JP2008309388A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2008309388A
JP2008309388A JP2007157224A JP2007157224A JP2008309388A JP 2008309388 A JP2008309388 A JP 2008309388A JP 2007157224 A JP2007157224 A JP 2007157224A JP 2007157224 A JP2007157224 A JP 2007157224A JP 2008309388 A JP2008309388 A JP 2008309388A
Authority
JP
Japan
Prior art keywords
compressor
heat pump
blower
refrigerant
water heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007157224A
Other languages
Japanese (ja)
Inventor
Naoto Fujita
直人 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007157224A priority Critical patent/JP2008309388A/en
Publication of JP2008309388A publication Critical patent/JP2008309388A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump water heater capable of preventing an overturning phenomenon of a compressor in starting. <P>SOLUTION: This heat pump water heater comprises a heat pump circuit constituted by circularly connecting a compressor 201, a water-refrigerant heat exchanger 202, a pressure reducing device 203 and an evaporator 204 by refrigerant pipes 205, an overturning detecting means 217 detecting an overturning state of the compressor 201, an overturning memorizing means 218 for memorizing the overturning state detected by the overturning detecting means 217, and a blower rotational frequency changing means 219 for changing the rotational frequency of the blower 215 to distribute the air to the evaporator 204. As the rotational frequency of the blower 215 is reduced by a prescribed value by the blower rotational frequency changing means 219, when the overturning is memorized in the overturning memorizing means 218, and the water heater is restarted after the lapse of a prescribed time from the stop of the compressor 201, a pressure (low pressure) of the evaporator 204 can be quickly lowered, and difference in high and low pressures of a refrigerating cycle can be secured in a short time, thus the compressor 201 can be prevented from overturning again, and the reliability of the compressor 201 can be secured. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、圧縮機、給湯用熱交換器、減圧装置、及び蒸発器を配管で接続したヒートポンプ回路で、貯湯槽内の水を加熱して温水を作るヒートポンプ給湯機に関するものである。   The present invention relates to a heat pump water heater that generates hot water by heating water in a hot water storage tank in a heat pump circuit in which a compressor, a hot water supply heat exchanger, a pressure reducing device, and an evaporator are connected by piping.

従来から能力可変の圧縮機を用いたヒートポンプサイクルを備えたヒートポンプ給湯機が提案されている(例えば、特許文献1参照)。   Conventionally, a heat pump water heater having a heat pump cycle using a variable capacity compressor has been proposed (see, for example, Patent Document 1).

従来のヒートポンプ給湯機に用いられる能力可変の圧縮機としては、図3に示すようなスクロール圧縮機があった。   As a variable capacity compressor used in a conventional heat pump water heater, there is a scroll compressor as shown in FIG.

図3は、従来のスクロール圧縮機の断面図で、鏡板から渦巻きラップが立ち上がる固定スクロール101および旋回スクロール102を噛み合わせて双方間に圧縮室103を形成し、旋回スクロール102を、自転拘束機構104による自転の拘束のもとに円軌道に沿って旋回させたとき、圧縮室103が容積を変えながら移動することで冷媒の吸入、圧縮、吐出を行う。   FIG. 3 is a cross-sectional view of a conventional scroll compressor. The fixed scroll 101 and the orbiting scroll 102 in which the spiral wrap rises from the end plate are engaged with each other to form a compression chamber 103 therebetween. When rotating along a circular orbit under the restraint of rotation by, the refrigerant is sucked, compressed, and discharged by moving the compression chamber 103 while changing the volume.

旋回スクロール102とこれの背面側をバックアップする固定部材105との間に、旋回スクロール102の背面の中央部に潤滑用のオイルにより高圧を与える高圧部106が設けられ、この高圧部106との間をシールリング107によって仕切られ、前記背面の外周部に前記高圧部106よりも低い所定の圧力(背圧)を印加する背圧室108を設け、これらの高圧と背圧により、旋回スクロール102を、固定スクロール部品101に押しつけることで、旋回スクロール102が、固定スクロール部品101から離れて転覆するようなことがないようにしている(例えば、特許文献2参照)。
特開2003−247759号公報 特開2002−266776号公報
Between the orbiting scroll 102 and the fixing member 105 that backs up the back side of the orbiting scroll 102, a high pressure portion 106 that applies high pressure by lubricating oil is provided at the center of the back surface of the orbiting scroll 102. Is provided with a back pressure chamber 108 for applying a predetermined pressure (back pressure) lower than that of the high pressure portion 106 to the outer peripheral portion of the back surface. The orbiting scroll 102 is prevented from being overturned away from the fixed scroll component 101 by being pressed against the fixed scroll component 101 (see, for example, Patent Document 2).
JP 2003-247759 A Japanese Patent Laid-Open No. 2002-266776

ところが、上記のようなスクロール圧縮機を用いた場合において、高圧冷媒圧力が低く、低圧冷媒圧力が高い時、即ち圧縮比が低い運転状態の場合は、旋廻スクロール102を固定スクロース101に押し付ける力より、圧縮室103で圧縮された高圧冷媒圧力の力が大きくなると、旋廻スクロール102が固定スクロール101から離れてしまい、高圧の圧縮室103内の冷媒が、低圧の圧縮室103へ漏洩してしまう、いわゆる転覆が起こり、十分な圧縮ができず、冷凍サイクルに流れる冷媒循環量が低下し、その結果、冷凍能力も低下するという課題があった。   However, when the scroll compressor as described above is used, when the high-pressure refrigerant pressure is low and the low-pressure refrigerant pressure is high, that is, in an operating state where the compression ratio is low, the force that presses the rotating scroll 102 against the fixed sucrose 101 When the pressure of the high pressure refrigerant compressed in the compression chamber 103 increases, the turning scroll 102 moves away from the fixed scroll 101, and the refrigerant in the high pressure compression chamber 103 leaks to the low pressure compression chamber 103. There was a problem that so-called capsizing occurred and sufficient compression could not be performed, and the amount of refrigerant circulating in the refrigeration cycle was reduced, resulting in a reduction in refrigeration capacity.

また、低圧縮比での転覆を抑えるために、旋回スクロール102の背面に働く押し付け力を大きくすると、高圧縮比の運転条件において、旋回スクロール102に過大な押し付け力が発生し、異常磨耗を引き起こすことがあるため、旋回スクロール102の背面に働く押し付け力をあまり大きくできないという課題があった。   Further, if the pressing force acting on the back surface of the orbiting scroll 102 is increased in order to suppress rollover at a low compression ratio, an excessive pressing force is generated on the orbiting scroll 102 under the high compression ratio operation condition, causing abnormal wear. In some cases, the pressing force acting on the back surface of the orbiting scroll 102 cannot be increased too much.

特に圧縮機の起動時は、蒸発器用の送風機も同時に運転されるため、蒸発器能力が大きくなるため、ヒ−トポンプサイクルにおける蒸発器の圧力が高くなり、圧力差(圧縮比)も小さくなるため、圧縮機の運転が不安定になり、転覆状態になるという課題を有していた。   In particular, when the compressor is started, the evaporator blower is also operated at the same time, so the evaporator capacity increases, the evaporator pressure in the heat pump cycle increases, and the pressure difference (compression ratio) also decreases. The operation of the compressor becomes unstable and has a problem of being overturned.

本発明は、上記従来の課題を解決するもので、ヒ−トポンプ給湯器の冷凍サイクルにおいて圧力差を確保し、圧縮機の運転が不安定とならず、圧縮機の信頼性を確保し、また冷媒配管の騒音、振動を防止することができるヒートポンプ給湯器を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, ensures a pressure difference in the refrigeration cycle of a heat pump water heater, ensures that the operation of the compressor does not become unstable, ensures the reliability of the compressor, and It aims at providing the heat pump water heater which can prevent the noise and vibration of refrigerant | coolant piping.

上記従来の課題を解決するために、本発明のヒートポンプ給湯器は、圧縮機、水冷媒熱交換器、減圧装置、蒸発器を冷媒配管によって環状に接続して構成されたヒートポンプ回路と、前記圧縮機の転覆状態を検知する転覆検知手段と、前記転覆検知手段で検知された転覆状態を記憶する転覆記憶手段と、前記蒸発器に空気を送る送風機と、前記送風機の回転数を変更する送風機回転数変更手段とを備え、前記転覆記憶手段に転覆が記憶されている場合で、かつ前記圧縮機を停止してから所定時間経過後に再起動させる時に、前記送風機回転数変更手段により、前記送風機の回転数を所定値だけ減少させるもので、蒸発器の圧力(低圧)の下がりが早く短時間で冷凍サイクルの高低圧差を確保でき圧縮機が再度転覆状態なるのを防ぐことができ圧縮機の信頼性を確保したり、冷媒配管の騒音、振動を防止することができる。   In order to solve the above-described conventional problems, a heat pump water heater of the present invention includes a compressor, a water refrigerant heat exchanger, a decompressor, a heat pump circuit configured by connecting an evaporator in a ring shape with a refrigerant pipe, and the compression Overturn detection means for detecting the rollover state of the machine, rollover storage means for storing the rollover state detected by the rollover detection means, a blower for sending air to the evaporator, and a blower rotation for changing the rotation speed of the blower Number change means, and when the rollover is stored in the rollover storage means, and when the compressor is stopped and restarted after a predetermined time has elapsed, Reduces the number of rotations by a predetermined value, ensuring that the evaporator pressure (low pressure) drops quickly and ensures a high and low pressure difference in the refrigeration cycle, preventing the compressor from overturning again. By ensuring the reliability of the compressor, noise of the refrigerant pipe, it is possible to prevent vibration.

本発明のヒートポンプ給湯機は、送風機起動時などに対して安定した冷凍サイクル運転を行うことができる。   The heat pump water heater of the present invention can perform a stable refrigeration cycle operation when the blower is started.

第1の発明は、圧縮機、水冷媒熱交換器、減圧装置、蒸発器を冷媒配管によって環状に接続して構成されたヒートポンプ回路と、前記圧縮機の転覆状態を検知する転覆検知手段と、前記転覆検知手段で検知された転覆状態を記憶する転覆記憶手段と、前記蒸発器に空気を送る送風機と、前記送風機の回転数を変更する送風機回転数変更手段とを備え、前記転覆記憶手段に転覆が記憶されている場合で、かつ前記圧縮機を停止してから所定時間経過後に再起動させる時に、前記送風機回転数変更手段により、前記送風機の回転数を所定値だけ減少させるもので、蒸発器の圧力(低圧)の下がりが早く短時間で冷凍サイクルの高低圧差を確保でき圧縮機が再度転覆状態なるのを防ぐことができ圧縮機の信頼性を確保したり、冷媒配管の騒音、振動を防止することができる。   A first invention includes a heat pump circuit configured by connecting a compressor, a water-refrigerant heat exchanger, a decompression device, and an evaporator in an annular shape by a refrigerant pipe, and a rollover detection means for detecting a rollover state of the compressor, The rollover storage means for storing the rollover state detected by the rollover detection means, a blower for sending air to the evaporator, and a blower rotation speed changing means for changing the rotation speed of the blower, the rollover storage means When the rollover is stored and when the compressor is stopped and restarted after a lapse of a predetermined time, the rotation speed of the blower is decreased by a predetermined value by the blower rotation speed changing means. The pressure (low pressure) of the compressor quickly drops quickly, ensuring the high / low pressure difference of the refrigeration cycle and preventing the compressor from overturning again, ensuring the reliability of the compressor, and noise and vibration of the refrigerant piping It is possible to prevent.

第2の発明は、特に、第1の発明のヒートポンプ給湯機は、外気温度を検出する外気温度検出手段を有し、前記外気温度検出手段により検出された外気温度に応じて、送風機の回転数の減少幅を変化させるもので、外気温負荷に応じて最適な送風機の回転数に設定し、蒸発器の圧力(低圧)の下がりが早く短時間で冷凍サイクルの高低圧差を確保でき圧縮機が再度転覆状態なるのを防ぐことができ圧縮機の信頼性を確保したり、冷媒配管の騒音、振動を防止することができる。   According to the second invention, in particular, the heat pump water heater of the first invention has an outside air temperature detecting means for detecting the outside air temperature, and the rotational speed of the blower according to the outside air temperature detected by the outside air temperature detecting means. The amount of decrease in the air flow is changed, and the optimum fan speed is set according to the outside air temperature load, and the compressor pressure (low pressure) drops quickly and the high / low pressure difference of the refrigeration cycle can be secured in a short time. It can be prevented from being overturned again, ensuring the reliability of the compressor, and preventing noise and vibration of the refrigerant piping.

第3の発明は、特に、第1の発明のヒートポンプ給湯機は、水冷媒熱交換器に流入する水の入水温度を検出する入水温度検出手段を有し、前記入水温度検出手段により検出された入水温度に応じて、送風機の回転数の減少幅を変化させるもので、入水温負荷に応じて最適な送風機の回転数に設定し、蒸発器の圧力(低圧)の下がりが早く短時間で冷凍サイクルの高低圧差を確保でき圧縮機が再度転覆状態なるのを防ぐことができ圧縮機の信頼性を確保したり、冷媒配管の騒音、振動を防止することができる。   According to a third aspect of the invention, in particular, the heat pump water heater of the first aspect of the invention has an incoming water temperature detecting means for detecting an incoming water temperature of water flowing into the water-refrigerant heat exchanger, and is detected by the incoming water temperature detecting means. Depending on the incoming water temperature, the range of decrease in the rotational speed of the blower is changed. The optimum rotational speed of the blower is set according to the incoming water temperature load, and the evaporator pressure (low pressure) drops quickly and quickly. The difference between high and low pressures of the refrigeration cycle can be secured, the compressor can be prevented from being overturned again, the reliability of the compressor can be secured, and the noise and vibration of the refrigerant piping can be prevented.

第4の発明は、特に、第1〜3のいずれか一つの発明の冷媒として、二酸化炭素を用いるもので、ヒートポンプ回路を冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルとすることが出来、給湯の水または空気を加熱することにより、水冷媒熱交換器内の
冷媒は臨界圧力以上に加圧されるので、水冷媒熱交換器の水により熱を奪われて温度低下しても凝縮することがない。従って、水冷媒熱交換器の全域で冷媒と水との間の温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高くできる。
In the fourth invention, in particular, carbon dioxide is used as the refrigerant of any one of the first to third inventions, and the heat pump circuit can be a supercritical heat pump cycle in which the refrigerant pressure is equal to or higher than the critical pressure. By heating the hot water or air, the refrigerant in the water / refrigerant heat exchanger is pressurized above the critical pressure. There is nothing to do. Therefore, it becomes easy to form a temperature difference between the refrigerant and water in the entire area of the water-refrigerant heat exchanger, so that hot water can be obtained and the heat exchange efficiency can be increased.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態におけるヒートポンプ給湯機の構成を示す図、図2は、同ヒートポンプ給湯機の冷凍サイクルのモリエル線図、図3は、同ヒートポンプ給湯機の制御方法を示すタイムチャート、図4は、同ヒートポンプ給湯機の制御方法を示すフローチャートである。
(Embodiment 1)
FIG. 1 is a diagram showing a configuration of a heat pump water heater in the first embodiment of the present invention, FIG. 2 is a Mollier diagram of a refrigeration cycle of the heat pump water heater, and FIG. 3 is a control method of the heat pump water heater. FIG. 4 is a flowchart showing a control method of the heat pump water heater.

本実施の形態におけるヒートポンプ給湯機は、ヒートポンプ回路と貯湯回路から構成され、ヒートポンプ回路は、圧縮機201、水冷媒熱交換器202の冷媒側、減圧装置203、蒸発器204を冷媒配管205で接続して構成され、冷媒を循環させるようになっている。   The heat pump water heater in the present embodiment includes a heat pump circuit and a hot water storage circuit, and the heat pump circuit connects the compressor 201, the refrigerant side of the water-refrigerant heat exchanger 202, the decompression device 203, and the evaporator 204 with a refrigerant pipe 205. The refrigerant is circulated.

蒸発器204には、蒸発器能力を変化させる送風機215が取り付けられている。   A blower 215 that changes the evaporator capacity is attached to the evaporator 204.

また貯湯回路は、貯湯槽206と、水冷媒熱交換器202の水側を水配管208で接続して構成され、ポンプ207で、水を循環させている。水冷媒熱交換器202は、ヒートポンプ回路では、放熱器として、また貯湯回路では吸熱器として利用している。   The hot water storage circuit is configured by connecting the hot water storage tank 206 and the water side of the water-refrigerant heat exchanger 202 with a water pipe 208, and circulates water with a pump 207. The water-refrigerant heat exchanger 202 is used as a radiator in the heat pump circuit and as a heat absorber in the hot water storage circuit.

すなわち、水冷媒熱交換器202は、ヒートポンプ回路を流れる冷媒と、貯湯回路を流れる水とで熱交換するものである。この吸熱した水は温水になり、貯湯槽206に貯めて利用している。   That is, the water refrigerant heat exchanger 202 exchanges heat between the refrigerant flowing through the heat pump circuit and the water flowing through the hot water storage circuit. The absorbed water becomes warm water and is stored in the hot water storage tank 206 for use.

そして、ヒートポンプ回路には、蒸発器204の出口側に冷凍サイクル内の圧力を検知する圧力センサー211と、蒸発器204の温度を検知する温度センサー212と、外気温度を検知する外気温度センサー213と、熱交換器202に流入する水の入水温度を検知する入水温度センサー216がそれぞれ取り付けられている。   The heat pump circuit includes a pressure sensor 211 that detects the pressure in the refrigeration cycle on the outlet side of the evaporator 204, a temperature sensor 212 that detects the temperature of the evaporator 204, and an outside air temperature sensor 213 that detects the outside air temperature. Incoming water temperature sensors 216 for detecting the incoming water temperature of the water flowing into the heat exchanger 202 are respectively attached.

214は、圧縮機201や送風機215の運転を制御する制御部で、圧縮機201の転覆状態を検知する転覆検知手段217と、検知された転覆状態を記憶する転覆記憶手段218と、送風機215の回転数を変更する送風機回転数変更手段219と、外気温度センサー213からの信号に基づき外気温度を検出する外気温度検出手段220と、入水温度センサー216からの信号に基づき、水冷媒熱交換器202に流入する水の温度を検知する入水温度検知手段221を備えている。   Reference numeral 214 denotes a control unit that controls the operation of the compressor 201 and the blower 215. The rollover detection unit 217 that detects the rollover state of the compressor 201, the rollover storage unit 218 that stores the detected rollover state, and the blower 215. Based on the signal from the blower rotation speed changing means 219 for changing the rotation speed, the outside air temperature detection means 220 for detecting the outside air temperature based on the signal from the outside air temperature sensor 213, and the signal from the incoming water temperature sensor 216, the water refrigerant heat exchanger 202. Inlet temperature detecting means 221 for detecting the temperature of water flowing into the water is provided.

このヒートポンプ回路においては、臨界圧力以上まで加圧される冷媒として、二酸化炭素を使用し、このヒートポンプ給湯機のモリエル線図は、図2となる。圧縮機201は、吸引した冷媒を圧縮して吐出し、吐出された高温高圧の冷媒は、貯湯槽206内から供給された液体(水)と、水冷媒熱交換器202を介して熱交換される。   In this heat pump circuit, carbon dioxide is used as the refrigerant pressurized to a critical pressure or higher, and the Mollier diagram of this heat pump water heater is as shown in FIG. The compressor 201 compresses and discharges the sucked refrigerant, and the discharged high-temperature and high-pressure refrigerant exchanges heat with the liquid (water) supplied from the hot water storage tank 206 through the water refrigerant heat exchanger 202. The

水冷媒熱交換器202を流れる冷媒(二酸化炭素)は、圧縮機201によって加圧されている為、水冷媒熱交換器202を通過する液体に放熱して温度低下しても凝縮(冷媒2相域)することはない。減圧装置203は、水冷媒熱交換器202から流出する冷媒(二酸化炭素)を減圧する装置のことで、弁開度を電気的に制御する電磁式膨張弁である。   Since the refrigerant (carbon dioxide) flowing through the water-refrigerant heat exchanger 202 is pressurized by the compressor 201, it condenses even if the temperature decreases due to heat radiation to the liquid passing through the water-refrigerant heat exchanger 202 (refrigerant two-phase). Do not). The decompression device 203 is a device that decompresses the refrigerant (carbon dioxide) flowing out from the water-refrigerant heat exchanger 202, and is an electromagnetic expansion valve that electrically controls the valve opening degree.

冷媒(二酸化炭素)は、この減圧装置203によって冷媒2相域となるまで減圧されたのち、蒸発器204によって吸熱冷媒が蒸発気化した後、再び圧縮機201に吸引される。しかし、蒸発器204側の負荷がおおきい、つまり圧縮機201の起動時や外気温が高い時などは、蒸発器204の温度が大きくなり、冷凍サイクルの圧力差が小さくなるため、圧力差が確保できるまで圧縮機201の運転が不安定になり、転覆状態になる。そのため、圧縮機201の起動を繰り返すたびに転覆状態になるため、圧縮機201の信頼性を低下させたり冷媒配管が大きく振動して、異常な騒音を発生するという課題を有していた。   The refrigerant (carbon dioxide) is decompressed by the decompression device 203 until the refrigerant reaches a two-phase region, and then the endothermic refrigerant is evaporated and evaporated by the evaporator 204 and then sucked into the compressor 201 again. However, when the load on the evaporator 204 side is large, that is, when the compressor 201 is started or when the outside air temperature is high, the temperature of the evaporator 204 increases and the pressure difference of the refrigeration cycle decreases, so that the pressure difference is secured. Until it is possible, the operation of the compressor 201 becomes unstable, and it is overturned. For this reason, each time the start-up of the compressor 201 is repeated, the overturning state occurs, and thus there is a problem that the reliability of the compressor 201 is lowered or the refrigerant piping is vibrated greatly to generate abnormal noise.

このような課題を解決する為に、本実施の形態では、図4に示すような制御を行なっている。図4は、本実施の形態におけるヒートポンプ給湯装置の制御方法を示すフローチャートである。   In order to solve such a problem, the control as shown in FIG. 4 is performed in the present embodiment. FIG. 4 is a flowchart showing a control method of the heat pump hot water supply apparatus in the present embodiment.

図4において、圧縮機201の運転中(ステップ S0、以下同じ)に、転覆検知手段217により転覆の有無を判断し(S1)、転覆状態と検知したら、転覆記憶手段218により、「転覆検知有」と記憶する(S2)。S3、S4で、圧縮機201が所定時間T分(たとえば5分)停止状態であれば、S5に移行し、転覆検知の有無により送風機215の指示回転数を決定する。転覆検知の記憶有と判断したら、S6で送風機回転数変更手段219により、送風機215の指示回転数を所定値(たとえば指示回転数−100rpm)だけ減少することで、蒸発器204の圧力(低圧)が下がり、早く短時間で、冷凍サイクルの高低圧差を確保でき圧縮機201が再度転覆状態なるのを防ぐことができ、圧縮機201の信頼性を確保したり冷媒配管の騒音、振動を防止することができる。   In FIG. 4, during the operation of the compressor 201 (step S0, the same applies hereinafter), the rollover detection means 217 determines the presence or absence of rollover (S1). Is stored (S2). In S3 and S4, if the compressor 201 is in a stopped state for a predetermined time T (for example, 5 minutes), the process proceeds to S5, and the instruction rotational speed of the blower 215 is determined based on whether rollover is detected. If it is determined that the rollover detection is stored, the pressure (low pressure) of the evaporator 204 is reduced by reducing the indicated rotational speed of the blower 215 by a predetermined value (for example, the indicated rotational speed −100 rpm) by the blower rotational speed changing means 219 in S6. It is possible to ensure a high and low pressure difference in the refrigeration cycle and prevent the compressor 201 from overturning again, and to ensure the reliability of the compressor 201 and to prevent noise and vibration of the refrigerant piping. be able to.

S5で、転覆検知の記憶無と判断したら、通常の指示回転数で制御され圧縮機201が運転される。   If it is determined in S5 that the rollover detection is not stored, the compressor 201 is operated under the normal instruction rotational speed.

(実施の形態2)
図5は、本発明の第2の実施の形態におけるヒートポンプ給湯機の制御方法を示すフローチャートである。尚、上記第1の実施の形態におけるヒートポンプ給湯機と同一部分については、同一符号を付してその説明を省略する。
(Embodiment 2)
FIG. 5 is a flowchart showing a control method of the heat pump water heater in the second embodiment of the present invention. The same parts as those of the heat pump water heater in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

図5において、ステップS0からS5までは、上記実施の形態1と同様の動作をするため説明を省略する。   In FIG. 5, steps S0 to S5 perform the same operation as in the first embodiment, and a description thereof will be omitted.

S6で、外気温度検出手段220により、検出された外気温度がT1以上(例えば、40℃以上)の時は、指示回転数−200rpm、また、T2以上(例えば、30℃以上)の時は、指示回転数−100rpm、T2以下(例えば、30℃以下)の時は、指示回転数−50rpmとし、送風機回転数変更手段219により、指示回転数の減少幅を変化させることで、送風機215の起動により、蒸発器204の圧力が急上昇しやすい外気温度が高い場合にも、圧縮機201が再度転覆状態ならないように十分に低圧を下げて起動するため、圧縮機201が再度転覆状態なるのを確実に防ぐことができる。   In S6, when the outside air temperature detected by the outside air temperature detection means 220 is T1 or higher (for example, 40 ° C. or higher), the indicated rotational speed is −200 rpm, and when T2 or higher (for example, 30 ° C. or higher), When the designated rotational speed is −100 rpm and T2 or lower (for example, 30 ° C. or lower), the designated rotational speed is set to −50 rpm, and the blower rotational speed changing means 219 is used to change the decrease range of the designated rotational speed, thereby starting the blower 215. Therefore, even when the outside air temperature at which the pressure of the evaporator 204 is likely to rapidly increase is high, the compressor 201 is started with a sufficiently low pressure so that the compressor 201 does not overturn again. Can be prevented.

(実施の形態3)
図6は、本発明の第3の実施の形態におけるヒートポンプ給湯機の制御方法を示すフローチャートである。尚、上記第1の実施の形態におけるヒートポンプ給湯機と同一部分については、同一符号を付してその説明を省略する。
(Embodiment 3)
FIG. 6 is a flowchart showing a control method of the heat pump water heater in the third embodiment of the present invention. The same parts as those of the heat pump water heater in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

図6において、ステップS0からS5までは、上記実施の形態1と同様の動作をするため説明を省略する。   In FIG. 6, steps S0 to S5 perform the same operations as those in the first embodiment, and thus description thereof is omitted.

S6で、入水温度検知手段221により検出された入水温度がT1以上(例えば、50℃以上)の時は、指示回転数−200rpm、T2以上(例えば、40℃以上)の時は、指示回転数−100rpm、T2以下(例えば、30℃以上)の時は、指示回転数−50rpmとし、送風機回転数変更手段219により、指示回転数の減少幅を変化させることで、送風機215の起動により、蒸発器204の圧力が急上昇しやすい入水温度が高い場合にも、圧縮機1が再度転覆状態ならないように十分に低圧を下げて起動するため、圧縮機1が再度転覆状態なるのを確実に防ぐことができる。   In S6, when the incoming water temperature detected by the incoming water temperature detecting means 221 is T1 or higher (eg, 50 ° C. or higher), the indicated rotational speed is −200 rpm, and when T2 is higher than T2 (eg, 40 ° C. or higher), the indicated rotational speed. When it is −100 rpm and T2 or lower (for example, 30 ° C. or higher), the indicated rotational speed is −50 rpm, and the blower rotational speed changing means 219 is used to change the decrease range of the designated rotational speed. Even when the incoming water temperature at which the pressure of the compressor 204 is likely to rise rapidly is high, the compressor 1 is started with a sufficiently low pressure so that the compressor 1 does not overturn again, so that the compressor 1 is reliably prevented from overturning again. Can do.

なお、上記各実施の形態では、貯湯槽206を有するヒートポンプ給湯機を例に説明したが、水冷媒熱交換器202で加熱したお湯をそのまま出湯する、いわゆる瞬間湯沸かし式のヒートポンプ給湯機であってもよい。なお、貯湯槽206内の液体は、給湯用に用いるだけではなく、床暖房用、室内空調用としても使用して良い。更に、圧縮機201の冷媒吸込側に冷媒を貯留するアキュムレータが設置されていてもよい。   In each of the above-described embodiments, the heat pump water heater having the hot water storage tank 206 has been described as an example. However, the heat pump water heater of the so-called instantaneous water heater type that discharges hot water heated by the water refrigerant heat exchanger 202 as it is. Also good. Note that the liquid in the hot water storage tank 206 may be used not only for hot water supply but also for floor heating and indoor air conditioning. Furthermore, an accumulator for storing the refrigerant may be installed on the refrigerant suction side of the compressor 201.

以上のように、本発明にかかるヒートポンプ給湯機は、圧縮機の運転が安定すると共に、圧縮機の信頼性が向上し、さらに冷媒配管の騒音、振動を防止することができるもので、冷媒として高圧側で凝縮する冷媒だけでなく、超臨界状態となりうる冷媒(例えば、R32、二酸化炭素、エタン、エチレン、酸化窒素およびそれらを含む混合冷媒など)を用いた給湯装置(給湯器)、給湯用熱交換器で加熱したお湯をそのまま出湯する瞬間湯沸かしを行う給湯装置(給湯器)、空調機、車両用空調機(カーエアコン)等の用途にも適用できる。なお、貯湯槽206内の温水は、給湯用に用いるだけではなく、床暖房用、室内空調用としても使用して良い。   As described above, the heat pump water heater according to the present invention can stabilize the operation of the compressor, improve the reliability of the compressor, and further prevent noise and vibration of the refrigerant piping. Hot water supply apparatus (hot water heater) using not only refrigerant condensed on the high pressure side but also refrigerant that can be in a supercritical state (for example, R32, carbon dioxide, ethane, ethylene, nitrogen oxide and mixed refrigerants containing them), for hot water supply The present invention can also be applied to applications such as a water heater (hot water heater), an air conditioner, and a vehicle air conditioner (car air conditioner) that instantaneously boils hot water heated by a heat exchanger. The hot water in the hot water tank 206 may be used not only for hot water supply but also for floor heating and indoor air conditioning.

本発明の実施の形態1におけるヒートポンプ給湯機の構成を示す図The figure which shows the structure of the heat pump water heater in Embodiment 1 of this invention. 同ヒートポンプ給湯機の冷凍サイクルのモリエル線図Mollier diagram of the refrigeration cycle of the heat pump water heater 同ヒートポンプ給湯機の制御方法を示すタイムチャートTime chart showing the control method of the heat pump water heater 同ヒートポンプ給湯機の制御方法を示すフローチャートThe flowchart which shows the control method of the heat pump water heater 本発明の実施の形態2におけるヒートポンプ給湯機の制御方法を示すフローチャートThe flowchart which shows the control method of the heat pump water heater in Embodiment 2 of this invention. 本発明の実施の形態3におけるヒートポンプ給湯機の制御方法を示すフローチャートThe flowchart which shows the control method of the heat pump water heater in Embodiment 3 of this invention. ヒートポンプ給湯機に用いられる一般的な圧縮機の断面図Sectional view of a general compressor used in a heat pump water heater

符号の説明Explanation of symbols

201 圧縮機
202 水冷媒熱交換器
203 減圧装置
204 蒸発器
205 冷媒配管
206 貯湯槽
207 ポンプ
208 水配管
211 圧力センサー
212 温度センサー
213 外気温度センサー
214 制御部
215 送風機
216 入水温度センサー
217 転覆検知手段
218 転覆記憶手段
219 送風機回転数変更手段
220 外気温度検出手段
221 入水温度検知手段
DESCRIPTION OF SYMBOLS 201 Compressor 202 Water refrigerant | coolant heat exchanger 203 Decompression apparatus 204 Evaporator 205 Refrigerant piping 206 Hot water storage tank 207 Pump 208 Water piping 211 Pressure sensor 212 Temperature sensor 213 Outside temperature sensor 214 Control part 215 Blower 216 Incoming water temperature sensor 217 Overturn detection means 218 Overturn storage means 219 Blower rotation speed changing means 220 Outside air temperature detecting means 221 Incoming water temperature detecting means

Claims (4)

圧縮機、水冷媒熱交換器、減圧装置、蒸発器を冷媒配管によって環状に接続して構成されたヒートポンプ回路と、前記圧縮機の転覆状態を検知する転覆検知手段と、前記転覆検知手段で検知された転覆状態を記憶する転覆記憶手段と、前記蒸発器に空気を送る送風機と、前記送風機の回転数を変更する送風機回転数変更手段とを備え、前記転覆記憶手段に転覆が記憶されている場合で、かつ前記圧縮機を停止してから所定時間経過後に再起動させる時に、前記送風機回転数変更手段により、前記送風機の回転数を所定値だけ減少させることを特徴とするヒートポンプ給湯機。 A heat pump circuit configured by connecting a compressor, a water-refrigerant heat exchanger, a decompression device, and an evaporator in an annular shape by refrigerant piping, a rollover detection means for detecting the overturning state of the compressor, and detection by the rollover detection means A rollover storage means for storing the overturned state, a blower for sending air to the evaporator, and a blower rotation speed changing means for changing the rotation speed of the blower, and the rollover storage is stored in the rollover storage means. The heat pump water heater is characterized in that when the compressor is stopped and restarted after a lapse of a predetermined time, the blower rotational speed changing means decreases the rotational speed of the blower by a predetermined value. 外気温度を検出する外気温度検出手段を有し、前記外気温度検出手段により検出された外気温度に応じて、送風機の回転数の減少幅を変化させることを特徴とする請求項1に記載のヒートポンプ給湯機。 2. The heat pump according to claim 1, further comprising an outside air temperature detecting means for detecting an outside air temperature, wherein the range of decrease in the rotational speed of the blower is changed in accordance with the outside air temperature detected by the outside air temperature detecting means. Water heater. 水冷媒熱交換器に流入する水の入水温度を検出する入水温度検出手段を有し、前記入水温度検出手段により検出された入水温度に応じて、送風機の回転数の減少幅を変化させることを特徴とする請求項1に記載のヒートポンプ給湯機。 It has an incoming water temperature detecting means for detecting the incoming water temperature of the water flowing into the water-refrigerant heat exchanger, and changes the amount of decrease in the rotational speed of the blower according to the incoming water temperature detected by the incoming water temperature detecting means. The heat pump water heater according to claim 1. 冷媒として、二酸化炭素を用いることを特徴とする請求項1〜3のいずれか1項に記載のヒートポンプ給湯機。 The heat pump water heater according to any one of claims 1 to 3, wherein carbon dioxide is used as the refrigerant.
JP2007157224A 2007-06-14 2007-06-14 Heat pump water heater Pending JP2008309388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007157224A JP2008309388A (en) 2007-06-14 2007-06-14 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007157224A JP2008309388A (en) 2007-06-14 2007-06-14 Heat pump water heater

Publications (1)

Publication Number Publication Date
JP2008309388A true JP2008309388A (en) 2008-12-25

Family

ID=40237148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007157224A Pending JP2008309388A (en) 2007-06-14 2007-06-14 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP2008309388A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213816A (en) * 2001-01-19 2002-07-31 Denso Corp Water heater
JP2005083691A (en) * 2003-09-10 2005-03-31 Matsushita Electric Ind Co Ltd Heat pump device
JP2006342980A (en) * 2005-06-07 2006-12-21 Matsushita Electric Ind Co Ltd Heat pump water heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213816A (en) * 2001-01-19 2002-07-31 Denso Corp Water heater
JP2005083691A (en) * 2003-09-10 2005-03-31 Matsushita Electric Ind Co Ltd Heat pump device
JP2006342980A (en) * 2005-06-07 2006-12-21 Matsushita Electric Ind Co Ltd Heat pump water heater

Similar Documents

Publication Publication Date Title
JP4539553B2 (en) Heat pump water heater
JP5223795B2 (en) Heat pump water heater
JP2010196975A (en) Refrigerating cycle apparatus
JP2005147609A (en) Heat pump water heater
JP5239204B2 (en) Refrigeration cycle equipment
EP2594867B1 (en) Refrigeration cycle apparatus and hot water producing apparatus
JP2007322022A (en) Compressor device and refrigerant circulating device
JP3801168B2 (en) Heat pump water heater
JP2007170765A (en) Operation method of refrigerating cycle device
JP4273888B2 (en) Heat pump equipment
JP2008202809A (en) Heat pump type water heater
JP2005147544A (en) Heat pump water heater
JP5381749B2 (en) Refrigeration cycle equipment
JP2008309388A (en) Heat pump water heater
JP2004309027A (en) Control method for heat pump device
JP4725591B2 (en) Refrigeration cycle equipment
JP2008261557A (en) Heat pump water heater
JP2006292302A (en) Control method of heat pump device
JP2014142158A (en) Refrigeration cycle device
JP2005147540A (en) Heat pump water heater
JP2008202826A (en) Heat pump type water heater
JP4910559B2 (en) Heat pump water heater
JP4085933B2 (en) Heat pump equipment
JP2002061968A (en) Controller of freezing cycle
CN100429464C (en) Heat pump device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120313