JP2006339127A - Dye sensitized solar cell by photoelectric conversion tube, or the like - Google Patents

Dye sensitized solar cell by photoelectric conversion tube, or the like Download PDF

Info

Publication number
JP2006339127A
JP2006339127A JP2005185645A JP2005185645A JP2006339127A JP 2006339127 A JP2006339127 A JP 2006339127A JP 2005185645 A JP2005185645 A JP 2005185645A JP 2005185645 A JP2005185645 A JP 2005185645A JP 2006339127 A JP2006339127 A JP 2006339127A
Authority
JP
Japan
Prior art keywords
dye
photoelectric conversion
titanium dioxide
solar cell
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005185645A
Other languages
Japanese (ja)
Inventor
Hiroshi Kitamura
浩 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005185645A priority Critical patent/JP2006339127A/en
Publication of JP2006339127A publication Critical patent/JP2006339127A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a more efficient dye sensitized solar cell. <P>SOLUTION: A photoelectric conversion tube 16 is newly designed, where a conductive thin film, such as ITO, is arranged at the center instead of a good conductor 19, and the outer section (outer-periphery section) is coated with titanium dioxide 18 particulated by ultrasonic vibration, thus applying light transmitted through a transparent substrate 15 at an incident light side to concentrated coloring matters directly adsorbed by titanium dioxide, generating more electrons, and increasing voltage. Additionally, the structure of a solar cell is set to, for example, an irregular transparent substrate, concentrated coloring matter 22, and an electrolyte 21 by particulated titanium dioxide and ionic liquids, thus manufacturing a new, efficient dye sensitized solar cell in which they are combined with the photoelectric conversion tube. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光の透過性及びその光電変換効率の向上のために、例えば光電変換チューブを新たに用いる等により、従来の光電変換形態及びその構造等を改良した色素増感型太陽電池に関する。  The present invention relates to a dye-sensitized solar cell in which a conventional photoelectric conversion form and its structure are improved by, for example, newly using a photoelectric conversion tube in order to improve light transmission and photoelectric conversion efficiency.

従来の二酸化チタンを作用電極とする色素増感型太陽電池は、簡単な基本構造として半導体層電極、対電極、及びそれらの電極間に充填された電解質層とから構成される。この際に、光電変換材料である半導体層電極において、半導体層表面には、可視光領域に吸収スペクトルを有する光増感色素が吸着されている。  A conventional dye-sensitized solar cell using titanium dioxide as a working electrode includes a semiconductor layer electrode, a counter electrode, and an electrolyte layer filled between these electrodes as a simple basic structure. At this time, in the semiconductor layer electrode which is a photoelectric conversion material, a photosensitizing dye having an absorption spectrum in the visible light region is adsorbed on the surface of the semiconductor layer.

これらの太陽電池は、半導体層電極に光を照射すると、この電極側にあるカルボキシル基を有するルテニウムのビピリジン錯体等の色素から電子が発生し、この電子が二酸化チタン多孔質膜に移動してインジウムすず酸化物(ITO)等の導電層を通り、回路を経て対電極に流れる。  In these solar cells, when a semiconductor layer electrode is irradiated with light, electrons are generated from a dye such as a ruthenium bipyridine complex having a carboxyl group on the electrode side, and the electrons move to the titanium dioxide porous film to form indium. It passes through a conductive layer such as tin oxide (ITO) and flows through the circuit to the counter electrode.

対電極に流れた電子は、電解質中のイオンによって運ばれて半導体層電極に戻る。この際の電解液には、通常ニトリル系の溶媒を用い、これに溶質としてヨウ素とヨウ素イオンのレドックス系を溶解する。この繰り返しによって電気エネルギーが取り出せる。  The electrons flowing to the counter electrode are carried by the ions in the electrolyte and return to the semiconductor layer electrode. In this case, a nitrile solvent is usually used as the electrolyte, and a redox system of iodine and iodine ions is dissolved therein as a solute. Electric energy can be extracted by repeating this process.

しかし、これらの太陽電池では、その取り出し電圧が低い等のために、変換効率が10%前後の結果しか得られず、広く一般への普及を考えると、到底満足のいく数値ではない。  However, since these solar cells have a low extraction voltage, the conversion efficiency is only about 10%, which is not a satisfactory value considering widespread use in general.

そこで、従来の色素増感型太陽電池の基本構造の改善のみならず、色素や二酸化チタン、そして電解質においても改善及び精度向上を図る必要がある。  Therefore, it is necessary not only to improve the basic structure of conventional dye-sensitized solar cells, but also to improve and improve the accuracy of dyes, titanium dioxide, and electrolytes.

例えば太陽光の透過性を改善するためには、従来の光の透過過程であるガラス基板を通り、電荷輸送層となる導電体膜のインジウムすず酸化物(ITO)を通って二酸化チタンに吸着している色素に届いて電子を発生させるといったフローの構成を、簡略化した基本構造が必要となる。  For example, in order to improve sunlight permeability, it is adsorbed to titanium dioxide through indium tin oxide (ITO) of a conductor film that becomes a charge transport layer through a glass substrate which is a conventional light transmission process. A basic structure that simplifies the flow structure of generating electrons upon reaching the dye is required.

また、色素で発生した電子の輸送層となる物質、すなわち導電体は従来のインジウムすず酸化物(ITO)等ではかなりの損失となるために、良導電体への改善が必要となる。さらに、色素や二酸化チタン等においても、代替物質等の研究が必要となっている。  In addition, since a material serving as an electron transport layer generated by the dye, that is, a conductor is a considerable loss in a conventional indium tin oxide (ITO) or the like, an improvement to a good conductor is necessary. Furthermore, research on alternative materials and the like is also required for pigments and titanium dioxide.

本発明は、これらの課題の改善を行うことで、より高効率な色素増感型太陽電池を提供することを目的とするものである。  An object of the present invention is to provide a dye-sensitized solar cell with higher efficiency by improving these problems.

本発明は、これらの目的を達成するために、まず最初に光エネルギーの損失を低減し、電子を発生させる色素をより多く吸着できる二酸化チタンの表面積を増加させ、そして金や銀等の良導電体を使用できるように、光電変換チューブを新たに考案した。  In order to achieve these objectives, the present invention first reduces the loss of light energy, increases the surface area of titanium dioxide that can adsorb more dyes that generate electrons, and provides good conductivity such as gold and silver. A new photoelectric conversion tube has been devised so that the body can be used.

これは、少なくとも、良導電体物質を中心部に配して、その外側部(外周部)を二酸化チタン等の導電性半導体で被覆して円形(丸形)、半円形(半丸形)及び平板形チューブ形状とした光電変換チューブである。  This is because at least a good conductor material is arranged in the center, and the outer part (outer peripheral part) is covered with a conductive semiconductor such as titanium dioxide to form a circle (round), a semi-circle (half-round), and This is a photoelectric conversion tube having a flat tube shape.

ただし、良導電体としての銀を用いる場合を想定し、電解系との化学反応を防止する観点から、二酸化チタンを厚めに被服するが、その際には被覆厚が大きくなりすぎてクラックを生じない程度に十分に注意して被覆する。  However, assuming that silver as a good conductor is used, from the viewpoint of preventing chemical reaction with the electrolytic system, titanium dioxide is coated thickly, but in that case, the coating thickness becomes too large and cracks occur. Cover with extreme care.

次に光電変換チューブの外側部(外周部)を構成する二酸化チタンの表面に吸着される色素において、遠心分離法等の濃縮法でできる限り濃縮する。これは、電子の発生源となる有機色素(機能性色素)をより多く取り込むものである。  Next, in the pigment | dye adsorb | sucked on the surface of the titanium dioxide which comprises the outer side part (outer peripheral part) of a photoelectric conversion tube, it concentrates as much as possible by concentration methods, such as a centrifugation method. This takes in more organic dyes (functional dyes) that are the sources of electrons.

また、これらの色素は多種存在することから、それら多種の有機色素(機能性色素)によって可視光の幅広いエネルギーを吸収させるためにも、同一種類の色素濃縮だけでなく、これら多種の混合による色素濃縮をも行う。  In addition, since there are many kinds of these dyes, in order to absorb a wide range of visible light energy by these various organic dyes (functional dyes), not only the same kind of dyes but also dyes produced by mixing these kinds of dyes. Concentrate also.

さらに、導電性半導体の二酸化チタンの粒子を、超音波振動によって微粒子化を図る。これは、色素を吸着させる多孔質内の表面積をより増大させるためのものであり、例えば超音波溶接技術を用いる場合には、熱を発生させない範囲での調整を行うことで微粒子化が図れる。  Further, the particles of the conductive semiconductor titanium dioxide are made fine by ultrasonic vibration. This is for further increasing the surface area in the porous material on which the dye is adsorbed. For example, in the case of using an ultrasonic welding technique, fine particles can be formed by adjusting within a range in which heat is not generated.

なお、電解質液は、液漏れのリスクからイオン性液体を用いるが、色素の二酸化チタン表面への化学的結合がスムースに行われるように、カルボキシル基等を少量含めることも必要となる。  In addition, although an ionic liquid is used for the electrolyte solution from the risk of liquid leakage, it is also necessary to include a small amount of a carboxyl group or the like so that chemical bonding of the dye to the titanium dioxide surface can be performed smoothly.

さらに、対電極側となるプラス電極面には、従来白金が用いられてきたが、高価であるため、コスト低減にはつながりにくかったことから、できれば炭素系を用いる。例えば超活性炭等であるが、従来の白金等の使用を否定するものではない。  Furthermore, platinum has been conventionally used for the positive electrode surface on the counter electrode side. However, since it is expensive, it was difficult to reduce the cost, and therefore carbon-based material is used if possible. For example, super activated carbon or the like, but the use of conventional platinum or the like is not denied.

一方、色素増感型太陽電池の基本構造においては、後述する実施例において詳述するが、まず従来の基本構造の形態をベースとする場合(以下「従来型」という。)、光電変換チューブ、濃縮色素、微粒子かされた二酸化チタン及びイオン性液体による電解質液を用いると、光電変換チューブの活用部分が大きく変わることとなる。ただし、光電変換チューブを複層としたり重ねる等の構造とする場合には、中間支体として透明基体等を使用する。  On the other hand, the basic structure of the dye-sensitized solar cell will be described in detail in Examples described later. First, in the case where the basic structure is used as a base (hereinafter referred to as “conventional type”), a photoelectric conversion tube, The use of the concentrated dye, finely divided titanium dioxide and an ionic liquid electrolyte will greatly change the utilization part of the photoelectric conversion tube. However, when the photoelectric conversion tube has a multi-layered structure or a stacked structure, a transparent substrate or the like is used as an intermediate support.

しかしながら、入射光を受ける透明基体に透明導電性薄膜(インジウムすず酸化物等)を施さず、その直下に直接電解質液に浸透した濃縮色素と光電変換チューブを配置する構造の場合(以下「反転型」という。)、上下電極に夾まれる内部では、電解質液を入射光を受ける透明基体の直下にまで十分に浸透させる必要があることから、光電変換チューブを保護する中間支体や両電極を分離したり、平板型光電変換チューブを縦に配置する場合等の分離用にセパレータ(不識布)を使用することもある。  However, a transparent conductive thin film (indium tin oxide, etc.) is not applied to a transparent substrate that receives incident light, and a concentrated dye and a photoelectric conversion tube that have directly penetrated into the electrolyte solution are disposed directly below the transparent substrate (hereinafter referred to as “inverted type”). )), The inside of the upper and lower electrodes is required to sufficiently infiltrate the electrolyte solution just below the transparent substrate that receives the incident light. A separator (unknown cloth) may be used for separation, such as when separating or arranging a flat photoelectric conversion tube vertically.

本発明は、光電変換チューブの考案により、まず良導電体を使用できるようになって電極から取り出せる電圧が増大し、次に透明導電性薄膜(インジウムスズ酸化物等)が光電変換チューブの中心部に細く配置されることで透過性能を大きく低減することなく透過性を高め、結果として色素への光エネルギー入射率を高めて光電変換効率を増大させることができる。  The present invention is based on the idea of a photoelectric conversion tube. First, a good conductor can be used, and the voltage that can be taken out from the electrode increases. Next, a transparent conductive thin film (such as indium tin oxide) is placed in the center of the photoelectric conversion tube. Therefore, it is possible to increase the transmittance without greatly reducing the transmission performance, and as a result, increase the incident rate of light energy to the dye and increase the photoelectric conversion efficiency.

また、円形等のチューブ形状とすることで、二酸化チタンの表面積が増大し(概して従来のものより50%程度増加する。)、結果として濃縮色素の吸着量が増加して発生電子を増大させることとなる。  In addition, by using a tube shape such as a circle, the surface area of titanium dioxide increases (generally about 50% higher than the conventional one), and as a result, the amount of adsorption of the concentrated dye increases and the generated electrons increase. It becomes.

そして、濃縮色素、微粒子化された二酸化チタン、イオン性液体の活用等とも合わせて、高効率の色素増感型太陽電池を提供できる。  A highly efficient dye-sensitized solar cell can be provided in combination with the use of concentrated dye, finely divided titanium dioxide, ionic liquid, and the like.

さらに、本発明は、その基本構造を反転型として、上記光電変換チューブ、濃縮色素、微粒子化された二酸化チタン等を組合せることで、さらなる高効率の色素増感型太陽電池を提供できる。  Furthermore, the present invention can provide a further highly efficient dye-sensitized solar cell by combining the photoelectric conversion tube, the concentrated dye, the finely divided titanium dioxide and the like with the basic structure as an inversion type.

本発明において、まず光電変換チューブ16(円形・半円形)及び17(平板形)は、二酸化チタン18と良導電体19から成る。これは、少なくとも、金や銀等の良導電体19を中心部に配して、その外側部(外周部)を二酸化チタン18等の導電性半導体で十分に被覆して円形(丸形)及び半円形(半丸形)の形状とした光電変換チューブ16としたタイプと、中心部に配置する良導電体19を平板状に延ばした光電変換チューブ17のタイプの二種類がある(以下、光電変換チューブの種類は、16及び17として区別する。)  In the present invention, first, the photoelectric conversion tubes 16 (circular / semicircular) and 17 (flat plate) are composed of titanium dioxide 18 and a good conductor 19. This is because at least a good conductor 19 such as gold or silver is arranged in the center, and the outer side (outer peripheral part) is sufficiently covered with a conductive semiconductor such as titanium dioxide 18 to form a circle (round) and There are two types: a photoelectric conversion tube 16 having a semicircular (semi-circular) shape, and a photoelectric conversion tube 17 in which a good conductor 19 disposed in the center is extended in a flat plate shape (hereinafter referred to as photoelectric). The types of conversion tubes are distinguished as 16 and 17.)

ただし、良導電体19としての銀を用いる場合を想定し、電解質液21との万が一の化学反応を防止する観点から、二酸化チタン18を厚めに被服するが、その際には被覆厚が大きくなりすぎてクラックを生じない程度に十分に注意して被覆する。
なお、上記光電変換チューブ16及び17においては、他の導電体20の使用を否定するものではない。
However, assuming that silver as the good conductor 19 is used, the titanium dioxide 18 is thickly coated from the viewpoint of preventing a chemical reaction with the electrolyte solution 21, but in that case the coating thickness increases. Cover with sufficient care not to crack too much.
In addition, in the said photoelectric conversion tubes 16 and 17, use of the other conductor 20 is not denied.

従来型では、この光電変換チューブ16及び17を用いる場合、透明基体上部13の内部側に直接配置することができ、これによって光の透過性を寄り向上させることができるだけでなく、導電体20を良導電体19に改善できることから、取り出し電圧がかなり高く得られることとなる。  In the conventional type, when the photoelectric conversion tubes 16 and 17 are used, the photoelectric conversion tubes 16 and 17 can be directly arranged on the inner side of the transparent base upper portion 13. Since the good conductor 19 can be improved, the extraction voltage can be obtained considerably high.

次に、基本構造における反転型を説明する。  Next, the inversion type in the basic structure will be described.

従来の色素増感型太陽電池は、入射光はガラス製の透明基体(本発明では透明基体上部13としている。)で受けられ、その基体内部側に塗布されている透明導電性薄膜のインジウムスズ酸化物(ITO)(本発明では導電体20としている。)を透過して、二酸化チタン18に吸着されている色素(本発明では濃縮色素22としている。)に照射されて電子を発生させるという基本構造をもつ。  In a conventional dye-sensitized solar cell, incident light is received by a transparent substrate made of glass (in the present invention, the transparent substrate upper portion 13), and the transparent conductive thin film indium tin coated on the inside of the substrate is used. It passes through an oxide (ITO) (in the present invention, the conductor 20) and is irradiated with a dye adsorbed on the titanium dioxide 18 (in the present invention, the concentrated dye 22) to generate electrons. Has a basic structure.

しかし、本発明では、この基本構造において、まず入射光を高分子材(又は合成樹脂材と呼ぶべきかどちらでも可。)であるプラスチックで成形された柔軟性のある透明基体上部13で受けるが、次には電解質液21を含んだ濃縮色素22に直接照射され、その濃縮色素22が吸着している光電変換チューブ16及び17の二酸化チタン18に電子を移動させることとなる。  However, according to the present invention, in this basic structure, first, incident light is received by the flexible transparent base upper portion 13 formed of plastic which is a polymer material (or may be called a synthetic resin material). Next, the concentrated dye 22 containing the electrolyte solution 21 is directly irradiated, and electrons are transferred to the titanium dioxide 18 of the photoelectric conversion tubes 16 and 17 on which the concentrated dye 22 is adsorbed.

そして、光電変換チュ−ブ16及び17の中心部に配した良導電体19を通って、大きな取り出し電圧となり、対電極(プラス電極23)に伝わることを繰り返すこととなる。  Then, it passes through the good conductor 19 disposed in the central part of the photoelectric conversion tubes 16 and 17 and becomes a large extraction voltage, and is repeatedly transmitted to the counter electrode (plus electrode 23).

ただし、この反転型の場合には、透明基体上部13の直下に電解質液21が浸透する必要があるため、必要に応じて実施例9、10及び11に示すように、両電極に夾まれた内部に配置する光電変換チューブ16及び17や濃縮色素22等を保護する方法として、中間支体(原則透明基体上部13と同じ素材とする)25を変形させながら配する場合と、透明基体上部13の内部表面に凹凸形状を成形した透明基体(凹凸形状)15を用いて十分な隙間を確保する方法が必要である。  However, in the case of this inversion type, the electrolyte solution 21 needs to permeate directly under the transparent base upper portion 13, so that it was sandwiched between both electrodes as required in Examples 9, 10 and 11. As a method for protecting the photoelectric conversion tubes 16 and 17 and the concentrated dye 22 arranged inside, the intermediate support body (in principle, the same material as the transparent base upper part 13) 25 is arranged while being deformed, and the transparent base upper part 13 There is a need for a method of ensuring a sufficient gap using a transparent substrate (uneven shape) 15 having an uneven shape formed on its inner surface.

さらに、この反転型では、電極同士が接触しないように分離するためにセパレータ(不識布)24を用いたり、平板型の光電変換チューブ17とする際の個々の隔離板としてのセパレータ(不識布)24として用いることも可能である。  Furthermore, in this inversion type, a separator (unknown cloth) 24 is used to separate the electrodes so that they do not contact each other, or separators (unintelligible) as individual separators when the flat plate type photoelectric conversion tube 17 is used. Cloth) 24 can also be used.

以下、実施例により本発明を詳述する。ただし、本発明は本実施例により何ら限定されるものではない。  Hereinafter, the present invention will be described in detail by way of examples. However, this invention is not limited at all by this Example.

実施例1及び2
従来型のもので、透明基体上部13の直下に、円形又は半円形の光電変換チューブ16を配置したタイプ(実施例1)と平板形の光電変換チューブ17を配置したタイプである。透明基体上部及び下部は高分子材というのか合成樹脂材というのか、柔軟性のあるプラスチックとする。
Examples 1 and 2
The conventional type is a type in which a circular or semicircular photoelectric conversion tube 16 is disposed immediately below the transparent base upper part 13 and a type in which a flat photoelectric conversion tube 17 is disposed. The upper and lower parts of the transparent substrate are polymer materials or synthetic resin materials, or flexible plastics.

また、色素は濃縮色素22とし、二酸化チタン18も超音波振動によって微粒子化されたものを使用する。なお、電解質液21はそのほとんどの成分をイオン性液体とし、残りをカルボキシル基のような濃縮色素22と二酸化チタン18に化学結合させる物質を添加する。  Further, the dye is the concentrated dye 22, and the titanium dioxide 18 is also made fine particles by ultrasonic vibration. It should be noted that most of the components of the electrolyte solution 21 are ionic liquids, and the remainder is added with a substance that chemically bonds to the concentrated pigment 22 such as a carboxyl group and the titanium dioxide 18.

さらに、プラス電極23は、白金でも良いが、超活性炭としてコストダウンを図ることもできる。  Furthermore, although the plus electrode 23 may be platinum, the cost can be reduced as super activated carbon.

実施例3
上記実施例1及び2と基本構造は同じであるが、透明基体上部13の直下に配置する光電変換チューブ16又は17を積み上げた積層タイプとしたものである。
Example 3
Although the basic structure is the same as in Examples 1 and 2, the photoelectric conversion tube 16 or 17 disposed just below the transparent base upper part 13 is a stacked type.

実施例4及び5
これ以下の実施例は反転型となる。まず実施例4は、透明基体上部13の直下に電解質液21が浸透できる空間を確保するために、中間支体25を用いてその上部測面は電解質液21が通ることのできるように有孔面とする。
Examples 4 and 5
Examples below this are inversion types. First, in Example 4, in order to secure a space in which the electrolyte solution 21 can permeate directly below the transparent base upper portion 13, the upper surface measurement is perforated so that the electrolyte solution 21 can pass through the intermediate support 25. A surface.

中間支体25の内側には、上部から電解質液21、濃縮色素22、二酸化チタン18及び導電体20の順序で積層とする。さらに、中間支体25とプラス電極23間には、電解質液21が通ることのできるようにセパレータ(不識布)24を敷き、隙間を確保する(中間支体24の有孔版を用いても可。)  On the inner side of the intermediate support 25, the electrolyte solution 21, the concentrated dye 22, the titanium dioxide 18 and the conductor 20 are laminated in this order from the top. Further, a separator (unknown cloth) 24 is laid between the intermediate support 25 and the plus electrode 23 so that the electrolyte solution 21 can pass therethrough, and a gap is secured (even if a perforated plate of the intermediate support 24 is used). Yes.)

なお、実施例4及び5における二酸化チタン18は、光電変換チューブ16及び17の形状を採らないタイプである。光電変換チューブ16及び17の形状を採るのは、実施例6以降のタイプである。  In addition, the titanium dioxide 18 in Example 4 and 5 is a type which does not take the shape of the photoelectric conversion tubes 16 and 17. FIG. It is the type after Example 6 that takes the shape of the photoelectric conversion tubes 16 and 17.

また、従来型に比して、反転型は光の透過性がかなり向上することから、二酸化チタン18及び導電体20の厚さを増すことができる。  Further, compared with the conventional type, the inverted type significantly improves the light transmittance, so that the thickness of the titanium dioxide 18 and the conductor 20 can be increased.

実施例5は、上記実施例4と基本構造は同じであり、内部を構成する濃縮色素22及び二酸化チタン18等を複層としただけである。  The basic structure of Example 5 is the same as that of Example 4 described above, and only a double layer is formed of the concentrated dye 22 and titanium dioxide 18 and the like constituting the inside.

実施例6、7及び8
実施例6、7及び8は基本構造が全く同じである。実施例7は実施例6の内部構成要因を複層としたものであり、実施例8は、光電変換チューブ16が平板形の光電変換17となっただけである。
Examples 6, 7 and 8
Examples 6, 7 and 8 have the same basic structure. In Example 7, the internal constitution factor of Example 6 was made into a multilayer, and in Example 8, the photoelectric conversion tube 16 was merely a flat photoelectric conversion 17.

その構造については、前述した実施例4及び5において二酸化チタン18とした部分が、光電変換チューブ16及び17に置き換わっただけであるため、基本説明は省略するが、実施例8においては、平板形の光電変換チューブ17が隣接するために、二酸化チタン18の厚さ形状がクラックを生じやすくなる危険性があるために、必要に応じてセパレータ(不識布)24等で分離させる。  As for the structure, since the portion made of titanium dioxide 18 in Examples 4 and 5 described above is merely replaced by photoelectric conversion tubes 16 and 17, the basic description is omitted, but in Example 8, a flat plate shape is used. Since the photoelectric conversion tubes 17 are adjacent to each other, there is a risk that the thickness shape of the titanium dioxide 18 is liable to cause cracks. Therefore, the photoelectric conversion tubes 17 are separated by a separator (unknown cloth) 24 or the like as necessary.

実施例9、10及び11
上記と同じようにこの三つの実施例は基本構造が同じである。実施例10は実施例9を複層として補強したものであり、実施例11は光電変換チューブ16を平板形の光電変換チューブ17としたものである(実施例11の複層タイプは省略する。)。
Examples 9, 10 and 11
As above, the three embodiments have the same basic structure. Example 10 reinforces Example 9 as a multilayer, and Example 11 uses a photoelectric conversion tube 16 as a flat photoelectric conversion tube 17 (the multilayer type of Example 11 is omitted). ).

そこで実施例9であるが、透明基体上部(凹凸形状)15を用いて、中間支体25の機能を凹凸形状によって確保する隙間で代替するタイプである。これにより電解質液21が、透明基体上部(凹凸形状)15の直下に浸透し、濃縮色素22に電子を補給することとなる。  Therefore, in the ninth embodiment, the transparent base upper portion (uneven shape) 15 is used, and the function of the intermediate support 25 is replaced by a gap that is secured by the uneven shape. As a result, the electrolyte solution 21 penetrates directly under the transparent base upper portion (uneven shape) 15 and replenishes the concentrated dye 22 with electrons.

そして、光電変換チューブ16を上下から夾むようにして濃縮色素22を接着させ、その下部にあるプラス電極23との間にセパレータ(不識布)24を配する。  Then, the concentrated dye 22 is adhered so as to sandwich the photoelectric conversion tube 16 from above and below, and a separator (unknown cloth) 24 is disposed between the plus electrode 23 at the lower part thereof.

なお、実施例10において、光電変換チューブ16を複層とする場合、中間部に両端が有孔となっている中間支体26(平板形)を配することでより安全となる。  In Example 10, when the photoelectric conversion tube 16 has a multilayer structure, it is safer by arranging an intermediate support body 26 (flat plate shape) having holes at both ends in the intermediate portion.

本発明の一例(実施例1)を示す断面図。Sectional drawing which shows an example (Example 1) of this invention. 本発明の一例(実施例2)を示す断面図。Sectional drawing which shows an example (Example 2) of this invention. 本発明の一例(実施例3)を示す断面図。Sectional drawing which shows an example (Example 3) of this invention. 本発明の一例(実施例4)を示す断面図。Sectional drawing which shows an example (Example 4) of this invention. 本発明の一例(実施例5)を示す断面図。Sectional drawing which shows an example (Example 5) of this invention. 本発明の一例(実施例6)を示す断面図。Sectional drawing which shows an example (Example 6) of this invention. 本発明の一例(実施例7)を示す断面図。Sectional drawing which shows an example (Example 7) of this invention. 本発明の一例(実施例8)を示す断面図。Sectional drawing which shows an example (Example 8) of this invention. 本発明の一例(実施例9)を示す断面図。Sectional drawing which shows an example (Example 9) of this invention. 本発明の一例(実施例10)を示す断面図。Sectional drawing which shows an example (Example 10) of this invention. 本発明の一例(実施例11)を示す断面図。Sectional drawing which shows an example (Example 11) of this invention.

符号の説明Explanation of symbols

1 本発明の実施例1
2 本発明の実施例2
3 本発明の実施例3
4 本発明の実施例4
5 本発明の実施例5
6 本発明の実施例6
7 本発明の実施例7
8 本発明の実施例8
9 本発明の実施例9
10 本発明の実施例10
11 本発明の実施例11
12 反射防止膜
13 透明基体上部
14 透明基体下部
15 透明基体(一部凹凸形状)
16 光電変換チューブ(円形・半円形)
17 光電変換チューブ(平板形)
18 二酸化チタン(微粒子)
19 良導電体
20 導電体
21 電解質液
22 濃縮色素
23 プラス電極
24 セパレータ(不識布)
25 中間支体
26 中間支体(平板形)
1 Example 1 of the present invention
2 Example 2 of the present invention
3 Example 3 of the present invention
4 Example 4 of the present invention
5 Example 5 of the present invention
6 Example 6 of the present invention
7 Example 7 of the present invention
8 Example 8 of the present invention
9 Example 9 of the present invention
10 Example 10 of the present invention
11 Example 11 of the present invention
12 Antireflection film 13 Transparent base upper part 14 Transparent base lower part 15 Transparent base (partly uneven shape)
16 Photoelectric conversion tube (circular / semi-circular)
17 Photoelectric conversion tube (flat plate type)
18 Titanium dioxide (fine particles)
19 Good conductor 20 Conductor 21 Electrolyte liquid 22 Concentrated dye 23 Plus electrode 24 Separator (unknown cloth)
25 Intermediate support 26 Intermediate support (flat plate)

Claims (14)

少なくとも、良導電体(ITO等の透明導電体を含む。以下同じ。)と二酸化チタンとから成り、良導電体を中心部に配置して、その外側部の全面を二酸化チタン(チタニア)等の半導体によって被覆し、円形(丸形)又は半円形(半丸形)又は平板形のチューブ状に成形して、少なくとも電気的に接続される構成を有するようにした導電性半導体チューブ(以下「光電変換チューブ」という。)。  It consists of at least a good conductor (including transparent conductors such as ITO; the same shall apply hereinafter) and titanium dioxide. The good conductor is placed in the center and the entire outer surface is made of titanium dioxide (titania) or the like. A conductive semiconductor tube (hereinafter referred to as “photoelectric”) that is covered with a semiconductor and formed into a circular (round), semi-circular (half-round), or flat-plate tube shape, and is configured to be electrically connected at least. "Conversion tube"). 少なくとも、色素増感型太陽電池の光電変換作用に有効となる有機色素(機能性色素)を、例えば遠心分離法、遠心薄膜法、凍結法及び減圧法等の濃縮技術(色素合成技術であっても可能。)によって、より高濃度な色素増感型太陽電池の光電変換作用に適した濃縮色素の製造及びその濃縮色素。  At least organic dyes (functional dyes) that are effective for the photoelectric conversion action of dye-sensitized solar cells, for example, concentration techniques (dye synthesis techniques) such as centrifugal separation, centrifugal thin film method, freezing method, and decompression method. To produce a concentrated dye suitable for the photoelectric conversion action of a dye-sensitized solar cell with a higher concentration, and the concentrated dye. 少なくとも、上記請求項2記載の濃縮色素において、広い波長の可視光を吸収させて電子の授受がより効率的になるように、多種の有機色素(機能性色素)を混合した濃縮色素。  At least the concentrated dye according to claim 2, wherein various kinds of organic dyes (functional dyes) are mixed so that visible light having a wide wavelength is absorbed and exchange of electrons becomes more efficient. 少なくとも、透明基体として使用する硬質又は柔軟なプラスチック等の高分子材(合成樹脂材)において、光電変換チューブを配置する側(一般的には光電変換作用が成される側となる。)の主面の表面を、電解質液(イオン性液体を主成分とする。以下同じ。)及び濃縮色素が二酸化チタンの多孔質部に十分に浸透或いは接触若しくは化学結合できる程度の隙間を成すように凹凸形状とした透明基体。  At least, in a polymer material (synthetic resin material) such as a hard or flexible plastic used as a transparent substrate, the side on which the photoelectric conversion tube is disposed (generally the side on which the photoelectric conversion action is performed). The surface of the surface is uneven so that the electrolyte solution (mainly an ionic liquid; the same shall apply hereinafter) and the concentrated dye form a gap that can sufficiently penetrate, contact, or chemically bond to the porous portion of titanium dioxide. Transparent substrate. 少なくとも、導電性半導体となる二酸化チタンの表面積を増大させるために、超音波振動によって微粒子化を図った二酸化チタン微粒子。  At least titanium dioxide fine particles that are atomized by ultrasonic vibration in order to increase the surface area of titanium dioxide that becomes a conductive semiconductor. プラス電極として、白金だけでなく活性炭又は超活性炭を使用すること。  Use not only platinum but also activated carbon or super activated carbon as a positive electrode. 上記請求項1〜6に記載された光電変換チューブ、濃縮色素、凹凸形状の透明基体、電解質液(イオン性液体)、微粒子化された二酸化チタン及び超活性炭等を用いる際に、プラス電極とマイナス電極を接触させないように、また各々の平板形の光電変換チューブ間に電解液が浸透できる隙間を設けるためにセパレータ(不識布等)を用いることを特徴とした色素増感型太陽電池。  When using the photoelectric conversion tube, the concentrated dye, the concavo-convex shaped transparent substrate, the electrolyte solution (ionic liquid), the finely divided titanium dioxide and the super activated carbon described in the above claims 1 to 6, a plus electrode and a minus electrode are used. A dye-sensitized solar cell using a separator (unknown cloth or the like) so as not to contact an electrode and to provide a gap through which an electrolytic solution can permeate between each flat photoelectric conversion tube. 従来の色素増感型太陽電池が成していた基本構造を、少なくとも上記請求項1〜6に記載された凹凸形状の透明基体、光電変換チューブ、濃縮色素、電解質液(イオン性液体)、微粒子化された二酸化チタン及び超活性炭等を組み合わせて用いて、明細書における実施例(本発明はこれらの実施例のみに限定されるものではない。)のような構造にすることを特徴とした色素増感型太陽電池。  The basic structure formed by a conventional dye-sensitized solar cell has at least the concave-convex shaped transparent substrate, photoelectric conversion tube, concentrated dye, electrolyte solution (ionic liquid), and fine particles described in claims 1 to 6 A dye characterized by having a structure such as the examples in the specification (the present invention is not limited to these examples) using a combination of titanium dioxide, super activated carbon, etc. Sensitized solar cell. 少なくとも、上記請求項1〜6に記載された光電変換チューブ、濃縮色素、凹凸形状の透明基体、電解質液(イオン性液体)、微粒子化された二酸化チタン及び超活性炭等のいずれか二つ以上を組み合わせて用いることを特徴とした色素増感型太陽電池。  At least any two or more of the photoelectric conversion tube, the concentrated dye, the concavo-convex shaped transparent substrate, the electrolyte solution (ionic liquid), the finely divided titanium dioxide, and the super activated carbon described in the above claims 1 to 6 are included. A dye-sensitized solar cell characterized by being used in combination. 上記請求項1記載の光電変換チューブを用いることを特徴とした色素増感型太陽電池。  A dye-sensitized solar cell using the photoelectric conversion tube according to claim 1. 上記請求項2或いは3記載の濃縮色素を用いることを特徴とした色素増感型太陽電池。  A dye-sensitized solar cell using the concentrated dye according to claim 2 or 3. 上記請求項4記載の凹凸形状の透明基体を用いることを特徴とした色素増感型太陽電池。  5. A dye-sensitized solar cell, wherein the uneven transparent substrate according to claim 4 is used. 上記請求項5記載の微粒子化された二酸化チタンを用いることを特徴とした色素増感型太陽電池  A dye-sensitized solar cell using the finely divided titanium dioxide according to claim 5 上記請求項6記載の超活性炭等を用いることを特徴とした色素増感型太陽電池。  A dye-sensitized solar cell using the super activated carbon according to claim 6 or the like.
JP2005185645A 2005-05-31 2005-05-31 Dye sensitized solar cell by photoelectric conversion tube, or the like Pending JP2006339127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005185645A JP2006339127A (en) 2005-05-31 2005-05-31 Dye sensitized solar cell by photoelectric conversion tube, or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005185645A JP2006339127A (en) 2005-05-31 2005-05-31 Dye sensitized solar cell by photoelectric conversion tube, or the like

Publications (1)

Publication Number Publication Date
JP2006339127A true JP2006339127A (en) 2006-12-14

Family

ID=37559499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005185645A Pending JP2006339127A (en) 2005-05-31 2005-05-31 Dye sensitized solar cell by photoelectric conversion tube, or the like

Country Status (1)

Country Link
JP (1) JP2006339127A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136261A1 (en) * 2007-04-26 2008-11-13 Jgc Catalysts And Chemicals Ltd. Photoelectrical cell, and coating agent for forming porous semiconductor film for the photoelectrical cell
CN103715277A (en) * 2013-11-26 2014-04-09 成都市容华电子有限公司 Colorized photovoltaic assembly made by solar photovoltaic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136261A1 (en) * 2007-04-26 2008-11-13 Jgc Catalysts And Chemicals Ltd. Photoelectrical cell, and coating agent for forming porous semiconductor film for the photoelectrical cell
CN103715277A (en) * 2013-11-26 2014-04-09 成都市容华电子有限公司 Colorized photovoltaic assembly made by solar photovoltaic device

Similar Documents

Publication Publication Date Title
CN102369630B (en) Dye-sensitized solar cell
CN102150322A (en) Photoelectric conversion element, method of manufacturing therefor, and electronic device
JP2008130553A (en) Dye-sensitized solar battery and manufacturing method of dye-sensitized solar battery
US20100012176A1 (en) Dye Doped Graphite Graphene Solar Cell on Aluminum
JP4881600B2 (en) Dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell module
CN102124602A (en) Dye-sensitized solar cell and method for manufacturing same
Ramalingam et al. Achieving High‐Quality Freshwater from a Self‐Sustainable Integrated Solar Redox‐Flow Desalination Device
JP2006302530A (en) Dye-sensitized solar cell and its manufacturing method
JP2013545227A (en) Dye-sensitive solar cell module with light scattering layer and method for producing the same
JP2008053042A (en) Pigment sensitized solar cell
JP2006339127A (en) Dye sensitized solar cell by photoelectric conversion tube, or the like
JP2007265796A (en) Photoelectric conversion element
WO2009157497A1 (en) Dye-sensitized solar cell and process for producing the dye-sensitized solar cell
JP4710291B2 (en) Photoelectric conversion element container, photoelectric conversion unit, and photoelectric conversion module
JP6057982B2 (en) Metal oxide semiconductor electrode formed with porous thin film, dye-sensitized solar cell using the same, and method for producing the same
JP2003123861A (en) Photoelectric conversion element and manufacturing method of the same
WO2014013734A1 (en) Method for manufacturing dye-sensitized solar cell, and dye-sensitized solar cell
JP2003272722A (en) Dye-sensitized solar battery
JP6561880B2 (en) Method for producing dye-sensitized solar cell module
JP2009032502A (en) Photoelectric conversion element
KR101788325B1 (en) Solar cell with ion separator and method of the manufacturing of the same
JP2007095480A (en) Functional element, manufacturing method of functional element, and electronic equipment
KR101982852B1 (en) Solar cell with separator and method of the manufacturing of the same
KR20100096771A (en) Photosensitizer for photovoltaic cell, and photovoltaic cell prepared from the same
WO2014157060A1 (en) Solar cell and manufacturing method for dye-sensitized solar cell