JP2006340280A - Optical axis alignment initializing apparatus of optical spatial communication system - Google Patents

Optical axis alignment initializing apparatus of optical spatial communication system Download PDF

Info

Publication number
JP2006340280A
JP2006340280A JP2005165461A JP2005165461A JP2006340280A JP 2006340280 A JP2006340280 A JP 2006340280A JP 2005165461 A JP2005165461 A JP 2005165461A JP 2005165461 A JP2005165461 A JP 2005165461A JP 2006340280 A JP2006340280 A JP 2006340280A
Authority
JP
Japan
Prior art keywords
laser beam
laser
optical
optical axis
movable reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005165461A
Other languages
Japanese (ja)
Inventor
Koichi Yoshida
耕一 吉田
Takeshi Tsujimura
健 辻村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005165461A priority Critical patent/JP2006340280A/en
Publication of JP2006340280A publication Critical patent/JP2006340280A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical axis alignment initializing apparatus of an optical spatial communication system which efficiently realizes alignment initialization for coarsely adjusting an optical axis between a mobile terminal and a fixed station, and efficiently establishes an optical link. <P>SOLUTION: A transmitter 11 is provided with a movable reflection mirror 12 for reflecting a laser beam by an LD (laser diode). A receiver 13 is provided with a movable reflection mirror 14 for guiding a laser beam to beam splitters 15, 16, a PSD (position sensing device) for detecting the irradiation positions of the laser beams split by the beam splitters 15, 16, and a PD (photodiode) for receiving the split beams from the beam splitters 15, 16. A beam incident angle sensor 19 is provided on the receiver 13, and a searching area where the PSD can capture the laser beam via the movable reflection mirror 14 is moved along an incident beam captured by the beam incident angle sensor 19, thereby guiding the laser beam from the transmitter 11 to the PSD in the receiver 13. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、空間中にレーザー光を伝播させて通信を行う光空間通信システムにおいて、移動を伴う端末が固定局との光のリンクを確立し光軸の自動調整を行いながら光通信を行う前の光軸の粗調整を行うアライメント初期化を効率的に実現できる光空間通信システムの光軸アライメント初期化装置に関するものである。   The present invention relates to an optical space communication system that performs communication by propagating laser light in a space before a mobile terminal establishes an optical link with a fixed station and performs optical communication while automatically adjusting an optical axis. The present invention relates to an optical axis alignment initialization apparatus for an optical space communication system capable of efficiently realizing alignment initialization for performing rough adjustment of the optical axis.

従来、例えばビル−ビル間光空間通信のような通常の光空間通信では2つの送受信機を固定的に対向配置し風や振動などによる微小な軸ズレの影響を補正するメカニズムが採用されている。一方、端末の移動を伴う光空間通信では広範囲な相対位置変化に伴う軸ズレに対応する光軸調整機構が不可欠となる(例えば、非特許文献1参照。)。この場合、移動端末の任意の初期状態において固定局との光のリンクを確立し光軸調整モードに入るためには光軸を粗調整するアライメントの初期化が必要となる。拡散光やビーム径を拡大した場合に比べビーム径を絞った場合の光空間通信は秘匿性や耐クロストーク特性に優れるがアライメントの初期化は容易ではなく、試行錯誤に頼ったり長時間の調整パラメータの探索が必要になるといった問題が生じてくる。   Conventionally, in a normal optical space communication such as a building-to-building optical space communication, a mechanism has been adopted in which two transmitters / receivers are fixedly arranged opposite to each other to correct the influence of a slight axis shift due to wind or vibration. . On the other hand, in optical space communication involving movement of a terminal, an optical axis adjustment mechanism that corresponds to an axial shift accompanying a wide range of relative position changes is indispensable (see, for example, Non-Patent Document 1). In this case, in order to establish an optical link with a fixed station and enter an optical axis adjustment mode in an arbitrary initial state of the mobile terminal, it is necessary to initialize alignment for coarse adjustment of the optical axis. Optical space communication when the beam diameter is narrowed compared to the case of expanding the diffused light and beam diameter is excellent in secrecy and crosstalk resistance, but the initialization of the alignment is not easy, relying on trial and error or long-time adjustment There arises a problem that it is necessary to search for parameters.

Koichi Yoshida,Tatsuro Yano,and Takeshi Tsujimura:“Automatic Optical Axis Alignment for Active Free Space Optics”,SICE Annual Conference in Sapporo,August4-6,2004,Hokkaido Institute of Tecnology,Japan,p.2035-2040Koichi Yoshida, Tatsuro Yano, and Takeshi Tsujimura: “Automatic Optical Axis Alignment for Active Free Space Optics”, SICE Annual Conference in Sapporo, August 4-6, 2004, Hokkaido Institute of Tecnology, Japan, p.2035-2040

本発明の目的は、上記従来技術の課題を克服し、通信可能な任意の初期状態にある移動端末と固定局との間の光軸の粗調整を行うアライメント初期化を効率的に実現し、光のリンクを効率よく確立することを可能にする光空間通信システムの光軸アライメント初期化装置を提供することにある。   The object of the present invention is to overcome the above-mentioned problems of the prior art and efficiently realize alignment initialization for performing coarse adjustment of the optical axis between a mobile terminal and a fixed station in an arbitrary initial state in which communication is possible. It is an object of the present invention to provide an optical axis alignment initialization apparatus for an optical space communication system that makes it possible to establish an optical link efficiently.

上記目的を達成するために本発明の光空間通信システムの光軸アライメント初期化装置は、送信装置に、送信用レーザー光源によるレーザー光の発射方向(パン・チルト角)が調整可能なように2自由度の送信用可動式反射鏡を備え、受信装置に、送信装置から到達したレーザー光の向きを調整し直列に配置された2つのビームスプリッターへ導く2自由度の受信用可動式反射鏡と、最初のビームスプリッターにより2分した一方の分岐光を次のビームスプリッターによりさらに2分したレーザー光それぞれの照射位置を検知する2つのPSD(Position Sensing Device)と、最初のビームスプリッターによるもう1つの分岐光を受光する受信用PD(Photo Detector)とを備え、空間中にレーザー光を伝播させて通信を行う光空間通信システムにおいて、受信装置にビーム入射角検出器を設置し、前記ビーム入射角検出器と前記受信用可動式反射鏡の両方をカバーするように送信装置からのレーザー光を前記送信用可動式反射鏡により高速スキャンさせたときに、前記2つのPSDが前記受信用可動式反射鏡を介してレーザー光を捕らえることの可能な探索領域を前記ビーム入射角検出器が捕らえた入射光線に沿って移動させることにより送信装置からのレーザー光を受信装置のPSDに導くことを特徴とするものである。   In order to achieve the above object, the optical axis alignment initialization apparatus of the optical space communication system of the present invention is configured so that the transmission direction of the laser beam by the laser beam source for transmission (pan / tilt angle) can be adjusted. A movable reflector for transmission with a degree of freedom, and a movable reflector for reception with two degrees of freedom that guides the receiving device to two beam splitters arranged in series by adjusting the direction of the laser beam that has arrived from the transmitter. Two PSDs (Position Sensing Device) for detecting the irradiation position of each of the laser beams divided into two by the next beam splitter and one split light divided by the first beam splitter, and another by the first beam splitter It is equipped with a PD (Photo Detector) for receiving the branched light and laser light in the space. In an optical space communication system in which communication is performed by propagation, a laser beam from a transmitting device is installed so that a beam incident angle detector is installed in a receiving device and covers both the beam incident angle detector and the movable reflector for reception. When the light is scanned at a high speed by the movable reflector for transmission, the beam incident angle detector forms a search region where the two PSDs can capture laser light via the movable reflector for reception. The laser beam from the transmitting device is guided to the PSD of the receiving device by moving along the captured incident light beam.

本発明の光空間通信システムの光軸アライメント初期化装置によれば、移動を伴う光空間通信システムにおいて任意の初期位置にある移動端末と固定局との光のリンクを確立して光空間通信を開始するための光軸の粗調整を行うアライメント初期化を効率的に実現できるという効果がある。   According to the optical axis alignment initialization apparatus for an optical space communication system of the present invention, an optical link between a mobile terminal at an arbitrary initial position and a fixed station is established in an optical space communication system involving movement to perform optical space communication. There is an effect that the alignment initialization for performing the coarse adjustment of the optical axis for starting can be efficiently realized.

以下図面を参照して本発明の実施の形態例を詳細に説明する。
図1は本発明の実施形態例に係る光空間通信システムの光軸アライメント初期化装置を示す構成説明図である。送信装置11にはレーザー光Lを発射する送信用レーザー光源例えばレーザーダイオードLDが設けられ、前記レーザーダイオードLDから発射されたレーザー光Lの光路にはレーザー光Lの発射方向(パン・チルト角)が調整可能なように2自由度の送信用可動式反射鏡である2自由度可動式反射鏡12が設けられる。一方、受信装置13には送信装置11から到達したレーザー光Lの向きを調整する2自由度の受信用可動式反射鏡である2自由度可動式反射鏡14が設けられ、前記2自由度可動式反射鏡14で反射されたレーザー光Lの光路には直列に配置された2つのビームスプリッター15,16が設けられる。前記2つのビームスプリッター15,16にはそれぞれ対応してプリズム斜面17,18が設けられる。前記2自由度可動式反射鏡14で反射されたレーザー光Lを最初のビームスプリッター15により2分した一方の分岐光を次のビームスプリッター16によりさらに2分したレーザー光Lそれぞれの照射位置にはレーザー光Lそれぞれの照射位置を検知する2つのPSD1,PSD2が設けられる。前記2自由度可動式反射鏡14で反射されたレーザー光Lを最初のビームスプリッター15により2分したもう1つの分岐光を受光する位置には受信用PDが設けられる。受信装置には送信装置11から到達したレーザー光Lのビーム入射角を検出するビーム入射角センサ19が設置される。前記ビーム入射角センサ19は、ビーム入射角センサ19と2自由度可動式反射鏡14の両方をカバーするように送信装置11からのレーザー光Lを2自由度可動式反射鏡12により高速スキャンさせたときに、2つのPSD1,PSD2が2自由度可動式反射鏡14を介してレーザー光Lを捕らえることの可能な探索領域をビーム入射角センサ19が捕らえた入射光線に沿って移動させることにより送信装置11からのレーザー光Lを受信装置13のPSD1,PSD2に導くものである。
Embodiments of the present invention will be described below in detail with reference to the drawings.
FIG. 1 is an explanatory diagram showing a configuration of an optical axis alignment initialization apparatus for an optical space communication system according to an embodiment of the present invention. The transmission device 11 is provided with a transmission laser light source for emitting a laser beam L, for example, a laser diode LD, and in the optical path of the laser beam L emitted from the laser diode LD, the emission direction (pan / tilt angle) of the laser beam L Is provided with a two-degree-of-freedom movable reflector 12 that is a two-degree-of-freedom movable reflector for transmission. On the other hand, the receiving device 13 is provided with a two-degree-of-freedom movable reflecting mirror 14 that is a two-degree-of-freedom movable reflecting mirror for adjusting the direction of the laser beam L that has arrived from the transmitting device 11, and is movable with two degrees of freedom. Two beam splitters 15 and 16 arranged in series are provided in the optical path of the laser beam L reflected by the reflective mirror 14. The two beam splitters 15 and 16 are provided with prism inclined surfaces 17 and 18, respectively. The laser beam L reflected by the two-degree-of-freedom movable mirror 14 is divided into two by the first beam splitter 15 and one split beam is further divided by the next beam splitter 16 at each irradiation position of the laser beam L. Two PSD1 and PSD2 for detecting the irradiation position of each laser beam L are provided. A receiving PD is provided at a position for receiving another branched light obtained by dividing the laser light L reflected by the two-degree-of-freedom movable mirror 14 by the first beam splitter 15. A beam incident angle sensor 19 that detects the beam incident angle of the laser light L that has arrived from the transmitting device 11 is installed in the receiving device. The beam incident angle sensor 19 scans the laser beam L from the transmitter 11 at a high speed with the two-degree-of-freedom movable reflector 12 so as to cover both the beam incident-angle sensor 19 and the two-degree-of-freedom movable reflector 14. When two PSDs 1 and 2 move the search area where the laser beam L can be captured via the movable mirror 14 having two degrees of freedom along the incident light beam captured by the beam incident angle sensor 19. The laser beam L from the transmitter 11 is guided to PSD1 and PSD2 of the receiver 13.

すなわち、送信装置11では送信用LDから発射されるレーザー光Lを2自由度可動式反射鏡12で反射させ受信装置13側へ送出する。受信装置13では到達光を2自由度可動式反射鏡14で反射させて2つのビームスプリッター15,16へ導いている。最初のビームスプリッター15で2分された光の一方を受信用PDで受光し、もう一方はさらに2分されビームスポット検出用の2つのPSD1,PSD2に到達する。また、送信装置11と受信装置13間はそれぞれ対応して設けられた制御部20,21を用いて通常の電波無線や赤外線などによる無線LANにより互いの情報を交換できるようになっている。   That is, the transmission device 11 reflects the laser light L emitted from the transmission LD with the two-degree-of-freedom movable reflecting mirror 12 and transmits it to the reception device 13 side. In the receiving device 13, the reaching light is reflected by the movable mirror 14 with two degrees of freedom and guided to the two beam splitters 15 and 16. One of the lights divided by the first beam splitter 15 is received by the receiving PD, and the other is further divided by two to reach the two PSD1 and PSD2 for beam spot detection. In addition, the transmitting device 11 and the receiving device 13 can exchange information with each other by a wireless LAN such as a normal radio wave or infrared rays using the control units 20 and 21 provided correspondingly.

非特許文献1で示されているように受信装置13への入射光とPD光学系の間の関係はプリズム斜面18に対するPSD2の鏡像をPSD2′とするとPSD1とPSD2′上のレーザービームスポットの位置によってパラメトライズされる。光軸調整はPD光学系の光軸に対応して定義される2つのPSD1,PSD2上の基準点からのズレを2自由度可動式反射鏡14へフィードバックすることにより行われるが、通信可能な任意の相対位置にある送信装置11と受信装置13間で光のリンクを確立するには先ず送信装置11からのレーザー光Lを受信装置13のPSD1,PSD2が受光可能な探索範囲へと導く必要がある。   As shown in Non-Patent Document 1, the relationship between the incident light to the receiver 13 and the PD optical system is that the position of the laser beam spot on PSD1 and PSD2 ′ is PSD2 ′ when the mirror image of PSD2 with respect to the prism inclined surface 18 is PSD2 ′. Is parametrized. The optical axis adjustment is performed by feeding back to the two-degree-of-freedom movable reflecting mirror 14 the deviation from the reference point on the two PSD1 and PSD2 defined corresponding to the optical axis of the PD optical system. In order to establish an optical link between the transmission device 11 and the reception device 13 at an arbitrary relative position, it is first necessary to guide the laser light L from the transmission device 11 to a search range where the PSD 1 and PSD 2 of the reception device 13 can receive light. There is.

図2は本発明の実施形態例に係る受信装置がレーザー光を捕らえることのできる探索範囲を示す説明図である。すなわち、受信装置13の2つのPSD1,PSD2が2自由度可動式反射鏡14を介して受光できるレーザー入射光の範囲を示しており、図2のAは2つのビームスプリッター15,16のプリズム斜面17,18が直線に見える方向から見た図、図2のBは図2のAと直交する矢印方向からPSD2′を見た場合の様子を示す図である。図2のB中の楕円が2自由度可動式反射鏡14を示し、図2のB中の円がPSD1,PSD2の受光範囲(レーザー光ビームスポットの検出範囲)を示すとき、PSD1,PSD2の探索範囲は2自由度可動式反射鏡14の楕円を窓とみなしてPSD1,PSD2検出範囲の円が捕らえることのできる光線の集合として定義され、図2のA中の斜線部分で表されている。   FIG. 2 is an explanatory diagram showing a search range in which the receiver according to the embodiment of the present invention can capture laser light. 2 shows the range of laser incident light that can be received by the two PSDs 1 and 2 of the receiving device 13 via the two-degree-of-freedom movable mirror 14. FIG. 2A shows the prism slopes of the two beam splitters 15 and 16. 17 and 18 are views seen from a direction in which a straight line is seen, and FIG. 2B is a view showing a state when PSD 2 'is seen from the direction of an arrow orthogonal to A in FIG. When the ellipse in B of FIG. 2 indicates the two-degree-of-freedom movable reflector 14, and the circle in B of FIG. 2 indicates the light receiving range of PSD1 and PSD2 (detection range of the laser beam spot), PSD1 and PSD2 The search range is defined as a set of rays in which the circle of the detection range of PSD1 and PSD2 can be captured by regarding the ellipse of the movable mirror 14 with two degrees of freedom as a window, and is represented by the hatched portion in A of FIG. .

前記光軸アライメントの初期化は次のような手順で実行できる。
[1]送信装置11から発射されるレーザー光Lを受信装置13の2自由度可動式反射鏡14とビーム入射角センサ19を同時に包含できるような適当なパン・チルト角の範囲内でラスタスキャンさせる。送信装置11を直接人手で操作できないときは送信装置11側にカメラ等を設置し無線LANを介して遠隔操縦する。
[2]受信装置13のビーム入射角センサ19で捕らえた角度情報からレーザー光発射点候補の集合としての直線を受信装置13の基準座標系において定義する。
[3]PSD1,PSD2の探索範囲の中心線が前記[2]の直線上を通過するように2自由度可動式反射鏡14を調整し、その交点をPSD1,PSD2によってレーザー光Lが検出されるまで移動させる。
The optical axis alignment can be initialized by the following procedure.
[1] Raster scan of the laser beam L emitted from the transmitter 11 within an appropriate pan / tilt angle range that can simultaneously include the two-degree-of-freedom movable reflector 14 and the beam incident angle sensor 19 of the receiver 13. Let When the transmission device 11 cannot be directly operated manually, a camera or the like is installed on the transmission device 11 side and remotely controlled via a wireless LAN.
[2] A straight line as a set of laser light emission point candidates is defined in the reference coordinate system of the receiving device 13 from the angle information captured by the beam incident angle sensor 19 of the receiving device 13.
[3] Adjust the two-degree-of-freedom movable reflector 14 so that the center line of the search range of PSD1 and PSD2 passes on the straight line [2], and the laser beam L is detected by PSD1 and PSD2 at the intersection. Move until

図3は本発明の実施形態例に係る探索範囲の移動による光軸アライメントの初期化を示す説明図である。すなわち、PSD1,PSD2の探索範囲は一定の広がりを持つため探索範囲を移動していくとある時点において前記[2]で定義された直線をその範囲に含むことになり、原理的にはその時点までの間にレーザー光Lが探索範囲へ誘導され光軸アライメントの初期化が完了することになる。   FIG. 3 is an explanatory diagram showing initialization of the optical axis alignment by moving the search range according to the embodiment of the present invention. That is, since the search range of PSD1 and PSD2 has a certain spread, when the search range is moved, the straight line defined in [2] is included in the range at a certain point in time. In the meantime, the laser beam L is guided to the search range, and the initialization of the optical axis alignment is completed.

なお、本発明は、上記実施形態例そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態例に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態例に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態例に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiment examples may be appropriately combined.

本発明の実施形態例に係る光空間通信システムの光軸アライメント初期化装置を示す構成説明図である。1 is a configuration explanatory view showing an optical axis alignment initialization apparatus of an optical space communication system according to an embodiment of the present invention. FIG. 本発明の実施形態例に係る受信装置がレーザー光を捕らえることのできる探索範囲を示す説明図である。It is explanatory drawing which shows the search range which can receive the laser beam by the receiver which concerns on the example of embodiment of this invention. 本発明の実施形態例に係る探索範囲の移動による光軸アライメントの初期化を示す説明図である。It is explanatory drawing which shows initialization of the optical axis alignment by the movement of the search range which concerns on the example of embodiment of this invention.

符号の説明Explanation of symbols

11…送信装置、12…2自由度可動式反射鏡、13…受信装置、14…2自由度可動式反射鏡、15,16…ビームスプリッター、17,18…プリズム斜面、19…ビーム入射角センサ、20,21…制御部、LD…レーザーダイオード、PD…フォトディテクタ、PSD1,PSD2…ポジションセンシングデバイス、L…レーザー光。   DESCRIPTION OF SYMBOLS 11 ... Transmitter, 12 ... 2-degree-of-freedom movable reflector, 13 ... Receiver, 14 ... 2-degree-of-freedom movable reflector, 15, 16 ... Beam splitter, 17, 18 ... Prism slope, 19 ... Beam incident angle sensor , 20, 21 ... control unit, LD ... laser diode, PD ... photo detector, PSD1, PSD2 ... position sensing device, L ... laser light.

Claims (1)

送信装置に、送信用レーザー光源によるレーザー光の発射方向(パン・チルト角)が調整可能なように2自由度の送信用可動式反射鏡を備え、受信装置に、送信装置から到達したレーザー光の向きを調整し直列に配置された2つのビームスプリッターへ導く2自由度の受信用可動式反射鏡と、最初のビームスプリッターにより2分した一方の分岐光を次のビームスプリッターによりさらに2分したレーザー光それぞれの照射位置を検知する2つのPSD(Position Sensing Device)と、最初のビームスプリッターによるもう1つの分岐光を受光する受信用PD(Photo Detector)とを備え、空間中にレーザー光を伝播させて通信を行う光空間通信システムにおいて、
受信装置にビーム入射角検出器を設置し、前記ビーム入射角検出器と前記受信用可動式反射鏡の両方をカバーするように送信装置からのレーザー光を前記送信用可動式反射鏡により高速スキャンさせたときに、前記2つのPSDが前記受信用可動式反射鏡を介してレーザー光を捕らえることの可能な探索領域を前記ビーム入射角検出器が捕らえた入射光線に沿って移動させることにより送信装置からのレーザー光を受信装置のPSDに導くことを特徴とする光空間通信システムの光軸アライメント初期化装置。
The transmitting device is equipped with a movable reflector for transmission with two degrees of freedom so that the emitting direction (pan / tilt angle) of the laser beam from the transmitting laser light source can be adjusted, and the laser beam that has arrived from the transmitting device to the receiving device The two-degree-of-freedom movable reflector for receiving light that is guided to two beam splitters arranged in series and one split light divided into two by the first beam splitter was further divided into two by the next beam splitter. Providing two PSDs (Position Sensing Devices) that detect the irradiation position of each laser beam and a PD (Photo Detector) for receiving another split beam from the first beam splitter, and propagating the laser beam in space In an optical space communication system for performing communication,
A beam incident angle detector is installed in the receiver, and the laser beam from the transmitter is scanned at high speed by the movable reflector for transmission so as to cover both the beam incident angle detector and the movable reflector for reception. When the two PSDs are transmitted along the incident light beam captured by the beam incident angle detector, the search area in which the two PSDs can capture the laser beam via the movable reflector for reception is transmitted. An optical axis alignment initialization device for an optical space communication system, wherein laser light from the device is guided to PSD of a receiving device.
JP2005165461A 2005-06-06 2005-06-06 Optical axis alignment initializing apparatus of optical spatial communication system Pending JP2006340280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005165461A JP2006340280A (en) 2005-06-06 2005-06-06 Optical axis alignment initializing apparatus of optical spatial communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005165461A JP2006340280A (en) 2005-06-06 2005-06-06 Optical axis alignment initializing apparatus of optical spatial communication system

Publications (1)

Publication Number Publication Date
JP2006340280A true JP2006340280A (en) 2006-12-14

Family

ID=37560399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005165461A Pending JP2006340280A (en) 2005-06-06 2005-06-06 Optical axis alignment initializing apparatus of optical spatial communication system

Country Status (1)

Country Link
JP (1) JP2006340280A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340075A (en) * 2005-06-02 2006-12-14 Nippon Telegr & Teleph Corp <Ntt> Hybrid optical axis correcting device of optical spatial communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340075A (en) * 2005-06-02 2006-12-14 Nippon Telegr & Teleph Corp <Ntt> Hybrid optical axis correcting device of optical spatial communication system
JP4585378B2 (en) * 2005-06-02 2010-11-24 日本電信電話株式会社 Hybrid optical axis correction device for optical space communication system

Similar Documents

Publication Publication Date Title
EP4191282A1 (en) Optical system of laser radar and laser radar system
US8948601B2 (en) Method and system for indoor wireless optical links
US20030067657A1 (en) Method and apparatus to compensate for atmospheric effects and target motion in laser communication system
US7920794B1 (en) Free space optical communication
US11909439B2 (en) Wavefront sensor with inner detector and outer detector
US8995841B1 (en) Beam path adaptation system and method for free space optical communications systems
US11005565B1 (en) Free space optical communication terminal with wavelength dependent optic
CN1906866A (en) Atmospheric optical data transmission system
JP2007533239A (en) Device for improving reception in optical networks
KR101951242B1 (en) Lidar device and system comprising the same
JP6385312B2 (en) Spatial optical communication device
WO2018057080A1 (en) Prism-based scanner
JP2005229253A (en) Spatial light transmission apparatus
JP4701454B2 (en) Spatial optical communication method and spatial optical communication apparatus
WO2015178173A1 (en) Optical spatial communication device
US7181143B2 (en) Free space optics communication apparatus and free space optics communication system
JP2006340280A (en) Optical axis alignment initializing apparatus of optical spatial communication system
JP2007184706A (en) Optical wireless transmission apparatus
JP2001203641A (en) Spatial light transmission unit
JP3823976B2 (en) Optical wireless transmission system and optical wireless transmission device
JP2001349945A (en) Optical catching method for laser communications for movable body, and optical tracking method
NL2024411B1 (en) Underwater Optical Communication Unit
US7400834B2 (en) Optical space transmission apparatus and optical space communication system
Pham et al. Auto-Aligned OWC Receiver for Indoor Mobile Users using Gradient Descent Algorithm
CN207020409U (en) A kind of hot spot Imaging for Monitoring equipment