JP2006338782A - 光ピックアップ装置と情報記録再生装置 - Google Patents

光ピックアップ装置と情報記録再生装置 Download PDF

Info

Publication number
JP2006338782A
JP2006338782A JP2005162239A JP2005162239A JP2006338782A JP 2006338782 A JP2006338782 A JP 2006338782A JP 2005162239 A JP2005162239 A JP 2005162239A JP 2005162239 A JP2005162239 A JP 2005162239A JP 2006338782 A JP2006338782 A JP 2006338782A
Authority
JP
Japan
Prior art keywords
optical pickup
spot
pickup device
reflected light
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005162239A
Other languages
English (en)
Inventor
Junichi Kitabayashi
淳一 北林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005162239A priority Critical patent/JP2006338782A/ja
Publication of JP2006338782A publication Critical patent/JP2006338782A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

【目的】 多層の記録層を持つ記録媒体の再生時において、所望の記録層以外の層からのノイズ成分を除去する。
【構成】 多層の記録層を持つ光ディスク60の再生時において、スポット形成手段100に偏光依存性のある偏光回折素子132、反射光分離手段200に偏光ビームスプリッタを含む偏光分離素子211をそれぞれ用いることにより、再生しようとする所望の記録層以外の記録層上に、再生信号を得るための第1の集光スポットと同軸上に第2の集光スポットを形成し、再生信号に含まれる他層からのクロストーク成分を、第2の集光スポットの反射光から得られる信号を用いて除去する。
【選択図】 図9

Description

この発明は、多層の記録層を持つ記録媒体に対して情報を記録又は再生するための光を照射する光ピックアップ装置と、多層の記録層を持つ記録媒体に対して情報を記録又は再生する光ディスクドライブを含む情報記録再生装置に関する。
近年、光ディスクに対する高記録密度化及び大容量化の要求は、ますます強くなっている。光ディスクの面内の記録密度向上のためには、光ピックアップに用いられる対物レンズの開口数NAを大きくすると共に、使用する光の波長を短くして、対物レンズによって集光される光のスポット径を小径化することが有効である。
しかし、最近ではブルーレイディスクに見られるように、開口数NAや光の波長がともに限界に近づいてきている。
そこで、この現状を大きく打破して光ディスク面と直交する方向の記録密度を向上させる技術として、ホログラムメモリや多層3次元メモリが提案されている。
例えば、体積記録型ホログラムメモリは“究極の多層3次元メモリ”ともいえるが、いまのところ実用的な仕様を満足するような記録材料は見つかっていない。
また、多層3次元メモリについては、2光子吸収や蛍光の記録材料の開発は活発に行われているが、多層再生技術については従来の共焦点顕微鏡技術を応用したピンホール光学系を想定しているだけである。
従来、検出器の手前に、読み出しを行っている記録層からの戻り光を集光する集光レンズと、その集光レンズの集光点位置に配置され上記読み出しを行っている記録層以外の記録層からの戻り光の通過を抑制するピンホールとを設けて他層からのフレア光を除去する情報記録再生装置(例えば、特許文献1参照)があった。
また、他層からの反射光を像面に設置された適当な大きさの光検出器で検出し、読み出し層からの信号を処理する情報記録再生装置(例えば、特許文献2参照)があった。
さらに、同一トラック上の回転方向の位置が異なる3つのスポットであって、そのうちの2つのスポットが目的とする記録層の上下の記録層からの情報を読み取り、各々の3つの信号について、遅延回路やトランスバーサルフィルタによる処理を行い、他層からのフレア光を除去する情報記録再生装置(例えば、特許文献3参照)があった。
さらにまた、多層光ディスクの球面収差をピンホール光学系で検出して補正することにより、層間クロストークの影響のない球面収差検出信号を得て、正確な補正を行う情報記録再生装置(例えば、特許文献4参照)があった。
特開昭63−306546号公報 特開2001−273640号公報 特開2002−197666号公報 特開2003−323736号公報
しかしながら、従来の情報記録再生装置では、光ディスクの記録層の間隔がこれまでのように数10μm以上の時には有効ではあるが、“多層3次元メモリ”として想定しているように記録層の間隔が数μmレベルの時の他層ノイズ信号は除去できないという問題があった。
以下にその理由について説明する。
図14の(a)は、L0,L1,L2の3層の記録層を持つROMディスクを示しており、各記録層の間は屈折率がn1,n2,n3,n4の媒体で埋まっている。50は対物レンズである。
n1からn3の値が全て等しく、ピットの凹凸形状を回折格子と考えると、各層を透過した光束(0次光)は強度変調を受けない。
しかし、n1からn3の値が互いに異なる時には、透過光束は強度変調を受ける。
また、図14の(b)は、多層のRやRWディスクを示しており、たとえn1からn3の値が全て等しくても記録ピットそのものが振幅変調された回折格子と考えられるので、各層を透過した光束(0次光)は強度変調を受ける。
従って、(1)各記録層の間の媒体の屈折率が互いに異なるROMディスクや、透過光の強度や位相が変化するピットをもつRやRWディスクの場合には、透過光自身が強度変調されるので、所望の記録層以外の記録層からのフレア光をなくしても、再生信号について他層からのクロストークを除去できない。
また、対物レンズの読み取り深度の影響もある。
図15は、波長780nm/対物レンズNA0.53の条件で、記録層間の中間層の厚さTが異なる4種類の2層CD−ROMディスクからの信号を実測したものである。
図15の(a)〜(d)において、信号は図中上から順に、再生信号(RF信号)、フォーカス信号(Fo信号)、トラック信号(Tr信号)である。
ここでは、フォーカス、トラックサーボがかかっていない状態なので、回転中の、ある位置においてのみRF信号に2山が発生する。
その2山は、記録層L0とL1の反射光によるものであり、それぞれが山のピーク付近でピット信号を発生し、それぞれの図においてラインが太くなっているのが分かる。
図15の(a)〜(d)のラインの太い部分(RF信号が発生している部分=読み取り深度)は、±6μm程である。
図15の(a)〜(d)に中間層厚さTを小さくしていくに従い2山の間隔も縮まり、図15の(d)では太いラインが重なってしまう。
その重なり具合は、検出系側にピンホールを入れるとある程度は分離できるが、最終的には中間層厚さが対物レンズの焦点深度付近に近づいた時には分離不可能となる。
従って、(2)対物レンズの読取り深度(デフォーカスさせた時にRF信号が残留する範囲)や焦点深度よりも中間層の厚さを薄くすると、所望の記録層を読取っている位置にも他層からの信号が漏れこんでしまうので、所望の記録層以外の記録層からのフレア光をなくしても、再生信号について他層からのクロストークを除去できない。
このように、上記(1)(2)の理由により、例えば、特許文献1に記載の技術のように、例えば、ピンホールを用いて他層からのフレア光をなくしても、他層ノイズ信号は除去できない。
また、特許文献2に記載の技術は、他層からの反射光を像面に設置された適当な大きさの光検出器で検出し、読み出し層からの信号を処理するものであるが、以下の理由で他層からの反射光の信号SN比が悪いため、他層ノイズ信号を精度良く除去できない。
図16は、中間層厚さTのL0層,L1層の記録層をもつ2層ディスクを示しており、50は対物レンズ、図中のAはL0層上の集光点である。
図17は、対物レンズを光軸方向にデフォーカスさせた時のRF信号を示す波形図である。
図中矢示b1のS0曲線はL0層からの反射光による信号変化を、図中矢示b2のS1曲線はL1層からの反射光による信号変化を示す。それぞれ合焦位置で信号振幅は、再生信号RF0,RF1のピーク値を示す。
いま、デフォーカス量が0μmで、図16に示すように、集光点がL0層に位置している時には、L0層からは再生信号RF0の信号と、L1層からは他層ノイズ信号(「クロストーク信号」ともいう)k*RF1(図中「kRF1」と記す)(k<1)の信号が検出される。
すなわち、所望の記録層からの再生信号RF0と他層ノイズ信号kRF1が同時に検出される。
そして、特許文献2に記載の技術は、その時の他層ノイズ信号kRF1を検出して再生信号を補正しようというものであるが、図17からも分かるように、他層ノイズ信号kRF1の信号はレベルが低くSNも悪い。
また、中間層の厚さTが薄くなると他層ノイズ信号kRF1の信号レベルは大きくなるが、今度は再生信号RF0と他層ノイズ信号kRF1の信号レベルが接近してきて分離検出が困難になる。
さらに、特許文献3に記載の技術は、同一トラック上の回転方向の位置が異なる3つのスポットであって、そのうちの2つのスポットが目的とする記録層の上下の記録層からの情報を読み取り、各々の3つの信号について、遅延回路やトランスバーサルフィルタによる処理を行い、他層からのフレア光を除去するものであるが、3つのスポットを分離検出するために回転方向の位置を異ならせているので、それぞれのスポットについて遅延回路やトランスバーサルフィルタが必要となり、電気回路が複雑になる。
さらに、3つのスポットは、ディスク半径位置が異なると相対的なトラックずれが発生するので、ディスク全域で安定した信号が得られないという欠点があった。
この発明は上記の点に鑑みてなされたものであり、多層の記録層を持つ記録媒体の再生時において、所望の記録層以外の層からのノイズ成分を除去することを目的とする。
この発明は上記の目的を達成するため、次の光ピックアップ装置と情報記録再生装置を提供する。
(1)多層の記録層を持つ記録媒体を用いて、光源と、上記光源からの光束を所望の記録層上に集光する対物レンズと、上記対物レンズによって上記所望の記録層上に形成された第1の集光スポットの反射光から信号を検出する第1の検出手段を備えた光ピックアップ装置において、上記所望の記録層以外の記録層上に、上記対物レンズによって上記第1の集光スポットと同軸上に、少なくとも1以上の第2の集光スポットを形成するスポット形成手段と、上記第1の集光スポットの反射光と上記第2の集光スポットの反射光を分離する反射光分離手段と、上記第2の集光スポットの反射光から信号を検出する第2の検出手段と、上記第2の集光スポットの反射光から得られる信号を用いて、上記第1の集光スポットの反射光から得られる信号に対して補正演算する補正演算手段を設けた光ピックアップ装置。
(2)上記(1)の光ピックアップ装置において、上記スポット形成手段は回折素子を用いて構成した光ピックアップ装置。
(3)上記(2)の光ピックアップ装置において、上記回折素子の回折面を複数にした光ピックアップ装置。
(4)上記(1)の光ピックアップ装置において、上記反射光分離手段はピンホール素子を用いて構成した光ピックアップ装置。
(5)上記(1)の光ピックアップ装置において、上記スポット形成手段は偏光回折素子を、上記反射光分離手段は偏光方向の違いによって光路を分離する偏光分離素子をそれぞれ用いて構成した光ピックアップ装置。
(6)上記(5)の光ピックアップ装置において、上記偏光回折素子の回折面を複数にした光ピックアップ装置。
(7)上記(1)の光ピックアップ装置において、上記スポット形成手段は偏光方向によって透過光束の収束発散度合いの異なる複屈折素子を、上記反射光分離手段は偏光方向の違いによって光路を分離する偏光分離素子をそれぞれ用いて構成した光ピックアップ装置。
(8)上記(1)の光ピックアップ装置において、上記スポット形成手段は上記光源の波長とは異なる第2の光源を、上記反射光分離手段は波長の違いによって光路を分離する波長分離素子をそれぞれ用いて構成した光ピックアップ装置。
(9)上記(1)の光ピックアップ装置において、上記スポット形成手段は、上記光源の偏光方向とは直交する偏光成分をもつ第2の光源を、上記反射光分離手段は偏光方向の違いによって光路を分離する偏光分離素子をそれぞれ用いて構成した光ピックアップ装置。
(10)上記(1)〜(9)のいずれかの光ピックアップ装置において、所望の記録層以外の記録層上の第2の集光スポットの直径は、所望の記録層上の第1の集光スポットの直径よりも大きくなるようにした光ピックアップ装置。
(11)上記(10)の光ピックアップ装置において、上記第2の集光スポットの波面収差は、上記第1の集光スポットの波面収差よりも大きくなるようにした光ピックアップ装置。
(12)上記(10)の光ピックアップ装置において、上記第2の集光スポットの開口数を、上記第1の集光スポットの開口数よりも小さくなるようにした光ピックアップ装置。
(13)上記(1)〜(12)のいずれかの光ピックアップ装置において、上記補正演算手段は、上記第2の集光スポットの反射光から得られる信号に所定のゲインを乗じた補正信号を生成し、上記第1の集光スポットの反射光から得られる信号に対して減算処理を行う手段である光ピックアップ装置。
(14)上記(1)〜(13)のいずれかの光ピックアップ装置を搭載した情報記録再生装置。
この発明による光ピックアップ装置と情報記録再生装置は、多層の記録層を持つ記録媒体の再生時において、所望の記録層以外の層からのノイズ成分を除去することにより、ディスク面と直交する方向の記録密度を高めても精度よく再生することができる。
以下、この発明を実施するための最良の形態を図面に基づいて具体的に説明する。
〔実施例1〕
図1は、この発明の実施例1の光ディスクドライブのこの発明に係る主要部の機能構成を示すブロック図である。
10は光源(「ホログラムユニット」ともいう)であり、半導体レーザチップ11を持つ。光源10からの発散光束はコリメートレンズ20を透過して平行光となった後、光路合成分離素子110で反射して、第2の光路合成分離素子30を透過して開口制限素子40によって開口を制限されて対物レンズ50に入射する。
対物レンズ50は、2層の記録層のL0層,L1層を持つ記録媒体である光ディスク60のいずれかの記録面へ入射光束を集光する。
いま、光路合成分離素子110で反射して対物レンズ50に入射した平行光束が対物レンズ50の光軸上のL0面に集光するものとすると、光路合成分離素子110を透過して3つの反射ミラー115〜117や凹レンズ120により、発散光となって対物レンズ50に入射する光束は対物レンズ50の光軸上のL1層面に集光する。
したがって、対物レンズ50の光軸上に2つの集光スポット(図中に実線と破線で示す)が形成される。
上記光路合成分離素子110、3つの反射ミラー115〜117、凹レンズ120によってこの発明に係るスポット形成手段100を構成する。
次に、各記録層からの2つの反射光は第2の光路合成分離素子30で反射して、検出レンズ70で集光しながら第3の光路合成分離素子210で再び分離する。
この発明に係る第1の検出手段に相当する第1の検出器である受光素子220と、この発明に係る第2の検出手段に相当する第2の検出器である受光素子221の光軸方向の位置は、L0層とL1層の集光点位置とそれぞれ結像関係にある。
従って、各々の受光領域をある範囲に制限すれば、受光素子220からは主にL0層からの再生信号(RF信号)が、受光素子221からは主にL1層からのRF信号が得られる。これは後に詳述する。
すなわち、上記第3の光路合成分離素子210、受光素子220、受光素子221によってこの発明に係る反射光分離手段200を構成する。
ここで、各受光素子220、221は、図示を省略した受光領域を持ち公知の方法によって、各々の記録層に関してトラック信号、フォーカス信号を含む各種の信号を生成する。
また、対物レンズ50と開口制限素子40は、同じく図示を省略した2軸アクチェータにより、トラック信号やフォーカス信号に従ってサーボがかけられてL0層又はL1層のいずれかの動きに追従して記録面上にスポットを集光するものとする。
ここで、他層からのクロストーク低減効果について説明する。
図2及び図3は、他層からのクロストーク低減効果の説明に供する説明図である。
図2に示すように、対物レンズ50と光ディスク60は図1に示すものと同じであり、L0層,L1層にそれぞれ第1の集光スポットs0と、第2の集光スポットs1が集光している。
図3の(a)に示すように、受光素子220は、大きさが制限された受光領域223を持ち、集光スポットs0からの反射光r0は受光領域223の内部に、集光スポットs1からの反射光r1は受光領域223をはみ出して到達するので、得られる再生信号S0は主にL0層からのものとなる。
同様にして、図3の(b)に示すように、受光素子221は、大きさが制限された受光領域224を持ち、集光スポットs0からの反射光r0は受光領域224をはみ出して到達し、集光スポットs1からの反射光r1は受光領域224の内部に到達するので、主にL1層からの再生信号S1が得られる。
図4は、集光スポットs0についてフォーカス、トラックサーボがかけられた時の再生信号S0とS1を示す波形図である。
同図に示すように、再生信号S0(図中矢示a1)は、L0層のピットの有無による再生信号であるが、再生信号S1(図中矢示a2)は、L0層とL1層との相対的な偏心や面ぶれにより瞬間的にL1層の再生信号が現れる。
図5は、集光スポットs0、s1にサーボがかけられた時の再生信号S0、S1を示す曲線S0、S1の包絡線を示す図である。
図中矢示b1のS0曲線はL0層からの反射光による信号変化を、図中矢示b2のS1曲線はL1層からの反射光による信号変化を示す。それぞれ合焦位置で信号振幅は、再生信号RF0,RF1のピーク値を示す。
同図に示すように、集光スポットs0についてフォーカス、トラックサーボがかけられた時には、再生信号S1はL0層とL1層との相対的な偏心や面ぶれがない場合に瞬間的に現れる。その他の場合にはこれよりも小さな信号となる。
この時には、再生信号S0には、L0層からの再生信号RF0と、L1層からのクロストーク信号k*RF1(図中「kRF1」と記す)(k<1)が含まれる。すなわち、数1に示す関係を有する。
(数1)S0=RF0+kRF1
また、再生信号S1には、L1層からの再生信号RF1と、L0層からのクロストーク信号k′*RF0(図中「k′RF0」と記す)(k′<1)が含まれる。すなわち、数2に示す関係を有する。
(数2)S1=RF1+k′RF0
再生信号S1の値は、L0層とL1層との相対的な偏心や面ぶれによって変化する。
従って、kの値を光ディスクや光学系の特性値としてあらかじめ求めておけば、数3に基づく演算処理により、クロストークの無いL0層からの再生信号を検出することができる。
(数3)RF0=S0−kRF1=S0−k(S1−k′RF0)≒S0−kS1
この数3に基づく演算処理は、図1の信号処理回路300によって行う。310は乗算器、320は加減器である。すなわち、上記信号処理回路300がこの発明に係る補正演算手段の機能を果たす。
上記光源10、コリメートレンズ20、スポット形成手段100、第2の光路合成分離素子30、開口制限素子40、対物レンズ50、検出レンズ70、反射光分離手段200、連動スイッチSW、信号処理回路300が、この発明に係る光ピックアップ装置に相当する。
また、図1の400はサーボ回路であり、受光素子220の再生信号S0以外の信号からサーボ信号を生成して、図示を省略した対物レンズアクチェータを駆動する。
連動スイッチSWは、再生する記録層がL0層からL1層に変わる時には下方に切り替わり、その結果、サーボ回路400によってL1層にサーボがかかり、信号処理回路300からは再生信号RF1が出力される。
このようにして、定数を用いた演算処理によって再生信号から他層クロストーク成分を除去するので、中間層が薄くなり、再生信号自身にクロストーク成分を持つような場合でも、ノイズ成分を除去することができる。
また、他層クロストーク成分を第2の集光スポットで精度良く検出するので、再生信号に悪影響を与えずに精度良くノイズ成分を除去することができる。
この実施例1の光ディスクドライブは、他層からのクロストーク成分を、再生する集光スポットと同軸上の他層に集光する第2の集光スポットで検出して演算によって除去するので、中間層の厚さが第1の集光スポットの読み取り深度よりも薄くなり、再生信号自身にクロストーク成分を持つような場合でも、精度良く所望の記録層についてのノイズ成分を除去することができる。
したがって、多層の記録層を持つ記録媒体のディスク面と直交する方向の記録密度を向上させて、光ディスクの大容量化を実現することができる。
〔実施例2〕
図6は、この発明の実施例2の光ディスクドライブのこの発明に係る主要部の機能構成を示すブロック図であり、図1と共通する部分には同一符号を付している。
この実施例2の光ディスクドライブでは、スポット形成手段100に回折素子130を用いている。
回折素子130は、コリメートレンズ20から入射する光束を0次光として透過し、かつ1次光として回折する。その回折光は回折素子130の格子パターンによって凹レンズまたは凸レンズ相当のわずかな光学的なパワーを与えられて、実施例1と同様にして発散光又は収束光となって対物レンズ50に入射する。
この実施例2の光ディスクドライブは、スポット形成手段100に回折素子130を用いることにより、ビームスプリッタを含む光路分岐素子が不要となり、光学系を簡易化及び小型化することができる。
〔実施例3〕
実施例2の光ディスクドライブにおいて、回折光の光学的なパワーは、中間層の厚さに対応して非常にわずかなために格子ピッチが大きすぎて回折素子を精度良く作成できない場合がある。そのような時には、複数の回折面を持つ回折素子を用いるとよい。
図7は、複数の回折面を持つ回折素子の説明図である。
同図に示すように、回折素子131は2面の回折面131a,131bにそれぞれ同心円状の回折格子を持つ。
いま、図中の左側から回折素子131へ光束が入射されると、回折面131aによって0次光、+1次光、−1次光の3つの光束に分離する。格子形状を同心円状にすると、例えば+1次光は発散光、−1次光は収束光となる。
さらに、回折面131bで3つの光束のそれぞれを3つの光束に回折して分離するが、それらの光束のうち、表1に示すB+1/−1、B0/0、B−1/+1の3つの光束を用いるものとする。
Figure 2006338782
このように、回折素子131の回折面131a、回折面131bの同心円状の回折格子のピッチをわずかに変えることにより、それぞれの面で発生する回折光の光学的パワーの絶対値がわずかに変わる。
したがって、表1に示す回折光の次数の符号を組み合わせることによって、回折素子131の回折面131a、回折面131bの2面ともに適度な格子ピッチを確保しながら、3つの光束に非常にわずかの光学的パワーの差分を発生させることができる。
この実施例3の光ディスクドライブは、複数の回折面を持つ回折素子を用いることにより、中間層が薄くなり1枚の回折格子では格子ピッチが大きすぎて回折素子を精度良く作成できないような場合でも、十分な精度で作成可能な格子ピッチとすることができ、かつ光学系を簡易化及び小型化することができる
〔実施例4〕
上記受光素子220,221の受光領域を制限する代わりに、ピンホール素子を用いるようにしてもよい。
図8は、この発明の実施例4の光ディスクドライブのこの発明に係る主要部の機能構成を示すブロック図であり、図1及び図6と共通する部分には同一符号を付している。
この実施例4の光ディスクドライブでは、スポット形成手段として両面に回折格子を持つ回折素子131を用いて、再生しようとする所望の記録層のL層(iは正の整数)の両隣の記録層であるLi+1層、Li−1層からのクロストーク成分を除去するようにしている。
光ディスク60は多層の記録層としてLi−1層、L層、Li+1層を持つ。
エキスパンダ80は凹レンズ81と凸レンズ82で構成されており、再生しようとする所望の記録層が位置する基板厚さの球面収差を、いずれかのレンズを光軸方向に移動させることによって補正する。
ピンホール230,231,232はそれぞれ、記録層のLi−1層、L層、Li+1層の表面上のスポットの結像位置に配置しており、それぞれ各層からの信号だけを分離して、受光領域制限のない受光素子220,221,222にそれぞれ光束を通過させる。
受光素子220,221,222からの信号をそれぞれS、Si+1、Si−1とすると、数3に基づく演算処理と同様にして、数4に基づく演算処理によってクロストーク成分の無いL層からの再生信号RFが得られる。kは定数。
(数4)RF=S−k(Si+1+Si−1
ただし、ここでは両隣の層のkの値を同じ値に設定したが、それぞれ異なる値に設定するようにしても良い。
この実施例4の光ディスクドライブは、対物レンズ50の移動によって3つの集光スポットが層間をジャンプしたときにも、常に再生しようとする所望の記録層の両隣の記録層からのクロストーク成分を除去することができる。
また、受光素子の受光領域を制限する場合は、製造の限界や光の漏れこみで制限領域の大きさを数μm程度にすることは難しいが、ピンホール素子を用いることによって、任意の径で制限境界がはっきりした光束を得ることができるので、分離精度の良い反射光分離手段を実現することができる。
さらに、演算回路が簡単になり、例えば受光素子221,222で得られる他層からの信号をまとめて処理することができる。
〔実施例5〕
図9は、この発明の実施例5の光ディスクドライブのこの発明に係る主要部の機能構成を示すブロック図であり、図1、図6、図8と共通する部分には同一符号を付している。
この実施例5の光ディスクドライブでは、スポット形成手段100の回折素子を、偏光依存性のある偏光回折素子にしている。
同図に示すように、偏光回折素子132は、入射光の偏光方向によって回折効率が変わる。
したがって、光源の偏光方向と偏光回折素子の偏光軸とを適当にずらすことによって、0次光と±1次光、あるいはさらに高次の回折光を同時に発生させることができる。同図では0次光と±1次光を発生させた場合を示している。
もちろん、偏光回折素子132は実施例4と同じ理由で、基板両面に回折格子をもつものにしても良い。
また、反射光分離手段200の偏光分離素子211は、0次光の偏光方向を透過し、±1次光の偏光方向を反射する素子である。
この実施例5の光ディスクドライブは、スポット形成手段に偏光依存性のある偏光回折素子、反射光分離手段に偏光ビームスプリッタを含む偏光分離素子をそれぞれ用いることにより、領域制限された受光素子やピンホールが不要となり、部品構成を簡易化して組付け精度も緩和することができる。また分離精度も向上させることができる。
〔実施例6〕
上記偏光回折素子132に変えて、複屈折素子を用いるようにしてもよい。
図10は、複屈折素子の構成を示す図である。
複屈折素子134は、レンズ134a,134bの少なくとも片方が複屈折材料でできたレンズを貼り合せて構成されている。
この複屈折素子134に2方向の偏光成分を持つ光束が入射すると、例えば、同図の紙面方向の偏光成分はレンズ134a,134bの屈折率が等しいので素通りする。
同図の紙面垂直方向の偏光成分はレンズ134bの屈折率のほうがレンズ134aよりも大きいので、発散作用を受けて通過する。したがって、実施例1と同様の第2のスポットを形成することができる。
なお、反射光分離手段として、実施例5と同様の偏光分離素子を使ってもよい。
この実施例6の光ディスクドライブは、スポット形成手段として複屈折素子を用いることにより、偏光回折素子よりも波長が変化した時の発散、収束度合いへの変動が少なくなり、第2のスポットを常に安定して隣接の記録層に形成することができる。
したがって、波長変動時も安定したクロストーク除去効果が期待できる。
〔実施例7〕
図11は、この発明の実施例7の光ディスクドライブのこの発明に係る主要部の機能構成を示すブロック図であり、図1、図6、図8、図9と共通する部分には同一符号を付している。
この実施例7の光ディスクドライブでは、上記第1の光源波長とは異なる光源波長で第2のスポットを形成するようにしている。
光源10′は、第1の光源である半導体レーザチップ11、受光素子12、ディスクからの反射光を受光素子12へ回折するホログラム13を持つ。
半導体レーザチップ11からの光束は、反射光分離手段200であるダイクロイックプリズムを含む波長分離素子240を透過して、L0層とL1層の2層の記録層を持つ光ディスク60のL0層上に集光する。
一方、光源14は、半導体レーザチップ11とは異なる波長の半導体レーザチップ15と、光源10′と同様の受光素子16、ホログラム17を持つ。
この半導体レーザチップ15からの光束は、反射光分離手段200の波長分離素子240で反射して、光ディスク60のL1層上に集光する。
ここで、半導体レーザチップ11からの光束がL0層に、半導体レーザチップ15からの光束がL1層に集光するのは、それぞれの発光点の位置が各層について結像関係であり、さらにレンズ系の色収差によるためである。
上記2つの光源の波長の違いは、波長分離素子の性能や、クロストーク信号検出の精度を考慮すると、数10nm程度であるのが望ましい。
連動スイッチSW、信号処理回路300、サーボ回路400の動作は実施例1と同様なので説明を省略する。
この実施例7の光ディスクドライブは、スポット形成手段に第1の光源とは波長の異なる第2の光源を用いることにより、波長分離素子で効率よく2波長を合成分離できるので、領域制限された受光素子やピンホールが不要であり、部品構成を簡易化して組付け精度も緩和することができる。
また、上記ホログラム13,17に偏光ホログラムとλ/4板を用いれば、各波長の利用効率はこれまで以上に高くできるので、記録パワーや再生信号レベルが向上し、高速記録や高速再生が可能になる。
〔実施例8〕
上記半導体レーザチップ15を、上記半導体レーザチップ11とは直交する偏光成分を持つ光源にし、上記波長分離素子240を偏光ビームスプリッタを含む偏光分離素子に置き換えても良い。
この場合には、ホログラム13,17は偏光ホログラムを使えないが、偏光分離素子によって波長が同じでも完全な合成分離ができるので、クロストーク信号検出の精度が向上する。
この実施例8の光ディスクドライブは、第2光源に第1光源とは直交する偏光成分を持つ光源を、反射光分離手段に偏光ビームスプリッタを含む偏光分離素子をそれぞれ用いることにより、2光束の完全な合成分離ができ、かつ再生信号についても同一波長で忠実に再現されたクロストーク成分が検出できるので、ノイズ除去の精度が向上する。
〔実施例9〕
上述の各実施例では、第2の集光スポットは所望の記録層の隣接の記録層に集光して、所望の記録層からの信号のクロストーク成分を検出するものであったが、クロストーク成分は第2の集光スポット径をやや大きくしたほうがより精度良く検出できる場合がある。
そこで、実施例9の光ディスクドライブでは、第2の集光スポットの径を第1の集光スポットの径よりも大きくしている。
図12は、第2の集光スポットの径を第1の集光スポットの径よりも大きくすることの説明図である。
L1層を所望の記録層とすると、第1の集光スポットs0にはL0層のクロストーク成分が含まれる。
2層の間隔が読み取り深度以内の時にはこれまでの検出方法で問題ないが、それよりも大きい場合には、L0層でのスポット径はL1層よりも大きくなるので、第2の集光スポットs1の径をそれと等しくなるようにして取り込むディスク上の面積を同じにしたほうが、より精度が良くなる。
第2の集光スポットのs1の径を大きくするには、デフォーカスしてスポット位置を変えればよい。
例えば、図1に示す光ディスクドライブでは、凹レンズ120の光軸方向の位置を変え、回折素子では回折パターンを変える。図11に示す光ディスクドライブでは、光源14の光軸方向の位置を変えると良い。
この実施例9の光ディスクドライブは、第2の集光スポットの径を第1の集光スポットの径よりも大きくすることにより、第2の集光スポットで第1の集光スポットと同じ領域のピット列を検出することができ、より精度のよいクロストーク成分検出が可能となる。
〔実施例10〕
実施例9ではスポット径を大きくするために第2の集光スポットの位置をデフォーカスしたが、デフォーカスした位置に記録層があると、その記録層の信号のために目的とする層のクロストーク信号が隠れてしまう場合がある。
その場合には、第2の集光スポットに波面収差を与えて最小スポット径を大きくすればよい。
そこで、実施例10の光ディスクドライブでは、第2の集光スポットに波面収差を与えて最小スポット径を大きくする。
例えば、図1に示す光ディスクドライブでは、反射ミラー115や凹レンズ120の表面形状を球面収差が発生するような非球面形状とするとよい。また、回折素子では回折パターンを同様に変えるとよい。さらに、図11に示す光ディスクドライブでは、光源14と波長分離素子240の間に透過波面が収差を発生するような収差発生板を挿入すれば良い。
この実施例10の光ディスクドライブは、第2の集光スポットに波面収差を与えて最小スポット径を大きくすることによって、常に目的とする層のクロストーク信号を精度よく検出することができる。
〔実施例11〕
第2の集光スポットの最小スポット径を大きくするには開口数を小さくしてもよい。
そこで、実施例11の光ディスクドライブでは、上記開口制限素子40の開口数を小さくして第2の集光スポットの最小スポット径を大きくする。
図13は、波長フィルタタイプの開口制限素子の説明図である。
この開口制限素子40は、第1の集光スポットs0の光束は元の開口径aを透過するが、第2の集光スポットs1の光束は波長の違いにより開口径bによって制限される。
したがって、第2の集光スポットs1は、開口数の違いによって第1の集光スポットよりも直径が大きくなる。
実施例8の光ディスクドライブでは、開口制限素子40を偏光フィルタタイプのものにすれば良い。
さらに、図1に示す光ディスクドライブでは、第2の開口制限素子をスポット形成手段100の光路中に挿入するとよい。また、回折素子では回折パターンの領域を制限すると良い。
この実施例11の光ディスクドライブは、第2の集光スポットの開口数を制限して最小スポット径を大きくすることによって、常に目的とする層のクロストーク信号を精度よく検出することができる。
また、第2の集光スポットに収差がないので、第1の集光スポットがデフォーカスした時と同等のクロストーク信号を検出することができる。
〔実施例12〕
実施例12の光ディスクドライブでは、上記各信号処理回路300を、第2の集光スポットの反射光から得られる信号に所定のゲインを乗じた補正信号を生成し、第1の集光スポットの反射光から得られる信号に対して減算処理を行う回路にする。
したがって、簡易な構成でクロストークを補正することができる。
特に、図1、図6、図11に示す光ディスクドライブでは、連動スイッチSWの切り換えだけで瞬時に記録相間の移動が可能になり、アクセス時間を短縮することができる。
この実施例12の光ディスクドライブは、中間層の厚さが集光スポットの読み取り深度よりも薄くなった時にも、他層からのクロストークによるノイズ成分を除去する光ピックアップ装置を搭載したことにより、多層の記録層を持つ記録媒体のディスク面と直交する方向の記録密度をこれまで以上に向上させて、光ディスクの大容量化を実現することができる。
この発明による光ピックアップ装置と情報記録再生装置は、多層の記録層を持つ記録媒体に対して情報を記録又は再生する光ディスクドライブの全般に適用することができる。
この発明の実施例1の光ディスクドライブのこの発明に係る主要部の機能構成を示すブロック図である。 他層からのクロストーク低減効果の説明に供する説明図である。 同じく他層からのクロストーク低減効果の説明に供する説明図である。 集光スポットs0についてフォーカス、トラックサーボがかけられた時の再生信号S0とS1を示す波形図である。
集光スポットs0、s1にサーボがかけられた時の再生信号S0、S1を示す曲線S0、S1の包絡線を示す図である。 この発明の実施例2の光ディスクドライブのこの発明に係る主要部の機能構成を示すブロック図である。 複数の回折面を持つ回折素子の説明図である。 この発明の実施例4の光ディスクドライブのこの発明に係る主要部の機能構成を示すブロック図である。
この発明の実施例5の光ディスクドライブのこの発明に係る主要部の機能構成を示すブロック図である。 複屈折素子の構成を示す図である。 この発明の実施例7の光ディスクドライブのこの発明に係る主要部の機能構成を示すブロック図である。
第2の集光スポットの径を第1の集光スポットの径よりも大きくすることの説明図である。 波長フィルタタイプの開口制限素子の説明図である。 多層の記録層を持つROMディスク、Rディスク、RWディスクの記録層の断面図である
記録層間の中間層の厚さTが異なる4種類の2層CD−ROMディスクからの信号の実測値の波形図である。 中間層厚さTのL0層,L1層の記録層をもつ2層ディスクを示しており、50は対物レンズ、図中のAはL0層上の集光点である。 対物レンズを光軸方向にデフォーカスさせた時のRF信号を示す波形図である。
符号の説明
10,10′,14:光源 11,15:半導体レーザチップ 12,16,220,221,222:受光素子 13,17:ホログラム 20:コリメートレンズ 30:第2の光路合成分離素子 40:開口制限素子 50:対物レンズ 60:光ディスク 70:検出レンズ 80:エキスパンダ 81:凹レンズ 82:凸レンズ 100:スポット形成手段 110:光路合成分離素子 115〜117:反射ミラー 120:凹レンズ 130:回折素子 131:回折素子 131a,131b:回折面 132:偏光回折素子 134:複屈折素子 134a,134b:レンズ 200:反射光分離手段 210:第3の光路合成分離素子 211:偏光分離素子 223,224:受光領域 230,231,232:ピンホール 240:波長分離素子 300:信号処理回路 310:乗算器 320:加減器 400:サーボ回路 SW:連動スイッチ

Claims (14)

  1. 多層の記録層を持つ記録媒体を用いて、光源と、前記光源からの光束を所望の記録層上に集光する対物レンズと、前記対物レンズによって前記所望の記録層上に形成された第1の集光スポットの反射光から信号を検出する第1の検出手段とを備えた光ピックアップ装置において、
    前記所望の記録層以外の記録層上に、前記対物レンズによって前記第1の集光スポットと同軸上に、少なくとも1以上の第2の集光スポットを形成するスポット形成手段と、前記第1の集光スポットの反射光と前記第2の集光スポットの反射光を分離する反射光分離手段と、前記第2の集光スポットの反射光から信号を検出する第2の検出手段と、前記第2の集光スポットの反射光から得られる信号を用いて、前記第1の集光スポットの反射光から得られる信号に対して補正演算する補正演算手段とを設けたことを特徴とする光ピックアップ装置。
  2. 請求項1記載の光ピックアップ装置において、前記スポット形成手段は回折素子を用いて構成したことを特徴とする光ピックアップ装置。
  3. 請求項2記載の光ピックアップ装置において、前記回折素子の回折面は複数であることを特徴とする光ピックアップ装置。
  4. 請求項1記載の光ピックアップ装置において、前記反射光分離手段はピンホール素子を用いて構成したことを特徴とする光ピックアップ装置。
  5. 請求項1記載の光ピックアップ装置において、前記スポット形成手段は偏光回折素子を、前記反射光分離手段は偏光方向の違いによって光路を分離する偏光分離素子をそれぞれ用いて構成したことを特徴とする光ピックアップ装置。
  6. 請求項5記載の光ピックアップ装置において、前記偏光回折素子の回折面は複数であることを特徴とする光ピックアップ装置。
  7. 請求項1記載の光ピックアップ装置において、前記スポット形成手段は偏光方向によって透過光束の収束発散度合いの異なる複屈折素子を、前記反射光分離手段は偏光方向の違いによって光路を分離する偏光分離素子をそれぞれ用いて構成したことを特徴とする光ピックアップ装置。
  8. 請求項1記載の光ピックアップ装置において、前記スポット形成手段は前記光源の波長とは異なる第2の光源を、前記反射光分離手段は波長の違いによって光路を分離する波長分離素子をそれぞれ用いて構成したことを特徴とする光ピックアップ装置。
  9. 請求項1記載の光ピックアップ装置において、前記スポット形成手段は、前記光源の偏光方向とは直交する偏光成分をもつ第2の光源を、前記反射光分離手段は偏光方向の違いによって光路を分離する偏光分離素子をそれぞれ用いて構成したことを特徴とする光ピックアップ装置。
  10. 請求項1乃至9のいずれか一項に記載の光ピックアップ装置において、所望の記録層以外の記録層上の第2の集光スポットの直径は、所望の記録層上の第1の集光スポットの直径よりも大きくなるようにしたことを特徴とする光ピックアップ装置。
  11. 請求項10記載の光ピックアップ装置において、前記第2の集光スポットの波面収差は、前記第1の集光スポットの波面収差よりも大きくなるようにしたことを特徴とする光ピックアップ装置。
  12. 請求項10記載の光ピックアップ装置において、前記第2の集光スポットの開口数を、前記第1の集光スポットの開口数よりも小さくなるようにしたことを特徴とする光ピックアップ装置。
  13. 請求項1乃至12のいずれか一項に記載の光ピックアップ装置において、前記補正演算手段は、前記第2の集光スポットの反射光から得られる信号に所定のゲインを乗じた補正信号を生成し、前記第1の集光スポットの反射光から得られる信号に対して減算処理を行う手段であることを特徴とする光ピックアップ装置。
  14. 請求項1乃至13のいずれか一項に記載の光ピックアップ装置を搭載したことを特徴とする情報記録再生装置。
JP2005162239A 2005-06-02 2005-06-02 光ピックアップ装置と情報記録再生装置 Pending JP2006338782A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005162239A JP2006338782A (ja) 2005-06-02 2005-06-02 光ピックアップ装置と情報記録再生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005162239A JP2006338782A (ja) 2005-06-02 2005-06-02 光ピックアップ装置と情報記録再生装置

Publications (1)

Publication Number Publication Date
JP2006338782A true JP2006338782A (ja) 2006-12-14

Family

ID=37559196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005162239A Pending JP2006338782A (ja) 2005-06-02 2005-06-02 光ピックアップ装置と情報記録再生装置

Country Status (1)

Country Link
JP (1) JP2006338782A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7961565B2 (en) 2006-09-14 2011-06-14 Sony Corporation Optical disk apparatus and optical aberration correcting method
US8174952B2 (en) 2005-11-21 2012-05-08 Ricoh Company, Ltd. Light source unit, optical detector unit, optical pickup device, and optical disk device
JP2015057748A (ja) * 2013-08-14 2015-03-26 ソニー株式会社 光媒体再生装置および光媒体再生方法
US9843389B2 (en) 2013-08-14 2017-12-12 Sony Corporation Optical medium reproduction device and optical medium reproduction method
US10134438B2 (en) 2013-06-28 2018-11-20 Sony Corporation Optical medium reproduction apparatus and method of reproducing optical medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721565A (ja) * 1993-07-05 1995-01-24 Sanyo Electric Co Ltd 光記録再生方法およびその装置
JPH09159808A (ja) * 1995-12-06 1997-06-20 Sony Corp 二重焦点レンズおよびこれを用いた光ディスク記録再生装置
JPH10134408A (ja) * 1996-10-21 1998-05-22 Deutsche Thomson Brandt Gmbh 光学記録媒体からの読み出し又は該媒体への書き込み用の装置
JPH10149560A (ja) * 1996-11-15 1998-06-02 Sony Corp 光学ピックアップ及び光ディスク装置
JP2000105930A (ja) * 1998-09-29 2000-04-11 Sanyo Electric Co Ltd 光ディスク装置
JP2004241088A (ja) * 2003-02-07 2004-08-26 Nippon Hoso Kyokai <Nhk> 光記録再生方法、光記録再生装置、及び光記録媒体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721565A (ja) * 1993-07-05 1995-01-24 Sanyo Electric Co Ltd 光記録再生方法およびその装置
JPH09159808A (ja) * 1995-12-06 1997-06-20 Sony Corp 二重焦点レンズおよびこれを用いた光ディスク記録再生装置
JPH10134408A (ja) * 1996-10-21 1998-05-22 Deutsche Thomson Brandt Gmbh 光学記録媒体からの読み出し又は該媒体への書き込み用の装置
JPH10149560A (ja) * 1996-11-15 1998-06-02 Sony Corp 光学ピックアップ及び光ディスク装置
JP2000105930A (ja) * 1998-09-29 2000-04-11 Sanyo Electric Co Ltd 光ディスク装置
JP2004241088A (ja) * 2003-02-07 2004-08-26 Nippon Hoso Kyokai <Nhk> 光記録再生方法、光記録再生装置、及び光記録媒体

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8174952B2 (en) 2005-11-21 2012-05-08 Ricoh Company, Ltd. Light source unit, optical detector unit, optical pickup device, and optical disk device
US7961565B2 (en) 2006-09-14 2011-06-14 Sony Corporation Optical disk apparatus and optical aberration correcting method
US10134438B2 (en) 2013-06-28 2018-11-20 Sony Corporation Optical medium reproduction apparatus and method of reproducing optical medium
JP2015057748A (ja) * 2013-08-14 2015-03-26 ソニー株式会社 光媒体再生装置および光媒体再生方法
US9672859B2 (en) 2013-08-14 2017-06-06 Sony Corporation Optical medium reproduction apparatus and optical medium reproduction method
US9767837B2 (en) 2013-08-14 2017-09-19 Sony Corporation Optical medium reproduction apparatus and optical medium reproduction method
US9843389B2 (en) 2013-08-14 2017-12-12 Sony Corporation Optical medium reproduction device and optical medium reproduction method

Similar Documents

Publication Publication Date Title
JP4610628B2 (ja) 光ピックアップ装置および焦点調整方法
JP4893314B2 (ja) 光ピックアップ装置
KR20050074839A (ko) 광픽업
JPWO2008053548A1 (ja) ピックアップ装置
JP5173656B2 (ja) 光ピックアップ装置
JP2009009630A (ja) 光ピックアップ装置
JP3605279B2 (ja) 光学式ピックアップ
JP2009003986A (ja) 光ピックアップ装置
JP4533349B2 (ja) 光ピックアップ装置
WO2007105704A1 (ja) 光ディスク装置
JP2008130167A (ja) 光ピックアップ装置
JP4964306B2 (ja) 光ヘッド装置
JP2006244535A (ja) 光ヘッド装置および光ディスク装置
JP2006338782A (ja) 光ピックアップ装置と情報記録再生装置
JP2007052905A (ja) 記録層の厚さ変化による球面収差を探知して補償する光ピックアップ装置
JP2009015954A (ja) 光ピックアップ装置及びその調整方法
JP2007272980A (ja) 光ピックアップ装置
JP2009129483A (ja) 光ピックアップ装置
JP2008112512A (ja) 光ピックアップ装置
JP2008175925A (ja) 光情報記録再生装置および光記録媒体
JP4222988B2 (ja) 光ピックアップ装置および光ディスク装置
JP5062075B2 (ja) 光ピックアップ及び光ディスク装置
JP2010211859A (ja) 光ピックアップ装置
JP2007042154A (ja) 光記録媒体用対物光学系およびこれを用いた光ピックアップ装置
JP2009271994A (ja) 光ピックアップ装置及び光ピックアップ装置の設計方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608