JP2006342980A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2006342980A
JP2006342980A JP2005166487A JP2005166487A JP2006342980A JP 2006342980 A JP2006342980 A JP 2006342980A JP 2005166487 A JP2005166487 A JP 2005166487A JP 2005166487 A JP2005166487 A JP 2005166487A JP 2006342980 A JP2006342980 A JP 2006342980A
Authority
JP
Japan
Prior art keywords
water
hot water
temperature
compression ratio
outside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005166487A
Other languages
Japanese (ja)
Inventor
Masahiro Ohama
昌宏 尾浜
Takeji Watanabe
竹司 渡辺
Yoshitsugu Nishiyama
吉継 西山
Tatsumura Mo
立群 毛
Kazuhiko Marumoto
一彦 丸本
Tetsuei Kuramoto
哲英 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005166487A priority Critical patent/JP2006342980A/en
Publication of JP2006342980A publication Critical patent/JP2006342980A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump water heater reducing probability of running out of hot water, and improving convenience and efficiency, with respect to a water heater using a heat pump as a heat source. <P>SOLUTION: In this heat pump water heater comprising a refrigerant circuit 10 including a compressor 11, a radiator 12, a pressure reducing means 13, and an evaporator 14 comprising an air supply means 15, a heat exchanger 16 comprising a water flow channel 17 exchanging the heat with the radiator 12, a hot water storing tank 21, and a water supply pipe 18, and supplying the hot water by mixing the water from the heat exchanger 16, the water from the hot water storing tank 21 and the water from the water supply pipe 18, a control means 42 is mounted for controlling a compression ratio of the compressor 11 so that it is not lowered less than a prescribed compression ratio, when the hot water from the heat exchanger 16 heated by the refrigerant circuit 10 is used in hot water supply, thus the compression ratio of the compressor 11 is not lowered less than the prescribed compression ratio, the running-out of hot water can be prevented, and the operation efficiency can be improved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はヒートポンプ給湯機に関するものである。   The present invention relates to a heat pump water heater.

ヒートポンプ給湯機用の密閉型圧縮機としては、ロータリ式やスクロール式のものがあり、いずれの方式も家庭用、業務用の給湯機分野で使用されている。その中でも、スクロール圧縮機は、低騒音、低振動にすぐれ、また、運転効率もよい。このスクロール圧縮機は、一般に、固定スクロール部品の渦巻きラップと旋回スクロール部品の渦巻きラップとを噛み合わせて圧縮室を形成し、旋回スクロール部品を自転拘束機構による自転の拘束のもとに円軌道に沿って旋回させたとき圧縮室が容積を変えながら移動することで吸入、圧縮、吐出を行う。このとき、旋回スクロール部品は、吸入から吐出までの圧縮による圧力上昇の過程で、固定スクロールから引き離される力が働く。従来、この種のスクロール圧縮機として、旋回スクロール部品の背面に、所定圧を印加して、旋回スクロール部品が固定スクロール部品から離れて転覆しないようにしているものがある(例えば、特許文献1参照)。
特開2003−328966号公報
As a hermetic compressor for a heat pump water heater, there are a rotary type and a scroll type, both of which are used in the field of domestic and commercial water heaters. Among them, the scroll compressor is excellent in low noise and low vibration, and also has good operation efficiency. Generally, this scroll compressor forms a compression chamber by meshing the spiral wrap of the fixed scroll part and the spiral wrap of the orbiting scroll part. When it is swung along, the compression chamber moves while changing its volume, thereby performing suction, compression, and discharge. At this time, the orbiting scroll component is subjected to a force that is pulled away from the fixed scroll in the process of pressure increase due to compression from suction to discharge. Conventionally, as this type of scroll compressor, there is a compressor in which a predetermined pressure is applied to the back surface of the orbiting scroll component so that the orbiting scroll component does not fall apart from the fixed scroll component (see, for example, Patent Document 1). ).
JP 2003-328966 A

しかしながら、前記構成のスクロール圧縮機を用いたヒートポンプ給湯機では、次のような課題を有していた。旋回スクロール部品が固定スクロール部品から離れて転覆しないように旋回スクロール部品の背面に、所定圧を印加しているが、この印加している圧力は圧縮機の吐出圧力(高圧圧力)と吸入圧力(低圧圧力)とに関係する。吐出圧力に対する吸入圧力の比である圧縮比が大きい方が、固定スクロールから引き離される力にうち勝って、旋回スクロール部品を固定スクロール側に押さえる力が大きくなる。逆に言えば、圧縮比が小さければ、この押さえる力は小さくなり、ある限界の圧縮比よりも小さくなると、ついには旋回スクロール部品が固定スクロール部品から離れて転覆することになる。   However, the heat pump water heater using the scroll compressor having the above-described configuration has the following problems. A predetermined pressure is applied to the rear surface of the orbiting scroll component so that the orbiting scroll component does not overturn from the fixed scroll component, and the applied pressures are the discharge pressure (high pressure) and the suction pressure ( Low pressure). The larger the compression ratio, which is the ratio of the suction pressure to the discharge pressure, overcomes the force that is pulled away from the fixed scroll, and the force that presses the orbiting scroll component toward the fixed scroll increases. In other words, if the compression ratio is small, the pressing force becomes small, and if the compression ratio becomes smaller than a certain limit, the orbiting scroll part eventually rolls away from the fixed scroll part.

ヒートポンプ給湯機の場合、転覆しやすい条件としては、高圧圧力である吐出圧力が低くなるか、低圧圧力である吸入圧力が高くなるか、この両方の条件が重なる場合である。具体的には、吐出圧力が低くなる場合としては、加熱される水温が低い場合や圧縮機の能力が小さい場合や加熱された後の湯温が低い場合などである。また、吸入圧力が高くなる場合としては、外気温度が高い場合や圧縮機の能力が小さい場合などである。   In the case of a heat pump water heater, the conditions for easy overturning are when the discharge pressure, which is a high pressure, decreases, the suction pressure, which is a low pressure, increases, or both conditions overlap. Specifically, the case where the discharge pressure becomes low includes a case where the temperature of the heated water is low, a case where the capacity of the compressor is small, and a case where the hot water temperature after the heating is low. Further, the case where the suction pressure becomes high is a case where the outside air temperature is high or the capacity of the compressor is small.

ところで、このようなスクロール圧縮機を用いたヒートポンプ給湯機では、通常の運転では、転覆が起こらないように仕様を決定するが、圧縮機に要求される条件は、空調用で使用する場合よりも運転範囲の条件が広いため、時としては圧縮比が限界の圧縮比よりも小さくなり、転覆して急激な性能低下をきたし、湯切れするという課題や運転効率が悪くなるという課題があった。   By the way, in the heat pump water heater using such a scroll compressor, the specifications are determined so that the rollover does not occur in normal operation, but the conditions required for the compressor are more than those used for air conditioning. Since the conditions of the operating range are wide, the compression ratio sometimes becomes smaller than the limit compression ratio, and there is a problem that the cap is overturned and the performance is suddenly deteriorated.

本発明は上記課題を解決するもので、圧縮機の圧縮比が所定の圧縮比以下にならないように圧縮機の圧縮比を制御する制御手段を備えた構成とすることによって、湯切れの可能性を少なくして快適性と利便性の向上を図り、かつ、運転効率向上を図ったヒートポンプ給湯機を提供することを目的とする。   The present invention solves the above-described problem, and the possibility of running out of hot water is achieved by providing a control means for controlling the compression ratio of the compressor so that the compression ratio of the compressor does not become a predetermined compression ratio or less. The purpose of the present invention is to provide a heat pump water heater that improves comfort and convenience by reducing the amount of heat and improves operational efficiency.

前記従来の課題を解決するために、本発明のヒートポンプ給湯機は、圧縮機と放熱器と減圧手段と送風手段を備えた蒸発器とを含む冷媒回路と、前記放熱器と熱交換を行う水流路を備えた熱交換器と、貯湯槽と、給水管と、前記熱交換器からの水と前記貯湯槽からの水と前記給水管からの水を混合して給湯するヒートポンプ給湯機であって、前記冷媒回路で加熱された前記熱交換器からの湯を給湯利用する場合に、前記圧縮機の圧縮比が所定の圧縮比以下にならないように圧縮機の圧縮比を制御する制御手段を備えたものである。   In order to solve the above-described conventional problems, a heat pump water heater of the present invention includes a refrigerant circuit including a compressor, a radiator, a decompression unit, and an evaporator provided with a blowing unit, and a water flow that performs heat exchange with the radiator. A heat pump water heater that supplies hot water by mixing water from a heat exchanger, a hot water storage tank, a water supply pipe, water from the heat exchanger, water from the hot water storage tank, and water from the water supply pipe. And control means for controlling the compression ratio of the compressor so that the compression ratio of the compressor does not become a predetermined compression ratio or less when hot water from the heat exchanger heated in the refrigerant circuit is used. It is a thing.

これによって、圧縮機の圧縮比を制御することによって、圧縮機の圧縮比を所定の圧縮比以下にならないようにするので、湯切れを防止することができ、かつ運転効率を向上させることができる。   Accordingly, by controlling the compression ratio of the compressor, the compression ratio of the compressor is prevented from being equal to or lower than a predetermined compression ratio, so that hot water can be prevented and operating efficiency can be improved. .

本発明のヒートポンプ給湯機は、圧縮機の圧縮比が所定の圧縮比以下にならないように圧縮機の圧縮比を制御することによって、湯切れの可能性を少なくして快適性と利便性の向上を図り、かつ、運転効率の向上を図ることができる。   The heat pump water heater of the present invention controls the compression ratio of the compressor so that the compression ratio of the compressor does not become a predetermined compression ratio or less, thereby improving the comfort and convenience by reducing the possibility of running out of hot water. In addition, the driving efficiency can be improved.

本発明は各請求項に記載の形態で実施できるものであり、第1の発明は、圧縮機と放熱器と減圧手段と送風手段を備えた蒸発器とを含む冷媒回路と、前記放熱器と熱交換を行う水流路を備えた熱交換器と、貯湯槽と、給水管と、前記熱交換器からの水と前記貯湯槽からの水と前記給水管からの水を混合して給湯するヒートポンプ給湯機であって、前記冷媒回路で加熱された前記熱交換器からの湯を給湯利用する場合に、前記圧縮機の圧縮比が所定の圧縮比以下にならないように圧縮機の圧縮比を制御する制御手段を備えた構成としているため、圧縮機の圧縮比を所定の圧縮比以下にならないようにするので、湯切れの防止と運転効率の向上を図ることができる。   The present invention can be implemented in the form described in each claim, and the first invention includes a refrigerant circuit including a compressor, a radiator, a decompression unit, and an evaporator provided with a blowing unit, and the radiator. A heat pump having a water flow path for performing heat exchange, a hot water storage tank, a water supply pipe, a heat pump for mixing and supplying water from the heat exchanger, water from the hot water storage tank, and water from the water supply pipe When the hot water from the heat exchanger heated by the refrigerant circuit is used for hot water supply, the compression ratio of the compressor is controlled so that the compression ratio of the compressor does not become a predetermined compression ratio or less. Since the control means is provided, the compression ratio of the compressor is prevented from being equal to or lower than the predetermined compression ratio, so that hot water can be prevented and the operation efficiency can be improved.

第2の発明は、外気温度を検出する外気温度検出手段を設け、前記外気温度検出手段から得られた外気温度が高いほど、熱交換器出口の温水の設定温度を高くするように制御する制御手段を備えた構成としているため、外気温度が高い場合にも熱交換器で加熱された水の温度を調節して圧縮機の圧縮比を所定の圧縮比以下にならないようにするので、湯切れの防止と運転効率の向上を図ることができる。   2nd invention provides the outside temperature detection means which detects outside temperature, and the control which controls so that the preset temperature of the hot water of a heat exchanger exit is made high, so that the outside temperature obtained from the said outside temperature detection means is high Since the structure is equipped with means, even when the outside air temperature is high, the temperature of the water heated by the heat exchanger is adjusted so that the compression ratio of the compressor does not fall below the predetermined compression ratio. Can be prevented and the driving efficiency can be improved.

第3の発明は、熱交換器入口の水温を検出する入水温度検出手段を設け、前記入水温度検出手段から得られた入水温度が低いほど、熱交換器出口の温水の設定温度を高くするように制御する制御手段を備えた構成としているため、入水温度が低い場合にも熱交換器で加熱された水の温度を調節して圧縮機の圧縮比を所定の圧縮比以下にならないようにするので、湯切れの防止と運転効率の向上を図ることができる。   3rd invention provides the incoming water temperature detection means which detects the water temperature of the heat exchanger inlet, and raises the preset temperature of the hot water at the heat exchanger outlet, so that the incoming water temperature obtained from the said incoming water temperature detection means is low. Therefore, even when the incoming water temperature is low, the temperature of the water heated by the heat exchanger is adjusted so that the compression ratio of the compressor does not fall below a predetermined compression ratio. Therefore, it is possible to prevent the hot water from running out and improve the operation efficiency.

第4の発明は、外気温度を検出する外気温度検出手段を設け、前記外気温度検出手段から得られた外気温度が高いほど、圧縮機の回転数を大きくして能力を増加させることによって圧縮比が大きくなるように制御する制御手段を備えた構成としているため、外気温度が高い場合にも圧縮機の能力を調節して圧縮機の圧縮比を所定の圧縮比以下にならないようにするので、運転効率が向上し、さらに、湯切れの防止にもなる。   According to a fourth aspect of the present invention, there is provided an outside air temperature detecting means for detecting an outside air temperature, and the higher the outside air temperature obtained from the outside air temperature detecting means is, the higher the capacity is increased by increasing the rotational speed of the compressor. Since it is configured to have a control means for controlling so as to increase, so that the compression ratio of the compressor does not fall below a predetermined compression ratio by adjusting the capacity of the compressor even when the outside air temperature is high, The operation efficiency is improved, and further, the hot water is prevented from running out.

第5の発明は、熱交換器入口の水温を検出する入水温度検出手段を設け、前記入水温度検出手段から得られた入水温度が低いほど、圧縮機の回転数を大きくして能力を増加させることによって圧縮比が大きくなるように制御する制御手段を備えた構成としているため、入水温度が低い場合にも圧縮機の能力を調節して圧縮機の圧縮比を所定の圧縮比以下にならないようにするので、湯切れの防止と運転効率の向上になる。   5th invention provides the incoming water temperature detection means which detects the water temperature of the heat exchanger inlet, and the rotation speed of a compressor is increased and capacity | capacitance is increased, so that the incoming water temperature obtained from the said incoming water temperature detection means is low. Therefore, even if the incoming water temperature is low, the compressor capacity is adjusted so that the compressor compression ratio does not fall below a predetermined compression ratio. As a result, hot water is prevented from running out and operation efficiency is improved.

第6の発明は、外気温度を検出する外気温度検出手段を設け、前記外気温度検出手段から得られた外気温度が高くなれば、蒸発器に備えられた送風手段の風量を小さくすることによって圧縮比が大きくなるように制御する制御手段を備えた構成としているため、外気温度が高い場合にも蒸発器の風量を調節して圧縮機の圧縮比を所定の圧縮比以下にならないようにするので、運転効率が向上し、さらに、湯切れの防止にもなる。   According to a sixth aspect of the present invention, there is provided an outside air temperature detecting means for detecting an outside air temperature, and when the outside air temperature obtained from the outside air temperature detecting means becomes high, the air volume of the air blowing means provided in the evaporator is reduced to reduce the air volume. Since the control means for controlling the ratio to be large is adopted, even when the outside air temperature is high, the flow rate of the evaporator is adjusted so that the compression ratio of the compressor does not fall below a predetermined compression ratio. The operation efficiency is improved, and further, the running out of hot water is prevented.

第7の発明は、熱交換器入口の水温を検出する入水温度検出手段を設け、前記入水温度検出手段から得られた入水温度が低いほど、蒸発器に備えられた送風手段の風量を小さくすることによって圧縮比が大きくなるように制御する制御手段を備えた構成としているため、入水温度が低い場合にも蒸発器の風量を調節して圧縮機の圧縮比を所定の圧縮比以下にならないようにするので、湯切れの防止と運転効率の向上になる。   7th invention provides the incoming water temperature detection means which detects the water temperature of the heat exchanger inlet, and the air volume of the ventilation means with which the evaporator was equipped is made small, so that the incoming water temperature obtained from the said incoming water temperature detection means is low. Therefore, even when the incoming water temperature is low, the flow rate of the evaporator is adjusted so that the compression ratio of the compressor does not fall below a predetermined compression ratio. As a result, hot water is prevented from running out and operation efficiency is improved.

第8の発明は、外気温度を検出する外気温度検出手段を設け、前記外気温度検出手段から得られた外気温度が高いほど、減圧手段の開度が小さくなるように前記減圧手段を制御する制御手段を備えた構成としているため、外気温度が高い場合にも減圧手段の開度を調節して圧縮機の圧縮比を所定の圧縮比以下にならないようにするので、湯切れの防止と運転効率の向上になる。   8th invention provides the outside temperature detection means which detects outside temperature, and controls the said pressure reduction means so that the opening degree of a pressure reduction means becomes small, so that the outside temperature obtained from the said outside temperature detection means is high Since the structure is equipped with a means, even when the outside air temperature is high, the opening degree of the pressure reducing means is adjusted so that the compression ratio of the compressor does not fall below a predetermined compression ratio. Will be improved.

第9の発明は、熱交換器入口の水温を検出する入水温度検出手段を設け、前記入水温度検出手段から得られた入水温度が低いほど減圧手段の開度が小さくなるように前記減圧手段を制御する制御手段を備えた構成としているため、入水温度が低い場合にも減圧手段の開度を調節して圧縮機の圧縮比を所定の圧縮比以下にならないようにするので、湯切れの防止と効率の向上になる。   According to a ninth aspect of the present invention, there is provided an incoming water temperature detecting means for detecting the water temperature at the inlet of the heat exchanger, and the pressure reducing means is configured such that the lower the incoming water temperature obtained from the incoming water temperature detecting means, the smaller the opening of the pressure reducing means. Therefore, even when the incoming water temperature is low, the opening of the pressure reducing means is adjusted so that the compression ratio of the compressor does not fall below a predetermined compression ratio. Prevention and efficiency improvement.

第10の発明は、圧縮機と放熱器と減圧手段と送風手段を備えた蒸発器とを含む冷媒回路と、前記放熱器と熱交換を行う水流路を備えた熱交換器と、貯湯槽と、給水管と、前記熱交換器からの水と前記貯湯槽からの水と前記給水管からの水を混合して給湯するヒートポンプ給湯機であって、外気温度を検出する外気温度検出手段と前記熱交換器の水側入口水温を検出する入水温度検出手段とを設け、前記外気温度検出手段から得られた外気温度と前記入水温度検出手段から得られた入水温度とに応じて、前記熱交換器からの湯を直接給湯管に通して給湯を行う運転から貯湯槽に貯湯する運転に切り換える制御手段を備えた構成としているため、外気温度と入水温度とに応じて運転モードを切り換えるので、湯切れの防止と運転効率の向上を図ることができる。   A tenth aspect of the present invention is a refrigerant circuit including a compressor, a radiator, a decompression unit, and an evaporator provided with a blowing unit, a heat exchanger including a water flow path for exchanging heat with the radiator, a hot water tank, A water supply pipe, a heat pump water heater that mixes and supplies water from the heat exchanger, water from the hot water storage tank, and water from the water supply pipe, the outside air temperature detecting means for detecting the outside air temperature, Inlet temperature detecting means for detecting the water side inlet water temperature of the heat exchanger is provided, and the heat according to the outside air temperature obtained from the outside air temperature detecting means and the incoming water temperature obtained from the incoming water temperature detecting means. Because it has a configuration with control means to switch from the operation of supplying hot water directly from the exchanger through the hot water supply pipe to the operation of storing hot water in the hot water storage tank, the operation mode is switched according to the outside air temperature and the incoming water temperature. Prevents hot water shortages and improves operating efficiency It is possible.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態におけるヒートポンプ給湯機の構成図を示すものである。
(Embodiment 1)
FIG. 1 shows a configuration diagram of a heat pump water heater in the first embodiment of the present invention.

図1において、冷媒回路10は、圧縮機11、放熱器12、減圧手段13、蒸発器14を順次接続して閉回路をなしている。この冷媒回路10は、例えば炭酸ガスを冷媒として使用し、高圧側の冷媒圧力が冷媒の臨界圧以上となる超臨界冷媒循環回路を使用している。また、前記蒸発器14は送風手段15を備えている。そして圧縮機11は、内蔵する電動モータ(図示しない)によって駆動され、吸引した冷媒を臨界圧力まで圧縮して吐出する。また、熱交換器16には放熱器12と熱交換を行う水流路17により構成される。この水流路17に水道水を直接供給する給水管18と、給湯水流路17から出湯される湯を第1混合手段19に通水する出湯管20が接続されている。   In FIG. 1, the refrigerant circuit 10 forms a closed circuit by sequentially connecting a compressor 11, a radiator 12, a decompression unit 13, and an evaporator 14. The refrigerant circuit 10 uses, for example, a supercritical refrigerant circuit in which carbon dioxide gas is used as a refrigerant and the high-pressure side refrigerant pressure is equal to or higher than the critical pressure of the refrigerant. The evaporator 14 is provided with a blowing means 15. The compressor 11 is driven by a built-in electric motor (not shown), and compresses and sucks the sucked refrigerant to a critical pressure. The heat exchanger 16 includes a water flow path 17 that performs heat exchange with the radiator 12. A water supply pipe 18 for directly supplying tap water to the water flow path 17 and a hot water discharge pipe 20 for passing hot water discharged from the hot water supply flow path 17 to the first mixing means 19 are connected.

なお、熱交換器16は、放熱器12の流れ方向と水流路17の流れ方向を対向流とし、各流路間を熱移動が容易になるように密着して構成している。この構成により放熱器12と水流路17の伝熱が均一化し、熱交換効率がよくなる。また、高温の出湯も可能になる。   Note that the heat exchanger 16 is configured so that the flow direction of the radiator 12 and the flow direction of the water flow path 17 are opposite flows, and the flow paths are in close contact so as to facilitate heat transfer. With this configuration, heat transfer between the radiator 12 and the water channel 17 is made uniform, and heat exchange efficiency is improved. In addition, hot water can be discharged.

貯湯槽21は、底部に給水管18から分岐した入口管22が接続され、給湯時に水道水が貯湯槽21底部に流入するように構成されている。また、貯湯槽21上部には貯湯槽21から出湯される湯を第1混合手段19に通水する出口管23が接続されている。さらに、貯湯槽21底部には貯湯槽21の水を熱交換器16に通水するための入水管24が接続されており、この入水管24には、貯湯槽21の水を給湯熱交換器16に送るための循環ポンプ25が備えられている。また、貯湯槽21上部に給湯熱交換器16で加熱された温水を供給する上部出湯管26が接続されている。また、給湯放熱器12と熱交換を行う給湯水流路17の出口側には給湯水流路17の出口水温を検出する出湯温度検出手段27が備えられている。   The hot water storage tank 21 is connected to an inlet pipe 22 branched from the water supply pipe 18 at the bottom, and is configured such that tap water flows into the bottom of the hot water storage tank 21 during hot water supply. In addition, an outlet pipe 23 is connected to the upper part of the hot water storage tank 21 to pass hot water discharged from the hot water storage tank 21 to the first mixing means 19. Further, a water inlet pipe 24 for passing the water in the hot water tank 21 to the heat exchanger 16 is connected to the bottom of the hot water tank 21, and the water in the hot water tank 21 is connected to the water inlet pipe 24 to the hot water supply heat exchanger. A circulation pump 25 for sending to 16 is provided. Further, an upper hot water discharge pipe 26 that supplies hot water heated by the hot water supply heat exchanger 16 is connected to the upper part of the hot water storage tank 21. A hot water temperature detecting means 27 for detecting the outlet water temperature of the hot water flow channel 17 is provided on the outlet side of the hot water flow channel 17 that exchanges heat with the hot water radiator 12.

なお、貯湯槽21の水を給湯熱交換器16に循環して加熱する際は、圧縮機11とポンプ25を駆動することにより、入水管24より給湯熱交換器16に流れた水は、給湯水流路17内で加熱されて出湯管20、出湯分岐管28上部出湯管26を経て貯湯槽21上部に戻る循環回路が構成される。また、出湯分岐管28には貯湯槽21の湯が出湯管20に流れないように逆止弁29を設けてある。   When the water in the hot water tank 21 is circulated to the hot water supply heat exchanger 16 and heated, the compressor 11 and the pump 25 are driven so that the water flowing from the inlet pipe 24 to the hot water heat exchanger 16 is heated. A circulation circuit is configured which is heated in the water flow path 17 and returns to the upper part of the hot water storage tank 21 through the hot water discharge pipe 20 and the hot water supply branch pipe 28 and the upper hot water discharge pipe 26. The hot water branch pipe 28 is provided with a check valve 29 so that hot water in the hot water storage tank 21 does not flow into the hot water pipe 20.

第1混合手段19は給湯熱交換器16からの水と貯湯槽21からの水を混合して混合出湯管30に出湯するもので、モーター(図示せず)駆動により混合割合を任意に設定できる。また、第2混合手段31は混合出湯管30からの湯と、給水管18から分岐した給水バイパス管32からの水道水を混合して給湯管33に出湯するもので、モーター(図示せず)駆動により混合割合を任意に設定できる。給湯管33は、シャワー(図示せず)や蛇口34等より成る給湯端末35に接続され、その途中に給湯管を流れる流量を検出する給湯流量検知手段36を設けている。   The first mixing means 19 mixes the water from the hot water supply heat exchanger 16 and the water from the hot water storage tank 21 and discharges the hot water to the mixed hot water pipe 30. The mixing ratio can be arbitrarily set by driving a motor (not shown). . The second mixing means 31 mixes hot water from the mixed hot water supply pipe 30 and tap water from the water supply bypass pipe 32 branched from the water supply pipe 18 and discharges the hot water to the hot water supply pipe 33. A motor (not shown) The mixing ratio can be arbitrarily set by driving. The hot water supply pipe 33 is connected to a hot water supply terminal 35 including a shower (not shown), a faucet 34, and the like, and provided with a hot water supply flow rate detecting means 36 for detecting the flow rate flowing through the hot water supply pipe.

また、外気温度を検出する外気温度検出手段37と給水管18に給湯流量を制御する流量制御装置38を設ける。さらに、圧縮機11の吐出圧力検出する吐出圧力検出手段39と吸入圧力を検出する吸入圧力検出手段40からの信号によって、圧縮機11の圧縮比を演算する演算手段41の演算結果を基に、制御手段42は圧縮機11の圧縮比を制御する。また、第1混合温度検出手段43と第2混合温度検出手段44とは、それぞれ、第1混合手段19、第2混合手段31での混合後の水温を検出するものである。   Further, an outside air temperature detecting means 37 for detecting the outside air temperature and a flow rate control device 38 for controlling the hot water supply flow rate are provided in the water supply pipe 18. Further, based on the calculation result of the calculation means 41 for calculating the compression ratio of the compressor 11 by the signals from the discharge pressure detection means 39 for detecting the discharge pressure of the compressor 11 and the suction pressure detection means 40 for detecting the suction pressure, The control means 42 controls the compression ratio of the compressor 11. The first mixing temperature detecting means 43 and the second mixing temperature detecting means 44 are for detecting the water temperature after mixing in the first mixing means 19 and the second mixing means 31, respectively.

以上のように構成されたヒートポンプ給湯機について、以下にその動作、作用を説明する。図1において、先ず、貯湯槽21に所定の温度の湯を貯める運転モードである貯湯運転について説明する。この場合、圧縮機11から吐出された臨界圧力以上の高温高圧の冷媒が放熱器12に流入し、ここで貯湯槽21の下部から循環ポンプ25によって送られてきた水と熱交換し放熱した後、減圧手段13で減圧し、さらに、蒸発器14で大気から熱を吸熱し、ガス化して圧縮機11に戻る。この時、放熱器12に流入する高温冷媒で熱交換器16の出口水温(出湯温度)が所定温度となるように循環ポンプ25の回転数を制御し、所定の温度の湯が上部出湯管26を通って、貯湯槽21の上部から流入し貯湯される。   About the heat pump water heater comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. In FIG. 1, first, a hot water storage operation that is an operation mode in which hot water of a predetermined temperature is stored in the hot water storage tank 21 will be described. In this case, the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the radiator 12 and exchanges heat with water sent from the lower part of the hot water tank 21 by the circulation pump 25 to dissipate heat. Then, the pressure is reduced by the pressure reducing means 13, and the evaporator 14 absorbs heat from the atmosphere, gasifies it, and returns to the compressor 11. At this time, the number of revolutions of the circulation pump 25 is controlled so that the outlet water temperature (hot water temperature) of the heat exchanger 16 becomes a predetermined temperature with the high-temperature refrigerant flowing into the radiator 12, and the hot water having the predetermined temperature flows into the upper tapping pipe 26. The hot water flows from the upper part of the hot water storage tank 21 and is stored.

次に、同時出湯運転について説明する。この運転モードはヒートポンプで加熱した給水管18から送られてきた湯と貯湯槽21の上部から送られてきた湯を混合して給湯に使用する運転である。すなわち、蛇口34等の給湯端末35が開かれ給湯負荷が生じると、圧縮機11から吐出された高温高圧の冷媒が放熱器12に流入し、ここで給水管18から送られてきた水と熱交換し放熱した後、減圧手段13で減圧し、さらに、蒸発器14で大気から熱を吸熱し、ガス化して圧縮機11に戻る。この時、放熱器12と熱交換して水流路17から出た湯は第1混合手段19の出湯管20側の流入口に流入し、また、貯湯槽21の上部の湯が第1混合手段19の出口管23側の流入口に流入する。このとき第1混合温度検出手段43の温度が第1の所定の混合温度になるように第1混合手段19の混合比率を調整する。そして、この2つの湯が混合して、第2混合手段31の混合出湯管30側の流入口に流入し、また、給水管18から送られてきた水は第2混合手段31のバイパス管32側の流入口に流入する。このとき第2混合温度検出手段44の温度が第2の所定の混合温度になるように第2混合手段31の混合比率を調整する。なお、この第2の所定の混合温度が給湯温度となる。   Next, the simultaneous hot water operation will be described. In this operation mode, the hot water sent from the water supply pipe 18 heated by the heat pump and the hot water sent from the upper part of the hot water storage tank 21 are mixed and used for hot water supply. That is, when the hot water supply terminal 35 such as the faucet 34 is opened and a hot water supply load is generated, the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the radiator 12, and the water and heat sent from the water supply pipe 18 here. After exchanging and radiating heat, the pressure is reduced by the pressure reducing means 13, and further, the evaporator 14 absorbs heat from the atmosphere, gasifies, and returns to the compressor 11. At this time, the hot water that has exchanged heat with the radiator 12 and has exited the water flow path 17 flows into the inlet of the first mixing means 19 on the side of the outlet pipe 20, and the hot water in the upper part of the hot water storage tank 21 is the first mixing means. 19 flows into the inlet on the outlet pipe 23 side. At this time, the mixing ratio of the first mixing means 19 is adjusted so that the temperature of the first mixing temperature detecting means 43 becomes the first predetermined mixing temperature. Then, the two hot waters are mixed and flow into the inlet of the second mixing means 31 on the side of the mixed outlet pipe 30, and the water sent from the water supply pipe 18 is the bypass pipe 32 of the second mixing means 31. Into the side inlet. At this time, the mixing ratio of the second mixing unit 31 is adjusted so that the temperature of the second mixing temperature detecting unit 44 becomes the second predetermined mixing temperature. The second predetermined mixing temperature is the hot water supply temperature.

次に、ヒートポンプ単独直接出湯運転について説明する。この運転モードはヒートポンプで加熱した給水管18から送られてきた湯を給湯に使用する運転である。すなわち、蛇口34等の給湯端末35が開かれ給湯負荷が生じと、第1混合手段19の出口管23側を全閉、出湯管20側を全開状態にする。そして、圧縮機11から吐出された高温高圧の冷媒が放熱器12に流入し、ここで給水管18から送られてきた水と熱交換し放熱した後、減圧手段13で減圧し、さらに、蒸発器14で大気から熱を吸熱し、ガス化して圧縮機11に戻る。この時、放熱器12と熱交換して水流路17から出た湯は第1混合手段19の出湯管20側の流入口に流入する。このとき第1混合手段19は出湯管20側に全開となっているので貯湯槽21とは混合せずに、第2混合手段31の混合出湯管30側の流入口に流入し、また、給水管18から送られてきた水は第2混合手段31のバイパス管32側の流入口に流入する。このとき第2混合温度検出手段44の温度が第2の所定の混合温度になるように第2混合手段31の混合比率を調整する。なお、この第2の所定の混合温度が給湯温度となる。   Next, the heat pump single direct hot water operation will be described. In this operation mode, hot water sent from the water supply pipe 18 heated by the heat pump is used for hot water supply. That is, when the hot water supply terminal 35 such as the faucet 34 is opened and a hot water supply load is generated, the outlet pipe 23 side of the first mixing means 19 is fully closed and the outlet pipe 20 side is fully opened. Then, the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the radiator 12 and exchanges heat with the water sent from the water supply pipe 18 to dissipate the heat. The container 14 absorbs heat from the atmosphere, gasifies it, and returns to the compressor 11. At this time, the hot water that has exchanged heat with the radiator 12 and has exited the water flow path 17 flows into the inlet of the first mixing means 19 on the side of the hot water pipe 20. At this time, since the first mixing means 19 is fully opened to the hot water outlet 20 side, it does not mix with the hot water storage tank 21 and flows into the inlet of the second hot water outlet 30 on the mixed hot water outlet 30 side. The water sent from the pipe 18 flows into the inlet of the second mixing means 31 on the bypass pipe 32 side. At this time, the mixing ratio of the second mixing unit 31 is adjusted so that the temperature of the second mixing temperature detecting unit 44 becomes the second predetermined mixing temperature. The second predetermined mixing temperature is the hot water supply temperature.

次に、転覆防止運転について説明する。上述貯湯運転モードの場合は、貯湯槽21の下部から循環ポンプ25によって送られてきた水が加熱された後の温度(出湯温度検出手段27が検出する温度で出湯温度)は、通常、65〜90℃程度である。また、同時出湯運転やヒートポンプ単独直接出湯運転の場合は、給水管18から送られてきた水が加熱された後の温度(熱交換器16の水側出口温度で出湯温度)は、通常、38〜45℃程度である。ところで、従来例のところで説明したように、吐出圧力を決定する一つの要因として、熱交換器16の水側出口温度(出湯温度)があり、水側出口温度(出湯温度)が低い方が低くなる。また、吸入圧力を決定する一つの要因として、外気温度があり、高い方が高くなる。従って、圧縮機11の圧縮比(吐出圧力に対する吸入圧力の比)は、貯湯運転の場合よりも同時出湯運転やヒートポンプ単独直接出湯運転の場合の方が小さくなる傾向にある。そこで、同時出湯運転やヒートポンプ単独直接出湯運転の場合に定期的に、演算手段41は、吐出圧力検出手段39と吸入圧力検出手段40から得た吐出圧力と吸入圧力とから圧縮機11の圧縮比を演算する。   Next, the overturning prevention operation will be described. In the case of the hot water storage operation mode, the temperature after the water sent from the lower part of the hot water tank 21 by the circulation pump 25 is heated (the temperature detected by the hot water temperature detecting means 27) is usually 65 to 65. It is about 90 ° C. In the case of simultaneous hot water operation or single heat pump operation, the temperature after the water sent from the water supply pipe 18 is heated (the hot water temperature at the water-side outlet temperature of the heat exchanger 16) is usually 38. It is about -45 degreeC. By the way, as explained in the conventional example, one factor for determining the discharge pressure is the water-side outlet temperature (hot water temperature) of the heat exchanger 16, and the lower the water-side outlet temperature (hot water temperature), the lower. Become. In addition, one factor that determines the suction pressure is the outside air temperature, and the higher one is higher. Therefore, the compression ratio of the compressor 11 (ratio of the suction pressure to the discharge pressure) tends to be smaller in the simultaneous hot water operation or the heat pump single direct hot water operation than in the hot water storage operation. Accordingly, in the case of simultaneous hot water operation or single heat pump operation of the heat pump, the calculation means 41 periodically calculates the compression ratio of the compressor 11 from the discharge pressure and the suction pressure obtained from the discharge pressure detection means 39 and the suction pressure detection means 40. Is calculated.

その結果、圧縮機11が転覆する可能性がある限界の圧縮比よりも小さければ、制御手段42は、熱交換器16の水側出口温度(出湯温度)を大きくするために、流量制御装置38を制御する。すなわち、流量制御装置38の絞りを大きくして熱交換器16の水流路17を流れる流量を少なくすれば、熱交換器16の水側出口温度(出湯温度)は上昇し、それにつれて、圧縮機11の吐出圧力も上昇するので、圧縮比は大きくなる。そして、圧縮機11の圧縮比が限界の圧縮比よりも大きくなるまで、このような制御を繰り返す。また演算の結果、限界の圧縮比よりも大きければ、制御手段42はそのままの運転状態を続ける。   As a result, if the compression ratio is smaller than the limit compression ratio at which the compressor 11 may be overturned, the control means 42 increases the water-side outlet temperature (hot water temperature) of the heat exchanger 16 to increase the flow rate control device 38. To control. That is, if the flow control device 38 is enlarged to reduce the flow rate flowing through the water flow path 17 of the heat exchanger 16, the water-side outlet temperature (hot water temperature) of the heat exchanger 16 increases, and the compressor is accordingly increased. 11 also increases, so the compression ratio increases. Such control is repeated until the compression ratio of the compressor 11 becomes larger than the limit compression ratio. If the result of the calculation is greater than the limit compression ratio, the control means 42 continues to operate as it is.

このように、圧縮機の圧縮比を制御する制御手段を備えた構成としているため、圧縮機の圧縮比を所定の圧縮比(転覆の可能性がある限界の圧縮比)以下にならないようにするので、圧縮機が転覆することがなく、湯切れの防止と運転効率の向上を図ることができる。   As described above, since the control means for controlling the compression ratio of the compressor is provided, the compression ratio of the compressor is prevented from being equal to or lower than a predetermined compression ratio (a compression ratio at which there is a possibility of rollover). Therefore, the compressor does not roll over, and it is possible to prevent the hot water from running out and improve the operation efficiency.

(実施の形態2)
図2は、本発明の第2の実施の形態におけるヒートポンプ給湯機の構成図を示すものであり、図3は同実施の形態におけるヒートポンプ給湯機の外気温度に対する圧縮比特性を示す説明図である。本実施の形態において、実施の形態1と異なる点は、吐出圧力検出手段39と吸入圧力検出手段40からの信号によって圧縮機11の圧縮比を演算する演算手段41を設ける代わりに、圧縮機11の外気温度に対する圧縮比を記憶した記憶手段45を設けた構成としていることである。なお、実施の形態1と同符号の部分は同一構成を有し、説明は省略する。
(Embodiment 2)
FIG. 2 shows a configuration diagram of a heat pump water heater in the second embodiment of the present invention, and FIG. 3 is an explanatory diagram showing compression ratio characteristics with respect to the outside air temperature of the heat pump water heater in the same embodiment. . The present embodiment is different from the first embodiment in that instead of providing a calculation means 41 for calculating the compression ratio of the compressor 11 by signals from the discharge pressure detection means 39 and the suction pressure detection means 40, the compressor 11 The storage means 45 that stores the compression ratio with respect to the outside air temperature is provided. In addition, the part of the same code | symbol as Embodiment 1 has the same structure, and description is abbreviate | omitted.

次に動作、作用について説明する。同時出湯運転やヒートポンプ単独直接出湯運転を行った場合について、熱交換器16の水側出口温度(出湯温度)をパラメータとして、外気温度に対する圧縮機11の圧縮比の特性を予め求めておく。図3がこの特性であり、横軸に外気温度をとり、縦軸に圧縮機11の圧縮比をとって、出湯温度をパラメータとして、外気温度の変化に対する圧縮比の変化特性を示したものである。なお、同図の一点鎖線は圧縮機11が転覆する可能性がある限界の圧縮比である。そして、この外気温度に対する圧縮比特性を記憶手段45に記憶させておく。   Next, the operation and action will be described. In the case of performing simultaneous hot water operation or single heat pump operation of the heat pump alone, the characteristics of the compression ratio of the compressor 11 with respect to the outside air temperature are obtained in advance using the water-side outlet temperature (hot water temperature) of the heat exchanger 16 as a parameter. FIG. 3 shows this characteristic. The abscissa represents the outside air temperature, the ordinate represents the compression ratio of the compressor 11, and the tapping temperature is used as a parameter to show the change characteristic of the compression ratio with respect to the outside air temperature. is there. In addition, the dashed-dotted line of the figure is the limit compression ratio which the compressor 11 may capsize. The compression ratio characteristic with respect to the outside air temperature is stored in the storage means 45.

同時出湯運転やヒートポンプ単独直接出湯運転を行う場合、制御手段42は外気温度検出手段37からの信号で外気温度を検出(例えば、図3のTa)する。外気温度Taの場合、出湯温度が41℃以下では転覆の可能性があり、42℃以上では転覆しない。そこで、制御手段42は出湯温度の設定温度を42℃以上の出湯温度に設定し、同時出湯運転やヒートポンプ単独直接出湯運転を行う。この場合、図3からわかるように、外気温度が高いほど出湯温度を高くなるように設定すればよい。   When performing simultaneous hot water supply operation or heat pump single direct hot water supply operation, the control means 42 detects the outside air temperature with a signal from the outside air temperature detection means 37 (for example, Ta in FIG. 3). In the case of the outside air temperature Ta, there is a possibility of rollover when the tapping temperature is 41 ° C. or lower, and it does not roll over when it is 42 ° C. or higher. Therefore, the control means 42 sets the set temperature of the tapping temperature to a tapping temperature of 42 ° C. or higher, and performs simultaneous tapping operation or heat pump single direct tapping operation. In this case, as can be seen from FIG. 3, the hot water temperature may be set higher as the outside air temperature is higher.

このように、外気温度に対して出湯温度の設定値を決定することによって圧縮機の圧縮比を制御する制御手段を備えた構成としているため、圧縮機の圧縮比を所定の圧縮比(転覆の可能性がある限界の圧縮比)以下にならないようにするので、圧縮機が転覆することがなく、湯切れの防止と運転効率の向上を図ることができる。   As described above, since the control means for controlling the compression ratio of the compressor is determined by determining the set value of the hot water temperature with respect to the outside air temperature, the compression ratio of the compressor is set to a predetermined compression ratio (overturning). Therefore, it is possible to prevent the hot water from running out and to improve the operation efficiency.

(実施の形態3)
図4は本発明の第3の実施の形態におけるヒートポンプ給湯機の構成図であり、図5は同実施の形態におけるヒートポンプ給湯機の入水温度に対する圧縮比特性を示す説明図である。本実施の形態において、実施の形態1と異なる点は、熱交換器16の水側入口温度である入水温度を検出する入水温度検出手段46を設け、吐出圧力検出手段39と吸入圧力検出手段40からの信号によって圧縮機11の圧縮比を演算する演算手段41を設ける代わりに、入水温度に対する圧縮機11の圧縮比を記憶した記憶手段45を設けた構成としていることである。なお、実施の形態1と同符号の部分は同一構成を有し、説明は省略する。
(Embodiment 3)
FIG. 4 is a configuration diagram of a heat pump water heater in the third embodiment of the present invention, and FIG. 5 is an explanatory diagram showing compression ratio characteristics with respect to the incoming water temperature of the heat pump water heater in the same embodiment. The present embodiment is different from the first embodiment in that an incoming water temperature detecting means 46 for detecting an incoming water temperature that is a water side inlet temperature of the heat exchanger 16 is provided, and a discharge pressure detecting means 39 and an intake pressure detecting means 40 are provided. Instead of providing the calculation means 41 for calculating the compression ratio of the compressor 11 based on the signal from, a storage means 45 for storing the compression ratio of the compressor 11 with respect to the incoming water temperature is provided. In addition, the part of the same code | symbol as Embodiment 1 has the same structure, and description is abbreviate | omitted.

次に動作、作用について説明する。同時出湯運転やヒートポンプ単独直接出湯運転を行った場合について、出湯温度をパラメータとして、入水温度に対する圧縮機11の圧縮比の特性を予め求めておく。図5がこの特性であり、横軸に入水温度をとり、縦軸に圧縮機11の圧縮比をとって、出湯温度をパラメータとして、入水温度の変化に対する圧縮比の変化特性を示したものである。なお、同図の一点鎖線は圧縮機11が転覆する可能性がある限界の圧縮比である。そして、この入水温度に対する圧縮比特性を記憶手段45に記憶させておく。同時出湯運転やヒートポンプ単独直接出湯運転を行う場合、制御手段42は入水温度検出手段46からの信号で入水温度を検出(例えば、図5のTw)する。   Next, the operation and action will be described. In the case of performing simultaneous hot water operation or single heat pump operation of the heat pump alone, the characteristic of the compression ratio of the compressor 11 with respect to the incoming water temperature is obtained in advance using the hot water temperature as a parameter. FIG. 5 shows this characteristic. The horizontal axis represents the incoming water temperature, the vertical axis represents the compression ratio of the compressor 11, and the hot water temperature as a parameter shows the change characteristic of the compression ratio with respect to the incoming water temperature. is there. In addition, the dashed-dotted line of the figure is the limit compression ratio which the compressor 11 may capsize. Then, the compression ratio characteristic with respect to the incoming water temperature is stored in the storage means 45. When performing simultaneous hot water supply operation or single heat pump operation of the heat pump alone, the control means 42 detects the incoming water temperature by a signal from the incoming water temperature detection means 46 (for example, Tw in FIG. 5).

入水温度Twの場合、出湯温度が41℃以下では転覆の可能性があり、42℃以上では転覆しない。そこで、制御手段42は出湯温度の設定温度を42℃以上の出湯温度に設定し、同時出湯運転やヒートポンプ単独直接出湯運転を行う。この場合、図5からわかるように、入水温度が低いほど出湯温度を高くなるように設定すればよい。   In the case of the incoming water temperature Tw, there is a possibility of rollover when the tapping temperature is 41 ° C. or lower, and it does not roll over when it is 42 ° C. or higher. Therefore, the control means 42 sets the set temperature of the tapping temperature to a tapping temperature of 42 ° C. or higher, and performs simultaneous tapping operation or heat pump single direct tapping operation. In this case, as can be seen from FIG. 5, the lower the incoming water temperature, the higher the hot water temperature may be set.

このように、入水温度に対して出湯温度の設定値を決定することによって、圧縮機の圧縮比を制御する制御手段を備えた構成としているため、圧縮機の圧縮比を所定の圧縮比(転覆の可能性がある限界の圧縮比)以下にならないようにするので、圧縮機が転覆することがなく、湯切れの防止と運転効率の向上を図ることができる。   Thus, since the control means for controlling the compression ratio of the compressor is provided by determining the set value of the hot water temperature with respect to the incoming water temperature, the compression ratio of the compressor is changed to a predetermined compression ratio (overturned). Therefore, it is possible to prevent the hot water from running out and to improve the operation efficiency.

(実施の形態4)
図6は、本発明の第4の実施の形態におけるヒートポンプ給湯機の構成図を示すものであり、図7は同実施の形態におけるヒートポンプ給湯機の外気温度に対する圧縮比特性を示す説明図である。本実施の形態において、実施の形態1と異なる点は、吐出圧力検出手段39と吸入圧力検出手段40からの信号によって圧縮機11の圧縮比を演算する演算手段41を設ける代わりに、外気温度と圧縮機11の回転数とに対する圧縮比を記憶した記憶手段45を設けた構成としていることである。なお、実施の形態1と同符号の部分は同一構成を有し、説明は省略する。
(Embodiment 4)
FIG. 6 shows a configuration diagram of a heat pump water heater in the fourth embodiment of the present invention, and FIG. 7 is an explanatory diagram showing compression ratio characteristics with respect to the outside air temperature of the heat pump water heater in the same embodiment. . In the present embodiment, the difference from the first embodiment is that instead of providing the calculation means 41 for calculating the compression ratio of the compressor 11 by the signals from the discharge pressure detection means 39 and the suction pressure detection means 40, the outside air temperature is changed. That is, the storage means 45 that stores the compression ratio with respect to the rotational speed of the compressor 11 is provided. In addition, the part of the same code | symbol as Embodiment 1 has the same structure, and abbreviate | omits description.

次に動作、作用について説明する。同時出湯運転やヒートポンプ単独直接出湯運転を行う場合について、圧縮機11の回転数をパラメータとして、外気温度に対する圧縮機11の圧縮比の特性を予め求めておく。図7がこの特性であり、横軸に外気温度をとり、縦軸に圧縮機11の圧縮比をとって、圧縮機11の回転数をパラメータとして、外気温度の変化に対する圧縮比の変化特性を示したものである。なお、同図の一点鎖線は圧縮機11が転覆する可能性がある限界の圧縮比である。そして、この外気温度に対する圧縮比特性を記憶手段45に記憶させておく。   Next, the operation and action will be described. In the case of performing simultaneous hot water supply operation or heat pump single direct hot water supply operation, the characteristic of the compression ratio of the compressor 11 with respect to the outside air temperature is obtained in advance using the rotation speed of the compressor 11 as a parameter. FIG. 7 shows this characteristic. The outside temperature is taken on the horizontal axis, the compression ratio of the compressor 11 is taken on the vertical axis, and the change ratio of the compression ratio with respect to the change in the outside air temperature is taken as a parameter. It is shown. In addition, the dashed-dotted line of the figure is the limit compression ratio which the compressor 11 may capsize. The compression ratio characteristic with respect to the outside air temperature is stored in the storage means 45.

同時出湯運転やヒートポンプ単独直接出湯運転を行う場合、制御手段42は外気温度検出手段37からの信号で外気温度を検出(例えば、図7のTa)する。外気温度Taの場合、圧縮機11の回転数が60Hz以下では転覆の可能性があり、70Hz以上では転覆しない。そこで、制御手段42は圧縮機11の回転数の設定回転数を70Hz以上の回転数に設定し、同時出湯運転やヒートポンプ単独直接出湯運転を行う。この場合、図7からわかるように、外気温度が高いほど回転数が高くなるように設定すればよい。   When performing simultaneous hot water supply operation or heat pump single direct hot water supply operation, the control means 42 detects the outside air temperature by a signal from the outside air temperature detection means 37 (for example, Ta in FIG. 7). In the case of the outside air temperature Ta, there is a possibility of rollover when the rotation speed of the compressor 11 is 60 Hz or less, and it does not rollover when it is 70 Hz or more. Therefore, the control means 42 sets the set rotation speed of the compressor 11 to a rotation speed of 70 Hz or more, and performs simultaneous hot water supply operation or heat pump single direct hot water discharge operation. In this case, as can be seen from FIG. 7, the higher the outside air temperature, the higher the rotation speed may be set.

このように、外気温度に対して圧縮機11の回転数の設定値を決定することによって圧縮機の圧縮比を制御する制御手段を備えた構成としているため、圧縮機の圧縮比を所定の圧縮比(転覆の可能性がある限界の圧縮比)以下にならないようにするので、圧縮機が転覆することがなく、湯切れの防止と運転効率の向上を図ることができる。   As described above, since the control means for controlling the compression ratio of the compressor by determining the set value of the rotational speed of the compressor 11 with respect to the outside air temperature is provided, the compression ratio of the compressor is set to a predetermined compression. Since the ratio does not become lower than the ratio (the compression ratio at which there is a possibility of rollover), the compressor does not roll over, and it is possible to prevent the hot water from running out and improve the operation efficiency.

(実施の形態5)
図8は、本発明の第5の実施の形態におけるヒートポンプ給湯機の構成図を示すものであり、図9は同実施の形態におけるヒートポンプ給湯機の入水温度に対する圧縮比特性を示す説明図である。本実施の形態において、実施の形態1と異なる点は、吐出圧力検出手段39と吸入圧力検出手段40からの信号によって圧縮機11の圧縮比を演算する演算手段41を設ける代わりに、入水温度と圧縮機11の回転数とに対する圧縮比を記憶した記憶手段45を設けた構成としていることである。なお、実施の形態1と同符号の部分は同一構成を有し、説明は省略する。
(Embodiment 5)
FIG. 8 shows a configuration diagram of a heat pump water heater in the fifth embodiment of the present invention, and FIG. 9 is an explanatory diagram showing compression ratio characteristics with respect to the incoming water temperature of the heat pump water heater in the same embodiment. . In the present embodiment, the difference from the first embodiment is that instead of providing a calculation means 41 for calculating the compression ratio of the compressor 11 by signals from the discharge pressure detection means 39 and the suction pressure detection means 40, the incoming water temperature and That is, the storage means 45 that stores the compression ratio with respect to the rotational speed of the compressor 11 is provided. In addition, the part of the same code | symbol as Embodiment 1 has the same structure, and abbreviate | omits description.

次に動作、作用について説明する。同時出湯運転やヒートポンプ単独直接出湯運転を行う場合について、圧縮機11の回転数をパラメータとして、入水温度に対する圧縮機11の圧縮比の特性を予め求めておく。図9がこの特性であり、横軸に入水温度をとり、縦軸に圧縮機11の圧縮比をとって、圧縮機11の回転数をパラメータとして、入水温度の変化に対する圧縮比の変化特性を示したものである。なお、同図の一点鎖線は圧縮機11が転覆する可能性がある限界の圧縮比である。そして、この入水温度に対する圧縮比特性を記憶手段45に記憶させておく。   Next, the operation and action will be described. In the case of performing simultaneous hot water supply operation or heat pump single direct hot water supply operation, the characteristic of the compression ratio of the compressor 11 with respect to the incoming water temperature is obtained in advance using the rotation speed of the compressor 11 as a parameter. FIG. 9 shows this characteristic. The horizontal axis represents the incoming water temperature, the vertical axis represents the compression ratio of the compressor 11, and the number of rotations of the compressor 11 is used as a parameter. It is shown. In addition, the dashed-dotted line of the figure is the limit compression ratio which the compressor 11 may capsize. Then, the compression ratio characteristic with respect to the incoming water temperature is stored in the storage means 45.

同時出湯運転やヒートポンプ単独直接出湯運転を行う場合、制御手段42は入水温度検出手段46からの信号で入水温度を検出(例えば、図9のTw)する。入水温度Twの場合、圧縮機11の回転数が60Hz以下では転覆の可能性があり、70Hz以上では転覆しない。そこで、制御手段42は圧縮機11の回転数の設定回転数を70Hz以上の回転数に設定し、同時出湯運転やヒートポンプ単独直接出湯運転を行う。この場合、図9からわかるように、入水温度が低いほど回転数が高くなるように設定すればよい。   When performing simultaneous hot water supply operation or heat pump single direct hot water supply operation, the control means 42 detects the incoming water temperature by a signal from the incoming water temperature detecting means 46 (for example, Tw in FIG. 9). In the case of the incoming water temperature Tw, there is a possibility of rollover when the rotation speed of the compressor 11 is 60 Hz or less, and it does not rollover when the rotation speed is 70 Hz or more. Therefore, the control means 42 sets the set rotation speed of the compressor 11 to a rotation speed of 70 Hz or more, and performs simultaneous hot water supply operation or heat pump single direct hot water discharge operation. In this case, as can be seen from FIG. 9, the lower the incoming water temperature, the higher the rotational speed may be set.

このように、入水温度に対して圧縮機11の回転数の設定値を決定することによって圧縮機の圧縮比を制御する制御手段を備えた構成としているため、圧縮機の圧縮比を所定の圧縮比(転覆の可能性がある限界の圧縮比)以下にならないようにするので、圧縮機が転覆することがなく、湯切れの防止と運転効率の向上を図ることができる。   Thus, since the control means for controlling the compression ratio of the compressor is determined by determining the set value of the rotational speed of the compressor 11 with respect to the incoming water temperature, the compression ratio of the compressor is set to a predetermined compression. Since the ratio does not become lower than the ratio (the compression ratio at which there is a possibility of rollover), the compressor does not roll over, and it is possible to prevent the hot water from running out and improve the operation efficiency.

(実施の形態6)
図10は、本発明の第6の実施の形態におけるヒートポンプ給湯機の構成図を示すものであり、図11は同実施の形態におけるヒートポンプ給湯機の外気温度に対する圧縮比特性を示す説明図である。本実施の形態において、実施の形態1と異なる点は、吐出圧力検出手段39と吸入圧力検出手段40からの信号によって圧縮機11の圧縮比を演算する演算手段41を設ける代わりに、外気温度と蒸発器14の風量に対する圧縮比を記憶した記憶手段45を設けた構成としていることである。なお、実施の形態1と同符号の部分は同一構成を有し、説明は省略する。
(Embodiment 6)
FIG. 10 shows a configuration diagram of a heat pump water heater in the sixth embodiment of the present invention, and FIG. 11 is an explanatory diagram showing compression ratio characteristics with respect to the outside air temperature of the heat pump water heater in the same embodiment. . In the present embodiment, the difference from the first embodiment is that instead of providing the calculation means 41 for calculating the compression ratio of the compressor 11 by the signals from the discharge pressure detection means 39 and the suction pressure detection means 40, the outside air temperature is changed. In other words, the storage means 45 that stores the compression ratio of the evaporator 14 to the air volume is provided. In addition, the part of the same code | symbol as Embodiment 1 has the same structure, and abbreviate | omits description.

次に動作、作用について説明する。同時出湯運転やヒートポンプ単独直接出湯運転を行う場合について、蒸発器14の風量をパラメータとして、外気温度に対する圧縮機11の圧縮比の特性を予め求めておく。図11がこの特性であり、横軸に外気温度をとり、縦軸に圧縮機11の圧縮比をとって、蒸発器14の風量をパラメータとして、外気温度の変化に対する圧縮比の変化特性を示したものである。なお、同図の一点鎖線は圧縮機11が転覆する可能性がある限界の圧縮比である。そして、この外気温度に対する圧縮比特性を記憶手段45に記憶させておく。   Next, the operation and action will be described. In the case of performing simultaneous hot water operation or heat pump single direct hot water operation, the characteristic of the compression ratio of the compressor 11 with respect to the outside air temperature is obtained in advance using the air volume of the evaporator 14 as a parameter. FIG. 11 shows this characteristic. The horizontal axis indicates the outside air temperature, the vertical axis indicates the compression ratio of the compressor 11, and the air volume of the evaporator 14 is used as a parameter, and the change characteristic of the compression ratio with respect to the change in the outside air temperature is shown. It is a thing. In addition, the dashed-dotted line of the figure is the limit compression ratio which the compressor 11 may capsize. The compression ratio characteristic with respect to the outside air temperature is stored in the storage means 45.

同時出湯運転やヒートポンプ単独直接出湯運転を行う場合、制御手段42は外気温度検出手段37からの信号で外気温度を検出(例えば、図11のTa)する。外気温度Taの場合、蒸発器14の風量が22m3/分以上では転覆の可能性があり、20m3/分以下では転覆しない。そこで、制御手段42は蒸発器14の風量の設定風量を20m3/分以下に設定し、同時出湯運転やヒートポンプ単独直接出湯運転を行う。この場合、図11からわかるように、外気温度が高いほど蒸発器14の風量が少なくなるように設定すればよい。   When performing simultaneous hot water supply operation or heat pump single direct hot water supply operation, the control means 42 detects the outside air temperature by a signal from the outside air temperature detection means 37 (for example, Ta in FIG. 11). In the case of the outside air temperature Ta, there is a possibility of rollover when the air volume of the evaporator 14 is 22 m3 / min or more, and it does not rollover when it is 20 m3 / min or less. Therefore, the control means 42 sets the set air volume of the evaporator 14 to 20 m 3 / min or less, and performs simultaneous hot water operation or single heat pump operation of the heat pump alone. In this case, as can be seen from FIG. 11, the higher the outside air temperature, the smaller the air volume of the evaporator 14 may be set.

このように、外気温度に対して蒸発器14の風量の設定値を決定することによって圧縮機の圧縮比を制御する制御手段を備えた構成としているため、圧縮機の圧縮比を所定の圧縮比(転覆の可能性がある限界の圧縮比)以下にならないようにするので、圧縮機が転覆することがなく、湯切れの防止と運転効率の向上を図ることができる。   As described above, since the control means for controlling the compression ratio of the compressor is determined by determining the set value of the air volume of the evaporator 14 with respect to the outside air temperature, the compression ratio of the compressor is set to a predetermined compression ratio. Since it does not become below (the limit compression ratio with the possibility of rollover), the compressor does not roll over, and it is possible to prevent the hot water from running out and improve the operation efficiency.

(実施の形態7)
図12は、本発明の第7の実施の形態におけるヒートポンプ給湯機の構成図を示すものであり、図13は同実施の形態におけるヒートポンプ給湯機の入水温度に対する圧縮比特性を示す説明図である。本実施の形態において、実施の形態1と異なる点は、吐出圧力検出手段39と吸入圧力検出手段40からの信号によって圧縮機11の圧縮比を演算する演算手段41を設ける代わりに、入水温度と蒸発器14の風量に対する圧縮比を記憶した記憶手段45を設けた構成としていることである。なお、実施の形態1と同符号の部分は同一構成を有し、説明は省略する。
(Embodiment 7)
FIG. 12 shows a configuration diagram of a heat pump water heater in the seventh embodiment of the present invention, and FIG. 13 is an explanatory diagram showing compression ratio characteristics with respect to the incoming water temperature of the heat pump water heater in the same embodiment. . In the present embodiment, the difference from the first embodiment is that instead of providing a calculation means 41 for calculating the compression ratio of the compressor 11 by signals from the discharge pressure detection means 39 and the suction pressure detection means 40, the incoming water temperature and In other words, the storage means 45 that stores the compression ratio of the evaporator 14 to the air volume is provided. In addition, the part of the same code | symbol as Embodiment 1 has the same structure, and abbreviate | omits description.

次に動作、作用について説明する。同時出湯運転やヒートポンプ単独直接出湯運転を行う場合について、蒸発器14の風量をパラメータとして、入水温度に対する圧縮機11の圧縮比の特性を予め求めておく。図13がこの特性であり、横軸に入水温度をとり、縦軸に圧縮機11の圧縮比をとって、蒸発器14の風量をパラメータとして、入水温度の変化に対する圧縮比の変化特性を示したものである。なお、同図の一点鎖線は圧縮機11が転覆する可能性がある限界の圧縮比である。そして、この入水温度に対する圧縮比特性を記憶手段45に記憶させておく。   Next, the operation and action will be described. In the case of performing simultaneous hot water operation or heat pump single direct hot water operation, the characteristic of the compression ratio of the compressor 11 with respect to the incoming water temperature is obtained in advance using the air volume of the evaporator 14 as a parameter. FIG. 13 shows this characteristic. The horizontal axis represents the incoming water temperature, the vertical axis represents the compression ratio of the compressor 11, and the air volume of the evaporator 14 is used as a parameter to show the change characteristic of the compression ratio with respect to the change of the incoming water temperature. It is a thing. In addition, the dashed-dotted line of the figure is the limit compression ratio which the compressor 11 may capsize. Then, the compression ratio characteristic with respect to the incoming water temperature is stored in the storage means 45.

同時出湯運転やヒートポンプ単独直接出湯運転を行う場合、制御手段42は入水温度検出手段46からの信号で入水温度を検出(例えば、図13のTw)する。入水温度Twの場合、蒸発器14の風量が22m3/分以上では転覆の可能性があり、20m3/分以下では転覆しない。そこで、制御手段42は蒸発器14の風量の設定風量を20m3/分以下に設定し、同時出湯運転やヒートポンプ単独直接出湯運転を行う。この場合、図13からわかるように、入水温度が低いほど蒸発器14の風量が少なくなるように設定すればよい。   When performing simultaneous hot water supply operation or heat pump single direct hot water supply operation, the control means 42 detects the incoming water temperature by a signal from the incoming water temperature detecting means 46 (for example, Tw in FIG. 13). In the case of the incoming water temperature Tw, there is a possibility of rollover when the air volume of the evaporator 14 is 22 m3 / min or more, and it does not capsize when it is 20 m3 / min or less. Therefore, the control means 42 sets the set air volume of the evaporator 14 to 20 m 3 / min or less, and performs simultaneous hot water operation or single heat pump operation of the heat pump alone. In this case, as can be seen from FIG. 13, the lower the incoming water temperature, the lower the air volume of the evaporator 14 may be set.

このように、入水温度に対して蒸発器14の風量の設定値を決定することによって圧縮機の圧縮比を制御する制御手段を備えた構成としているため、圧縮機の圧縮比を所定の圧縮比(転覆の可能性がある限界の圧縮比)以下にならないようにするので、圧縮機が転覆することがなく、湯切れの防止と運転効率の向上を図ることができる。   As described above, since the control means for controlling the compression ratio of the compressor is determined by determining the set value of the air flow rate of the evaporator 14 with respect to the incoming water temperature, the compression ratio of the compressor is set to a predetermined compression ratio. Since it does not become below (the limit compression ratio with the possibility of rollover), the compressor does not roll over, and it is possible to prevent the hot water from running out and improve the operation efficiency.

(実施の形態8)
図14は、本発明の第8の実施の形態におけるヒートポンプ給湯機の構成図を示すものであり、図15は同実施の形態におけるヒートポンプ給湯機の外気温度に対する圧縮比特性を示す説明図である。本実施の形態において、実施の形態1と異なる点は、吐出圧力検出手段39と吸入圧力検出手段40からの信号によって圧縮機11の圧縮比を演算する演算手段41を設ける代わりに、外気温度と減圧手段13の開度に対する圧縮比を記憶した記憶手段45を設けた構成としていることである。なお、実施の形態1と同符号の部分は同一構成を有し、説明は省略する。
(Embodiment 8)
FIG. 14 shows a configuration diagram of a heat pump water heater in the eighth embodiment of the present invention, and FIG. 15 is an explanatory diagram showing compression ratio characteristics with respect to the outside air temperature of the heat pump water heater in the same embodiment. . In the present embodiment, the difference from the first embodiment is that instead of providing the calculation means 41 for calculating the compression ratio of the compressor 11 by the signals from the discharge pressure detection means 39 and the suction pressure detection means 40, the outside air temperature is changed. That is, the storage means 45 that stores the compression ratio with respect to the opening degree of the decompression means 13 is provided. In addition, the part of the same code | symbol as Embodiment 1 has the same structure, and abbreviate | omits description.

次に動作、作用について説明する。同時出湯運転やヒートポンプ単独直接出湯運転を行う場合について、減圧手段13の開度をパラメータとして、外気温度に対する圧縮機11の圧縮比の特性を予め求めておく。図15がこの特性であり、横軸に外気温度をとり、縦軸に圧縮機11の圧縮比をとって、減圧手段13の開度をパラメータとして、外気温度の変化に対する圧縮比の変化特性を示したものである。なお、同図の一点鎖線は圧縮機11が転覆する可能性がある限界の圧縮比である。そして、この外気温度に対する圧縮比特性を記憶手段45に記憶させておく。   Next, the operation and action will be described. In the case of performing simultaneous hot water operation or heat pump single direct hot water operation, the characteristic of the compression ratio of the compressor 11 with respect to the outside air temperature is obtained in advance using the opening of the pressure reducing means 13 as a parameter. FIG. 15 shows this characteristic. The horizontal axis represents the outside air temperature, the vertical axis represents the compression ratio of the compressor 11, and the degree of opening of the decompression means 13 is used as a parameter. It is shown. In addition, the dashed-dotted line of the figure is the limit compression ratio which the compressor 11 may capsize. The compression ratio characteristic with respect to the outside air temperature is stored in the storage means 45.

同時出湯運転やヒートポンプ単独直接出湯運転を行う場合、制御手段42は外気温度検出手段37からの信号で外気温度を検出(例えば、図15のTa)する。外気温度Taの場合、減圧手段13の開度(減圧手段13の全開時の流路断面積に対する比率)が0.5以上では転覆の可能性があり、0.4以下では転覆しない。そこで、制御手段42は減圧手段13の開度の設定値を0.4以下に設定し、同時出湯運転やヒートポンプ単独直接出湯運転を行う。この場合、図15からわかるように、外気温度が高いほど減圧手段13の開度が小さくなるように設定すればよい。   When performing simultaneous hot water supply operation or heat pump single direct hot water supply operation, the control means 42 detects the outside air temperature by a signal from the outside air temperature detection means 37 (for example, Ta in FIG. 15). In the case of the outside air temperature Ta, there is a possibility of overturning when the opening degree of the decompression means 13 (ratio to the channel cross-sectional area when the decompression means 13 is fully opened) is 0.5 or more, and overturning is not possible when the opening temperature is 0.4 or less. Therefore, the control means 42 sets the set value of the opening of the pressure reducing means 13 to 0.4 or less, and performs simultaneous hot water supply operation or heat pump single direct hot water supply operation. In this case, as can be seen from FIG. 15, the opening degree of the decompression means 13 may be set to be smaller as the outside air temperature is higher.

このように、外気温度に対して減圧手段13の開度の設定値を決定することによって圧縮機の圧縮比を制御する制御手段を備えた構成としているため、圧縮機の圧縮比を所定の圧縮比(転覆の可能性がある限界の圧縮比)以下にならないようにするので、圧縮機が転覆することがなく、湯切れの防止と運転効率の向上を図ることができる。   Thus, since the control means for controlling the compression ratio of the compressor is determined by determining the set value of the opening degree of the decompression means 13 with respect to the outside air temperature, the compression ratio of the compressor is reduced to a predetermined compression. Since the ratio does not become lower than the ratio (the compression ratio at which there is a possibility of rollover), the compressor does not roll over, and it is possible to prevent the hot water from running out and improve the operation efficiency.

(実施の形態9)
図16は、本発明の第9の実施の形態におけるヒートポンプ給湯機の構成図を示すものであり、図17は同実施の形態におけるヒートポンプ給湯機の入水温度に対する圧縮比特性を示す説明図である。本実施の形態において、実施の形態1と異なる点は、吐出圧力検出手段39と吸入圧力検出手段40からの信号によって圧縮機11の圧縮比を演算する演算手段41を設ける代わりに、入水温度と減圧手段13の開度に対する圧縮比を記憶した記憶手段45を設けた構成としていることである。なお、実施の形態1と同符号の部分は同一構成を有し、説明は省略する。
(Embodiment 9)
FIG. 16 shows a configuration diagram of the heat pump water heater in the ninth embodiment of the present invention, and FIG. 17 is an explanatory diagram showing compression ratio characteristics with respect to the incoming water temperature of the heat pump water heater in the same embodiment. . In the present embodiment, the difference from the first embodiment is that instead of providing a calculation means 41 for calculating the compression ratio of the compressor 11 by signals from the discharge pressure detection means 39 and the suction pressure detection means 40, the incoming water temperature and That is, the storage means 45 that stores the compression ratio with respect to the opening degree of the decompression means 13 is provided. In addition, the part of the same code | symbol as Embodiment 1 has the same structure, and abbreviate | omits description.

次に動作、作用について説明する。同時出湯運転やヒートポンプ単独直接出湯運転を行った場合について、減圧手段13の開度をパラメータとして、入水温度に対する圧縮機11の圧縮比の特性を予め求めておく。図17がこの特性であり、横軸に入水温度をとり、縦軸に圧縮機11の圧縮比をとって、減圧手段13の開度をパラメータとして、入水温度の変化に対する圧縮比の変化特性を示したものである。なお、同図の一点鎖線は圧縮機11が転覆する可能性がある限界の圧縮比である。そして、この入水温度に対する圧縮比特性を記憶手段45に記憶させておく。   Next, the operation and action will be described. When the simultaneous hot water supply operation or the heat pump single direct hot water operation is performed, the compression ratio characteristic of the compressor 11 with respect to the incoming water temperature is obtained in advance using the opening of the pressure reducing means 13 as a parameter. FIG. 17 shows this characteristic. The horizontal axis represents the incoming water temperature, the vertical axis represents the compression ratio of the compressor 11, and the opening ratio of the decompression means 13 is used as a parameter. It is shown. In addition, the dashed-dotted line of the figure is the limit compression ratio which the compressor 11 may capsize. Then, the compression ratio characteristic with respect to the incoming water temperature is stored in the storage means 45.

同時出湯運転やヒートポンプ単独直接出湯運転を行う場合、制御手段42は入水温度検出手段46からの信号で入水温度を検出(例えば、図17のTw)する。入水温度Twの場合、減圧手段13の開度(減圧手段13の全開時の流路断面積に対する比率)が0.5以上では転覆の可能性があり、0.4以下では転覆しない。そこで、制御手段42は減圧手段13の開度の設定値を0.4以下に設定し、同時出湯運転やヒートポンプ単独直接出湯運転を行う。この場合、図17からわかるように、入水温度が低いほど減圧手段13の開度が小さくなるように設定すればよい。   When performing simultaneous hot water supply operation or heat pump single direct hot water supply operation, the control means 42 detects the incoming water temperature by a signal from the incoming water temperature detecting means 46 (for example, Tw in FIG. 17). In the case of the incoming water temperature Tw, there is a possibility of overturning when the opening degree of the decompression means 13 (ratio to the channel cross-sectional area when the decompression means 13 is fully opened) is 0.5 or more, and overturning is not possible when it is 0.4 or less. Therefore, the control means 42 sets the set value of the opening of the pressure reducing means 13 to 0.4 or less, and performs simultaneous hot water supply operation or heat pump single direct hot water supply operation. In this case, as can be seen from FIG. 17, the opening of the decompression means 13 may be set to be smaller as the incoming water temperature is lower.

このように、入水温度に対して減圧手段13の開度の設定値を決定することによって圧縮機の圧縮比を制御する制御手段を備えた構成としているため、圧縮機の圧縮比を所定の圧縮比(転覆の可能性がある限界の圧縮比)以下にならないようにするので、圧縮機が転覆することがなく、湯切れの防止と運転効率の向上を図ることができる。   Thus, since the control means for controlling the compression ratio of the compressor is determined by determining the set value of the opening degree of the pressure reducing means 13 with respect to the incoming water temperature, the compression ratio of the compressor is reduced to a predetermined compression. Since the ratio does not become lower than the ratio (the compression ratio at which there is a possibility of rollover), the compressor does not roll over, and it is possible to prevent the hot water from running out and improve the operation efficiency.

(実施の形態10)
図18は、本発明の第10の実施の形態におけるヒートポンプ給湯機の構成図を示すものであり、図19は同実施の形態におけるヒートポンプ給湯機の外気温度と入水温度に対する圧縮比特性を示す説明図である。本実施の形態において、外気温度と入水温度とに対する圧縮比を記憶した記憶手段45を設けた構成としていることである。なお、前述の実施の形態と同符号の部分は同一構成を有し、説明は省略する。
(Embodiment 10)
FIG. 18 shows a configuration diagram of the heat pump water heater in the tenth embodiment of the present invention, and FIG. 19 shows the compression ratio characteristics with respect to the outside air temperature and the incoming water temperature of the heat pump water heater in the same embodiment. FIG. In this Embodiment, it is set as the structure which provided the memory | storage means 45 which memorize | stored the compression ratio with respect to outside temperature and incoming water temperature. In addition, the part of the same code | symbol as above-mentioned embodiment has the same structure, and abbreviate | omits description.

次に動作、作用について説明する。上述したように、圧縮機11の圧縮比は、出湯温度に大きく影響されるので、運転モードについて影響をうける。すなわち、貯湯運転の場合の出湯温度は、通常、65〜90℃程度であり、また、同時出湯運転やヒートポンプ単独直接出湯運転の場合の出湯温度は、通常、38〜45℃程度である。従って、貯湯運転の場合よりも同時出湯運転やヒートポンプ単独直接出湯運転の場合の方が、圧縮機11の圧縮比は小さくなる傾向にある。   Next, the operation and action will be described. As described above, since the compression ratio of the compressor 11 is greatly affected by the tapping temperature, the operation mode is affected. That is, the temperature of the hot water in the hot water storage operation is usually about 65 to 90 ° C., and the temperature of the hot water in the simultaneous hot water operation or the direct hot pump operation of the heat pump is usually about 38 to 45 ° C. Therefore, the compression ratio of the compressor 11 tends to be smaller in the case of the simultaneous hot water operation or the heat pump single direct hot water operation than in the case of the hot water storage operation.

さらに、圧縮比に影響を及ぼす要因として、外気温度と入水温度とがあり、外気温度がより高く入水温度がより低い場合に圧縮比がより小さくなる傾向にある。そこで、外気温度と入水温度とからそのときの圧縮比を推定し、圧縮機11が転覆する可能性がある限界の圧縮比よりも小さい圧縮比になる場合には、同時出湯運転やヒートポンプ単独直接出湯運転から貯湯運転に運転モードを変更すればよい。図19にこの外気温度と入水温度と圧縮比の関係を示す。そして、この関係を予め求めておいて記憶手段45に記憶させておく。   Furthermore, factors affecting the compression ratio include the outside air temperature and the incoming water temperature. When the outdoor air temperature is higher and the incoming water temperature is lower, the compression ratio tends to be smaller. Therefore, the compression ratio at that time is estimated from the outside air temperature and the incoming water temperature, and when the compression ratio becomes smaller than the limit compression ratio that the compressor 11 may overturn, the simultaneous hot water operation or the heat pump alone directly The operation mode may be changed from the hot water operation to the hot water storage operation. FIG. 19 shows the relationship between the outside air temperature, the incoming water temperature, and the compression ratio. Then, this relationship is obtained in advance and stored in the storage means 45.

同時出湯運転の場合には、蛇口34等の給湯端末35が開かれ給湯負荷が生じると、圧縮機11から吐出された高温高圧の冷媒が放熱器12に流入し、ここで給水管18から送られてきた水と熱交換し放熱した後、減圧手段13で減圧し、さらに、蒸発器14で大気から熱を吸熱し、ガス化して圧縮機11に戻る。この時、出湯温度検出手段27の温度が、例えば、42℃になるように流量制御装置38は給水管18から入ってくる流量を調整する。第1混合弁19において、この42℃の湯は貯湯槽21上部の湯と混合し、さらに、第2混合弁31で給水管18からの水と混合し、所定の給湯温度になって蛇口34から給湯される。   In the case of simultaneous hot water operation, when a hot water supply terminal 35 such as the faucet 34 is opened and a hot water supply load is generated, the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the radiator 12, where it is sent from the water supply pipe 18. After exchanging heat with the generated water and dissipating heat, the pressure is reduced by the pressure reducing means 13, and further, the evaporator 14 absorbs heat from the atmosphere, gasifies it, and returns to the compressor 11. At this time, the flow rate control device 38 adjusts the flow rate coming from the water supply pipe 18 so that the temperature of the hot water temperature detection means 27 becomes 42 ° C., for example. In the first mixing valve 19, this 42 ° C. hot water is mixed with the hot water in the upper part of the hot water storage tank 21, and further mixed with the water from the water supply pipe 18 in the second mixing valve 31, reaching a predetermined hot water supply temperature and the faucet 34. Hot water is supplied from.

いま、外気温度と入水温度と圧縮比との関係を記憶している記憶手段45を用いて、制御手段42は、外気温度検出手段37と入水温度検出手段46から得られた外気温度と入水温度とから圧縮機11の圧縮比を推定する。この推定した圧縮比が図19の点a(限界の圧縮比よりも小さい場合)の場合には、圧縮機11が転覆する可能性があるので、運転値モードを同時出湯運転から貯湯運転に変更する。すなわち、制御手段42は、出湯温度検出手段27の温度が所定の出湯温度になるように、循環ポンプ25を駆動する。そして、循環ポンプ25によって貯湯槽21下部から送られてきて、所定の出湯温度に加熱された湯は貯湯槽21の上部から貯湯されていく。これと同時に、貯湯槽21の上部の湯は、出口管23、第1混合弁19を通り、第2混合弁31で給水管18からの水と混合し、所定の給湯温度になって蛇口34から給湯される。逆に、上述の推定した圧縮比が図19の点b(限界の圧縮比よりも大きい場合)の場合には、圧縮機11が転覆する可能性がないので、そのまま同時出湯運転を続ける。   Now, using the storage means 45 that stores the relationship between the outside air temperature, the incoming water temperature, and the compression ratio, the control means 42 uses the outside air temperature detecting means 37 and the incoming water temperature detecting means 46 to obtain the outside air temperature and the incoming water temperature. From these, the compression ratio of the compressor 11 is estimated. When the estimated compression ratio is point a in FIG. 19 (when the compression ratio is smaller than the limit compression ratio), the compressor 11 may overturn, so the operation value mode is changed from the simultaneous hot water operation to the hot water storage operation. To do. That is, the control means 42 drives the circulation pump 25 so that the temperature of the hot water temperature detection means 27 becomes a predetermined hot water temperature. Then, the hot water sent from the lower part of the hot water storage tank 21 by the circulation pump 25 and heated to a predetermined hot water temperature is stored from the upper part of the hot water storage tank 21. At the same time, the hot water in the upper part of the hot water storage tank 21 passes through the outlet pipe 23 and the first mixing valve 19 and is mixed with the water from the water supply pipe 18 by the second mixing valve 31 to reach a predetermined hot water supply temperature. Hot water is supplied from. Conversely, when the estimated compression ratio is the point b in FIG. 19 (when the compression ratio is larger than the limit compression ratio), there is no possibility that the compressor 11 will capsize, so the simultaneous hot water supply operation is continued as it is.

ヒートポンプ単独直接出湯運転の場合には、蛇口34等の給湯端末35が開かれ給湯負荷が生じると、圧縮機11から吐出された高温高圧の冷媒が放熱器12に流入し、ここで給水管18から送られてきた水と熱交換し放熱した後、減圧手段13で減圧し、さらに、蒸発器14で大気から熱を吸熱し、ガス化して圧縮機11に戻る。この時、出湯温度検出手段27の温度が、例えば、42℃になるように流量制御装置38は給水管18から入ってくる流量を調整する。この42℃の湯は(第1混合弁19において貯湯槽21上部の湯と混合せずに)第2混合弁31で給水管18からの水と混合し、所定の給湯温度になって蛇口34から給湯される。いま、外気温度と入水温度と圧縮比との関係を記憶している記憶手段45を用いて、制御手段42は、外気温度検出手段37と入水温度検出手段46から得られた外気温度と入水温度とから圧縮機11の圧縮比を推定する。この推定した圧縮比が図19の点a(限界の圧縮比よりも小さい場合)の場合には、圧縮機11が転覆する可能性があるので、運転値モードをヒートポンプ単独直接出湯運転から貯湯運転に変更する。すなわち、制御手段42は、出湯温度検出手段27の温度が所定の出湯温度になるように、循環ポンプ25を駆動する。そして、循環ポンプ25によって貯湯槽21下部から送られてきて、所定の出湯温度に加熱された湯は貯湯槽21の上部から貯湯されていく。これと同時に、貯湯槽21の上部の湯は、出口管23、第1混合弁19を通り、第2混合弁31で給水管18からの水と混合し、所定の給湯温度になって蛇口34から給湯される。逆に、上述の推定した圧縮比が図19の点b(限界の圧縮比よりも大きい場合)の場合には、圧縮機11が転覆する可能性がないので、そのままヒートポンプ単独直接出湯運転を続ける。   In the case of the heat pump single direct hot water supply operation, when the hot water supply terminal 35 such as the faucet 34 is opened and a hot water supply load is generated, the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the radiator 12, where the water supply pipe 18 The heat is exchanged with the water sent from the heat source to dissipate the heat, and then the pressure is reduced by the pressure reducing means 13. Further, the evaporator 14 absorbs heat from the atmosphere, gasifies, and returns to the compressor 11. At this time, the flow rate control device 38 adjusts the flow rate coming from the water supply pipe 18 so that the temperature of the hot water temperature detection means 27 becomes 42 ° C., for example. The 42 ° C. hot water is mixed with the water from the water supply pipe 18 by the second mixing valve 31 (without being mixed with the hot water in the upper part of the hot water storage tank 21 in the first mixing valve 19), reaches the predetermined hot water supply temperature, and the faucet 34. Hot water is supplied from. Now, using the storage means 45 that stores the relationship between the outside air temperature, the incoming water temperature, and the compression ratio, the control means 42 uses the outside air temperature detecting means 37 and the incoming water temperature detecting means 46 to obtain the outside air temperature and the incoming water temperature. From these, the compression ratio of the compressor 11 is estimated. When the estimated compression ratio is a point a in FIG. 19 (when the compression ratio is smaller than the limit compression ratio), the compressor 11 may be overturned, so that the operation value mode is changed from the heat pump single direct hot water discharge operation to the hot water storage operation. Change to That is, the control means 42 drives the circulation pump 25 so that the temperature of the tapping temperature detecting means 27 becomes a predetermined tapping temperature. Then, the hot water sent from the lower part of the hot water storage tank 21 by the circulation pump 25 and heated to a predetermined hot water temperature is stored from the upper part of the hot water storage tank 21. At the same time, the hot water in the upper part of the hot water storage tank 21 passes through the outlet pipe 23 and the first mixing valve 19 and is mixed with the water from the water supply pipe 18 by the second mixing valve 31 to reach a predetermined hot water supply temperature. Hot water is supplied from. Conversely, when the estimated compression ratio is the point b in FIG. 19 (when it is larger than the limit compression ratio), there is no possibility that the compressor 11 will capsize, so the heat pump single direct hot water operation is continued as it is. .

このように、外気温度と入水温度とに応じて、熱交換器からの湯を直接給湯管に通して給湯を行う運転から貯湯槽に貯湯する運転に切り換える制御手段を備えた構成としているため、外気温度と入水温度とに応じて運転モードを切り換えるので、湯切れの防止と運転効率の向上を図ることができる。   Thus, according to the outside air temperature and the incoming water temperature, because it is configured to include a control means for switching from the operation of supplying hot water directly through the hot water supply pipe through the hot water supply pipe to the operation of storing hot water in the hot water tank, Since the operation mode is switched according to the outside air temperature and the incoming water temperature, it is possible to prevent the hot water from running out and improve the operation efficiency.

なお、本実施の形態では外気温度と入水温度とに応じて運転モードを切り換える形態を取り上げたが、実施の形態1から実施の形態9で述べたように外気温度、出湯温度、入水温度、圧縮機の回転数、送風手段の風量、減圧手段の開度等の値に応じて圧縮機の転覆する可能性を図り、運転モードを切り換えるようにしてもよい。   In the present embodiment, the operation mode is switched according to the outside air temperature and the incoming water temperature. However, as described in the first to ninth embodiments, the outside air temperature, the tapping temperature, the incoming water temperature, the compression The operation mode may be switched in accordance with the possibility of the compressor overturning in accordance with values such as the number of rotations of the machine, the air volume of the blowing means, and the opening degree of the decompression means.

以上のように、本発明にかかるヒートポンプ給湯機は、圧縮機の圧縮比が所定の圧縮比以下にならないように圧縮機の圧縮比を制御する構成としているため、湯切れの可能性を少なくして快適性と利便性の向上を図り、かつ、運転効率の向上を図ることができるので、高効率で信頼性の高いヒートポンプ給湯機の用途に適用できる。   As described above, since the heat pump water heater according to the present invention is configured to control the compression ratio of the compressor so that the compression ratio of the compressor does not become a predetermined compression ratio or less, the possibility of running out of hot water is reduced. Therefore, it is possible to improve the comfort and convenience, and to improve the operation efficiency. Therefore, it can be applied to the use of a highly efficient and highly reliable heat pump water heater.

本発明の第1の実施の形態におけるヒートポンプ給湯機の構成図The block diagram of the heat pump water heater in the 1st Embodiment of this invention 本発明の第2の実施の形態におけるヒートポンプ給湯機の構成図The block diagram of the heat pump water heater in the 2nd Embodiment of this invention 同実施の形態におけるヒートポンプ給湯機の外気温度に対する圧縮比特性を示す説明図Explanatory drawing which shows the compression ratio characteristic with respect to the external temperature of the heat pump water heater in the embodiment 本発明の第3の実施の形態におけるヒートポンプ給湯機の構成図The block diagram of the heat pump water heater in the 3rd Embodiment of this invention 同実施の形態におけるヒートポンプ給湯機の入水温度に対する圧縮比特性を示す説明図Explanatory drawing which shows the compression ratio characteristic with respect to the incoming water temperature of the heat pump water heater in the same embodiment 本発明の第4の実施の形態におけるヒートポンプ給湯機の構成図The block diagram of the heat pump water heater in the 4th Embodiment of this invention 同実施の形態におけるヒートポンプ給湯機の外気温度に対する圧縮比特性を示す説明図Explanatory drawing which shows the compression ratio characteristic with respect to the external temperature of the heat pump water heater in the embodiment 本発明の第5の実施の形態におけるヒートポンプ給湯機の構成図The block diagram of the heat pump water heater in the 5th Embodiment of this invention 同実施の形態におけるヒートポンプ給湯機の入水温度に対する圧縮比特性を示す説明図Explanatory drawing which shows the compression ratio characteristic with respect to the incoming water temperature of the heat pump water heater in the same embodiment 本発明の第6の実施の形態におけるヒートポンプ給湯機の構成図The block diagram of the heat pump water heater in the 6th Embodiment of this invention 同実施の形態におけるヒートポンプ給湯機の外気温度に対する圧縮比特性を示す説明図Explanatory drawing which shows the compression ratio characteristic with respect to the external temperature of the heat pump water heater in the embodiment 本発明の第7の実施の形態におけるヒートポンプ給湯機の構成図The block diagram of the heat pump water heater in the 7th Embodiment of this invention 同実施の形態におけるヒートポンプ給湯機の入水温度に対する圧縮比特性を示す説明図Explanatory drawing which shows the compression ratio characteristic with respect to the incoming water temperature of the heat pump water heater in the same embodiment 本発明の第8の実施の形態におけるヒートポンプ給湯機の構成図The block diagram of the heat pump water heater in the 8th Embodiment of this invention 同実施の形態におけるヒートポンプ給湯機の外気温度に対する圧縮比特性を示す説明図Explanatory drawing which shows the compression ratio characteristic with respect to the external temperature of the heat pump water heater in the embodiment 本発明の第9の実施の形態におけるヒートポンプ給湯機の構成図The block diagram of the heat pump water heater in the 9th Embodiment of this invention 同実施の形態におけるヒートポンプ給湯機の入水温度に対する圧縮比特性を示す説明図Explanatory drawing which shows the compression ratio characteristic with respect to the incoming water temperature of the heat pump water heater in the same embodiment 本発明の第10の実施の形態におけるヒートポンプ給湯機の構成図The block diagram of the heat pump water heater in the 10th Embodiment of this invention 同実施の形態におけるヒートポンプ給湯機の外気温度と入水温度に対する圧縮比特性を示す説明図Explanatory drawing which shows the compression ratio characteristic with respect to the external temperature and incoming water temperature of the heat pump water heater in the embodiment

符号の説明Explanation of symbols

10 冷媒回路
11 圧縮機
12 放熱器
13 減圧手段
14 蒸発器
15 送風手段
16 熱交換器
17 水流路
18 給水管
21 貯湯槽
42 制御手段
DESCRIPTION OF SYMBOLS 10 Refrigerant circuit 11 Compressor 12 Radiator 13 Pressure reducing means 14 Evaporator 15 Blower means 16 Heat exchanger 17 Water flow path 18 Water supply pipe 21 Hot water storage tank 42 Control means

Claims (10)

圧縮機と放熱器と減圧手段と送風手段を備えた蒸発器とを含む冷媒回路と、前記放熱器と熱交換を行う水流路を備えた熱交換器と、貯湯槽と、給水管と、前記熱交換器からの湯と前記貯湯槽からの湯と前記給水管からの水を混合して給湯するヒートポンプ給湯機であって、前記冷媒回路で加熱された前記熱交換器からの湯を給湯利用する場合に、前記圧縮機の圧縮比が所定の圧縮比以下にならないように圧縮機の圧縮比を制御する制御手段を備えたことを特徴とするヒートポンプ給湯機。 A refrigerant circuit including a compressor, a radiator, a decompressor, and an evaporator provided with a blower; a heat exchanger including a water flow path for exchanging heat with the radiator; a hot water storage tank; a water supply pipe; A heat pump water heater that mixes and supplies hot water from a heat exchanger, hot water from the hot water storage tank, and water from the water supply pipe, and uses hot water from the heat exchanger heated by the refrigerant circuit. In this case, the heat pump water heater is provided with control means for controlling the compression ratio of the compressor so that the compression ratio of the compressor does not become a predetermined compression ratio or less. 外気温度を検出する外気温度検出手段を設け、前記外気温度検出手段から得られた外気温度が高いほど、熱交換器出口の温水の設定温度を高くするように制御する制御手段を備えた請求項1記載のヒートポンプ給湯機。 An outside air temperature detecting means for detecting an outside air temperature is provided, and control means is provided for controlling so that the set temperature of the hot water at the outlet of the heat exchanger is increased as the outside air temperature obtained from the outside air temperature detecting means is higher. The heat pump water heater according to 1. 熱交換器入口の水温を検出する入水温度検出手段を設け、前記入水温度検出手段から得られた入水温度が低いほど、熱交換器出口の温水の設定温度を高くするように制御する制御手段を備えた請求項1記載のヒートポンプ給湯機。 Control means for providing an incoming water temperature detecting means for detecting the water temperature at the heat exchanger inlet, and controlling the set temperature of the hot water at the outlet of the heat exchanger to be higher as the incoming water temperature obtained from the incoming water temperature detecting means is lower The heat pump water heater according to claim 1, comprising: 外気温度を検出する外気温度検出手段を設け、前記外気温度検出手段から得られた外気温度が高いほど、圧縮機の回転数を大きくして能力を増加させることによって圧縮比を大きくするように制御する制御手段を備えた請求項1記載のヒートポンプ給湯機。 An outside air temperature detecting means for detecting the outside air temperature is provided, and the higher the outside air temperature obtained from the outside air temperature detecting means is, the higher the compressor speed is increased and the capacity is increased to increase the compression ratio. The heat pump water heater of Claim 1 provided with the control means to do. 熱交換器入口の水温を検出する入水温度検出手段を設け、前記入水温度検出手段から得られた入水温度が低いほど、圧縮機の回転数を大きくして能力を増加させることによって圧縮比を大きくするように制御する制御手段を備えた請求項1記載のヒートポンプ給湯機。 An inlet water temperature detecting means for detecting the water temperature at the inlet of the heat exchanger is provided, and the lower the incoming water temperature obtained from the incoming water temperature detecting means, the higher the capacity by increasing the number of rotations of the compressor to increase the compression ratio. The heat pump water heater according to claim 1, further comprising control means for controlling the size to be increased. 外気温度を検出する外気温度検出手段を設け、前記外気温度検出手段から得られた外気温度が高くなれば、蒸発器に備えられた送風手段の風量を小さくすることによって圧縮比を大きくするように制御する制御手段を備えた請求項1記載のヒートポンプ給湯機。 An outside air temperature detecting means for detecting the outside air temperature is provided, and if the outside air temperature obtained from the outside air temperature detecting means increases, the air flow rate of the air blowing means provided in the evaporator is reduced to increase the compression ratio. The heat pump water heater according to claim 1, further comprising control means for controlling. 熱交換器入口の水温を検出する入水温度検出手段を設け、前記入水温度検出手段から得られた入水温度が低いほど、蒸発器に備えられた送風手段の風量を小さくすることによって圧縮比を大きくするように制御する制御手段を備えた請求項1記載のヒートポンプ給湯機。 Incoming water temperature detecting means for detecting the water temperature at the inlet of the heat exchanger is provided, and the lower the incoming water temperature obtained from the incoming water temperature detecting means, the smaller the air volume of the air blowing means provided in the evaporator, thereby reducing the compression ratio. The heat pump water heater according to claim 1, further comprising control means for controlling the size to be increased. 外気温度を検出する外気温度検出手段を設け、前記外気温度検出手段から得られた外気温度が高いほど、減圧手段の開度を小さくなるように前記減圧手段を制御する制御手段を備えた請求項1記載のヒートポンプ給湯機。 An outside air temperature detecting means for detecting an outside air temperature is provided, and control means for controlling the decompression means so that the opening degree of the decompression means becomes smaller as the outside air temperature obtained from the outside air temperature detection means is higher. The heat pump water heater according to 1. 熱交換器入口の水温を検出する入水温度検出手段を設け、前記入水温度検出手段から得られた入水温度が低いほど減圧手段の開度を小さくするように前記減圧手段を制御する制御手段を備えた請求項1記載のヒートポンプ給湯機。 Provided is a water inlet temperature detecting means for detecting the water temperature at the inlet of the heat exchanger, and a control means for controlling the pressure reducing means so that the degree of opening of the pressure reducing means is reduced as the incoming water temperature obtained from the water inlet temperature detecting means is lower. The heat pump water heater according to claim 1 provided. 圧縮機と放熱器と減圧手段と送風手段を備えた蒸発器とを含む冷媒回路と、前記放熱器と熱交換を行う水流路を備えた熱交換器と、貯湯槽と、給水管と、前記熱交換器からの水と前記貯湯槽からの水と前記給水管からの水を混合して給湯するヒートポンプ給湯機であって、外気温度を検出する外気温度検出手段と前記熱交換器の水側入口水温を検出する入水温度検出手段とを設け、前記外気温度検出手段から得られた外気温度と前記入水温度検出手段から得られた入水温度に応じて、前記熱交換器からの湯を直接給湯管に通して給湯を行う運転から貯湯槽に貯湯する運転に切り換える制御手段を備えたことを特徴とするヒートポンプ給湯機。 A refrigerant circuit including a compressor, a radiator, a decompressor, and an evaporator provided with a blower; a heat exchanger including a water flow path for exchanging heat with the radiator; a hot water storage tank; a water supply pipe; A heat pump water heater for supplying hot water by mixing water from a heat exchanger, water from the hot water storage tank, and water from the water supply pipe, the outside air temperature detecting means for detecting the outside air temperature, and the water side of the heat exchanger An inlet water temperature detecting means for detecting the inlet water temperature is provided, and hot water from the heat exchanger is directly selected according to the outside air temperature obtained from the outside air temperature detecting means and the incoming water temperature obtained from the incoming water temperature detecting means. A heat pump water heater comprising control means for switching from an operation of supplying hot water through a hot water supply pipe to an operation of storing hot water in a hot water tank.
JP2005166487A 2005-06-07 2005-06-07 Heat pump water heater Pending JP2006342980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005166487A JP2006342980A (en) 2005-06-07 2005-06-07 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005166487A JP2006342980A (en) 2005-06-07 2005-06-07 Heat pump water heater

Publications (1)

Publication Number Publication Date
JP2006342980A true JP2006342980A (en) 2006-12-21

Family

ID=37640074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005166487A Pending JP2006342980A (en) 2005-06-07 2005-06-07 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP2006342980A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190840A (en) * 2007-02-08 2008-08-21 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP2008275238A (en) * 2007-04-27 2008-11-13 Matsushita Electric Ind Co Ltd Heat pump hot water supply apparatus
JP2008275239A (en) * 2007-04-27 2008-11-13 Matsushita Electric Ind Co Ltd Heat pump hot water supply apparatus
JP2008309388A (en) * 2007-06-14 2008-12-25 Panasonic Corp Heat pump water heater
JP2009002585A (en) * 2007-06-22 2009-01-08 Panasonic Electric Works Co Ltd Hot-water supply system
JP2012127559A (en) * 2010-12-14 2012-07-05 Daikin Industries Ltd Heat pump type hot water supply device
CN102734981A (en) * 2011-03-31 2012-10-17 上海斯图华纳空调有限公司 Air-source modular three-in-one air-conditioning hot water system
JP2013224786A (en) * 2012-04-20 2013-10-31 Rinnai Corp Heat pump water heater
JPWO2015045116A1 (en) * 2013-09-27 2017-03-02 三菱電機株式会社 Refrigeration cycle equipment
JP2018136098A (en) * 2017-02-23 2018-08-30 株式会社富士通ゼネラル Hear pump-type water heater

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190840A (en) * 2007-02-08 2008-08-21 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP2008275238A (en) * 2007-04-27 2008-11-13 Matsushita Electric Ind Co Ltd Heat pump hot water supply apparatus
JP2008275239A (en) * 2007-04-27 2008-11-13 Matsushita Electric Ind Co Ltd Heat pump hot water supply apparatus
JP2008309388A (en) * 2007-06-14 2008-12-25 Panasonic Corp Heat pump water heater
JP2009002585A (en) * 2007-06-22 2009-01-08 Panasonic Electric Works Co Ltd Hot-water supply system
JP2012127559A (en) * 2010-12-14 2012-07-05 Daikin Industries Ltd Heat pump type hot water supply device
CN102734981A (en) * 2011-03-31 2012-10-17 上海斯图华纳空调有限公司 Air-source modular three-in-one air-conditioning hot water system
JP2013224786A (en) * 2012-04-20 2013-10-31 Rinnai Corp Heat pump water heater
JPWO2015045116A1 (en) * 2013-09-27 2017-03-02 三菱電機株式会社 Refrigeration cycle equipment
JP2018136098A (en) * 2017-02-23 2018-08-30 株式会社富士通ゼネラル Hear pump-type water heater

Similar Documents

Publication Publication Date Title
JP2006342980A (en) Heat pump water heater
JP2006132818A (en) Control method for refrigerating cycle device, and refrigerating cycle device using the same
WO2016059837A1 (en) Heat pump heating apparatus
JP2005249384A (en) Refrigerating cycle device
WO2014155993A1 (en) Hot-water supply device
JP2005134070A (en) Heat pump water heater
JP3919736B2 (en) Start-up control device and start-up control method for heat pump water heater
JP2009264717A (en) Heat pump hot water system
JP2008039237A (en) Refrigeration cycle device
JP2005127588A (en) Heat pump hot-water supply device
JP2009264718A (en) Heat pump hot water system
JP2011075200A (en) Heat pump hot water supply apparatus
JP4082350B2 (en) Heat pump type water heater
JP2007327697A (en) Refrigerating device
JP2007010214A (en) Heat pump type water heater
JP2005098530A (en) Heat pump type water heater
JP3915799B2 (en) Heat pump type water heater
JP4069807B2 (en) Heat pump water heater
JP2009264716A (en) Heat pump hot water system
JP2018124036A (en) Heat pump device
JP4016875B2 (en) Heat pump water heater
JP4055692B2 (en) Heat pump type water heater
JP6962136B2 (en) Hot water storage type hot water supply device
JP2010210164A (en) Method of controlling operation of multi-chamber type air conditioner
JP5029124B2 (en) Heat pump water heater

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310