JP4969793B2 - Thermal-electrical direct conversion device - Google Patents

Thermal-electrical direct conversion device Download PDF

Info

Publication number
JP4969793B2
JP4969793B2 JP2005125404A JP2005125404A JP4969793B2 JP 4969793 B2 JP4969793 B2 JP 4969793B2 JP 2005125404 A JP2005125404 A JP 2005125404A JP 2005125404 A JP2005125404 A JP 2005125404A JP 4969793 B2 JP4969793 B2 JP 4969793B2
Authority
JP
Japan
Prior art keywords
temperature side
direct conversion
high temperature
thermal
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005125404A
Other languages
Japanese (ja)
Other versions
JP2006303320A (en
Inventor
直和 岩撫
成仁 近藤
治 常岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005125404A priority Critical patent/JP4969793B2/en
Publication of JP2006303320A publication Critical patent/JP2006303320A/en
Application granted granted Critical
Publication of JP4969793B2 publication Critical patent/JP4969793B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は熱−電気直接変換装置に係り、特に変換効率を良好に維持できる熱−電気直接変換装置に関する。   The present invention relates to a thermal-electrical direct conversion device, and more particularly to a thermal-electrical direct conversion device that can maintain good conversion efficiency.

近年、人類が消費するエネルギー量が歴史的に例を見ない速度で急増した結果、炭酸ガス(CO)などの温室効果ガスによる地球温暖化の問題が浮上しており、地球環境を保全するためにCO発生を可及的に抑制可能なエネルギー源の開発が全世界的に渇望されている。このような状況の中で、主として省エネルギーの観点から、大規模な廃熱の利用が従来から進行し、現在では中小規模の廃熱まで、その再利用が注目されつつある。 In recent years, the amount of energy consumed by mankind has rapidly increased at an unprecedented rate. As a result, the problem of global warming caused by greenhouse gases such as carbon dioxide (CO 2 ) has emerged, and the global environment is preserved. Therefore, development of an energy source capable of suppressing CO 2 generation as much as possible is craved all over the world. Under such circumstances, mainly from the viewpoint of energy saving, the use of large-scale waste heat has been progressing, and the reuse of medium-to-small-scale waste heat is now attracting attention.

ところが、中小規模廃熱については、たとえその廃熱の質が高くとも、熱量規模自体が比較的小さいことから、たとえば蒸気タービンなどの大規模廃熱用の発電装置では、熱量に対して大掛りな装置が必要となる結果、発電効率が極めて低く、既存設備の改造や保守・補修コストに見合う電気量が得られないという課題があった。   However, with regard to medium- and small-scale waste heat, even if the quality of the waste heat is high, the amount of heat itself is relatively small. For example, in a power generator for large-scale waste heat such as a steam turbine, the amount of heat is large. As a result, the power generation efficiency is extremely low, and there is a problem that the amount of electricity corresponding to the modification of existing facilities and the maintenance and repair costs cannot be obtained.

また、その熱量規模が小さいことから、温水利用などの熱利用も見送られている場合が多く、全世界的に中小規模廃熱の利用は進捗し難い状況にある。そのため、これら中小規模の廃熱のエネルギーから電気エネルギーを簡易かつ小型の装置システムで変換できる熱−電気直接変換装置の開発実用化が待望されている。   In addition, due to the small amount of heat, the use of heat, such as the use of hot water, is often forgotten, and the use of medium- and small-scale waste heat is difficult to progress worldwide. Therefore, the development and practical application of a direct heat-electricity conversion device that can convert electric energy from the energy of waste heat of medium and small scales with a simple and small device system is awaited.

このような技術的要請に対処するため、半導体を用いて熱エネルギーを直接電気エネルギーに変換する熱−電気直接変換装置の開発が従来から進められている(例えば特許文献1参照)。   In order to cope with such technical demands, development of a direct thermal-electric conversion device that directly converts thermal energy into electrical energy using a semiconductor has been in progress (see, for example, Patent Document 1).

一般に、この種の熱−電気直接変換装置は、トムソン効果、ペルチェ効果、ゼーベック効果などの熱電効果を利用したp型およびn型の熱−電気直接変換半導体(熱伝変換素子)を組み合わせて構成される。一般的な構造を図6に示す。すなわち、従来の熱−電気直接変換装置100は、p型熱−電気直接変換半導体チップ(p型半導体)2およびn型熱−電気直接変換半導体チップ(n型半導体)3が、高温側電極5を有する高温側絶縁板7と、低温側電極6を有する低温側絶縁板8に挟まれた構造を有する。p型半導体2およびn型半導体3は、熱−電気直接変換半導体対(半導体対)4を形成し、変換装置全体では電気的及び熱的に多くの熱−電気直接変換半導体対が接続される。   In general, this type of direct heat-electric conversion device is composed of a combination of p-type and n-type direct heat-electric conversion semiconductors (thermoconduction elements) that use thermoelectric effects such as the Thomson effect, Peltier effect, and Seebeck effect. Is done. A general structure is shown in FIG. That is, in the conventional direct thermo-electric conversion device 100, the p-type thermo-electric direct conversion semiconductor chip (p-type semiconductor) 2 and the n-type thermo-electric direct conversion semiconductor chip (n-type semiconductor) 3 include the high temperature side electrode 5. And a low temperature side insulating plate 8 having a low temperature side electrode 6. The p-type semiconductor 2 and the n-type semiconductor 3 form a thermal-electrical direct conversion semiconductor pair (semiconductor pair) 4, and many thermal-electrical direct conversion semiconductor pairs are connected electrically and thermally in the entire conversion device. .

p型半導体2およびn型半導体3は、高温側電極5と接続され、さらにp型半導体2およびn型半導体3は、低温側電極6と低温側電極−半導体チップ接合部(低温側接合部)12を介して接合されている。   The p-type semiconductor 2 and the n-type semiconductor 3 are connected to the high-temperature side electrode 5, and the p-type semiconductor 2 and the n-type semiconductor 3 are connected to the low-temperature side electrode 6 and the low-temperature side electrode-semiconductor chip junction (low-temperature side junction). 12 is joined.

上記のように構成された熱−電気直接変換装置1において、高温側電極5に熱流13が供給されると、熱はp型半導体2およびn型半導体3に伝達され、p型、n型半導体2、3を通過する熱流14に沿って、p型半導体2の内部では半導体キャリアである正孔16が、またn型半導体3の内部では半導体キャリアである電子17が、p型半導体2あるいはn型半導体3に低温側電極−半導体チップ接合部12を介して接合されている低温側電極6に向かって移動する。   In the heat-electricity direct conversion device 1 configured as described above, when the heat flow 13 is supplied to the high temperature side electrode 5, the heat is transferred to the p-type semiconductor 2 and the n-type semiconductor 3, and the p-type and n-type semiconductors. Along the heat flow 14 passing through 2 and 3, holes 16 that are semiconductor carriers are formed inside the p-type semiconductor 2, and electrons 17 that are semiconductor carriers are formed inside the p-type semiconductor 3, and the p-type semiconductor 2 or n It moves toward the low temperature side electrode 6 joined to the mold semiconductor 3 via the low temperature side electrode-semiconductor chip junction 12.

一方p型、n型半導体2、3を通過する熱流14は、低温側電極6を通過して低温側電極から放出される熱流15となる。ここで熱−電気直接変換装置1の外部に、適当な電気的負荷19が、熱−電気直接変換装置1に設置されている電極−電流取出手段との接続手段9と、それに接続された電流取出手段10とを介して、熱−電気直接変換装置1に電気的に接続されることにより、前記半導体キャリアの移動は電流の流れ18として熱−電気直接変換装置1の外部に取出して利用することができる。   On the other hand, the heat flow 14 that passes through the p-type and n-type semiconductors 2 and 3 becomes a heat flow 15 that passes through the low-temperature side electrode 6 and is released from the low-temperature side electrode. Here, an appropriate electrical load 19 is connected to the electrode-current extraction means installed in the thermal-electrical direct conversion device 1 outside the thermal-electrical direct conversion device 1 and the current connected thereto. By being electrically connected to the thermal-electrical direct conversion device 1 via the extraction means 10, the movement of the semiconductor carrier is taken out of the thermal-electrical direct conversion device 1 as a current flow 18 and used. be able to.

このように熱-電気直接変換装置は、高温側電極と低温側電極との温度差を、熱−電気直接変換半導体を用いて、直接電気に変換し装置外部に電力として取出すことができるものであるが、逆に外部から電流を与えることにより、低温側から高温側あるいは高温側から低温側に熱の移動を行うこともできる。
特開2004−119833号公報
In this way, the thermal-electrical direct conversion device can convert the temperature difference between the high-temperature side electrode and the low-temperature side electrode directly into electricity using a thermal-electrical direct conversion semiconductor and take it out as power outside the device. However, on the contrary, heat can be transferred from the low temperature side to the high temperature side or from the high temperature side to the low temperature side by applying an electric current from the outside.
JP 2004-1119833 A

図7は、従来の熱−電気直接変換装置100の構造の一形態を示す断面図である。一般に、熱−電気直接変換半導体対4の高温側と低温側との温度差が大きいほど発電効率は高くなる。他方、熱−電気直接変換半導体対4の高温側と低温側との温度差が大きくなると、高温側と低温側の構成部材の熱変形量の差も大きくなる。   FIG. 7 is a cross-sectional view showing one embodiment of the structure of a conventional direct thermal-electric conversion device 100. Generally, the power generation efficiency increases as the temperature difference between the high temperature side and the low temperature side of the thermoelectric direct conversion semiconductor pair 4 increases. On the other hand, when the temperature difference between the high temperature side and the low temperature side of the thermoelectric direct conversion semiconductor pair 4 increases, the difference in the amount of thermal deformation between the constituent members on the high temperature side and the low temperature side also increases.

この熱変形量の差を吸収するため、高温側の電極(高温側電極5)を熱−電気直接変換半導体対4に固定せず、熱−電気直接変換半導体対4を跨ぐように載置する形態がとられることがある。高温側電極5と熱−電気直接変換半導体対4とを非固定とすることにより熱変形量を吸収することが可能となり、熱−電気直接変換半導体対4の破損を防止することができる。   In order to absorb this difference in the amount of thermal deformation, the high temperature side electrode (high temperature side electrode 5) is not fixed to the heat-electric direct conversion semiconductor pair 4, but is placed so as to straddle the heat-electric direct conversion semiconductor pair 4. Form may be taken. By unfixing the high temperature side electrode 5 and the thermoelectric direct conversion semiconductor pair 4, it becomes possible to absorb the amount of thermal deformation and prevent the thermoelectric direct conversion semiconductor pair 4 from being damaged.

この際、高温側電極5が振動等で移動することがないように、バスタブ状の箱構造を有するカバー部材27を、高温側電極5を覆うように配設する形態としている。このカバー部材27の存在によって、高温側電極5と熱−電気直接変換半導体対4とが非固定であっても、高温側電極5が熱−電気直接変換半導体対の高温側端面の位置から移動、或いはずれることを回避している。   At this time, the cover member 27 having a bathtub-like box structure is arranged so as to cover the high temperature side electrode 5 so that the high temperature side electrode 5 does not move due to vibration or the like. Due to the presence of the cover member 27, even if the high temperature side electrode 5 and the thermoelectric direct conversion semiconductor pair 4 are not fixed, the high temperature side electrode 5 moves from the position of the high temperature side end face of the thermoelectric direct conversion semiconductor pair. Or avoiding misalignment.

カバー部材27は、高温側絶縁板7と高温側電極5との間に設けられるため、高温側電極5に熱を高効率で伝熱させるためには、熱伝導率の高い材料で形成する必要がある。また、高温側絶縁板7の近傍は、例えば、約500℃以上の高温環境下で使用されることも想定されるため、高い耐熱性が必要とされる。このため、カバー部材27を形成する材料として熱伝導率が高くかつ耐熱性の高い材料を用いた場合、その材料が電気伝導性を併せ持つ場合がある。   Since the cover member 27 is provided between the high temperature side insulating plate 7 and the high temperature side electrode 5, in order to transfer heat to the high temperature side electrode 5 with high efficiency, it is necessary to form the cover member 27 with a material having high thermal conductivity. There is. Moreover, since it is assumed that the vicinity of the high temperature side insulating plate 7 is used in a high temperature environment of about 500 ° C. or higher, for example, high heat resistance is required. For this reason, when a material having high thermal conductivity and high heat resistance is used as a material for forming the cover member 27, the material may have both electrical conductivity.

カバー部材27の材料が電気伝導性を有する場合、隣接するカバー部材27同士が接触し、電気的に短絡された状態になることが懸念される。電気的に短絡されると、短絡された熱−電気直接変換半導体対4は熱電変換に寄与しなくなり、全体とし発電性能が低下するという課題がある。   When the material of the cover member 27 has electrical conductivity, there is a concern that adjacent cover members 27 come into contact with each other and are electrically short-circuited. When electrically short-circuited, the short-circuited heat-electric direct conversion semiconductor pair 4 does not contribute to thermoelectric conversion, and there is a problem that the power generation performance is lowered as a whole.

この課題を回避するためには、従来、例えば、熱−電気直接変換半導体対4の間に絶縁板28を配置し、カバー部材27同士の短絡を防止するといった対策が必要であった。   In order to avoid this problem, conventionally, for example, it has been necessary to take measures such as disposing the insulating plate 28 between the thermal-electrical direct conversion semiconductor pair 4 to prevent a short circuit between the cover members 27.

しかしながら、この対策方法では、各熱−電気直接変換半導体対4の間に多数の絶縁板28を配設することとなり、部品点数の増加となる他、組立工数の増加ともなっていた。   However, in this countermeasure method, a large number of insulating plates 28 are disposed between each heat-electrical direct conversion semiconductor pair 4, which increases the number of parts and increases the number of assembly steps.

本発明は、上記事情に鑑みてなされたもので、熱−電気直接変換半導体対の高温側電極を覆うカバー部材が互いに接触した場合であっても電気的短絡を防止し、発電効率の低下を回避することが可能であると共に、部品点数が少なく組立工数を低減することができる熱−電気直接変換装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and even when the cover members covering the high-temperature side electrodes of the heat-electric direct conversion semiconductor pair are in contact with each other, an electrical short circuit is prevented, and the power generation efficiency is reduced. An object of the present invention is to provide a thermal-electric direct conversion device that can be avoided and that can reduce the number of parts and the number of assembly steps.

上記課題を解決するために、本発明に係る熱−電気直接変換装置は、p型半導体とn型半導体とからなる複数の熱−電気直接変換半導体対と、前記熱−電気直接変換半導体対の低温側端部において前記p型半導体とn型半導体とを電気的に接続する複数の低温側電極と、前記複数の低温側電極を介して前記複数の熱−電気直接変換半導体対と熱的に接続される低温側絶縁板と、前記熱−電気直接変換半導体対の高温側端部において前記p型半導体とn型半導体とを電気的に接続する複数の高温側電極と、前記複数の高温側電極のそれぞれを覆う複数のカバー部材と、前記複数の高温側電極及び前記カバー部材を介して前記複数の熱−電気直接変換半導体対と熱的に接続される高温側絶縁板と、を備え、前記高温側電極は、前記p型半導体と前記n型半導体とを跨ぐように載置され、前記高温側電極と前記熱−電気直接変換半導体対との間は非固定であり、前記カバー部材は、前記高温側電極を覆うように載置され、前記カバー部材と前記高温側電極の間は非固定であり、前記カバー部材は、金属材料で形成されると共に前記高温側電極に臨む面に開口を有するバスタブ状の箱状部材で形成され、かつ、前記カバー部材の縁部は前記熱−電気直接変換半導体対の高温側端部の一部まで延出し、前記カバー部材の少なくとも露出面に、隣接するカバー部材同士の接触による短絡を防止する電気絶縁層を設けたことを特徴とする。
In order to solve the above-described problems, a direct thermal-electric conversion device according to the present invention includes a plurality of thermal-electrical direct conversion semiconductor pairs composed of a p-type semiconductor and an n-type semiconductor, and the thermal-electrical direct conversion semiconductor pair. A plurality of low-temperature side electrodes that electrically connect the p-type semiconductor and the n-type semiconductor at a low-temperature side end portion, and the plurality of thermo-electrical direct conversion semiconductor pairs via the plurality of low-temperature side electrodes; A low temperature side insulating plate to be connected; a plurality of high temperature side electrodes that electrically connect the p-type semiconductor and the n-type semiconductor at a high temperature side end of the thermo-electric direct conversion semiconductor pair; and the plurality of high temperature sides A plurality of cover members covering each of the electrodes, and a high temperature side insulating plate thermally connected to the plurality of thermal-electrical direct conversion semiconductor pairs via the plurality of high temperature side electrodes and the cover member, The high temperature side electrode is formed in front of the p-type semiconductor. It is placed so as to straddle the n-type semiconductor, and the high temperature side electrode and the thermo-electric direct conversion semiconductor pair are not fixed, and the cover member is placed so as to cover the high temperature side electrode. The cover member and the high temperature side electrode are not fixed, and the cover member is formed of a metal material and a bathtub-like box-shaped member having an opening on the surface facing the high temperature side electrode, And the edge part of the said cover member is extended to a part of high temperature side edge part of the said thermoelectric direct conversion semiconductor pair, and prevents the short circuit by contact of adjacent cover members at least to the exposed surface of the said cover member. An electrical insulating layer is provided.

本発明に係る熱−電気直接変換装置によれば、熱−電気直接変換半導体対の高温側電極を覆うカバー部材が互いに接触した場合であっても電気的短絡を防止し、発電効率の低下を回避することが可能であると共に、部品点数が少なく組立工数を低減することができる。   According to the thermal-electrical direct conversion device according to the present invention, even if the cover members covering the high-temperature side electrodes of the thermal-electrical direct conversion semiconductor pair are in contact with each other, an electrical short circuit is prevented, and the power generation efficiency is reduced. This can be avoided, and the number of parts is small and the number of assembly steps can be reduced.

本発明に係る熱−電気直接変換装置の実施形態について、添付図面を参照して説明する。   An embodiment of a direct thermal-electric conversion device according to the present invention will be described with reference to the accompanying drawings.

(1)第1の実施形態
図1(a)は第1の実施形態に係る熱−電気直接変換装置1の構造を模式的に示す断面図である。
(1) First Embodiment FIG. 1A is a cross-sectional view schematically showing the structure of a thermoelectric direct conversion device 1 according to a first embodiment.

熱−電気直接変換装置1は、p型半導体2とn型半導体3とからなる熱−電気直接変換半導体対4を複数有し、これら複数の熱−電気直接変換半導体対4が高温側絶縁板7と低温側基板22とに挟まれて構成されている。   The thermal-electrical direct conversion device 1 has a plurality of thermal-electrical direct conversion semiconductor pairs 4 composed of a p-type semiconductor 2 and an n-type semiconductor 3, and the plurality of thermal-electrical direct conversion semiconductor pairs 4 are high-temperature side insulating plates. 7 and the low-temperature side substrate 22.

熱−電気直接変換半導体対4は、図1(a)において上側が熱を印加する高温側であり、下側が熱を放熱する低温側となる。   In FIG. 1A, the heat-electricity direct conversion semiconductor pair 4 is a high temperature side to which heat is applied, and the lower side is a low temperature side to dissipate heat.

熱−電気直接変換半導体対4の低温側端部は、低温側接合部12を介して低温側電極6と電気的かつ熱的に接続されている。低温側電極6は、隣接する熱−電気直接変換半導体対4のp型半導体2の低温側端部とn型半導体3の低温側端部との間を電気的に接続している。   The low temperature side end of the thermoelectric direct conversion semiconductor pair 4 is electrically and thermally connected to the low temperature side electrode 6 via the low temperature side junction 12. The low temperature side electrode 6 electrically connects the low temperature side end of the p-type semiconductor 2 and the low temperature side end of the n-type semiconductor 3 of the adjacent direct thermal-electric conversion semiconductor pair 4.

一方、熱−電気直接変換半導体対4の高温側端部には高温側電極5が載置され、1つの熱−電気直接変換半導体対4を構成するp型半導体2とn型半導体3との間をこの高温側電極5によって電気的に接続する。   On the other hand, the high temperature side electrode 5 is placed on the high temperature side end of the thermoelectric direct conversion semiconductor pair 4, and the p type semiconductor 2 and the n type semiconductor 3 constituting one thermoelectric direct conversion semiconductor pair 4 are arranged. The space is electrically connected by the high temperature side electrode 5.

熱−電気直接変換半導体対4の高温側端部に熱が印加され、高温側端部と低温側端部との間に温度差が生じると、p型半導体2の内部では高温側から低温側に、逆にn型半導体3の内部では低温側から高温側に電流が流れる。   When heat is applied to the high temperature side end of the thermoelectric direct conversion semiconductor pair 4 and a temperature difference occurs between the high temperature side end and the low temperature side end, inside the p-type semiconductor 2 from the high temperature side to the low temperature side On the contrary, current flows from the low temperature side to the high temperature side inside the n-type semiconductor 3.

複数ある熱−電気直接変換半導体対4はそれぞれ高温側電極5及び低温側電極6を介して順次に接続されているため、各熱−電気直接変換半導体対4は電気的には直列接続の形態で電気エネルギーを生成することになる。直列接続された熱−電気直接変換半導体対4のうち、両端に位置する熱−電気直接変換半導体対4からは電流取出部10を介して外部に電気エネルギーを取り出すことができる。   Since the plurality of thermal-electrical direct conversion semiconductor pairs 4 are sequentially connected via the high-temperature side electrode 5 and the low-temperature side electrode 6, respectively, each thermal-electrical direct conversion semiconductor pair 4 is electrically connected in series. Will generate electrical energy. Of the heat-electricity direct conversion semiconductor pairs 4 connected in series, electric energy can be taken out from the heat-electricity direct conversion semiconductor pairs 4 located at both ends via the current extraction unit 10.

なお、電流取出部10に電流を印加することにより、熱−電気直接変換装置1を電気エネルギーから熱への変換装置として機能させることもできる。   In addition, by applying a current to the current extraction unit 10, the thermal-electrical direct conversion device 1 can also function as a conversion device from electrical energy to heat.

低温側基板22は、上記の低温側電極6と、低温側絶縁板8と、低温系統への熱放出部24とを備えて構成される。   The low temperature side substrate 22 includes the low temperature side electrode 6, the low temperature side insulating plate 8, and the heat release unit 24 to the low temperature system.

より具体的には、低温側絶縁板8は例えばセラミック板で形成され、このセラミック板の両面に金属板を接合することにより、低温側電極6と低温系統への熱放出部24とが一体的に形成される。この際、複数ある各低温側電極6は相互に分割され、低温側絶縁板接合部23を介して低温側絶縁板8の上にパッチ状に接合される。他方、低温系統への熱放出部24を形成する金属板は、低温側絶縁板8の低温側の略全面に渡って形成される。   More specifically, the low temperature side insulating plate 8 is formed of, for example, a ceramic plate, and the low temperature side electrode 6 and the heat release unit 24 to the low temperature system are integrated by bonding metal plates to both sides of the ceramic plate. Formed. At this time, the plurality of low temperature side electrodes 6 are divided from each other and bonded in a patch form on the low temperature side insulating plate 8 via the low temperature side insulating plate bonding portion 23. On the other hand, the metal plate forming the heat release portion 24 to the low temperature system is formed over substantially the entire low temperature side of the low temperature insulating plate 8.

このように低温側絶縁板8の表面に予め低温側電極6と低温側系統への熱放出部24とを接合させて低温側基板22を一体的に形成することにより、熱−電気直接変換装置1の組み立て作業が簡素化される。さらに、低温側絶縁板8と低温側電極6および低温側系統への熱放出部24との接合強度が高くまた両者の密着度も高く形成できるため、耐久性に優れた熱−電気直接変換装置1が得られる。   In this way, the low-temperature side substrate 22 is integrally formed on the surface of the low-temperature-side insulating plate 8 in advance by joining the low-temperature-side electrode 6 and the heat-dissipating part 24 to the low-temperature-side system, so The assembly work of 1 is simplified. Further, since the bonding strength between the low temperature side insulating plate 8 and the low temperature side electrode 6 and the heat release part 24 to the low temperature side system is high and the degree of adhesion between them can be high, the heat-electricity direct conversion device having excellent durability. 1 is obtained.

なお、低温側電極6および低温側系統への熱放出部24を形成する金属板の材料としては、耐熱性及び電気伝導性あるいは熱伝導性の点から、銅、銀、アルミニウム、錫、鉄基合金、ニッケル、ニッケル基合金、チタン、チタン基合金から選択される少なくとも1種から成ることが好ましい。   In addition, as a material of the metal plate which forms the low temperature side electrode 6 and the heat release part 24 to the low temperature side system, from the viewpoint of heat resistance and electrical conductivity or thermal conductivity, copper, silver, aluminum, tin, iron base It is preferably made of at least one selected from alloys, nickel, nickel-base alloys, titanium, and titanium-base alloys.

また、低温側絶縁板8を形成するセラミック板の材料としては、絶縁耐性の安定性の点から、アルミナもしくはアルミナを含有するセラミック、アルミナ粉末を分散含有する金属、窒化珪素もしくは窒化珪素を含有するセラミック、窒化アルミニウムもしくは窒化アルミニウムを含有するセラミック、ジルコニアもしくはジルコニアを含有するセラミック、イットリアもしくはイットリアを含有するセラミック、シリカあるいはシリカを含有するセラミック、ベリリアもしくはベリリアを含有するセラミックから選択される少なくとも1種から構成されることが好ましい。   Further, the material of the ceramic plate forming the low-temperature side insulating plate 8 includes alumina or a ceramic containing alumina, a metal containing alumina powder dispersedly, silicon nitride or silicon nitride from the viewpoint of stability of insulation resistance. At least one selected from ceramics, ceramics containing aluminum nitride or aluminum nitride, ceramics containing zirconia or zirconia, ceramics containing yttria or yttria, ceramics containing silica or silica, ceramics containing beryllia or beryllia It is preferable that it is comprised.

他方、熱−電気直接変換半導体対4の高温側端部の構成は低温側とは若干異なる。   On the other hand, the configuration of the high temperature side end of the thermoelectric direct conversion semiconductor pair 4 is slightly different from the low temperature side.

図1(b)は、熱−電気直接変換半導体対4の高温側の構成部材を示す図である。図1(b)に示したように、熱−電気直接変換半導体対4の高温側端部には、高温側電極5がp型半導体2とn型半導体3を跨ぐように載置される。この際、熱−電気直接変換半導体対4と高温側電極5との間は非固定の状態とする。これによって、熱−電気直接変換半導体対4が熱変形を生じた場合であってもその熱変形を吸収し、熱−電気直接変換半導体対4の破損を防止することが可能となる。   FIG. 1B is a diagram showing components on the high temperature side of the thermoelectric direct conversion semiconductor pair 4. As shown in FIG. 1B, the high temperature side electrode 5 is placed on the high temperature side end of the thermoelectric direct conversion semiconductor pair 4 so as to straddle the p-type semiconductor 2 and the n-type semiconductor 3. At this time, the thermoelectric direct conversion semiconductor pair 4 and the high temperature side electrode 5 are not fixed. As a result, even when the thermal-electrical direct conversion semiconductor pair 4 undergoes thermal deformation, the thermal deformation is absorbed, and damage to the thermal-electrical direct conversion semiconductor pair 4 can be prevented.

一方、高温側電極5は非固定であるため、傾斜や振動等による移動を防止する対策を予め講じておく必要がある。カバー部材27はこのための部材であり、高温側電極5を覆うように高温側電極5の上から配設される。カバー部材27は、高温側電極5に臨む面に開口を有するバスタブ状の箱状部材で形成されている。カバー部材27の縁部は、熱−電気直接変換半導体対4の高温側端部の一部まで延びており、これにより高温側電極5をカバー部材27の内部に収容し、移動を防止することができる。   On the other hand, since the high temperature side electrode 5 is not fixed, it is necessary to take measures to prevent movement due to inclination, vibration, or the like. The cover member 27 is a member for this purpose, and is disposed from above the high temperature side electrode 5 so as to cover the high temperature side electrode 5. The cover member 27 is formed of a bathtub-like box-shaped member having an opening on the surface facing the high temperature side electrode 5. The edge of the cover member 27 extends to a part of the high temperature side end of the heat-electrical direct conversion semiconductor pair 4, thereby accommodating the high temperature side electrode 5 in the cover member 27 and preventing movement. Can do.

カバー部材27の高温側面(図1において上側の面)には高温側絶縁板7が圧接される。   The high temperature side insulating plate 7 is pressed against the high temperature side surface (the upper surface in FIG. 1) of the cover member 27.

高温側電極5、カバー部材27、及び高温側絶縁板7は熱−電気直接変換装置1に印加される熱を熱−電気直接変換半導体対4の高温側端部に高い効率で伝えるため、熱伝導率の高い材料で形成する必要がある。また、これらの構成品は高温環境下、例えば約500℃以上、で使用されるため、高い耐熱性も要求される。以下にこれらの構成品の材料や細部構造について説明する。   The high temperature side electrode 5, the cover member 27, and the high temperature side insulating plate 7 transmit heat applied to the thermal-electrical direct conversion device 1 to the high temperature side end of the thermal-electrical direct conversion semiconductor pair 4 with high efficiency. It must be formed of a material with high conductivity. Further, since these components are used in a high temperature environment, for example, at about 500 ° C. or higher, high heat resistance is also required. The materials and detailed structures of these components will be described below.

高温側電極5は、p型半導体2とn型半導体3とを電気的に接続するものであり、高い電気伝導性が必要となる。このため、例えば銅等の金属材料で形成される。   The high temperature side electrode 5 electrically connects the p-type semiconductor 2 and the n-type semiconductor 3 and requires high electrical conductivity. For this reason, it forms with metal materials, such as copper, for example.

一方、上述したように高温側電極5とp型半導体2或いはn型半導体3との端部は非固定の状態であるため、より一層接続部の密着性を高め電気抵抗を低減する必要がある。そこで、本実施形態に係る高温側電極5では、銅線等の金属細線を密に編んだ網状金属部材を用いて形成している。この網状金属部材で形成された高温側電極5を、カバー部材27を介して高温側絶縁板7で圧接することにより、網状金属部材が有する弾性によって、高温側電極5とp型半導体2或いはn型半導体3との端部との密着性が向上し、高い電気伝導性が確保できる。また、この密着性の向上により熱伝導性も併せて向上させることができる。   On the other hand, as described above, the end portions of the high temperature side electrode 5 and the p-type semiconductor 2 or the n-type semiconductor 3 are in an unfixed state, so that it is necessary to further increase the adhesion of the connection portion and reduce the electrical resistance. . Therefore, the high temperature side electrode 5 according to the present embodiment is formed using a net-like metal member in which fine metal wires such as copper wires are densely knitted. The high-temperature side electrode 5 and the p-type semiconductor 2 or n are bonded to the high-temperature side electrode 5 formed of the mesh-like metal member by pressing the high-temperature-side insulating plate 7 through the cover member 27 by the elasticity of the mesh-like metal member. Adhesion with the end portion with the mold semiconductor 3 is improved, and high electrical conductivity can be secured. Moreover, thermal conductivity can also be improved by this improvement in adhesion.

さらに、高温側電極5を網状金属部材で形成することにより、熱−電気直接変換半導体対4の高さ方向の誤差(単体及び個体間のばらつきを含む)を吸収することが可能となる。一般に、熱−電気直接変換半導体対4の高さは、製造誤差や印加される熱の不均一性等によって一定の誤差を生じるが、これらの誤差によって高温側電極5と熱−電気直接変換半導体対4との間の密着性が損なわれ、熱伝導性、電気伝導性の低下の要因となる。網状金属部材で形成された高温側電極5により、これらの誤差を吸収し、高い熱伝導性、電気伝導性を確保することができる。   Furthermore, by forming the high temperature side electrode 5 with a net-like metal member, it is possible to absorb errors in the height direction of the thermo-electrical direct conversion semiconductor pair 4 (including variations between single and individual). In general, the height of the thermo-electric direct conversion semiconductor pair 4 causes a certain error due to a manufacturing error, nonuniformity of applied heat, and the like, but these errors cause the high temperature side electrode 5 and the thermo-electric direct conversion semiconductor. Adhesiveness between the pair 4 is impaired, which causes a decrease in thermal conductivity and electrical conductivity. These errors can be absorbed by the high temperature side electrode 5 formed of a mesh metal member, and high thermal conductivity and electrical conductivity can be ensured.

カバー部材27は、電気伝導性は要求されないが、高い熱伝導性と耐熱性が要求される。このため、金属材料が用いられる場合がある。この場合にはカバー部材27が結果的に電気伝導性を有することになる。   The cover member 27 is not required to have electrical conductivity, but is required to have high thermal conductivity and heat resistance. For this reason, a metal material may be used. In this case, the cover member 27 eventually has electrical conductivity.

カバー部材27は、熱−電気直接変換半導体対4の熱変形を吸収するため、高温側電極5と同様に高温側電極5を覆うように載置されるのみで非固定の状態である。このため、熱−電気直接変換装置1が傾斜したときや振動したときに、隣接するカバー部材27との接触の可能性を完全には排除できない。   The cover member 27 is simply placed so as to cover the high temperature side electrode 5 in the same manner as the high temperature side electrode 5 in order to absorb the thermal deformation of the thermoelectric direct conversion semiconductor pair 4 and is in an unfixed state. For this reason, when the thermoelectric direct conversion device 1 is inclined or vibrated, the possibility of contact with the adjacent cover member 27 cannot be completely excluded.

そこで、第1の実施形態に係るカバー部材27では、その外周の全面に電気絶縁層27aを設ける形態としている。この電気絶縁層27aによって、万一カバー部材27が隣接するカバー部材27と接触した場合であっても短絡することが無い。   Therefore, the cover member 27 according to the first embodiment is configured such that the electrical insulating layer 27a is provided on the entire outer periphery. Even if the cover member 27 comes into contact with the adjacent cover member 27 by this electrical insulating layer 27a, there is no short circuit.

隣接する熱−電気直接変換半導体対4同士が短絡するとその熱−電気直接変換半導体対4は発電に寄与しなくなり、熱−電気直接変換装置1全体としての熱電変換効率が低下することになるが、電気絶縁層27aを設けることによって熱電変換効率の低下を防止することが可能となる。   When the adjacent heat-electric direct conversion semiconductor pairs 4 are short-circuited, the heat-electric direct conversion semiconductor pairs 4 do not contribute to power generation, and the thermoelectric conversion efficiency of the entire heat-electric direct conversion device 1 is reduced. By providing the electrical insulating layer 27a, it is possible to prevent a decrease in thermoelectric conversion efficiency.

電気絶縁層27aは、電気絶縁性を有し、熱伝導率が高くかつ耐熱性に優れた材料が好ましく、例えば、耐熱性塗料、アルマイトを含む酸化皮膜、若しくはセラミック材料、又はそれらの組み合わせによって形成される。   The electrical insulating layer 27a is preferably made of a material having electrical insulation, high thermal conductivity, and excellent heat resistance. For example, the electrical insulating layer 27a is formed of a heat resistant paint, an oxide film containing alumite, a ceramic material, or a combination thereof. Is done.

また前記セラミック材料としては、同様に電気絶縁性を有し、熱伝導率が高くかつ耐熱性に優れた材料として、例えば、アルミナ、窒化アルミニウム、又は窒化珪素等が用いられる。   In addition, as the ceramic material, for example, alumina, aluminum nitride, silicon nitride, or the like is used as a material having electrical insulation, high thermal conductivity, and excellent heat resistance.

カバー部材27は、熱伝導率が高くかつ耐熱性に優れた材料が要求され、電気伝導性を有する場合には前記高温側電極よりも電気抵抗の大きな材料で形成されることが好ましい。   The cover member 27 is required to be made of a material having high thermal conductivity and excellent heat resistance. When the cover member 27 has electrical conductivity, the cover member 27 is preferably made of a material having a larger electrical resistance than the high temperature side electrode.

高温側絶縁板7は、複数のカバー部材27の全体をほぼ覆うようにこれらの上から圧接するように設けられる。高温側絶縁板7の高温側面には熱が直接印加されるため、高い耐熱性が要求される。また、印加された熱を効率よく熱−電気直接変換半導体対4へ伝えるために高い熱伝導率が必要である。さらに、各熱−電気直接変換半導体対4との電気絶縁性を確保する必要もある。このため、高温側絶縁板7は、例えば、アルミナ(Al)等のように電気絶縁性を有し、熱伝導率が高くかつ耐熱性に優れた材料を用いたセラミック基板で形成される。 The high temperature side insulating plate 7 is provided so as to be in pressure contact with each other so as to substantially cover the entirety of the plurality of cover members 27. Since heat is directly applied to the high temperature side surface of the high temperature side insulating plate 7, high heat resistance is required. Further, high heat conductivity is required to efficiently transmit the applied heat to the heat-electricity direct conversion semiconductor pair 4. Furthermore, it is necessary to ensure electrical insulation between each thermal-electrical direct conversion semiconductor pair 4. For this reason, the high temperature side insulating plate 7 is formed of a ceramic substrate using a material having electrical insulation properties such as alumina (Al 2 O 3 ), high thermal conductivity, and excellent heat resistance. The

高温側絶縁板7の熱伝導性をさらに高めるため、高温側絶縁板7の両面に熱伝導率の高い金属皮膜(箔)を形成する形態としても良い。例えば、高温側絶縁板7の高温側面のほぼ全面に第1の金属皮膜7aを設け、その反対側の面(カバー部材27と接する面)にパッチ上の複数の第2の金属皮膜7bを設ける形態とする。   In order to further increase the thermal conductivity of the high temperature side insulating plate 7, a metal film (foil) having a high thermal conductivity may be formed on both surfaces of the high temperature side insulating plate 7. For example, a first metal film 7a is provided on almost the entire high temperature side surface of the high temperature side insulating plate 7, and a plurality of second metal films 7b on the patch are provided on the opposite surface (the surface in contact with the cover member 27). Form.

第1、第2の金属皮膜7a、7bを設けることにより、高温側絶縁板7とその両面に接する構成品との密着性が高まり、熱伝導性を向上することができる。   By providing the first and second metal films 7a and 7b, the adhesiveness between the high temperature side insulating plate 7 and the components in contact with both surfaces thereof is increased, and the thermal conductivity can be improved.

なお、第2の金属皮膜7bは、カバー部材27の形状に略対応したパッチ形状とし、隣接するパッチとの間を離隔することにより、熱−電気直接変換半導体対4同士の電気絶縁性を確実にしている。   The second metal film 7b has a patch shape that substantially corresponds to the shape of the cover member 27, and ensures separation between the adjacent patches, thereby ensuring electrical insulation between the thermo-electric direct conversion semiconductor pairs 4. I have to.

熱−電気直接変換半導体対4を構成するp型半導体2およびn型半導体3は、熱電変換効率の観点から、および良好な熱電効果を長期間維持することができるという観点から、希土類元素、アクチノイド、コバルト、鉄、ロジウム、ルテニウム、パラジウム、白金、ニッケル、アンチモン、チタン、ジルコニウム、ハフニウム、ニッケル、錫、シリコン、マンガン、亜鉛、ボロン、炭素、窒素、ガリウム、ゲルマニウム、インジウム、バナジウム、ニオブ、バリウムおよびマグネシウムから選択される少なくとも3種の元素から構成される熱−電気直接変換半導体であることが好ましい。   The p-type semiconductor 2 and the n-type semiconductor 3 constituting the thermo-electric direct conversion semiconductor pair 4 are rare earth elements and actinoids from the viewpoint of thermoelectric conversion efficiency and from the viewpoint of maintaining a good thermoelectric effect for a long period of time. , Cobalt, iron, rhodium, ruthenium, palladium, platinum, nickel, antimony, titanium, zirconium, hafnium, nickel, tin, silicon, manganese, zinc, boron, carbon, nitrogen, gallium, germanium, indium, vanadium, niobium, barium And a thermo-electric direct conversion semiconductor composed of at least three elements selected from magnesium and magnesium.

また、p型半導体2およびn型半導体3の主相の結晶構造は、良好な熱電効果の観点から、スクッテルダイト構造、充填スクッテルダイト構造、ホイスラー構造、ハーフホイスラー構造およびクラスレート構造のうちのいずれか1つ、或いはこれらの混相であることが好ましい。   In addition, the crystal structure of the main phase of the p-type semiconductor 2 and the n-type semiconductor 3 is selected from among a skutterudite structure, a filled skutterudite structure, a Heusler structure, a half-Heusler structure, and a clathrate structure from the viewpoint of a good thermoelectric effect. Any one of these or a mixed phase thereof is preferable.

上記のように構成された熱−電気直接変換装置1によれば、熱−電気直接変換半導体対4の高温側の構成品、即ち、高温側電極5、カバー部材27、及び高温側絶縁板7はいずれも高い熱伝導性と耐熱性を有する材料で形成され、かつ熱的に高い密着性を実現できるため、高温側絶縁板7の表面に印加された熱が効率よく熱−電気直接変換半導体対4に伝わり、高い熱電変換効率を確保することができる。   According to the heat-electric direct conversion device 1 configured as described above, components on the high temperature side of the heat-electric direct conversion semiconductor pair 4, that is, the high temperature side electrode 5, the cover member 27, and the high temperature side insulating plate 7. Each is formed of a material having high thermal conductivity and heat resistance, and can realize high thermal adhesion, so that the heat applied to the surface of the high-temperature side insulating plate 7 is efficiently a heat-electric direct conversion semiconductor. It is transmitted to the pair 4 and high thermoelectric conversion efficiency can be ensured.

また、高温側電極5及びカバー部材27は、熱−電気直接変換半導体対4に非固定で載置する形態としているため、熱−電気直接変換半導体対4が熱変形した場合でも接合部に応力集中が生じることが無く、熱−電気直接変換半導体対4の破損を防止することができる。   Moreover, since the high temperature side electrode 5 and the cover member 27 are configured to be mounted in a non-fixed manner on the thermoelectric direct conversion semiconductor pair 4, even when the thermoelectric direct conversion semiconductor pair 4 is thermally deformed, stress is applied to the joint portion. Concentration does not occur, and breakage of the thermal-electrical direct conversion semiconductor pair 4 can be prevented.

さらに、カバー部材27の表面に電気絶縁層27aを設けたことにより、カバー部材27同士の電気的短絡を排除することができる。このため、熱−電気直接変換装置1の傾斜や振動等によってカバー部材27同士が万一接触した場合であっても隣接する熱−電気直接変換半導体対4同士で電気的短絡が生じるおそれがなく、発電効率の低下を回避することができる。   Furthermore, by providing the electrical insulating layer 27a on the surface of the cover member 27, an electrical short circuit between the cover members 27 can be eliminated. For this reason, even if it is a case where cover members 27 should contact by the inclination, vibration, etc. of the thermo-electrical direct conversion apparatus 1, there is no possibility that an electrical short circuit may occur between the adjacent thermo-electrical direct conversion semiconductor pairs 4. Thus, a decrease in power generation efficiency can be avoided.

(2)第2の実施形態
図2は、第2の実施形態に係る熱−電気直接変換装置1aの構造を模式的に示す断面図である。第2の実施形態と第1の実施形態との相違点は、カバー部材27の電気絶縁層の形態にある。
(2) 2nd Embodiment FIG. 2: is sectional drawing which shows typically the structure of the thermoelectric direct conversion apparatus 1a which concerns on 2nd Embodiment. The difference between the second embodiment and the first embodiment is in the form of an electrical insulating layer of the cover member 27.

第1の実施形態では、カバー部材27の全表面に電気絶縁層27aを設ける形態としている。これに対して、第2の実施形態に係るカバー部材27は、箱形状の外部に露出している面のみに電気絶縁層27bを設ける形態とし、箱形状の内側の面には電気絶縁層を設けていない。   In the first embodiment, the electrical insulating layer 27 a is provided on the entire surface of the cover member 27. On the other hand, the cover member 27 according to the second embodiment is configured such that the electric insulating layer 27b is provided only on the surface exposed to the outside of the box shape, and the electric insulating layer is provided on the inner surface of the box shape. Not provided.

隣接するカバー部材27との電気絶縁を確保するという観点からは、カバー部材27の外側の面のみに電気絶縁層27bを設ければ充分である。   From the viewpoint of ensuring electrical insulation with the adjacent cover member 27, it is sufficient to provide the electrical insulation layer 27b only on the outer surface of the cover member 27.

一方、カバー部材27の内側の面に電気絶縁層を設けずカバー部材27を露出させる形態としている。このため、第2の実施形態によれば、カバー部材27自体が有する電気伝導性によって熱−電気直接変換半導体対4のp型半導体2とn型半導体3との間に電流を流すことができ、高温側電極5の電気伝導性を補完することが可能となる。   On the other hand, the cover member 27 is exposed without providing an electrical insulating layer on the inner surface of the cover member 27. Therefore, according to the second embodiment, a current can flow between the p-type semiconductor 2 and the n-type semiconductor 3 of the thermoelectric direct conversion semiconductor pair 4 by the electrical conductivity of the cover member 27 itself. It becomes possible to complement the electrical conductivity of the high temperature side electrode 5.

なお、第1、第2の実施形態のいずれにおいても、構成部品の酸化等による劣化を防止するために、熱−電気直接変換装置1、1aは、不活性ガス雰囲気中に配設されることが望ましい。不活性ガスとしては、窒素、ヘリウム、ネオン、アルゴン、クリプトンおよびキセノンから選択されるガスからなることが好ましい。或いはこれらの混合ガスでもよい。これらの非酸化性の気体中に設置し、熱−電気直接変換装置1、1aの周囲雰囲気を非活性とすることにより、p型半導体2或いはn型半導体3等の構成部品が酸化等により劣化することが効果的に防止でき長期にわたって高い変換効率を維持できる熱−電気直接変換装置1、1aが得られる。   In both the first and second embodiments, the thermal-electrical direct conversion devices 1 and 1a are disposed in an inert gas atmosphere in order to prevent deterioration of components due to oxidation or the like. Is desirable. The inert gas is preferably composed of a gas selected from nitrogen, helium, neon, argon, krypton and xenon. Or these mixed gas may be sufficient. The components such as the p-type semiconductor 2 or the n-type semiconductor 3 are deteriorated by oxidation or the like by installing them in these non-oxidizing gases and deactivating the ambient atmosphere of the thermal-electrical direct conversion devices 1 and 1a. It is possible to obtain the thermal-electrical direct conversion devices 1 and 1a that can effectively prevent this and maintain high conversion efficiency over a long period of time.

(3)第3の実施形態
図3は、第3の実施形態に係る熱−電気直接変換装置1bの外観を示す斜視図である。また、図4は、図3に示す熱−電気直接変換装置1bのX−X矢視断面図である。
(3) Third Embodiment FIG. 3 is a perspective view showing the external appearance of a thermoelectric direct conversion device 1b according to a third embodiment. FIG. 4 is a cross-sectional view of the thermoelectric direct conversion device 1b shown in FIG.

第3の実施形態に係る熱−電気直接変換装置1bは、複数の熱−電気直接変換半導体対4とその周辺の構成品等を気密筐体30に収容する形態である。   The thermal-electrical direct conversion device 1b according to the third embodiment is a form in which a plurality of thermal-electrical direct conversion semiconductor pairs 4 and their peripheral components are accommodated in an airtight casing 30.

気密筐体30は、複数の熱−電気直接変換半導体対4の高温側端部に熱的に接続される高温側絶縁板7を覆う金属蓋20と、複数の熱−電気直接変換半導体対4の周囲を取り囲む金属枠21と、複数の熱−電気直接変換半導体対4の低温側端部に熱的に接続される低温側基板22とから構成されている。気密筐体30は、複数の熱−電気直接変換半導体対4等からなる内部構成品を外気から遮断するとともに、気密筐体30の内部を真空もしくは不活性ガス雰囲気に保持する。   The hermetic housing 30 includes a metal lid 20 that covers the high temperature side insulating plate 7 that is thermally connected to the high temperature side ends of the plurality of heat-electric direct conversion semiconductor pairs 4, and a plurality of heat-electric direct conversion semiconductor pairs 4. And a low temperature side substrate 22 that is thermally connected to the low temperature side end portions of the plurality of thermal-electrical direct conversion semiconductor pairs 4. The hermetic casing 30 shields internal components including the plurality of direct heat-electric conversion semiconductor pairs 4 from the outside air, and holds the inside of the hermetic casing 30 in a vacuum or an inert gas atmosphere.

不活性ガスとしては、窒素、ヘリウム、ネオン、アルゴン、クリプトンおよびキセノンから選択されるガスからなることが好ましい。或いはこれらの混合ガスでもよい。これらの非酸化性の気体を気密筐体30内に封入し、内部雰囲気を非活性とすることにより、半導体チップ等の構成部品が酸化等により劣化することが効果的に防止でき長期にわたって高い変換効率を維持できる熱−電気直接変換装置1bが得られる。   The inert gas is preferably composed of a gas selected from nitrogen, helium, neon, argon, krypton and xenon. Or these mixed gas may be sufficient. By encapsulating these non-oxidizing gases in the airtight housing 30 and deactivating the internal atmosphere, it is possible to effectively prevent deterioration of components such as semiconductor chips due to oxidation or the like, and high conversion over a long period of time. The direct thermal-electric converter 1b that can maintain the efficiency is obtained.

また、熱−電気直接変換装置1bにおいて、不活性ガス雰囲気の圧力が、常温で外気圧より低く設定されていることが好ましい。気密筐体30内の不活性ガス雰囲気の圧力を外気圧より低く設定することにより、高温時の内圧の上昇に伴う破損を防止するとともに気密筐体30内の不活性ガス雰囲気中に水分が残留することが効果的に防止でき、水分による半導体チップの劣化損傷を効果的に抑止できる。さらに、気密筐体30内のガス雰囲気における熱伝導性が低下するために、半導体チップから金属枠方向に熱が放散することが防止でき、熱−電気変換効率を高めることができる。   Moreover, in the heat-electricity direct conversion apparatus 1b, it is preferable that the pressure of an inert gas atmosphere is set lower than an external pressure at normal temperature. By setting the pressure of the inert gas atmosphere in the hermetic casing 30 to be lower than the external pressure, damage due to an increase in the internal pressure at a high temperature is prevented, and moisture remains in the inert gas atmosphere in the hermetic casing 30. It can be effectively prevented, and deterioration damage of the semiconductor chip due to moisture can be effectively suppressed. Furthermore, since the thermal conductivity in the gas atmosphere in the hermetic casing 30 is lowered, it is possible to prevent heat from being dissipated from the semiconductor chip in the direction of the metal frame, and to improve the heat-electric conversion efficiency.

気密筐体30を構成する金属蓋20および金属枠21は、例えばニッケル基合金のような耐熱合金もしくは耐熱金属から形成される。金属蓋20および金属枠21を形成する耐熱合金もしくは耐熱金属としては、高温度使用環境における耐久性の点から、ニッケル基合金の他、ニッケル、炭素鋼、ステンレス鋼、クロムを含む鉄基合金、シリコンを含む鉄基合金、コバルトを含有する合金又はニッケル若しくは銅を含有する合金のいずれかより選択されることが好ましい。   The metal lid 20 and the metal frame 21 constituting the hermetic casing 30 are made of a heat-resistant alloy such as a nickel base alloy or a heat-resistant metal, for example. As the heat-resistant alloy or heat-resistant metal forming the metal lid 20 and the metal frame 21, from the viewpoint of durability in a high temperature use environment, in addition to a nickel-based alloy, an iron-based alloy containing nickel, carbon steel, stainless steel, chromium, It is preferably selected from any of an iron-base alloy containing silicon, an alloy containing cobalt, or an alloy containing nickel or copper.

金属蓋20と金属枠21とは、例えば溶接によって接合される。この他、金属蓋20と金属枠21とを一体的に成形する形態でもよい。金属蓋20と金属枠21とを一体成形することによって部品点数が減り組立作業が簡素化される。   The metal lid 20 and the metal frame 21 are joined by welding, for example. In addition, the metal lid 20 and the metal frame 21 may be integrally formed. By integrally forming the metal lid 20 and the metal frame 21, the number of parts is reduced and the assembling work is simplified.

金属枠21と低温側基板22との接合方法は、特に限定されるものではないが、接合強度の点から、溶接、ハンダ付け若しくはロウ付け、拡散接合又は接着剤により接合されていることが好ましい。   The joining method of the metal frame 21 and the low temperature side substrate 22 is not particularly limited, but is preferably joined by welding, soldering or brazing, diffusion joining, or an adhesive from the viewpoint of joining strength. .

気密筐体30を構成する低温側基板22は、基本的には第1の実施形態と同様のものである。ただし、熱−電気直接変換装置1bから電流を取り出す電流取出手段10は、低温側基板22を貫通する接続手段9を介して熱−電気直接変換半導体対4(直列に接続された熱−電気直接変換半導体対4のうち、両端に位置する熱−電気直接変換半導体対4)と接続されており、気密筐体30の機密性を維持する形態となっている。   The low temperature side substrate 22 constituting the hermetic casing 30 is basically the same as that of the first embodiment. However, the current extraction means 10 for extracting a current from the thermo-electric direct conversion device 1b is connected to the thermo-electric direct conversion semiconductor pair 4 (thermo-electric direct connected in series) via the connection means 9 penetrating the low temperature side substrate 22. The conversion semiconductor pair 4 is connected to the thermal-electrical direct conversion semiconductor pair 4) located at both ends, so that the confidentiality of the airtight housing 30 is maintained.

気密筐体30の内部に収容される熱−電気直接変換半導体対4、高温側電極5、カバー部材27、高温側絶縁板7はいずれも第1の実施形態と同様のものであり、カバー部材27には電気絶縁層27aが全表面に設けられている。   The thermal-electrical direct conversion semiconductor pair 4, the high temperature side electrode 5, the cover member 27, and the high temperature side insulating plate 7 housed in the airtight housing 30 are all the same as those in the first embodiment, and the cover member 27 is provided with an electrically insulating layer 27a on the entire surface.

第3の実施形態によれば、第1の実施形態と同様の効果が得られる他、気密筐体30を備えていることにより、熱−電気直接変換装置1bを単独で空気中に設置し、高温環境下で長時間動作させても内部構成品の酸化や窒化による劣化を効果的に抑止することが可能となり、長期間にわたって高い熱電変換効率を維持することができる。   According to the third embodiment, in addition to obtaining the same effect as the first embodiment, by providing the airtight housing 30, the direct thermal-electric conversion device 1b is installed in the air, Even when operated in a high temperature environment for a long time, it is possible to effectively suppress deterioration due to oxidation or nitridation of internal components, and high thermoelectric conversion efficiency can be maintained over a long period of time.

(4)第4の実施形態
図5は、第4の実施形態に係る熱−電気直接変換装置1cの構成を示す断面図である。
(4) 4th Embodiment FIG. 5: is sectional drawing which shows the structure of the thermoelectric direct conversion apparatus 1c which concerns on 4th Embodiment.

第4の実施形態と第3の実施形態との相違点は、カバー部材27の電気絶縁層の形態にある。 The difference between the fourth embodiment and the third embodiment lies in the form of the electrical insulating layer of the cover member 27.

第3の実施形態では、カバー部材27の全表面に電気絶縁層27aを設ける形態としている。これに対して、第4の実施形態に係るカバー部材27は、箱形状の外部に露出している面のみに電気絶縁層27bを設ける形態とし、箱形状の内側の面には電気絶縁層を設けていない。   In the third embodiment, the electrical insulating layer 27 a is provided on the entire surface of the cover member 27. On the other hand, the cover member 27 according to the fourth embodiment is configured such that the electric insulating layer 27b is provided only on the surface exposed to the outside of the box shape, and the electric insulating layer is provided on the inner surface of the box shape. Not provided.

第4の実施形態によれば、第3の実施形態の効果に加えて、カバー部材27自体が有する電気伝導性によって熱−電気直接変換半導体対4のp型半導体2とn型半導体3との間に電流を流すことができ、高温側電極5の電気伝導性を補完することが可能となる。   According to the fourth embodiment, in addition to the effects of the third embodiment, the electrical conductivity of the cover member 27 itself causes the p-type semiconductor 2 and the n-type semiconductor 3 of the thermal-electrical direct conversion semiconductor pair 4 to A current can be passed between them, and the electrical conductivity of the high temperature side electrode 5 can be complemented.

上記に説明したように、第1乃至第4の実施形態に係る熱−電気直接変換装置1、1a、1b、1cによれば、高温側電極5を覆うカバー部材27に電気絶縁層27a、27bを設けることにより、カバー部材27が互いに接触した場合であっても電気的短絡を防止し、発電効率の低下を回避することが可能であると共に、部品点数が少なく組立工数を低減することができる。   As described above, according to the thermal-electrical direct conversion devices 1, 1 a, 1 b, and 1 c according to the first to fourth embodiments, the electrical insulating layers 27 a and 27 b are disposed on the cover member 27 that covers the high temperature side electrode 5. Thus, even when the cover members 27 are in contact with each other, it is possible to prevent an electrical short circuit, avoid a decrease in power generation efficiency, and reduce the number of components and the number of assembly steps. .

なお、本発明は上記の各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせても良い。   Note that the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the components without departing from the scope of the invention in the implementation stage. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, the constituent elements over different embodiments may be appropriately combined.

(a)は、本発明に係る熱−電気直接変換装置の第1の実施形態の構造を模式的に示す断面図であり、(b)はその高温側構成品の細部及び組み立て手順を示す図。(A) is sectional drawing which shows typically the structure of 1st Embodiment of the thermoelectric direct conversion apparatus which concerns on this invention, (b) is a figure which shows the detail and assembly procedure of the high temperature side component . (a)は、本発明に係る熱−電気直接変換装置の第2の実施形態の構造を模式的に示す断面図であり、(b)はその高温側構成品の細部及び組み立て手順を示す図。(A) is sectional drawing which shows typically the structure of 2nd Embodiment of the thermoelectric direct conversion apparatus which concerns on this invention, (b) is a figure which shows the detail and assembly procedure of the high temperature side component . 本発明に係る熱−電気直接変換装置の第3の実施形態の外観を示す斜視図。The perspective view which shows the external appearance of 3rd Embodiment of the thermoelectric direct conversion apparatus which concerns on this invention. 本発明に係る熱−電気直接変換装置の第3の実施形態の構造を模式的に示す断面図。Sectional drawing which shows typically the structure of 3rd Embodiment of the thermoelectric direct conversion apparatus which concerns on this invention. 本発明に係る熱−電気直接変換装置の第4の実施形態の構造を模式的に示す断面図。Sectional drawing which shows typically the structure of 4th Embodiment of the thermoelectric direct conversion apparatus which concerns on this invention. 熱−電気直接変換装置の一般的構成及び動作概念を示す説明図。Explanatory drawing which shows the general structure and operation | movement concept of a thermal-electrical direct conversion apparatus. 従来の熱−電気直接変換装置の構造を模式的に示す断面図。Sectional drawing which shows typically the structure of the conventional thermal-electrical direct conversion apparatus.

符号の説明Explanation of symbols

1、1a、1b、1c 熱−電気直接変換装置
2 p型半導体
3 n型半導体
4 熱−電気直接変換半導体対
5 高温側電極
6 低温側電極
7 高温側絶縁板
7a 第1の金属皮膜
7b 第2の金属皮膜
8 低温側絶縁板
10 電流取出手段
12 低温側接合部
20 金属蓋
21 金属枠
22 低温側基板
23 低温側絶縁板接合部
24 低温側系統への熱放出部
27 カバー部材
27a、27b 電気絶縁層
28 絶縁板
30 気密筐体
1, 1a, 1b, 1c Thermal-electrical direct conversion device 2 p-type semiconductor 3 n-type semiconductor 4 thermal-electrical direct conversion semiconductor pair 5 high temperature side electrode 6 low temperature side electrode 7 high temperature side insulating plate 7a first metal film 7b first 2 Low temperature side insulating plate 10 Current extraction means 12 Low temperature side joint portion 20 Metal lid 21 Metal frame 22 Low temperature side substrate 23 Low temperature side insulating plate joint portion 24 Heat release portion 27 to low temperature side system Cover members 27a, 27b Electrical insulating layer 28 Insulating plate 30 Airtight housing

Claims (10)

p型半導体とn型半導体とからなる複数の熱−電気直接変換半導体対と、
前記熱−電気直接変換半導体対の低温側端部において前記p型半導体とn型半導体とを電気的に接続する複数の低温側電極と、
前記複数の低温側電極を介して前記複数の熱−電気直接変換半導体対と熱的に接続される低温側絶縁板と、
前記熱−電気直接変換半導体対の高温側端部において前記p型半導体とn型半導体とを電気的に接続する複数の高温側電極と、
前記複数の高温側電極のそれぞれを覆う複数のカバー部材と、
前記複数の高温側電極及び前記カバー部材を介して前記複数の熱−電気直接変換半導体対と熱的に接続される高温側絶縁板と、
を備え、
前記高温側電極は、前記p型半導体と前記n型半導体とを跨ぐように載置され、前記高温側電極と前記熱−電気直接変換半導体対との間は非固定であり、
前記カバー部材は、前記高温側電極を覆うように載置され、前記カバー部材と前記高温側電極の間は非固定であり、
前記カバー部材は、金属材料で形成されると共に前記高温側電極に臨む面に開口を有するバスタブ状の箱状部材で形成され、かつ、前記カバー部材の縁部は前記熱−電気直接変換半導体対の高温側端部の一部まで延出し、
前記カバー部材の少なくとも露出面に、隣接するカバー部材同士の接触による短絡を防止する電気絶縁層を設けたことを特徴とする熱−電気直接変換装置。
a plurality of direct thermal-electric conversion semiconductor pairs consisting of a p-type semiconductor and an n-type semiconductor;
A plurality of low-temperature side electrodes that electrically connect the p-type semiconductor and the n-type semiconductor at a low-temperature side end of the thermo-electric direct conversion semiconductor pair;
A low temperature side insulating plate thermally connected to the plurality of thermal-electrical direct conversion semiconductor pairs via the plurality of low temperature side electrodes;
A plurality of high-temperature side electrodes that electrically connect the p-type semiconductor and the n-type semiconductor at a high-temperature side end of the thermo-electric direct conversion semiconductor pair;
A plurality of cover members covering each of the plurality of high temperature side electrodes;
A high temperature side insulating plate thermally connected to the plurality of thermal-electrical direct conversion semiconductor pairs via the plurality of high temperature side electrodes and the cover member;
With
The high-temperature side electrode is placed so as to straddle the p-type semiconductor and the n-type semiconductor, and is not fixed between the high-temperature side electrode and the thermo-electric direct conversion semiconductor pair,
The cover member is placed so as to cover the high temperature side electrode, and is not fixed between the cover member and the high temperature side electrode,
The cover member is formed of a bathtub-like box-shaped member formed of a metal material and having an opening on a surface facing the high temperature side electrode, and an edge portion of the cover member is the thermo-electric direct conversion semiconductor pair. Extending to a part of the high temperature side end of
A direct heat-electric conversion device, wherein an electrical insulating layer for preventing a short circuit due to contact between adjacent cover members is provided on at least an exposed surface of the cover member.
p型半導体とn型半導体とからなる複数の熱−電気直接変換半導体対と、
前記熱−電気直接変換半導体対の低温側端部において前記p型半導体とn型半導体とを電気的に接続する複数の低温側電極と、
前記複数の低温側電極を介して前記複数の熱−電気直接変換半導体対と熱的に接続される低温側絶縁板と、
前記熱−電気直接変換半導体対の高温側端部において前記p型半導体とn型半導体とを電気的に接続する複数の高温側電極と、
前記複数の高温側電極のそれぞれを覆う複数のカバー部材と、
前記複数の高温側電極及び前記カバー部材を介して前記複数の熱−電気直接変換半導体対と熱的に接続される高温側絶縁板と、
前記高温側絶縁板を覆う金属蓋、前記複数の熱−電気直接変換半導体対の周囲を取り囲む金属枠および前記低温側絶縁板を具備して形成され、前記複数の熱−電気直接変換半導体対を外気から遮断するとともに内部を真空もしくは不活性ガス雰囲気に保持する気密筐体とを備え、
前記高温側電極は、前記p型半導体と前記n型半導体とを跨ぐように載置され、前記高温側電極と前記熱−電気直接変換半導体対との間は非固定であり、
前記カバー部材は、前記高温側電極を覆うように載置され、前記カバー部材と前記高温側電極の間は非固定であり、
前記カバー部材は、金属材料で形成されると共に前記高温側電極に臨む面に開口を有するバスタブ状の箱状部材で形成され、かつ、前記カバー部材の縁部は前記熱−電気直接変換半導体対の高温側端部の一部まで延出し、
前記カバー部材の少なくとも露出面に、隣接するカバー部材同士の接触による短絡を防止する電気絶縁層を設けたことを特徴とする熱−電気直接変換装置。
a plurality of direct thermal-electric conversion semiconductor pairs consisting of a p-type semiconductor and an n-type semiconductor;
A plurality of low-temperature side electrodes that electrically connect the p-type semiconductor and the n-type semiconductor at a low-temperature side end of the thermo-electric direct conversion semiconductor pair;
A low temperature side insulating plate thermally connected to the plurality of thermal-electrical direct conversion semiconductor pairs via the plurality of low temperature side electrodes;
A plurality of high-temperature side electrodes that electrically connect the p-type semiconductor and the n-type semiconductor at a high-temperature side end of the thermo-electric direct conversion semiconductor pair;
A plurality of cover members covering each of the plurality of high temperature side electrodes;
A high temperature side insulating plate thermally connected to the plurality of thermal-electrical direct conversion semiconductor pairs via the plurality of high temperature side electrodes and the cover member;
A metal lid that covers the high-temperature side insulating plate, a metal frame that surrounds the plurality of thermal-electrical direct conversion semiconductor pairs, and the low-temperature side insulating plate are formed, and the plural thermal-electrical direct conversion semiconductor pairs are formed. It has an airtight housing that shields it from the outside air and keeps the inside in a vacuum or inert gas atmosphere,
The high-temperature side electrode is placed so as to straddle the p-type semiconductor and the n-type semiconductor, and is not fixed between the high-temperature side electrode and the thermo-electric direct conversion semiconductor pair,
The cover member is placed so as to cover the high temperature side electrode, and is not fixed between the cover member and the high temperature side electrode,
The cover member is formed of a bathtub-like box-shaped member formed of a metal material and having an opening on a surface facing the high temperature side electrode, and an edge portion of the cover member is the thermo-electric direct conversion semiconductor pair. Extending to a part of the high temperature side end of
A direct heat-electric conversion device, wherein an electrical insulating layer for preventing a short circuit due to contact between adjacent cover members is provided on at least an exposed surface of the cover member.
前記電気絶縁層は、耐熱性塗料、アルマイトを含む酸化皮膜、若しくはセラミック材料、又はそれらの組み合わせによって形成されることを特徴とする請求項1又は2に記載の熱−電気直接変換装置。 3. The thermal-electrical direct conversion device according to claim 1, wherein the electrical insulating layer is formed of a heat-resistant paint, an oxide film containing alumite, a ceramic material, or a combination thereof. 前記セラミック材料は、アルミナ、窒化アルミニウム、又は窒化珪素であることを特徴とする請求項3に記載の熱−電気直接変換装置。 The thermal-electrical direct conversion device according to claim 3, wherein the ceramic material is alumina, aluminum nitride, or silicon nitride. 前記カバー部材は、前記高温側電極よりも電気抵抗の大きな材料で形成されることを特徴とする請求項1又は2に記載の熱−電気直接変換装置。 The thermal-electrical direct conversion device according to claim 1, wherein the cover member is made of a material having a larger electric resistance than the high temperature side electrode. 前記高温側絶縁板の高温側面には高熱伝導率を有する材料からなる箔の皮膜が設けられ、前記高温側絶縁板の低温側面には前記カバー部材と接触する位置にのみ前記箔の皮膜が設けられたことを特徴とする請求項1又は2に記載の熱−電気直接変換装置。 A foil film made of a material having high thermal conductivity is provided on the high temperature side surface of the high temperature side insulating plate , and the foil film is provided only on the low temperature side surface of the high temperature side insulating plate at a position in contact with the cover member. The thermal-electrical direct conversion device according to claim 1 or 2, wherein 前記高温側電極は、金属細線を編んだ網状金属部材で形成されることを特徴とする請求項1又は2に記載の熱−電気直接変換装置。 The thermal-electrical direct conversion device according to claim 1 or 2, wherein the high temperature side electrode is formed of a net-like metal member knitted with a fine metal wire. 前記不活性ガスは、窒素、ヘリウム、ネオン、アルゴン、クリプトンおよびキセノンのうち少なくとも1種のガスからなり、常温においては大気圧よりも低圧であることを特徴とする請求項2に記載の熱−電気直接変換装置。 3. The heat − according to claim 2, wherein the inert gas includes at least one gas selected from nitrogen, helium, neon, argon, krypton, and xenon, and has a pressure lower than atmospheric pressure at room temperature. Electric direct conversion device. 前記p型半導体および前記n型半導体は、希土類元素、アクチノイド、コバルト、鉄、ロジウム、ルテニウム、パラジウム、白金、ニッケル、アンチモン、チタン、ジルコニウム、ハフニウム、ニッケル、錫、シリコン、マンガン、亜鉛、ボロン、炭素、窒素、ガリウム、ゲルマニウム、インジウム、バナジウム、ニオブ、バリウムおよびマグネシウムのうち少なくとも3つ以上の元素からなる熱−電気直接変換半導体物質より構成されることを特徴とする請求項1又は2に記載の熱−電気直接変換装置。 The p-type semiconductor and the n-type semiconductor are rare earth elements, actinides, cobalt, iron, rhodium, ruthenium, palladium, platinum, nickel, antimony, titanium, zirconium, hafnium, nickel, tin, silicon, manganese, zinc, boron, 3. The direct thermal-electric conversion semiconductor material composed of at least three elements of carbon, nitrogen, gallium, germanium, indium, vanadium, niobium, barium and magnesium. Direct heat-electric conversion device. 前記p型半導体および前記n型半導体の主相の結晶構造は、スクッテルダイト構造、充填スクッテルダイト構造、ホイスラー構造、ハーフホイスラー構造およびクラスレート構造のうちいずれか1つ又はそれらの混相であることを特徴とする請求項1又は2に記載の熱−電気直接変換装置。 The crystal structure of the main phase of the p-type semiconductor and the n-type semiconductor is any one of a skutterudite structure, a filled skutterudite structure, a Heusler structure, a half-Heusler structure, and a clathrate structure, or a mixed phase thereof. The thermal-electrical direct conversion device according to claim 1 or 2, characterized in that.
JP2005125404A 2005-04-22 2005-04-22 Thermal-electrical direct conversion device Expired - Fee Related JP4969793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005125404A JP4969793B2 (en) 2005-04-22 2005-04-22 Thermal-electrical direct conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005125404A JP4969793B2 (en) 2005-04-22 2005-04-22 Thermal-electrical direct conversion device

Publications (2)

Publication Number Publication Date
JP2006303320A JP2006303320A (en) 2006-11-02
JP4969793B2 true JP4969793B2 (en) 2012-07-04

Family

ID=37471229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005125404A Expired - Fee Related JP4969793B2 (en) 2005-04-22 2005-04-22 Thermal-electrical direct conversion device

Country Status (1)

Country Link
JP (1) JP4969793B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007063168A1 (en) * 2007-12-19 2009-07-02 Bayerische Motoren Werke Aktiengesellschaft Thermoelectric module for thermoelectric generator to produce electrical energy, has insulating layer sections that are separated from one another, where insulating layer electrically insulates electric guide elements from heat source
JP6171513B2 (en) * 2013-04-10 2017-08-02 日立化成株式会社 Thermoelectric conversion module and manufacturing method thereof
US20180363852A1 (en) * 2015-08-20 2018-12-20 Samsung Heavy Ind. Co., Ltd. Thermoelectric power generating module, and thermoelectric power generating device, anti-freezing vaporizer, and vaporized fuel gas liquefaction process device including same
JP7151068B2 (en) * 2016-12-26 2022-10-12 三菱マテリアル株式会社 Thermoelectric conversion module with case
KR102434260B1 (en) 2018-06-26 2022-08-19 엘지이노텍 주식회사 Thermoelectric element
JP2020012629A (en) * 2019-07-05 2020-01-23 サムスン ヘビー インダストリーズ カンパニー リミテッド Anti-icing vaporization device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4011692B2 (en) * 1997-10-30 2007-11-21 シチズンホールディングス株式会社 Thermoelectric element
JP2002026400A (en) * 2000-06-30 2002-01-25 Toshiba Corp Thermoelectric conversion material and element
JP2003273413A (en) * 2002-03-19 2003-09-26 Citizen Watch Co Ltd Thermoelement and method of manufacturing the same
JP4901049B2 (en) * 2002-11-21 2012-03-21 株式会社東芝 Thermoelectric conversion unit
JP4488778B2 (en) * 2003-07-25 2010-06-23 株式会社東芝 Thermoelectric converter

Also Published As

Publication number Publication date
JP2006303320A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4686171B2 (en) Thermal-electrical direct conversion device
US20080163916A1 (en) Thermoelectric conversion module and thermoelectric conversion apparatus
JP4969793B2 (en) Thermal-electrical direct conversion device
JP5105718B2 (en) Thermal-electrical direct conversion device
JP4901350B2 (en) Thermoelectric conversion device and manufacturing method thereof
JP5444260B2 (en) Thermoelectric module and power generator
CN107706296B (en) Thermoelectric device with integrated packaging structure and preparation method thereof
JP4490765B2 (en) Direct heat-electric converter
JP5159264B2 (en) Thermoelectric device and thermoelectric module
JP2005277206A (en) Thermoelectric converter
JP4528571B2 (en) Direct heat-electric converter
JP2006073632A (en) Thermoelectric conversion device and method for manufacturing the same
JP6240514B2 (en) Thermoelectric conversion module
US20130139866A1 (en) Ceramic Plate
JP5653455B2 (en) Thermoelectric conversion member
JP6115047B2 (en) Thermoelectric conversion module and manufacturing method thereof
JP4287262B2 (en) Thermoelectric converter
JP2006237547A (en) Thermoelectric conversion module, power generator and cooler using the same
JP5049533B2 (en) Thermoelectric converter
JP5075707B2 (en) Thermoelectric device and thermoelectric module
JP6010941B2 (en) Thermoelectric conversion module with airtight case
JP5761123B2 (en) Thermoelectric converter
JP4296066B2 (en) Thermoelectric converter
JP2007258298A (en) Ceramic circuit substrate and electronic component module using the same
US20220149260A1 (en) Thermoelectric conversion module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4969793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees