JP2004083625A - Abrasive material - Google Patents

Abrasive material Download PDF

Info

Publication number
JP2004083625A
JP2004083625A JP2002242496A JP2002242496A JP2004083625A JP 2004083625 A JP2004083625 A JP 2004083625A JP 2002242496 A JP2002242496 A JP 2002242496A JP 2002242496 A JP2002242496 A JP 2002242496A JP 2004083625 A JP2004083625 A JP 2004083625A
Authority
JP
Japan
Prior art keywords
powder
diamond
present
polishing
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002242496A
Other languages
Japanese (ja)
Other versions
JP4188028B2 (en
Inventor
Tamikuni Komatsu
小松 民邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2002242496A priority Critical patent/JP4188028B2/en
Publication of JP2004083625A publication Critical patent/JP2004083625A/en
Application granted granted Critical
Publication of JP4188028B2 publication Critical patent/JP4188028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abrasive material using a new ultrafine particulate diamond having better durability than that of shock synthetic diamond and the excellent durability in oxidizing atmosphere. <P>SOLUTION: The abrasive material is composed of powder of a diamond structural material obtained by shock synthesis, having an element composition of BCxN (wherein, x is 1-20) and composed of boron, carbon and nitrogen. The average diameter of primary particles of the powder is 5-10 nm and the diameter of secondary particles is 45-550 nm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、シリコンウエハー、磁気ヘッド、ハードディスク等の表面の仕上げ加工、精密部材の研磨加工等に用いる研磨材に関するものであり、特に、硬質表面の精密研磨に適した新規な研磨材に関する。
【0002】
【従来の技術】
ダイヤモンドは、地球に存在するすべての物質の中で最高の硬度を有するため、あらゆる材料の研磨材となりうる。近年、電子工業の主流を占めるハードディスク等の記録媒体の大容量化が急速に進んでいるが、記録媒体の表面加工精度を向上するために、従来のミクロンサイズよりも1桁小さいサイズのダイヤモンド粉末が研磨材として用いられている。
【0003】
研磨材用のダイヤモンドには、静的高温・高圧下で合成されるものと、爆薬を用いて合成されるものがあるが、上記の目的には、衝撃合成ダイヤモンド粉末が適している。これは、衝撃合成ダイヤモンド粉末の特殊な形態─二次粒子の大きさがサブミクロンサイズの多結晶性球状粒子─によるところが大きい。しかし、超微粒のダイヤモンド粉末は酸化され易いので、長期間の使用によって減耗するという問題があった。
【0004】
【発明が解決しようとする課題】
本発明は、上記の事情に鑑み、衝撃合成ダイヤモンドよりも耐久性に優れると共に、酸化雰囲気における耐久性に優れた、新規な超微粒ダイヤモンドを用いた研磨材を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者は、上記の目的を達成するために鋭意研究を重ねた結果、爆薬を用いて合成した、全く新しい、炭素、硼素及び窒素からなるダイヤモンド構造物質(ヘテロダイヤモンド)の粉末を分級することによって、上記目的を達成することを見出し、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、衝撃合成によって得られる、元素組成がBCxN(x=1〜20)である、硼素、炭素及び窒素からなるダイヤモンド構造物質の粉体であって、粉体の一次粒子の平均直径が5〜10nm、かつ、二次粒子の直径が45〜550nmである粉体からなる研磨材である。
【0006】
以下、本発明を詳細に説明する。
本発明の炭素、硼素及び窒素からなるダイヤモンド構造物質(以下、ヘテロダイヤモンド、という)は、原料である炭素、硼素及び窒素からなる黒鉛構造物質から衝撃合成したものである。黒鉛構造物質としては、三塩化硼素とアセト二トリルを高温処理して得られる黒鉛類似物質、三塩化硼素、アセチレンのような炭化水素及びアンモニアのような窒素含有気体の三者を高温処理して得られる黒鉛類似物質等を用いることができる。衝撃合成は、特開平6−316411号公報に記載の方法により行うことができる。得られたヘテロダイヤモンド粉末の元素組成は化学分析によって測定できる。
【0007】
本発明のヘテロダイヤモンドの組成式は、BCNで表される。xは1〜20であり、xが2〜6の場合は、硼素と窒素の含有率が高いので耐酸化性に優れているので好ましい。このヘテロダイヤモンドを研磨材として用いる場合、研磨材中に、通常、0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上含ませる。
結晶構造は、X線回折によってダイヤモンド構造であることが確認できる。結晶は、非常に小さい一次粒子が粒界で凝集して二次粒子を構成しているので多結晶体である。
【0008】
衝撃合成によって得られるヘテロダイヤモンドの粉体の粒度分布をそろえるために分級を行う。分級は、ヘテロダイヤモンド粉末を水分散し、水流下における沈降速度を制御することによって行うことができる。分級されたヘテロダイヤモンド粉末の一次粒子の平均直径は、粉末X線回折によって111面の回折曲線の線幅からシェラーの式、すなわち、L=0.9λ/cosθ(式中、Lは結晶の大きさ、λは、X線の波長、θは、111面の回折角である)、を用いて測定することができる。二次粒子の形状と大きさは、走査型電子顕微鏡によって観察できる。
【0009】
本発明で用いられる紛体は、一次粒子の平均直径が5〜10nm、二次粒子の直径が45〜550nmの球状粒子である。粒子が球状であるために、被研磨材料の表面に引っかき傷をつけることのない、滑らかな研磨が可能である。したがって、本発明の研磨材は、精密研磨用として好適であり、なかでも、シリコンウエハー、炭化珪素ウエハー等の電子記録媒体等の研磨に最適である。
一般に、研磨材の二次粒子の大きさは、ナノレベルの超精密研磨のためにはナノサイズの範囲にあることが好ましいが、本発明のヘテロダイヤモンド粉末は、その粒界において、研磨過程で被研磨材料から受けるせん断力によってより細かな粒子に細分化するので、初期粒度が500nmの粉末であっても精密研磨に使用できる。
【0010】
本発明のヘテロダイアモンドの耐酸化性は、空気気流中における熱重量測定によって評価することができる。ヘテロダイヤモンド粉末は、ダイヤモンド粉末よりも耐酸化性が優れている。硬度の直接測定は、材料が超微粒子であるので困難であるが、ダイヤモンドの111面に擦り跡をつけることができるので、ダイヤモンドと同等の硬度をもつものと予想される。
本発明のヘテロダイヤモンド粉末は、単独で研磨材として用いることができるが、適切な媒体に分散して用いることもできる。炭素、硼素及び窒素から構成されるヘテロダイヤモンドは極性の物質であるので、分散媒体が水の場合にはコロイド状の分散液となり、そのため複雑形状の材料の超精密研磨が可能である。
以上の特徴から、本発明のヘテロダイヤモンドの超微粒子は、硬質表面のウエハー、磁気ヘッド、ハードディスク等の表面の仕上げ加工、精密部材の研磨加工に最適である。
【0011】
【発明の実施の形態】
以下に、実施例により、本発明を具体的に説明する。
【0012】
【実施例1】
ヘテロダイヤモンドの出発原料には、アセトニトリルと三塩化硼素を窒素気流中1500℃で処理して得た黒鉛類似構造のBCNを用いた。特開平6−316411号公報に記載の方法で合成したヘテロダイヤモンド粉末を水分散し、適切な水流を与えて沈降速度の違いによって分級した。化学分析による元素分析の結果、硼素:炭素:窒素の組成比は1:2.5:1(BC2.5N)であった。
【0013】
得られた粉末のX線回折図を図1に、走査型電子顕微鏡写真を図2に示す。図1から、物質がダイヤモンド構造を有することがわかる。解析の結果、格子定数は0.3605nmであった。X線回折図における111面(メインピーク)の回折曲線の線幅から、シェラーの式、すなわち、L=0.9λ/cosθ(式中、Lは結晶の大きさ、λはX線の波長、θは111面の回折角である)、を用いて測定した一次粒子の直径は8nmであり、図2から、二次粒子の直径は45〜550nmであることがわかった。
【0014】
空気気流中における熱重量減少をダイヤモンド粉末(衝撃合成ダイヤモンド:1/8UQG、デュポン社製)と比較した結果を図3に示す。図3から、ヘテロダイヤモンド粉末は、ダイヤモンド粉末よりも耐酸化性が優れ、ダイヤモンドのように燃え尽きないことがわかる。
【0015】
【実施例2】
実施例1で得たヘテロダイヤモンド粉末を用いてニッケル板の表面を研磨した。研磨材として、超純水にヘテロダイヤモンド粉末を、重量比率で0.2%分散してなるコロイド状の水分散液を用いた。研磨速度は、20分間の研磨におけるニッケル板の重量減少から求め、研磨面の面粗さは、原子力間顕微鏡(AFM)によって観察した。比較のために、衝撃合成ダイヤモンド粉末(衝撃合成ダイヤモンド:1/8UQG、デュポン社製)を0.2%分散した水分散液を用いて同様の条件で研磨した。
研磨性能を測定した結果を表1に示す。
【0016】
【表1】

Figure 2004083625
【0017】
【発明の効果】
本発明のヘテロダイアモンドは、衝撃合成ダイヤモンドよりも耐久性に優れると共に、酸化雰囲気における耐久性に優ており、硬質材料の表面を精密研磨するのに好適である。
【図面の簡単な説明】
【図1】本発明ヘテロダイヤモンド粉末の粉末X線回折チャート。
【図2】本発明ヘテロダイヤモンド粉末の透過型顕微鏡写真。
【図3】空気気流中における熱重量測定チャート。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polishing material used for finishing a surface of a silicon wafer, a magnetic head, a hard disk, or the like, polishing a precision member, and the like, and particularly relates to a novel polishing material suitable for precision polishing of a hard surface.
[0002]
[Prior art]
Diamond can be an abrasive for any material because it has the highest hardness of any substance present on Earth. In recent years, the capacity of recording media such as hard disks, which dominate the electronics industry, has been rapidly increasing. However, in order to improve the surface processing accuracy of recording media, diamond powder having a size one order of magnitude smaller than the conventional micron size has been used. Are used as abrasives.
[0003]
Diamonds for abrasives include those synthesized under static high temperature and high pressure and those synthesized using explosives. For the above purpose, impact synthetic diamond powder is suitable. This is largely due to the special morphology of the impact synthetic diamond powder (the polycrystalline spherical particles whose secondary particles have a submicron size). However, since the ultrafine diamond powder is easily oxidized, there is a problem in that the powder is worn out over a long period of use.
[0004]
[Problems to be solved by the invention]
In view of the above circumstances, an object of the present invention is to provide a novel abrasive material using ultrafine diamond, which is superior in durability to impact synthetic diamond and superior in durability in an oxidizing atmosphere.
[0005]
[Means for Solving the Problems]
The present inventor has conducted intensive studies to achieve the above object, and as a result, has classified a completely new powder of a diamond structural material (heterodiamond) composed of carbon, boron and nitrogen, which has been synthesized using explosives. As a result, the present inventors have found that the above object is achieved, and have completed the present invention based on this finding.
That is, the present invention relates to a powder of a diamond structural material comprising boron, carbon and nitrogen and having an elemental composition of BCxN (x = 1 to 20), obtained by impact synthesis, wherein the average of primary particles of the powder is It is an abrasive made of a powder having a diameter of 5 to 10 nm and secondary particles having a diameter of 45 to 550 nm.
[0006]
Hereinafter, the present invention will be described in detail.
The diamond structure material comprising carbon, boron and nitrogen (hereinafter, referred to as heterodiamond) of the present invention is a material synthesized by impact from a graphite structure material comprising carbon, boron and nitrogen as a raw material. As a graphite structure material, a graphite-like substance obtained by high-temperature treatment of boron trichloride and acetonitrile, boron trichloride, a hydrocarbon such as acetylene, and a nitrogen-containing gas such as ammonia are subjected to high-temperature treatment. The obtained graphite-like substance can be used. Impact synthesis can be performed by the method described in JP-A-6-316411. The element composition of the obtained hetero diamond powder can be measured by chemical analysis.
[0007]
The composition formula of the hetero diamond of the present invention is represented by BC X N. x is from 1 to 20, and when x is from 2 to 6, the content of boron and nitrogen is high and the oxidation resistance is excellent. When this hetero diamond is used as an abrasive, the abrasive is usually contained in an amount of 0.01% by mass or more, preferably 0.05% by mass or more, more preferably 0.1% by mass or more.
The crystal structure can be confirmed to be a diamond structure by X-ray diffraction. Crystals are polycrystalline because very small primary particles aggregate at grain boundaries to form secondary particles.
[0008]
Classification is performed to make the particle size distribution of the heterodiamond powder obtained by the impact synthesis uniform. Classification can be performed by dispersing the hetero diamond powder in water and controlling the sedimentation velocity under a water stream. The average diameter of the primary particles of the classified heterodiamond powder is determined by the Scherrer equation from the line width of the diffraction curve of the 111 plane by powder X-ray diffraction, that is, L = 0.9λ / cos θ (where L is the crystal size). Here, λ is the wavelength of the X-ray, and θ is the diffraction angle of the 111 plane). The shape and size of the secondary particles can be observed with a scanning electron microscope.
[0009]
The powder used in the present invention is a spherical particle having an average primary particle diameter of 5 to 10 nm and a secondary particle diameter of 45 to 550 nm. Since the particles are spherical, smooth polishing without scratching the surface of the material to be polished is possible. Therefore, the abrasive of the present invention is suitable for precision polishing, and is most suitable for polishing electronic recording media such as silicon wafers and silicon carbide wafers.
In general, the size of the secondary particles of the abrasive is preferably in the nano-size range for ultra-precision polishing at the nano level, but the hetero diamond powder of the present invention has a grain boundary at the grain boundary during the polishing process. Since the particles are finely divided by the shear force received from the material to be polished, even a powder having an initial particle size of 500 nm can be used for precision polishing.
[0010]
The oxidation resistance of the hetero diamond of the present invention can be evaluated by thermogravimetry in an air stream. Hetero diamond powder has better oxidation resistance than diamond powder. Direct measurement of hardness is difficult because the material is ultrafine, but it is expected that it will have hardness equivalent to diamond because it can scratch the 111 surface of diamond.
The hetero diamond powder of the present invention can be used alone as an abrasive, but can also be used by dispersing it in an appropriate medium. Since heterodiamond composed of carbon, boron and nitrogen is a polar substance, when the dispersion medium is water, it becomes a colloidal dispersion liquid, and therefore, ultra-precision polishing of a material having a complicated shape is possible.
From the above characteristics, the ultrafine diamond particles of the present invention are most suitable for finishing of hard surfaces such as wafers, magnetic heads and hard disks and polishing of precision members.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be specifically described with reference to examples.
[0012]
Embodiment 1
As a starting material for the heterodiamond, BC 2 N having a graphite-like structure obtained by treating acetonitrile and boron trichloride at 1500 ° C. in a nitrogen stream was used. The heterodiamond powder synthesized by the method described in JP-A-6-316411 was dispersed in water, and an appropriate water flow was applied to classify the powder according to the difference in sedimentation velocity. As a result of elemental analysis by chemical analysis, the composition ratio of boron: carbon: nitrogen was 1: 2.5: 1 (BC 2.5 N).
[0013]
FIG. 1 shows an X-ray diffraction pattern of the obtained powder, and FIG. 2 shows a scanning electron micrograph. FIG. 1 shows that the material has a diamond structure. As a result of the analysis, the lattice constant was 0.3605 nm. From the line width of the diffraction curve of the 111 plane (main peak) in the X-ray diffraction diagram, the Scherrer equation, that is, L = 0.9λ / cos θ (where L is the crystal size, λ is the X-ray wavelength, θ is the diffraction angle of the 111 plane), and the diameter of the primary particles was 8 nm, and from FIG. 2, it was found that the diameter of the secondary particles was 45 to 550 nm.
[0014]
FIG. 3 shows the results of comparing the thermogravimetric loss in an air stream with diamond powder (impact synthetic diamond: 1/8 UQG, manufactured by DuPont). FIG. 3 shows that the hetero diamond powder has better oxidation resistance than the diamond powder and does not burn out like diamond.
[0015]
Embodiment 2
Using the hetero diamond powder obtained in Example 1, the surface of the nickel plate was polished. As an abrasive, a colloidal aqueous dispersion obtained by dispersing a hetero diamond powder in ultrapure water at a weight ratio of 0.2% was used. The polishing rate was determined from the weight loss of the nickel plate during polishing for 20 minutes, and the surface roughness of the polished surface was observed with an atomic force microscope (AFM). For comparison, polishing was performed under the same conditions using an aqueous dispersion in which 0.2% of impact synthetic diamond powder (impact synthetic diamond: 1/8 UQG, manufactured by DuPont) was dispersed.
Table 1 shows the results of the measurement of the polishing performance.
[0016]
[Table 1]
Figure 2004083625
[0017]
【The invention's effect】
The heterodiamond of the present invention is more durable than impact synthetic diamond and more durable in an oxidizing atmosphere, and is suitable for precisely polishing the surface of a hard material.
[Brief description of the drawings]
FIG. 1 is a powder X-ray diffraction chart of the heterodiamond powder of the present invention.
FIG. 2 is a transmission micrograph of the heterodiamond powder of the present invention.
FIG. 3 is a thermogravimetry chart in an air stream.

Claims (1)

衝撃合成によって得られる、元素組成がBCxN(x=1〜20)である、硼素、炭素及び窒素からなるダイヤモンド構造物質の粉体であって、粉体の一次粒子の平均直径が5〜10nm、かつ、二次粒子の直径が45〜550nmである粉体からなる研磨材。A powder of a diamond structural material comprising boron, carbon, and nitrogen and having an elemental composition of BCxN (x = 1 to 20), obtained by impact synthesis, wherein the primary particles of the powder have an average diameter of 5 to 10 nm, An abrasive made of a powder having a secondary particle diameter of 45 to 550 nm.
JP2002242496A 2002-08-22 2002-08-22 Abrasive Expired - Fee Related JP4188028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002242496A JP4188028B2 (en) 2002-08-22 2002-08-22 Abrasive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242496A JP4188028B2 (en) 2002-08-22 2002-08-22 Abrasive

Publications (2)

Publication Number Publication Date
JP2004083625A true JP2004083625A (en) 2004-03-18
JP4188028B2 JP4188028B2 (en) 2008-11-26

Family

ID=32051568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242496A Expired - Fee Related JP4188028B2 (en) 2002-08-22 2002-08-22 Abrasive

Country Status (1)

Country Link
JP (1) JP4188028B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331846A (en) * 2005-05-26 2006-12-07 Asahi Kasei Corp Electrode catalyst for fuel cell
JP2017179220A (en) * 2016-03-31 2017-10-05 株式会社フジミインコーポレーテッド Polishing composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331846A (en) * 2005-05-26 2006-12-07 Asahi Kasei Corp Electrode catalyst for fuel cell
JP2017179220A (en) * 2016-03-31 2017-10-05 株式会社フジミインコーポレーテッド Polishing composition

Also Published As

Publication number Publication date
JP4188028B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
TWI409323B (en) Hard crystalline substrate grinding methods and oily grinding slurry
JP5098483B2 (en) Polishing method of sapphire substrate
JP5607846B2 (en) Abrasive grains with unique morphology
JP6367815B2 (en) Smooth diamond surface and CMP method for its formation
JP5856256B2 (en) Polishing composition for nickel-phosphorus storage disk
JP3411239B2 (en) Diamond abrasive particles and method for producing the same
EP2100325A1 (en) Water-based polishing slurry for polishing silicon carbide single crystal substrate, and polishing method for the same
WO2011070898A1 (en) Polishing slurry for silicon carbide and polishing method therefor
JP2004181584A (en) Polishing composite material, grinding wheel, grinding material, polishing material, working method of electronic part, and working method of silicon
JP4178222B2 (en) Abrasive
Chen et al. The effect of surface polarity on the CMP behavior of 6H-SiC substrates
DE50311351D1 (en) ABRASIVES WITH IMPROVED GRINDING PROPERTIES
JP4188028B2 (en) Abrasive
JPH11268911A (en) Alumina powder, its production, and composition for polishing
JP3957432B2 (en) β-type silicon carbide powder-containing composition, its production method and use
JP3990936B2 (en) Abrasive grain and manufacturing method thereof, polishing tool and manufacturing method thereof, polishing grindstone and manufacturing method thereof, and polishing apparatus
JP4156174B2 (en) Polishing liquid composition
JP2001047358A (en) Composition for polishing
JP4301434B2 (en) Polishing abrasive grains and polishing tool
JP2008147617A (en) Chemical mechanical polishing slurry
JPH05112775A (en) Grinding composition for metallic material
Lei et al. Preparation and polishing properties of spherical porous silica abrasive
JP2000190228A (en) Fixed abrasive grain work tool
Kasman et al. Waste reduction in lapping sapphire and other compound semiconductor materials
JPH02158683A (en) Abrasive composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080303

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

LAPS Cancellation because of no payment of annual fees