なる波長の直線偏光を0次光と±1次光の3ビームに回折するグレーティングを付加したことを特徴とする請求項9に記載の光路補正装置。
  11. 前記第一の波長板と前記第一の複屈折板と前記第二の波長板と前記第二の複屈折板と前記第五の波長板とを貼り合わせて一体化した構造を有することを特徴とする請求項9に記載の光路補正装置。
  12. 前記第一の波長板と前記第一の複屈折板と前記第二の波長板と前記第二の複屈折板と前記第五の波長板と前記グレーティングとを貼り合わせて一体化した構造を有することを特徴とする請求項10に記載の光路補正装置。
  13. 前記第一の波長板、第二の波長板、及び第五の波長板は、複屈折性を有する結晶であることを特徴とする請求項9乃至12に記載の光路補正装置。
  14. 前記第一の複屈折板、及び第二の複屈折板は、リチウムナイオベート若しくはルチルであることを特徴とする請求項9乃至13に記載の光路補正装置。
  15. 前記波長λの直線偏光は、660nmの波長のレーザ光であり、前記波長λの直線偏光は、785nmの波長のレーザ光であり、前記波長λの直線偏光は、405nmの波長のレーザ光であることを特徴とする請求項9乃至14に記載の光路補正装置。
  16. 偏光方向が同一であり光路が平行である三つの異なる波長の直線偏光を出射する光源と、
    該光源から三つの直線偏光を入射する請求項9乃至15に記載の光路補正装置と、
    該光路補正装置を出射した光線を光記憶媒体に集光する対物レンズとを備えたことを特徴とする光ピックアップ。
JP2005174373A 2005-06-14 2005-06-14 光路補正装置とこれを用いた光ピックアップ Withdrawn JP2006351086A (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005174373A JP2006351086A (ja) 2005-06-14 2005-06-14 光路補正装置とこれを用いた光ピックアップ
US11/438,075 US20060278819A1 (en) 2005-06-14 2006-05-22 Optical-path compensating device and optical pickup using the device
CNA2006100915595A CN1881007A (zh) 2005-06-14 2006-06-12 光路校正装置和使用该光路校正装置的光拾取器
EP06012154A EP1736974A3 (en) 2005-06-14 2006-06-13 Optical path compensating device and optical pickup using the device
KR1020060053389A KR20060130512A (ko) 2005-06-14 2006-06-14 광로 보정 장치와 이를 이용한 광 픽업
TW095121119A TW200705429A (en) 2005-06-14 2006-06-14 Optical-path compensating device and optical pickup using the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005174373A JP2006351086A (ja) 2005-06-14 2005-06-14 光路補正装置とこれを用いた光ピックアップ

Publications (1)

Publication Number Publication Date
JP2006351086A true JP2006351086A (ja) 2006-12-28

Family

ID=36992583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005174373A Withdrawn JP2006351086A (ja) 2005-06-14 2005-06-14 光路補正装置とこれを用いた光ピックアップ

Country Status (6)

Country Link
US (1) US20060278819A1 (ja)
EP (1) EP1736974A3 (ja)
JP (1) JP2006351086A (ja)
KR (1) KR20060130512A (ja)
CN (1) CN1881007A (ja)
TW (1) TW200705429A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035204A (ja) * 2005-07-29 2007-02-08 Hitachi Media Electoronics Co Ltd 光ピックアップ及び光ディスク装置
JP2010267337A (ja) * 2009-05-15 2010-11-25 Asahi Glass Co Ltd 積層位相板及び光ヘッド装置
JP2015118273A (ja) * 2013-12-18 2015-06-25 マイクロソフト コーポレーション 波長通過のためのned偏光システム
CN115372928A (zh) * 2022-10-21 2022-11-22 成都信息工程大学 一种基于i/q数据的dcnn电磁干扰识别方法及装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017037A1 (ja) * 2007-07-27 2009-02-05 Asahi Glass Co., Ltd. 位相差素子および光ヘッド装置
JP5381400B2 (ja) * 2009-02-06 2014-01-08 セイコーエプソン株式会社 量子干渉装置、原子発振器、および磁気センサー
US8237514B2 (en) 2009-02-06 2012-08-07 Seiko Epson Corporation Quantum interference device, atomic oscillator, and magnetic sensor
JP5429469B2 (ja) 2009-09-07 2014-02-26 セイコーエプソン株式会社 量子干渉装置、原子発振器及び磁気センサー
CN104977722A (zh) * 2014-04-03 2015-10-14 光宝科技股份有限公司 投影装置
CN105911460B (zh) * 2016-06-21 2018-08-07 电子科技大学 具有同步信号自校准功能的多通道逻辑分析仪
KR102036576B1 (ko) 2018-03-20 2019-10-25 박희태 스마트폰 세척기
CN109027974B (zh) * 2018-06-20 2020-05-26 Oppo(重庆)智能科技有限公司 一种光源位置调整装置及调整方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07230061A (ja) * 1994-02-17 1995-08-29 Fuji Photo Film Co Ltd 偏光コヒーレント合波レーザ
US6650612B1 (en) * 1999-03-31 2003-11-18 Matsushita Electric Industrial Co., Ltd. Optical head and recording reproduction method
JP2002015448A (ja) * 2000-06-29 2002-01-18 Matsushita Electric Ind Co Ltd 光学素子、光源装置、光ヘッド装置および光情報処理装置
US6636651B2 (en) * 2001-06-08 2003-10-21 Koncent Communication, Inc. Four-port bidirectional optical circulator
WO2005015554A1 (ja) * 2003-08-12 2005-02-17 Konica Minolta Opto, Inc. 光ピックアップ装置
KR20050022950A (ko) * 2003-08-27 2005-03-09 삼성전기주식회사 아크로매틱 프리즘을 구비한 광픽업장치
JP2005302082A (ja) * 2004-04-06 2005-10-27 Toyo Commun Equip Co Ltd 光路補正装置とこれを用いた光ピックアップ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035204A (ja) * 2005-07-29 2007-02-08 Hitachi Media Electoronics Co Ltd 光ピックアップ及び光ディスク装置
JP2010267337A (ja) * 2009-05-15 2010-11-25 Asahi Glass Co Ltd 積層位相板及び光ヘッド装置
JP2015118273A (ja) * 2013-12-18 2015-06-25 マイクロソフト コーポレーション 波長通過のためのned偏光システム
CN115372928A (zh) * 2022-10-21 2022-11-22 成都信息工程大学 一种基于i/q数据的dcnn电磁干扰识别方法及装置

Also Published As

Publication number Publication date
KR20060130512A (ko) 2006-12-19
TW200705429A (en) 2007-02-01
US20060278819A1 (en) 2006-12-14
EP1736974A2 (en) 2006-12-27
CN1881007A (zh) 2006-12-20
EP1736974A3 (en) 2009-04-29

Similar Documents

Publication Publication Date Title
JP2006351086A (ja) 光路補正装置とこれを用いた光ピックアップ
US7463569B2 (en) Optical disk apparatus with a wavelength plate having a two-dimensional array of birefringent regions
US8064314B2 (en) Optical head and optical disc device
WO2007105767A1 (ja) 光ヘッド装置
US7710849B2 (en) Optical head device and optical information recording or reproducing device
JP2004355790A (ja) ホログラム結合体およびその製造方法、ホログラムレーザユニットならびに光ピックアップ装置
JP4560906B2 (ja) 光ヘッド装置
WO2004097819A1 (ja) 光回折素子および光情報処理装置
JP2001281432A (ja) 2波長用回折格子および光ヘッド装置
JP4797706B2 (ja) 光ヘッド装置
KR100782813B1 (ko) 능동형 보정소자 및 이를 채용한 호환형 광픽업 및 광 기록및/또는 재생기기
TW200929200A (en) Optical pickup apparatus, optical recording medium driving apparatus, and signal recording/reproducing method
JP4478398B2 (ja) 偏光光学素子、光学素子ユニット、光ヘッド装置及び光ディスクドライブ装置
JP2009146528A (ja) 光ピックアップ装置、及び光ディスク装置
KR20050084914A (ko) 2파장 광원유닛 및 광헤드 장치
JP2006066011A (ja) ホログラムレーザユニットおよび光ピックアップ装置
JP4876814B2 (ja) 位相差素子および光ヘッド装置
JP4876826B2 (ja) 位相差素子および光ヘッド装置
JPWO2008143119A1 (ja) 光路切替素子、光路切替装置、光ヘッド装置、及び光学式情報記録再生装置
JP2993273B2 (ja) 光磁気ヘッド装置
JP2011227944A (ja) 光ヘッド装置
JP2007188577A (ja) 光ピックアップおよび当該光ピックアップを備えた光情報記憶装置
JP4735749B2 (ja) 光ヘッド装置
JP4022820B2 (ja) 光ピックアップ装置
JP2008257797A (ja) 光ピックアップ装置及び光ディスク装置

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070802